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Multi-Objective Software Effort Estimation:
A Replication Study
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Abstract—Replication studies increase our confidence in previous results when the findings are similar each time, and help mature
our knowledge by addressing both internal and external validity aspects. However, these studies are still rare in certain software
engineering fields.
In this paper, we replicate and extend a previous study, which denotes the current state-of-the-art for multi-objective software effort
estimation, namely CoGEE. We investigate the original research questions with an independent implementation and the inclusion of a
more robust baseline (LP4EE), carried out by the first author, who was not involved in the original study. Through this replication, we
strengthen both the internal and external validity of the original study.
We also answer two new research questions investigating the effectiveness of CoGEE by using four additional evolutionary algorithms
(i.e., IBEA, MOCell, NSGA-III, SPEA2) and a well-known Java framework for evolutionary computation, namely JMetal (rather than the
previously used R software), which allows us to strengthen the external validity of the original study.
The results of our replication confirm that: (1) CoGEE outperforms both baseline and state-of-the-art benchmarks statistically
significantly (p < 0.001); (2) CoGEE’s multi-objective nature makes it able to reach such a good performance; (3) CoGEE’s estimation
errors lie within claimed industrial human-expert-based thresholds. Moreover, our new results show that the effectiveness of CoGEE is
generally not limited to nor dependent on the choice of the multi-objective algorithm. Using CoGEE with either NSGA-II, NSGA-III, or
MOCell produces human competitive results in less than a minute. The Java version of CoGEE has decreased the running time by over
99.8% with respect to its R counterpart.
We have made publicly available the Java code of CoGEE to ease its adoption, as well as, the data used in this study in order to allow
for future replication and extension of our work.

Index Terms—Software effort estimation; multi-objective evolutionary algorithm; confidence interval; estimates uncertainty.
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1 INTRODUCTION

MAny researchers have emphasised the idea of replica-
tion studies and its value to the Empirical Software

Engineering (SE) field [15], [40], [100], [101].
Any body of knowledge mainly built upon experimental

results, such as the Empirical SE one, need to be consoli-
dated by performing an extensive verification of its experi-
mental results [55].

This verification is possible by replicating an experiment
to check whether its results are reproducible [55]: Repli-
cation increases our confidence if the results are similar
each time. However, there are fields of software engineering
where reproducibility and verification are still low [23].

Shepperd et al. [94] have recently performed a systematic
review to identify replication experimental studies in the
areas of software effort estimation up to August 2017. They
found that there are only 22 unique articles replicating 30
original studies out of roughly 46001 published experiments
on software project effort estimation [94].

We aim to further consolidate the body of knowledge in
software effort estimation by carrying out an exact repli-
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1. Although it is hard to estimate the number of publications on effort

estimation, Shepperd et al. attempt to corroborate this number with a
general search on Scopus [94].

cation [101] of the work by Sarro et al. [89].2 In their
work, the authors propose a novel bi-objective software de-
velopment effort estimation algorithm, named Confidence
Guided Effort Estimation (CoGEE), which evolves multiple
robust estimation models by simultaneously optimising for
high accuracy and low uncertainty of the prediction [89].
CoGEE [89] has set the state-of-the-art for multi-objective
effort estimation algorithms and has been the only one to
achieve human-competitive results thus far 3.

In this paper, we replicate and extend their work [89]
by further assessing CoGEE’s effectiveness using the most
recent best practice in search-based software engineering [6],
[45], [67], [83] and predictive models for software engineer-
ing [88], [97], [109].

One important benefit of replications is that they help
mature software engineering knowledge by addressing both
internal and external validity aspects [101]. We have carried
out a large empirical study involving 724 different software
projects in order to replicate the same research questions
by means of the same experimental design enriched by:
(1) using a new robust state-of-the-art baseline benchmark

2. Shull et al. identify two types of replication: “exact replications,
in which the procedures of an experiment are followed as closely as
possible; and conceptual replications, in which the same research question
is evaluated by using a different experimental procedure.” Based on this
categorization, our work is an exact replication.

3. Sarro et al. [89] won the ACM SIGEVO 13th Annual (2016) “Hu-
mies” Award for Human-Competitive Results Produced by Genetic and
Evolutionary Computation http://www.human-competitive.org.

http://www.human-competitive.org
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(i.e., Linear Programming for Effort Estimation) [88], which
strength the conclusion and external validity of the pre-
vious study since the baseline used in the original study
was found to be unstable [88]; (2) investigating four addi-
tional variants of Multi-Objective Evolutionary algorithms
(MOEAs), each belonging to a different optimisation family,
which enhances the external validity of the original study;
(3) evaluating CoGEE’s performance in terms of execution
time; (4) a new and independent implementation of CoGEE
in a different programming language (Java) based on a
widely used evolutionary computation framework (namely
JMetal [78]), which not only has decreased the running
time with respect to the original R implementation, but has
also strengthened the internal validity of the study.

The implementation of all approaches, the experiments
and the analysis for the replicated research questions have
been carried out independently by the first author of this
paper who was not involved in the original study, though
he had consulted with the authors through face to face inter-
action for explanations and clarifications. We used the same
datasets as the original study to preserve the experimental
context. As in the original study, we report our results in
terms of Standard Accuracy (SA) and Mean Absolute Error
(MAE) (see Section 2), and we test for statistical significance
using the Wilcoxon Rank-Sum test (corrected with Bonfer-
roni) with the Vargha-Delaney Â12 non-parametric effect
size.

The scientific findings of our replication are consistent
with those reported in the original study. Specifically, they
confirm that CoGEE outperforms both baseline and state-of-
the-art techniques statistically significantly; and, also, that
its error remains within the claimed thresholds for industrial
best estimation practice [89]. We have also extended the
previous findings by comparing the effectiveness of five
different MOEAs (i.e., NSGA-II, NSGA-III, MOCell, IBEA,
and SPEA2) as the underlying search algorithm for CoGEE.
We found that three out of five algorithms produce sim-
ilar high-quality solutions in similar running time; hence
the effectiveness of CoGEE is generally not limited to nor
depended on the choice of multi-objective algorithm. The
two other algorithms (i.e., SPEA2 and IBEA) had a higher
running time, and one of them (IBEA) produced lower
quality solutions, although it could still outperform the
baseline techniques.

We have made publicly available our Java implemen-
tation of CoGEE to facilitate its adoption in future studies
[105]. The datasets used in the study are also available to
facilitate the reproduction of our study [106].

The rest of the paper is organised as follows. Section 2
gives some background on software effort estimation, eval-
uation performance measures, search-based approaches for
effort estimation, and CoGEE. Section 3 describes the design
of our replication study in detail, including the research
questions and the experimental method used to address
them. Section 4 reports and discuss the results. Further
insights on similarities and differences between the original
study and this replication are discussed in Section 5. The
validity of the study is discussed in Section 6. Section 7
reports on the related work, and Section 8 concludes the
paper.

2 SOFTWARE EFFORT ESTIMATION

In software management and planning, producing an accu-
rate estimation of the effort needed to complete or maintain
a project is of great importance and concern. Meanwhile,
estimating the most realistic amount of effort in the early
stage of software development is difficult since the infor-
mation available at that stage is usually incomplete and
uncertain. Although construction of formal software effort
estimation models started in the very early times of the
industrialization of software production, expert judgement
still remains the dominant strategy for effort prediction in
practice where the accuracy of the estimate is sensitive to
the practitioner’s expertise and thus prone to bias [53],
[87]. Early work to build an estimation technique tried
to find a set of factors related to the software size and
cost by using regression analysis [9]. With the advent of
Artificial Intelligence-based techniques in software effort
estimation, different approaches have been investigated, in-
cluding analogy-based techniques (e.g., Case-Based Reason-
ing [98]), machine learning techniques (e.g., Classification
and Regression Trees [59], Artificial Neural Networks [111],
Support Vector Regression [80], Bayesian Networks [17]),
Search-Based approaches [36] (e.g., Genetic Programming
[29], [32], Tabu Search [31], [33]), and combinations of two
or more of these methods (e.g., [21], [22], [60], [61]). These
approaches usually exploit the relations between available
information on a set of past projects (i.e., the training set)
to build a model that can be used to predict the effort for
a new project. The information presented in the training set
(a.k.a. predictors or cost drivers) are the factors identified
as related to the effort measured on the previous projects
and stored in a database. Examples of such cost drivers
are the functional size of the software, number of team
members, team experience, etc. The prediction model takes
as input the predictor values for a new project and returns a
scalar value that represents the estimated effort to develop a
software system, usually in terms of person-hour or person-
month. Depending on the prediction approach, the predic-
tors are used in a different way. For example, a linear re-
gression technique combines the predictors through a linear
equation, while in Case-Based reasoning the predictors are
exploited to find the most similar projects from the past,
then used to predict the effort for the new project.

2.1 Performance Measures
In the software effort estimation literature several measures
have been introduced and used for evaluating the accuracy
of a prediction model. These measures generally are built
upon the prediction error (or absolute error) that is the
distance between the predicted value and the actual value
(i.e., |Actual.value − Predicted.value|). Among them, the
Mean of Magnitude of Relative Error (MMRE), Mean of
Magnitude of Relative Error Relative to Estimate (MEMRE)
and Prediction at level l (Pred(l)) have been the most
popular [68] until it was pointed out that they are biased
towards underestimates [58], [62], [81], [95], [104], [107],
and behave differently when comparing different prediction
models [38]. Therefore, their use is discouraged and future
studies should rely on standardised measures that are not
biased towards under or overestimates, such as the Sum
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of Absolute Errors (SAE), Mean Absolute Error (MAE) and
Standard Accuracy (SA) [64], [89], [97].

Given a set of n projects, each of which characterised by
actual effort (ai) and estimated effort (ei), the SAE and MAE
are computed as the sum of the absolute errors and the mean
of the absolute errors across the n projects, respectively:

SAE =
n∑

i=1

|ai − ei| (1)

MAE =
1

n

n∑
i=1

|ai − ei| (2)

SA was recommended by Shepperd and MacDonell [97]
as a standard measure for comparing multiple prediction
models against each other. It is based on MAE and defined
as follows:

SA =

(
1− MAEpi

MAEp0

)
× 100 (3)

where MAEpi is the MAE of the prediction model pi being
evaluated and MAEp0 is the MAE of a large number (usu-
ally 1,000 runs) of random guesses. For a prediction model
pi whose accuracy outperforms that of random guessing,
SA will produce a number in the range [0, 1]. An SA
value closer to zero is discouraging since it means that the
predictor pi is performing just a little better than random
guessing [89]. SA can also produce negative values, for
those predictors which are performing even worse than
random guessing.

A high-performance prediction model should have a
lower SAE, lower MAE, and higher SA than its competi-
tors.

2.2 Search-Based Effort Estimation

Search-Based Software Engineering (SBSE) reformulates
software engineering problems as search problems. The
SBSE solution space is explored using a search technique
equipped with some software metrics able to discriminate
between good and bad solutions, which will tend to guide
the search towards the optimal solution(s) [44].

In Search-Based Effort Estimation (SBEE), the optimi-
sation method builds many candidate models and tries to
identify the optimal model, i.e., the one providing the most
accurate estimates [36], [86]. Such a model can be described
by the following equation [89]:

EstimatedEffort = w1op1f1 + ...+ wnopnfn + C (4)

where fi represents the value of the ith feature (i.e., cost
driver), wi its weight, and C represents a constant, while
opi represents the ith mathematical operator (e.g., +, −, ×,
÷, exp) of the model. Any value except for the features in
Equation (4) can be optimised in order to maximise the accu-
racy of the model. Consequently, the search space consists
of all the models that could possibly be built by varying
the weights and operators in Equation (4). Considering the
number of project features and the range of weights and
operators, the search space can become dramatically large,

that makes this problem suitable to be solved by search-
based approaches.

The fitness of a model is evaluated by its prediction ac-
curacy. In a single objective SBEE, a single measure of accu-
racy is used to compare different models and consequently
derive the best one [13], [32]. However, in the context of
effort estimation, there are several measures of accuracy,
each one focusing on a different aspect. Since there is no a
defined way of aggregating different accuracy measures for
SEE, a multi-objective solution is appropriate [34], where
several competing measures are optimised simultaneously
[45], [89].

SBEE has been widely explored for effort estimation over
the last 20 years [13], [28], [31], [32], [33], [34], [66], [89],
[92]. Unlike the previous work on multi-objective software
effort estimation, Sarro et al. [89] considered the confidence
interval of the estimated efforts by a model as an objective
to be minimised alongside the maximisation of the accuracy
of the point estimates. Since this paper is a replication of this
work, we briefly describe the approach in the following.

2.3 Confidence Guided Effort Estimation (CoGEE)

CoGEE is a bi-objective estimation method introduced in the
original study by Sarro et al. [89].

Representation: The effort estimation model in Equa-
tion (4) is encoded as a Genetic Algorithm individual
by representing it as an expression syntax tree with op-
erators in the internal nodes and weights in the leaf
nodes (see Figure 1). As in the original study [89], the
values for the weights and the constant C are ran-
domly drawn from a range of real numbers bounded by
[min,max] = [−100, 100] and the operators are drawn from
op ∈ {+,−,×,÷}.4 The feature values in Equation (4)
come from the training data and do not change during the
evolution process, so they are not present in the expression
syntax tree. An equation (i.e., model) that produces negative
values for EstimatedEffort is considered infeasible and
penalised by receiving the worst possible fitness value. The
initial population is generated by building 100 random trees
of fixed depth. However, it should be noted that the fixed
depth of the tree does not force a model to use all of the
features in the training set: a feature might be discarded
from a given model if its weight is set to zero and its
operator is set to multiplication during the optimisation
process.

Fitness: The fitness of a solution is evaluated using two
objective functions; one minimising the prediction error (i.e.,
maximise accuracy), and the other minimising the uncer-
tainty of the estimate distribution. In the original study,
the Sum of Absolute Errors (SAE) is used as the accuracy
objective function (see Equation (1)), where the confidence
interval associated with the estimation model is used to as-
sess the uncertainty of the mean value of the distribution of
absolute errors produced by the model [89]. The confidence
interval is defined as follows:

4. Equation (4) used herein is the one used in the original study
[89], which was actually inspired by previous work using genetic
programming to build prediction models such as the one by Lefley
and Shepperd [66], which also used the operators +, −, ×, and ÷.
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Fig. 1: Syntax Tree of the Estimation Model of Equation (4).

CI = φ(p, df)× std(AbsoluteErrors)√
n

(5)

where the second term is the sample standard deviation of
the distribution of absolute errors with n being the size of
the sample and φ(p, df) the quantile function (Equation (6))
which returns a threshold value x below which random
draws from the given cumulative distribution function
would fall p percent of the time [46]:

φ(p, df) = inf{x ∈ R : p ≤ F (x, df)} (6)

for a probability 0 < p < 1, F (x, df) is the probability
density function of t-distribution function, which is a func-
tion of x and df [39]. Confidence intervals are calculated
so that this percentage is 95%; the degree of freedom, df ,
depends on the number of parameters we are estimating: in
regression models, an n-sized sample usually leads to n− k
degrees of freedom, where k is the number of parameters to
be estimated (here k = 1).

Handling Multiple Objectives: Pareto optimality is
used to rank the solutions based on their fitness and to
shortlist the final solution(s). Pareto optimality states: “A
solution x1 is said to dominate another solution x2 if x1 is
no worse than x2 in all objectives and strictly better in at
least one objective” [16].

Computational Search: The original study used
NSGA-II [25], a widely used multi-objective evolutionary
algorithm, as a ranking method for CoGEE. NSGA-II is
a fast non-dominated sorting-based multi-objective genetic
algorithm with elitism, in which the diversity of the popula-
tion is preserved by a parameterless crowded-comparison
approach [25]. NSGA-II is used with roulette wheel and
tournament operators [63] to select individuals for repro-
duction and determine the individuals that are included
in the next generation (i.e., survivals), respectively [89].
The roulette wheel operator (a.k.a. fitness proportionate
selection) assigns a roulette slice to each chromosome in
such a way that the size of the slices is proportionate to
the fitness value of the chromosomes. A random point is
then selected on the wheel, and the chromosome under such
point is chosen. In this way, even if candidate solutions with
higher fitness have more chances to be selected, there is
still a chance that they may remain unselected; likewise,
even the weakest candidate solutions have got a chance,
though small, to be selected for reproduction. This selection
happens multiple time in each generation to fill the mating

pool [65]. The tournament selector, on the other hand, is
used to select the best n solutions (usually n ∈ [1, 10])
to be copied straight into the next generation [89]. Each
tournament randomly picks a number of solutions from the
population and selects the fittest one.

Single point crossover and uniform mutation operators
are used and defined such as to preserve well-formed equa-
tions, in the form of Equation (4), in all offspring [89]. More
specifically, the crossover operator randomly selects the
same point in every two mating individuals and swaps the
sub-parts corresponding to the selected point. The length
of the two offspring chromosomes (i.e., predictive model
expressions) is guaranteed to be of the same length as
the parent individuals since both parent chromosomes are
cut at the same point. The crossover operator fires at a
rate determined by the algorithm parameters, specifically,
the crossover probability rate. It means that not all of the
selected individuals will end up participating in repro-
duction. The algorithm uses a uniform mutation operator
that selects a random node in the tree and changes its
value to a randomly selected possible value. The muta-
tion operator can change internal nodes (i.e., operators) as
well as leaf nodes (i.e., weights) of the tree. In particular,
when the mutation operator affects an internal node, a new
operator op′i ∈ {{ +,−,×,÷}\opi} is randomly selected
and assigned to the node. Whilst, if the mutation operator
affects a leaf node (i.e., weights and the constant C), a new
weight w′i ∈ R is assigned to the node, which in both the
original and replication study is selected randomly to be
in [−100, 100]. The crossover and mutation rates are set to
0.5 and 0.1, respectively, and the evolutionary process uses
a population of 100 individuals and terminates after 250
generations. These parameters are the same as in the original
study, where no tuning was performed to search for optimal
parameter values.

3 EMPIRICAL STUDY DESIGN

Since this study is an exact replication of Sarro et al.’s work
[89], we follow the original study as closely as possible to
assess whether the same results will be obtained.

In this section, we present the research questions, the
datasets and techniques used for the experiments, and the
validation and evaluation criteria used to assess the results.

3.1 Research Questions

The first four research questions for this replication study
are identical to RQs 1–4 in the original study. Additionally,
we investigate two new research questions (RQs 5–6).

In order to be accepted as a software effort estimation
model, CoGEE needs to outperform baseline techniques.
Therefore, the first research question is:

RQ1. Sanity Check: Is the proposed approach CoGEE suit-
able for effort estimation?

To perform the sanity check, the original study compared
CoGEE with three common baselines used in the context
of effort estimation [89]. Specifically, the three baselines are
Mean and Median Effort and Random Guessing (described
in Section 3.3). Performing better than baseline techniques
is necessary but not sufficient for an effort estimation model
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to be adopted in practice. Therefore, as in the original study,
we investigate whether CoGEE outperforms state-of-the-art
effort estimation techniques to guarantee that it can advance
the state-of-the-art:

RQ2. State-of-the-Art Benchmark: Does CoGEE provide
more accurate and robust estimates than currently used effort
estimation methods?

In the original study, three effort estimation techniques
were used to benchmark CoGEE: Automatically Trans-
formed Linear Model (ATLM) [109], Classification and Re-
gression Tree (CART) [12], Case-Based Reasoning (CBR)
[98]. Each of these techniques represents a different ap-
proach to solve the software effort estimation problem.
Specifically, they are gradient, regression, and analogy based
techniques. We use these algorithms as-is, i.e., we kept their
original formulation both in terms of equation and error
measure used as detailed in Section 3.3. In our replication,
we replace ATLM with a recent and more robust state-
of-the-art benchmark (i.e., Linear Programming for Effort
Estimation (LP) [88]) because ATLM has been shown to be
unstable [88].

Outperforming these benchmarks provides evidence
that CoGEE does, indeed, advance the state-of-the-art. How-
ever, to get an insight into whether it is the multi-objective
nature of CoGEE that makes it able to reach an accuracy
higher than the state-of-the-art techniques, we investigate
the benefits from multi-objective formulation, as done in the
original study:

RQ3. Benefits from Multi-objective Formulation: Does
CoGEE provide more accurate and robust estimates than alterna-
tive single and multi-objective approaches?

This research question has been investigated on two
fronts by Sarro et al. [89]. First, it examines whether the
two objectives that CoGEE considers together outperform
the single objective variants of each considered individu-
ally. Therefore, the first sub-goal of this research question
compares CoGEE with two single objective variants of evo-
lutionary effort estimation algorithm (GA-SAE and GA-CI),
each optimising one of the two objectives considered by Co-
GEE. The goal of GA-SAE and GA-CI will be minimising the
Sum of Absolute Errors (SAE) and the Confidence Interval
(CI), respectively:

RQ3.1. Does CoGEE provide more accurate and robust esti-
mates than GA-SAE and GA-CI?

Secondly, Sarro et al. [89] examine the effectiveness of the
objective chosen. Minimising the SAE implicitly minimises
the sum of underestimate and the sum of overestimates at
the same time. These two objectives are conflicting when
considered separately. Because minimising overestimates,
for instance, could lead to high underestimates and vice
versa. The SAE combines these two separate objectives
in one formulation. RQ3.2 investigates whether underesti-
mates and overestimates should be optimised separately or
whether it is sufficient to combine them as a single objective
(SAE). Therefore, another multi-objective algorithm (called
NSGAII-UO), which optimises the two objectives of un-
derestimate and overestimate separately, is compared with
CoGEE:

RQ3.2. Does CoGEE provide better results than
NSGAII-UO?

Positively answering RQ1, RQ2, and RQ3 shows that
CoGEE can improve the state-of-the-art in automated soft-
ware effort estimation with strong scientific evidence. How-
ever, for an industrial uptake, CoGEE must outperform
current industrial practice as well. Since reports about the
actual estimation accuracy of current industrial practice are
not reliably consistent [89], the original study compared
CoGEE with the current beliefs about the industrial practice:

RQ4. Comparison to Industrial Practices: Does CoGEE
provide more accurate and robust estimates than the ones claimed
for current industrial best practice?

To answer RQ4, we compare the performance of CoGEE
(and other state-of-the-art estimators) against claims made
for best human-expert-based results achievable in the in-
dustry [53], [75], as done in the original study. In particular,
we investigate the magnitude of relative error (compared to
claimed industrial best practice). Because industrialists tend
to be more concerned with underestimated results (rather
than overestimated results) [70], following the original work
[89], we also evaluate the budget overrun that would accrue
from using our technique, compared to these claimed for
industrial best practice and the state-of-the-art.

Sarro et al. [89] used NSGA-II with CoGEE since it
is a widely used Multi-objective Evolutionary Algorithm
(MOEA) [26], [89]. However, there are many variants of
MOEAs used in search-based software engineering [84],
each designed to improve a different aspect of the Pareto
Front quality. Therefore, we are interested to know if CoGEE
achieves different results with other variants of MOEAs:

RQ5. Using other MOEAs:. Dose any other MOEA provide
CoGEE with better results than NSGA-II and in less time?

To answer RQ5, we implemented CoGEE using four
additional MOEAs, namely NSGA-III, SPEA2, MOCell, and
IBEA, to investigate whether these algorithms can improve
the accuracy and quality of CoGEE. Each of these four
variants is the most prominent and widely used variation
of their family [84]. Because of the differences in the al-
gorithm design, each of these multi-objective evolutionary
algorithms may achieve different results as well as have a
different running time. Thus, we are also interested in the
running time produced by each of the MOEAs.

In order to strengthen the external validity of the orig-
inal study the first author has independently implemented
CoGEE. To this purpose, we decided to use JMetal, the
Java framework for Evolutionary Computation [78], rather
than the R software used in the original paper. This choice
was motivated by two main reasons: (1) JMetal is a widely
known and publicly available framework; (2) previous work
[76], [110] pointed out that using R may become inefficient
when performing computationally intensive tasks for a
number of reasons, including lazy evaluation of the function
arguments, name lookup with mutable environments, and
being dynamically typed. We also observed this issue with
the original CoGEE implementation in R, thus we devote
our last research question to investigate whether using a
Java-based implementation is more efficient than its R
counterpart. If the new implementation of CoGEE runs
faster, without reducing its accuracy, its adoption would be
more appealing in practice, and it would make it easier for
other researchers to extend CoGEE or to use it to benchmark
their newly proposed techniques.
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RQ6. CoGEE’s Running Time: Java vs. R: Does the Java
implementation of CoGEE run faster than its R counterpart?

To answer this question, we compare the running time
of the Java implementation of NSGA-II we built upon the
JMetal framework (version 5.4) [78] against the R version
proposed in the original study, which was built using the
package nsga2R (version 1.0) [1].

In the following, we will refer to the CoGEE algorithm
implemented in the original study as CoGEENSGAII−R,
to our new Java implementation as CoGEENSGAII ,
and the other four alternative CoGEEs based on other
MOEAs as CoGEEIBEA, CoGEEMOCell, CoGEENSGAIII ,
and CoGEESPEA2.

3.2 Datasets

We used the same five publicly available datasets used in
the original study to empirically investigate our research
questions. These five datasets, namely China, Desharnais,
Finnish, Maxwell, and Miyazaki, have been extensively
used in previous software effort estimation studies [10].

Table 1 summarises the descriptive statistics of the fea-
tures of the datasets we considered. We observe that these
datasets differ in terms of: observation number (from 38 to
499 projects); number and type of features (from 4 to 17 fea-
tures, including a variety of features describing the software
projects); companies involved, i.e., within-company (WC),
or cross-company (CC); and geographical locations [10]. The
software projects included in these datasets also differ in
technical characteristics. For instance, software projects de-
veloped in different programming languages and for differ-
ent application domains, ranging from telecommunications
to commercial information systems.

The China dataset [112] comprises 499 projects from
multiple companies across China measured and recorded in
19 attributes. We used the basic elements used to calculate
Function Points (i.e., Input, Output, Inquiry, File, Interface)
as independent variables and the Effort variable as the
dependent variable. This dataset was made available in
2010.

The Desharnais dataset, including 81 software projects,
was collected from 10 organizations in Canada between 1983
and 1988. We considered the total effort as a dependent
variable but not the length of the code. Following other
studies [88], [89], [96], [98], in this study 77 of the 81
records of this dataset are used since there are missing
data in four records. We also excluded from our analysis
the categorical variables (i.e., Language and YearEnd) and
used the following independent variables: TeamExp (i.e., the
team experience measured in years), ManagerExp (i.e., the
manager experience measured in years), Entities (i.e., the
number of the entities in the system data model), Transac-
tions (i.e., the number of basic logical transactions in the
system), AdjustedFPs (i.e., the Adjusted Function Points).

The Finnish dataset [99] was collected from nine dif-
ferent firms in Finland, and made available in 1997. It
consists of nine attributes and 38 records, with size mea-
sured in Function Points and the Effort expressed in person-
hour. Following previous research [88], [89], we excluded
the PROD variable since it represents the productivity ex-
pressed in terms of Effort and size, and only used HW (i.e.,

TABLE 1: Descriptive Statistics of the Datasets.

Dataset Type Variable Min Max Mean Std. Dev.

China
(499 projects)

CC Input 0 9404 167.10 486.34
Output 0 2455 113.60 221.27
Enquiry 0 952 61.60 105.42
File 0 2955 91.23 210.27
Interface 0 1572 24.23 85.04
Effort 26 54620 3921.05 6480.86

Desharnais
(77 projects)

WC TeamExp 0 4 2.30 1.33
ManagerExp 0 7 2.65 1.52
Entities 7 386 121.54 86.11
Transactions 9 661 162.94 146.09
AdjustedFPs 73 1127 284.48 182.26
Effort 546 23940 4903.94 4188.19

Finnish
(38 projects)

CC HW 1 3 1.26 0.64
AR 1 5 2.24 1.50
FP 65 1814 763.58 510.83
CO 2 10 6.26 2.73
Effort 460 26670 7678.29 7135.28

Maxwell
(62 projects)

CC SizeFP 48 3643 673.31 784.04
Nlan 1 4 2.55 1.02
T01 1 5 3.05 1.00
T02 1 5 3.05 0.71
T03 2 5 3.03 0.89
T04 2 5 3.19 0.70
T05 1 5 3.05 0.71
T06 1 4 2.90 0.69
T07 1 5 3.24 0.90
T08 2 5 3.81 0.96
T09 2 5 4.06 0.74
T10 2 5 3.61 0.89
T11 2 5 3.42 0.98
T12 2 5 3.82 0.69
T13 1 5 3.06 0.96
T14 1 5 3.26 1.01
T15 1 5 3.34 0.75
Effort 583 63694 8223.21 10499.90

Miyazaki
(48 projects)

CC SCRN 0 281 33.69 47.27
FORM 0 91 22.38 20.55
FILE 2 370 34.81 53.36
Effort 896 253760 13996 36601.56

the type of hardware), FP (i.e., Function Points), AR and
CO as the independent variables to build effort estimation
models.

The Maxwell dataset was collected from the biggest
Finnish commercial bank between 1985 and 1993. It com-
prises 22 categorical attributes that were asserted to in-
fluence software productivity [69], and the size attribute
is measured in Function Points. As Sarro et al. [89], we
exploited 17 features: Function Points (SizeFP) and 16 or-
dinal variables, i.e., number of different development lan-
guages used (Nlan), customer participation (T01), develop-
ment environment adequacy (T02), staff availability (T03),
standards used (T04), methods used (T05), tools used (T06),
software’s logical complexity (T07), requirements volatility
(T08), quality requirements (T09), efficiency requirements
(T10), installation requirements (T11), staff analysis skills
(T12), staff application knowledge (T13), staff tool skills
(T14), and staff team skills (T15). As for the Desharnais
dataset, we did not use categorical variables.

The Miyazaki dataset was collected by Fujitsu’s Large
Systems Users Group [74] and made available in 1994. The
data were obtained from 48 COBOL systems developed in
20 different organizations and across multiple departments
within those organizations. For this dataset, we considered
the following independent variables: SCRN (i.e., the number
of different input or output screens), FORM (i.e., the number
of different report forms), and FILE (i.e., the number of
different record format). The dependent variable is Effort,
defined as the number of person-hours needed from system
design to system test, including indirect effort such as
project management.
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3.3 Techniques
This section describes the techniques used and how they
have been implemented and configured.

Evolutionary Algorithms. The original study used
NSGA-II [25], a widely used multi-objective evolutionary al-
gorithm, as a ranking method under the hood of CoGEE (see
Section 2.3). In this study, we use NSGA-II with the same
parameters as used in the original study (see Section 2.3 for
details). Furthermore, we have considered four additional
MOEAs, namely NSGA-III [24], [51], SPEA2 [116], MOCell
[77], and IBEA [114], each representative of a family of
multi-objective algorithms widely used in SBSE [84]. We
explain each of these algorithms below.

Non-dominated Sorting Genetic Algorithm III
(NSGA-III) [24], [51] is a reference-point based NSGA-II
in which the diversity among solutions is maintained by
providing and adaptively updating a number of reference
points. We set the number of the reference points equal to
the number of the individuals in the population, with the
initial reference-points generated by the framework. All of
the operators and other parameters used for NSGA-III are
the same as for NSGA-II.

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [116]
exploits elitism by preserving an external archive of the best
solutions found so far and using a Strength value for each
chromosome, in addition to the fitness value, to determine
how many solutions are dominated by the chromosome.
SPEA2 uses a fine-grained fitness assignment strategy, a
density estimation technique, and an enhanced archive trun-
cation method, all of which help the algorithm in preserving
a usually better spread of the solutions on the Pareto Front
in comparison with NSGA-II. The archive size for SPEA2 is
set to the population size and all other parameters and op-
erators are equal to the original parameters set for NSGA-II.

MultiObjective Cellular Genetic Algorithm (MOCell) [77] is
a cellular genetic algorithm that, similar to SPEA2, uses an
external archive to store non-dominated solutions and ran-
domly replaces existing individuals in the population with
selected individuals from the archive after each iteration.
MOCell tries to preserve a grid-like spread over the Pareto
Front to provide a better sampling of the search space.
The archive size of MOCell is set to the square root of the
population size, and all other parameters and operators are
equal to the original parameters set for NSGA-II.

Indicator-Based Evolutionary Algorithm (IBEA) [115] is a
representative of a family of MOEAs that consider Pareto
Front quality indicators, such as the Hypervolume, in the
evolution process, to preserve a good quality Pareto Front.
The archive size for IBEA is set equal to the population
size, and all other parameters and operators are equal to
the original parameters set for NSGA-II.

We used JMetal 5.4 [78] to implement all the GA based
algorithms, including NSGA-II, NSGAII-UO, NSGA-III,
SPEA2, IBEA, and MOCell. Generational Genetic Algorithm
implementation of the JMetal framework, which is the
standard implementation of GA, is used for two single-
objective variants that we call GA-SAE and GA-CI. These
two single objective algorithms differ only in the fitness
functions where GA-SAE minimises the Sum of Absolute
Errors and GA-CI minimises the Confidence Interval associ-
ated with the mean of the absolute errors. We used GA and

NSGA-II with the same settings as the R implementation
used in the original study [89] (see Section 2.3) to be able to
compare the results in an equitable setting.

Random Guessing (RG) is a naı̈ve and general method
that simply assigns the effort of a randomly selected project
to the target project [97]. More formally, random guessing
predicts an effort value y for the target case projectt by
randomly sampling (with equal probability) over all the
remaining n − 1 cases and taking y = r; where r is
the effort value for the randomly drawn projectr from
1...n | projectr 6= projectt [97]. This method does not
need any parameter estimation and any prediction system
is expected to outperform it over time; otherwise, the pre-
diction system is not using any target case information. We
implemented the Random Guessing effort estimator in R
programming language version 3.5.3 [4].

Mean and Median Effort are two baseline benchmarks
commonly used for effort estimation techniques [73], [89],
[109]. Specifically, the mean or median of the past projects is
used as the predicted effort for a new project.

Linear Programming for Effort Estimation (LP) has
been recently proposed by Sarro and Petrozziello [88] as a
more robust and accurate benchmark than ATLM for effort
estimation techniques. LP forms a mathematical model with
a linear objective function (i.e., Sum of Absolute Errors)
subject to linear equality and inequality constraints draw
out of the observation data. The feasible region is given
by the intersection of the constraints and LP is able to
find a point in the polyhedron where the function has the
smallest value in polynomial time. It has been shown that
LP is robust to different data splits under different cross-
validation methods, easy and fast to apply, and have com-
parable prediction performance to standard methods [88].
Moreover, this approach does not have any hyper-parameter
to tune [88]. In this study, we used the LP R package [3]
made publicly available by Sarro and Petrozziello [88].

Case-Based Reasoning (CBR) is an artificial intelligence
technique based on the premise that “similar problems are
best solved with similar solutions”. It has been successfully
used in Software Engineering for prediction [93], [98]. For
a software effort estimation problem in which the software
projects are described by their features, the effort value of
the k most similar projects in the feature space are retrieved
and used as the final prediction for the new project. The
choice of k is a tuning decision, and its effect in software
prediction has been studied in previous work [56]. We report
the results of each of the choices of k, between k = 1 and
k = 3, as done in the original study. As in the original work
[89] we used ANGEL (ANaloGy Estimation tool) [98] to
obtain CBR predictions. ANGEL is a tool introduced by
Shepperd and Schofield [98] to estimate the development
effort of a software project using analogy. It supports the
Euclidean distance measure between vectors and uses this
metric to compute project similarity. The final estimation is
computed as the mean effort of the k nearest cases.

Classification and Regression Tree (CART) is a machine
learning technique that constructs prediction models by
recurrently partitioning the data and fitting a simple model
in the form of a decision tree within each partition. For
software effort estimation problem in which the target vari-
able (i.e., effort) takes continuous and ordered values, the
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resulting decision tree is called a regression tree. We used the
R (version 3.5.3) package rpart (version 4.1-13) to generate
regression trees by using anova as a splitting method for
rpart as done in the original study. This method has no
other parameters.

3.4 Validation and Evaluation Criteria

In this study we have adopted the validation and evaluation
criteria used in the original study.

In order to validate the prediction models, we used a 3-
fold cross-validation and the same folds as in the original
study. This allows us to avoid possible data bias produced
by different sampling, and thus to assess the consistency
of the results between the two studies. explain the 3-fold
validation?

To evaluate the estimation performance of the prediction
models, we used the Mean Absolute Error (MAE) and the
Standard Accuracy (SA) (see Section 2.1 for their definition).
To measure the accuracy performance of MOEAs, which
produce more than one final solution, we compute and use
the mean MAE over all the solutions in their Pareto Front.
Strictly speaking, we use all the solutions (i.e., models) in a
given Pareto Front obtained by CoGEE on the training set
to estimates the effort for the (unseen) projects contained
in the test set. Then we compute the CI and SAE of these
estimates per model and compute the mean value of these
measures over all the models in a given Pareto Front. We
use these mean values to compare CoGEE against the other
techniques that produce only one solution.

The following statistical hypothesis (null hypothesis)
is tested to verify the difference between the prediction
performance of the models (in RQs 1–5):
H0: There is no difference between the absolute errors provided by
the prediction models Pi and Pj .

If the test rejects the null hypothesis, the following
alternative hypothesis is accepted:
H1: The absolute errors provided by the prediction model Pi are
significantly different from those provided by the prediction model
Pj .

Similarly, we tested the following null hypothesis to ver-
ify the difference between the running time of the different
multi-objective evolutionary algorithms (RQ5):
H0: There is no difference between the running time achieved by
the algorithms Ai and Aj .

Where the alternative hypothesis is as follows:
H1: The running time of the algorithmAi is significantly different
than the running time of the algorithm Aj .

Finally, we tested the following null hypothesis to verify
the difference between the running time of the NSGA-II
Java implementation (CoGEENSGAII ) and the R imple-
mentation (CoGEENSGAII−R) (RQ6):
H0: The running time achieved by CoGEENSGAII is not lower
than the one achieved by CoGEENSGAII−R.

The alternative hypothesis is as follows:
H1: The running time of CoGEENSGAII is significantly lower
than the running time of CoGEENSGAII−R.

Since many of the samples comes from non-normally
distributed populations [10], [89] a non-parametric method
ought to be used as the statistical significance test. To this
end, we use the Wilcoxon Rank-Sum test [20], which is a

non-parametric test that makes no assumption about under-
lying data distribution, hence, raises the bar for significance
for both normally and non-normally distributed data. We
set the confidence limit, α, at 0.05 and applied the standard
Bonferroni correction (α/K, where K is the number of
hypotheses) when multiple hypotheses were tested.

As noted by Arcuri and Briand [6], when two ran-
domised algorithms are compared against each other, given
a large enough number of runs n, it is not unlikely to obtain
statistically significant differences even if the difference is
so small as to be of no practical value. Consequently, it
is inadequate to merely show statistical significance alone;
we also need to know whether the effect size is worthy of
interest. To this end, a standardised non-parametric effect
size measure, namely the Vargha Delaney’s Â12 statistic, is
used to assess the effect size of the difference between two
methods with regard to their accuracy performance [6], [89].
Running two algorithms A and B, Â12 measures the prob-
ability of A performing better than B with reference to a
performance measure. Â12 is computed using Equation (7),
where R1 is the rank sum of the first data group we are
comparing, and m and n are the number of observations in
the first and second data sample, respectively.

Â12 =
(R1

m −
m+1
2 )

n
(7)

Based on Equation (7), if two algorithms are equally
good, Â12 = 0.5. Respectively, Â12 higher than 0.5 means
that the first algorithm is more likely to produce better re-
sults. The effect size is considered small for 0.6 ≤ Â12 < 0.7,
medium for 0.7 ≤ Â12 ≤ 0.8, and large for Â12 ≥ 0.8,
although these thresholds are not definitive [89]. To per-
form statistical tests, we used the implementation of the
Wilcoxon Rank-Sum test and Vargha Delaney’s Â12 effect
size available from stats library in R [4] version 3.5.3. Since
we are interested in any improvement, no transformation is
performed on the Â12 effect size [79], [89].

Analysing the solutions produced by MOEAs by looking
only at their accuracy or confidence interval independently
does not give us information about the trade-off between
the two competing objectives. Thus, we need to quantify
the overall quality of prediction models with respect to
both objectives at the same time. For completeness, we
report the percentage of runs in which a solution found by
CoGEENSGAII dominates, or is equal to, the solution found
by the single objective GA (i.e., GA-SAE, or GA-CI) on
the test sets, based on both objectives simultaneously, and
also based on each of them separately. We also report the
average SAE and CI values achieved by all the evolutionary
approaches in our online supplementary appendix [106].
However, we highlight that looking at one objective at a
time is discouraged as it may result in misleading conclu-
sions about the trade-off between two equally important
objectives [42], [83], [85].

On the other hand, the Pareto Front’s quality indicators
allow us to quantify the overall quality of prediction models
by measuring the trade-off between multiple competing
objective values (in our case, SAE and CI). These indicators
are well-known in the multi-objective optimisation litera-
ture [14], [19], [113] and have been extensively used in pre-
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vious software engineering work to evaluate and compare
multi- and single-objective algorithms performance as an
alternative to using the average values (see e.g., [35], [41],
[42], [43], [67], [85]).

As done in the original work, we use three Pareto Front
quality indicators, namely Contributions (IC ), Hypervol-
ume (IHV ), and Generational Distance (IGD) [34], [67], as
these three indicators complement each other in quantifying
the overall quality of the prediction models in the objective
space in terms of convergence, spread, uniformity, and
cardinality [67].

The Contribution indicator (IC ) measures the share of
the contribution of each approach to a Reference Set (RS,
which usually is the true optimal Pareto Front, if known)
[37]. In other words, IC for approach A is the proportion of
the solutions in the reference set that are produced by A. A
high IC indicates that more of the solutions in the reference
set are produced by approach A which means either the
solutions from the other approaches are dominated by the
solutions produced by A or A produced more high quality
solutions than the other approaches. It means that even if
approach B produces a few but very high-quality solutions,
it will get a lower IC score. This is why two other quality
indicators are used as well.

The Generational Distance indicator (IGD) [108] com-
putes the average distance between the Pareto Front of ap-
proach A and the RS. In an n-objective space, IGD calculates
the n-dimensional Euclidean distance between each point in
the solution set of approach A and its nearest neighbouring
point in the reference set. The average distance is then
considered as the IGD indicator for approach A.

The Hypervolume indicator (IHV ) [117] measures the
volume of the dominated portion of the objective space
by members of the non-dominated set of solutions from
each approach. A large IHV indicates that the solutions
produced by the approach covered more of the objective
space. Hypervolume is one of the few quality indicators that
can evaluate a solution set’s quality in terms of all the four
quality aspects including convergence, spread, uniformity,
and cardinality [67]. Zitzler [118] demonstrated that Hy-
pervolume measure is also strictly ‘Pareto compliant’ which
means that Hypervolume of A is higher than B, if the Pareto
set of A dominates that of B. To compute the IHV , we used
[1.01, 1.01] as the reference point, which is the boundary of
the optimisation problem after normalization with an added
1% offset, so that the boundary solutions could contribute
to the IHV value [67].

If the optimal Pareto Front (PFtrue) is known, this
is usually used as a reference set to compute the above
three quality indicators. Otherwise, these indicators can be
calculated with respect to a set of reference points that is
the closest known front to the PFtrue (i.e., PFknown). In
the original and our study, the PFknown, is obtained by
combining the Pareto Fronts produced by the approaches
compared, and selecting the non-dominated solutions as

done in previous work [37], [41], [43], [67], [89].5 Specifi-
cally, when we compare CoGEENSGAII with GA-SAE and
GA-CI (RQ3.1), we construct the reference set PFknown by
combining all the solutions provided by the three algorithms
and then select the non-dominated ones from this union set
(i.e., we select all those solutions that are better than all the
other solutions in at least one objective and not worse in the
other objective). Whereas when we compare CoGEENSGAII

with NSGAII-UO (RQ3.2) we construct the reference set
PFknown by combining all the solutions provided by these
two algorithms and then selecting the non-dominated ones.
Once we have obtained the PFknown, we normalized the
fitness values for all the fronts before computing the quality
indicators. The normalization helps avoid unwanted scal-
ing effects, since SAE and CI vary in different ranges. In
particular, we used Min-Max feature scaling to normalise
these values to the range of [0, 1]. Minimum and maximum
values are acquired from the union of the Pareto Fronts
produced by the approaches being compared.

Due to the stochastic nature of the evolutionary algo-
rithms, best practice is to run the experiments as many times
as possible to show with high confidence that the results
are statistically significant [6]. Therefore, and following the
original study, we performed 30 independent runs per algo-
rithm on each of the cross-validation folds (for a total of 90
runs per dataset) to mitigate the variance in the results due
to the stochastic nature of the approaches considered and
allow for such confident statistical testing.

To answer RQs 5-6, we compute the running time of
each of the multi-objective algorithms under a same con-
figuration (i.e., 250 generations for 100 individuals), and
disregard any time needed for I/O operations. To obtain
a fair measurement, we run all the experiments on a single
node of the UCL Computer Science HP Clusters, which is
equipped with the Intel R© Xeon R© CPU E3-1240 v3@3.40GHz
and RAM 12 GB. To measure the change in the running
time between the Java version and the R version (RQ6),
we compute the Percentage Change6, which is defined as
follows:

PercentageChange =
(TJava − TR)

TR
× 100 (8)

where TJava is the mean running time for CoGEENSGAII

and TR is the mean running time for CoGEENSGAII−R
over 90 independent runs (i.e., 30 runs on each of the three
folds). A negative value of the Percentage Change indicates
a decrease, while a positive value shows an increase in the
running time. We use the distribution of the running time

5. Note that to obtain the Pareto Fronts of the single-objective variants
GA-SAE and GA-CI to answer RQ 3.1, we compute both the SAE and CI
values of the estimation models built by the single-objective algorithms
in order to assess their effectiveness in the two-objective space. Since
each solution provided by these algorithms is an estimation model, we
can compute the SAE and CI values associated with the predictions
made by these solutions (models) regardless of the objective that they
have been optimised for. Similarly, we compute both SAE and CI of the
solutions built by NSGAII-UO to answer RQ 3.2.

6. Comparing the exact running time could be misleading since it
inherently depends on several aspects, including but not limited to
the size of the dataset (number of instances as well as the number
of features) and the computational power of the machine. Therefore,
we chose to analyse the change in the running time as a rate (e.g.,
percentage change) rather than the scalar values.
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measured over 90 independent runs of each algorithm to
test for the statistical difference in RQ5 and RQ6.

4 RESULTS

In this section, we present the results obtained answering
the research questions stated in Section 3.1, and compare
them with the results of the original study [89].

4.1 RQ1. Sanity Check
Table 2 presents the Standard Accuracy (SA) of the esti-
mations obtained by CoGEENSGAII

7 and the other tech-
niques we experimented with.8 The SA results show that
CoGEENSGAII outperforms the baseline methods (i.e., Ran-
dom Guessing, Mean, and Median effort) with a large
difference: CoGEENSGAII is almost twice as accurate as
of the best baseline estimator on each of the datasets. The
results of the Wilcoxon test comparing CoGEENSGAII with
the baseline methods are shown in Table 3. The p-values
are very small (p < 0.001) for all the datasets, indicating
that the difference is statistically significant. The results re-
mained statistically significant after correcting the p-values
for multiple statistical tests. The Â12 effect size (which is
presented in brackets) is large for all the datasets. This evi-
dence, which is consistent with the original study, confirms
that CoGEENSGAII outperforms the baseline methods and
positively answers RQ1.

4.2 RQ2. Comparison to State-of-the-Art
We analysed the SA of the state-of-the-art techniques along-
side that of CoGEENSGAII , shown in Table 2. We can
observe that the SA of CoGEENSGAII is better than CBR for
all datasets, better than LP for all but the Desharnais dataset,
and better than CART for all but the Finnish dataset.

The results of the Wilcoxon test performed to check
the significance of the difference between the accuracy per-
formance of CoGEENSGAII and the other state-of-the-art
techniques are shown in Table 4. We can observe that the
differences are statistically significant (p < 0.001) for 23 out
of 25 comparisons with a large effect size (Â12 ≥ 0.87) in
22 cases and medium effect size (Â12 = 0.63) in one. These
results are consistent with the original study and provide
evidence to answer RQ2 positively.9

4.3 RQ3. Does Multi-Objectivity Help?
Table 6a reports on the quality of the solutions found using
CoGEENSGAII , GA-SAE, and GA-CI, with respect to the
three Pareto Front quality indicators: IHV , IGD, and IC .

7. The SA values are obtained by using an ensemble composed of the
models on the Pareto Front. These results can be attained in practice if
a practitioner uses as the final estimation the average of the estimates
provided by all the models in the Pareto Front, as we did herein for
evaluation purposes. On the other end, a practitioner can also choose
to use a single model based on their trade-off preference (i.e., small
prediction error vs. narrow confidence interval).

8. For completeness we provide the MAE values in our on-line
appendix [106] to facilitate comparison against other works that may
not have reported SA.

9. Based on the results published in the original study, and correction
for Miyazaki, CoGEENSGAII outperforms ATLM in four out of five
datasets.

The analysis shows that for all datasets, CoGEENSGAII

produces comfortably better results than GA-SAE and
GA-CI. As disclosed by the IC indicator, the majority
of the solutions on the reference front are produced by
CoGEENSGAII , which means that GA-SAE and GA-CI have
comparatively fewer good quality solutions. Nevertheless,
we should note that unlike CoGEENSGAII , which provides
a Pareto set of solutions at the end of each run, GA-SAE and
GA-CI produce only one ultimately good solution. Thus, it
is reasonable that CoGEENSGAII contributes more to the
reference front than single-objective benchmarks.

The IHV indicator, on the other hand, is not affected
by number of the solutions on the front. The relative dif-
ference in the volume of the objective space dominated
by the three algorithms varies from dataset to dataset, yet
CoGEENSGAII has the largest value of IHV for all datasets.
As for the IGD indicator, sometimes solutions produced by
the single objective algorithms are close to the reference
Pareto Front. However, CoGEENSGAII has almost all of its
solutions on the reference front (i.e., the mean distance of its
solutions from the reference front is zero) for four out of five
datasets, and there is a very small distance for China.

The results of the Wilcoxon test comparing
CoGEENSGAII with GA-SAE and GA-CI over IHV and IC
indicators confirm that CoGEENSGAII ’s excellence in the
production of more good-quality solutions is statistically
significant with a large effect size for 18 out of 20 cases (see
Table 7a). For the IGD indicator on four out of five datasets,
CoGEENSGAII has significantly better results than at least
one of the single objective algorithms, while on China,
CoGEENSGAII is significantly better than both. However,
the medium effect size measured for the significance of
the difference on IGD indicator suggests that almost for
all of the cases, all three algorithms were able to discover
solutions that are near-optimal for the problem instances,
with respect to the objective they were evolved upon,
whereas CoGEENSGAII produces a Pareto Frontier of those
solutions which gives a project manager the option to pick
the solution that best fits their concerns.

For completeness, we also report in Table 5 the percent-
age of runs in which a solution found by the multi-objective
algorithm dominates, or is equal to, the solution found
by the single-objective algorithm. We can observe that this
percentage is large for all datasets considered in this study.
Thus, confirming that CoGEE provides more accurate and
robust estimates than GA-SAE and GA-CI, as found in the
original study [89].

These results corroborate previous findings in the litera-
ture on multi-objective optimisation [8], [50], [82], [89] that
multi-objective genetic algorithms can outperform single-
objective genetic algorithms, even when compared against
the specific single objective targeted by the single-objective
genetic algorithm. This arises because search spaces are
non-monotonic, and therefore disimproving moves may be
required in order to arrive at overall results that lie closer to
global optima [89]. In other words, multi-objective genetic
algorithms are more likely to escape from local optima and
it is not uncommon that they outperform single-objective
ones even when they are evaluated with respect to the
same single fitness function used in the single-objective
optimisation [50].
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TABLE 2: RQs1–2: Standard Accuracy (SA) values achieved by CoGEENSGAII−R (original study), CoGEENSGAII (this
replication), the baseline (Mean and Median Effort), and state-of-the-art techniques (CBR1–3, LP, and CART) for each of
the five datasets. For completeness, SA results are also included for the other three alternative evolutionary algorithms
considered later in answer to RQ3 (i.e., GA-CI, GA-SAE, and NSGAII-UO) and four variants of CoGEE in answer to RQ5
(i.e., CoGEENSGAIII , CoGEESPEA2, CoGEEMOCell, and CoGEEIBEA).

China SA Desharnais SA Finnish SA Maxwell SA Miyazaki SA

CoGEEMOCell 0.51 CoGEENSGAII−R 0.47 CART 0.52 CoGEENSGAII−R 0.56 CoGEENSGAII 0.66
CoGEENSGAII 0.48 GA-SAE 0.45 CoGEESPEA2 0.46 CoGEEMOCell 0.56 CoGEENSGAIII 0.66
CoGEESPEA2 0.48 LP 0.44 CoGEENSGAII 0.45 CoGEENSGAIII 0.56 CoGEESPEA2 0.66
CoGEENSGAII−R 0.48 CoGEEMOCell 0.43 CoGEEMOCell 0.45 CoGEENSGAII 0.55 CoGEENSGAII−R 0.66a

GA-SAE 0.48 CoGEENSGAIII 0.42 CoGEENSGAII−R 0.45 CoGEESPEA2 0.55 GA-SAE 0.66
LP 0.48 CoGEESPEA2 0.42 CoGEENSGAIII 0.44 GA-SAE 0.55 GA-CI 0.66
CoGEENSGAIII 0.47 CoGEENSGAII 0.41 GA-CI 0.44 LP 0.52 CoGEEMOCell 0.65
GA-CI 0.45 CART 0.38 GA-SAE 0.42 CART 0.51 LP 0.63
CART 0.40 CoGEEIBEA 0.38 CBR3 0.41 CBR3 0.51 NSGAII-UO 0.57
CBR3 0.40 GA-CI 0.36 LP 0.39 CoGEEIBEA 0.49 CBR3 0.56
CoGEEIBEA 0.39 CBR3 0.34 CoGEEIBEA 0.39 GA-CI 0.48 CBR2 0.56
Median 0.38 Median 0.33 CBR2 0.38 CBR2 0.47 CBR1 0.55
CBR2 0.35 CBR2 0.32 CBR1 0.31 Median 0.33 CoGEEIBEA 0.52
CBR1 0.29 CBR1 0.27 Mean 0.17 NSGAII-UO 0.29 Median 0.49
Mean 0.25 Mean 0.26 Median 0.14 Mean 0.27 CART 0.46
NSGAII-UO -0.18 NSGAII-UO -0.05 NSGAII-UO 0.09 CBR1 0.26 Mean 0.30

a. This value differs from the original study, which incorrectly reported a value of 0.90. The correct value of 0.66 is shown in this table.

TABLE 3: RQ1. Results of the Wilcoxon test (Â12 effect size
in brackets) performed on the Mean of Absolute Errors pro-
vided by CoGEENSGAII , compared to the baselines: Mean,
Median, and Random Guessing. For completeness, we also
include the other three alternative evolutionary algorithms
considered later in answer to RQ3 (i.e., GA-CI, GA-SAE,
and NSGAII-UO), and four variants of CoGEE in answer
to RQ5 (i.e., CoGEEIBEA, CoGEEMOCell, CoGEENSGAIII ,
and CoGEESPEA2).

Dataset Technique Mean Median Random

China

CoGEENSGAII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEIBEA <0.001 (0.80) 0.320 (0.53) <0.001 (0.91)
CoGEEMOCell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO 0.999 (0.10) 0.999 (0.00) 0.678 (0.46)

Desharnais

CoGEENSGAII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEIBEA <0.001 (0.93) <0.001 (0.77) <0.001 (0.99)
CoGEEMOCell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO 0.999 (0.00) 0.999 (0.00) 0.601 (0.48)

Finnish

CoGEENSGAII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEIBEA <0.001 (0.97) <0.001 (0.97) <0.001 (0.99)
CoGEEMOCell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO 0.991 (0.33) 0.831 (0.43) <0.001 (0.75)

Maxwell

CoGEENSGAII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEIBEA <0.001 (0.97) <0.001 (0.97) <0.001 (1.00)
CoGEEMOCell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO <0.001 (0.83) 0.999 (0.03) <0.001 (1.00)

Miyazaki

CoGEENSGAII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEIBEA <0.001 (1.00) <0.001 (0.80) <0.001 (1.00)
CoGEEMOCell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO <0.001 (1.00) <0.001 (0.97) <0.001 (1.00)

To answer RQ3.2, we compared CoGEENSGAII with a
bi-objective formulation of the effort estimation problem
that minimises underestimates and overestimates simulta-
neously (NSGAII-UO). This algorithm uses the same im-
plementation of the CoGEENSGAII , while only the objec-
tives are different. As shown in Table 2, NSGAII-UO has
poor SA values compared to CoGEENSGAII for all the
datasets. NSGAII-UO is performing even worse than Ran-
dom Guessing on two out of five datasets (i.e., it achieves
a negative SA value on China and Desharnais). This find-
ing is in line with the previous study, indicating that the
selection of the objective function plays a crucial role in
guiding the algorithm to find high accuracy models for
prediction. Table 6b shows the results of the comparison
between CoGEENSGAII and NSGAII-UO with respect to
their resulting Pareto Front quality indicators. As we can
see, CoGEENSGAII has achieved considerably better values,
especially, considering IGD ; the Pareto Front of NSGAII-UO
is always dominated by that of CoGEENSGAII . As for the
IC indicator, CoGEENSGAII dominates the Pareto Front of
NSGAII-UO to a large extent for all the datasets. However,
the IHV indicator suggests that the difference in the volume
of the objective space dominated by the two algorithms is
not as much different. This is explainable by the fact that
both the algorithms shape a high degree of spread in the
solutions in the objective space, which is one of the strong
aspects of bi-objective algorithms in general.

The results of the Wilcoxon test presented in Ta-
ble 7b shows that the Pareto Front quality achieved by
CoGEENSGAII is statistically significantly different from
that of NSGAII-UO with a large effect size for all the
datasets. Therefore, CoGEENSGAII passes RQ3.2 by pro-
viding higher accuracy and better quality of solutions than
NSGAII-UO.

The positive answers for both RQ3.1 and RQ3.2 provide
scientific evidence that it is CoGEE’s multi-objective nature
(i.e the simultaneous optimisation for CI and SAE) that
makes it able to outperform all the other approaches.
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TABLE 4: RQ2. Results of the Wilcoxon test (Â12 effect sizes in brackets) comparing the Mean of the Absolute Errors for
CoGEENSGAII , with those for the state-of-the-art techniques, CBR1–3, CART, and LP.

CoGEENSGAII vs CBR1 CBR2 CBR3 CART LP

China <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (0.63)
Desharnais <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (0.97) 1.000 (0.00)
Finnish <0.001 (1.00) <0.001 (1.00) <0.001 (0.87) 1.000 (0.00) <0.001 (1.00)
Maxwell <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
Miyazaki <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

TABLE 5: RQ3.1. Percentage of runs in which a solution found by CoGEENSGAII dominates (D), or is equal (E) to, the
solution found by the single objective GA (i.e., GA-SAE, or GA-CI) on the test sets, based on both objectives simultaneously
(column one), and based on each of them separately (columns two and three for SAE and CI, respectively).

SAE & CI SAE CI

CoGEENSGAII vs. CoGEENSGAII vs. CoGEENSGAII vs.
GA-SAE GA-CI GA-SAE GA-CI GA-SAE GA-CIDataset

D E D E D E D E D E D E

China 71% 0% 84% 0% 72% 0% 88% 5% 66% 2% 86% 2%
Desharnais 59% 0% 64% 0% 61% 0% 83% 0% 66% 0% 77% 0%
Finnish 66% 6% 76% 0% 81% 7% 76% 0% 66% 14% 72% 4%
Maxwell 83% 0% 66% 0% 87% 0% 100% 0% 100% 0% 66% 1%
Miyazaki 8% 92% 80% 20% 8% 92% 80% 20% 6% 94% 26% 74%

TABLE 6: RQ3.1 and RQ3.2. Mean of the quality indica-
tors (IGD , IHV , IC ) computed on the Pareto Fronts of
CoGEENSGAII and the considered single-objective evolu-
tionary approaches (a), and NSGAII-UO (b) over 30 runs.
The best value per each indicator is printed in bold face.

(a)

Dataset Technique IGD IHV IC

China
CoGEENSGAII 0.01 0.70 0.91
GA-SAE 0.14 0.28 0.05
GA-CI 0.18 0.30 0.04

Desharnais
CoGEENSGAII 0.00 0.72 0.99
GA-SAE 0.06 0.17 0.01
GA-CI 0.04 0.12 0.01

Finnish
CoGEENSGAII 0.00 0.58 0.98
GA-SAE 0.01 0.07 0.01
GA-CI 0.01 0.01 0.01

Maxwell
CoGEENSGAII 0.00 0.82 0.99
GA-SAE 0.03 0.22 0.01
GA-CI 0.03 0.19 0.01

Miyazaki
CoGEENSGAII 0.00 0.67 0.98
GA-SAE 0.07 0.61 0.01
GA-CI 0.22 0.58 0.00

(b)

Dataset Technique IGD IHV IC

China CoGEENSGAII 0.00 1.00 0.97
NSGAII-UO 0.83 0.24 0.03

Desharnais CoGEENSGAII 0.00 0.99 0.99
NSGAII-UO 0.09 0.74 0.01

Finnish CoGEENSGAII 0.00 1.00 0.99
NSGAII-UO 0.13 0.77 0.01

Maxwell CoGEENSGAII 0.00 0.99 1.00
NSGAII-UO 0.06 0.96 0.00

Miyazaki CoGEENSGAII 0.00 1.00 0.92
NSGAII-UO 0.05 1.00 0.08

TABLE 7: RQ3.1 and RQ3.2. Results of the Wilcoxon test
(with Â12 effect sizes in brackets) which compare the quality
indicators (IGD, IHV , IC ) of CoGEENSGAII , to the ones
obtained by single-objective evolutionary approaches (a),
and NSGAII-UO (b) over 30 runs.

(a)

Dataset CoGEENSGAII vs IGD IHV IC

China GA-SAE <0.025 (0.69) <0.025 (0.90) <0.025 (0.95)
GA-CI <0.025 (0.77) <0.025 (0.86) <0.025 (0.91)

Desharnais GA-SAE <0.025 (0.68) <0.025 (1.00) <0.025 (1.00)
GA-CI <0.025 (0.61) <0.025 (1.00) <0.025 (1.00)

Finnish GA-SAE 0.802 (0.47) <0.025 (0.96) <0.025 (1.00)
GA-CI <0.025 (0.69) <0.025 (1.00) <0.025 (1.00)

Maxwell GA-SAE <0.025 (0.64) <0.025 (1.00) <0.025 (1.00)
GA-CI <0.025 (0.61) <0.025 (0.94) <0.025 (0.94)

Miyazaki GA-SAE <0.025 (0.54) 0.166 (0.54) <0.025 (1.00)
GA-CI <0.025 (0.90) <0.025 (0.69) <0.025 (1.00)

(b)

Dataset CoGEENSGAII vs IGD IHV IC

China NSGAII-UO <0.05 (1.00) <0.05 (0.99) <0.05 (0.98)
Desharnais NSGAII-UO <0.05 (1.00) <0.05 (1.00) <0.05 (1.00)
Finnish NSGAII-UO <0.05 (1.00) <0.05 (0.99) <0.05 (1.00)
Maxwell NSGAII-UO <0.05 (1.00) <0.05 (1.00) <0.05 (1.00)
Miyazaki NSGAII-UO <0.05 (0.99) <0.05 (0.81) <0.05 (1.00)

4.4 RQ4. Comparison to Industrial Practice

Figure 2a shows the box plots of the Magnitude of Rela-
tive Error (MRE) for CoGEENSGAII and four state-of-the-
art techniques. As in the original study, we compared the
accuracy of our model with two thresholds of error (i.e., 30%
and 40% of the true value of the effort, plotted on Figure 2a
by two dotted-lines set at 1.3 and 1.89). These two thresholds
are derived from evidence that industrial practice based
on expert judgement hopes/claims to produce predictions
within [75], [89]. As the box plots show, for three of the
datasets, the distribution of MRE for CoGEENSGAII lies
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below these thresholds.10

It is arguable that overestimate and underestimate of
the effort of a software project can have very different
consequences. The former may cause a company to miss
a contract, or if engaged in the project, may lead to mis-
allocation of resources where they are not needed, while
the latter can harm a company financially and can also
affect its reputation. It is also revealed that managers of
software companies are more concerned about underesti-
mated project efforts [70] and might be interested to see the
distribution of the magnitude of underestimated projects for
each technique. The industrial thresholds used in Figure 2a
is derived from the current industrial claims concerning
project overrun. That being, the distribution of underesti-
mates of an estimation technique are expected to fall within
this threshold, in order to make the technique competitive
and actionable for industrial uptake.

Figure 2b reports the distribution of overrun project
budgets obtained by each of the effort prediction techniques,
including CoGEENSGAII . We can observe that the median
project overrun for CoGEENSGAII lies within these thresh-
olds for all the datasets. More specifically, for Desharnais
and Miyazaky the entire distribution of overrun values from
CoGEENSGAII lie within the upper bound, and for Maxwell
and Finish, the vast majority of the distribution of overruns
lies within this bound, while this can not be said for the
other state-of-the-art techniques.

This evidence supports the claim that CoGEENSGAII

advances the state-of-the-art that can be expected from
automated estimators within the bounds of current claims
for industrial best practice. These findings are in line with
the original study in that CoGEENSGAII can advance the
claimed state-of-best-practice as well as the known scientific
state-of-the-art.

4.5 RQ5. Using other MOEAs
The comparison between multi-objective evolutionary al-
gorithms used as the search algorithm under the hood
of CoGEE is carried out by analysing the SA achieved,
investigating their ability in providing high-quality Pareto
Fronts, and their running time.

Table 2 shows the SA values achieved by each of the
MOEAs for each dataset. All variants of CoGEE, except for
CoGEEIBEA achieved very similar SA values. We can see
that CoGEEMOCell resulted in the highest SA value on three
out of five datasets.

Table 8 shows the analysis of three quality indicators for
MOEAs. Except for Miyazaki, for all datasets, SPEA2 is the
MOEA with the highest IC indicator. The IC is so high that
for three out of five dataset SPEA2 appears to provide more
than 80% of the solutions in the Reference Front. However,
very similar results for IGD and IHV indicators by all the
MOEAs, except for IBEA, suggests that the Pareto Fronts
provided by these algorithms are very close and equally
spread, which is in line with the fact that they achieved very
similar SA values.

10. In Figure 2a we show the MRE distributions achieved by the
different models solely to depict the relationship of each technique
to the two industrial thresholds. This measure is not recommended
for comparing prediction models (i.e., selecting the best technique) as,
similarly to using MMRE, its use could be misleading (see Section 2.1).

TABLE 8: RQ5. Mean of the quality indicators (IGD, IHV ,
IC ) computed on the Pareto Fronts of CoGEENSGAII

and the four alternative MOEAs (i.e., CoGEEIBEA,
CoGEEMOCell, CoGEENSGAIII , and CoGEESPEA2) over 30
runs. The best value per each indicator is printed in bold
face.

Dataset Technique IGD IHV IC

China

CoGEEIBEA 0.21 0.75 0.00
CoGEEMOCell 0.00 1.00 0.01
CoGEENSGAII 0.00 1.00 0.06
CoGEENSGAIII 0.00 1.00 0.08
CoGEESPEA2 0.00 1.00 0.84

Desharnais

CoGEEIBEA 0.23 0.56 0.00
CoGEEMOCell 0.00 0.97 0.03
CoGEENSGAII 0.00 0.96 0.04
CoGEENSGAIII 0.00 0.97 0.05
CoGEESPEA2 0.00 0.98 0.89

Finnish

CoGEEIBEA 0.23 0.59 0.00
CoGEEMOCell 0.00 0.99 0.18
CoGEENSGAII 0.00 0.98 0.11
CoGEENSGAIII 0.00 0.99 0.32
CoGEESPEA2 0.00 0.99 0.39

Maxwell

CoGEEIBEA 0.24 0.60 0.00
CoGEEMOCell 0.00 0.97 0.01
CoGEENSGAII 0.00 0.97 0.03
CoGEENSGAIII 0.00 0.97 0.05
CoGEESPEA2 0.00 0.99 0.91

Miyazaki

CoGEEIBEA 0.78 0.19 0.00
CoGEEMOCell 0.00 1.00 0.00
CoGEENSGAII 0.00 1.00 0.31
CoGEENSGAIII 0.00 1.00 0.37
CoGEESPEA2 0.00 1.00 0.32

TABLE 9: RQ5. Results of the Wilcoxon test (with Â12 effect
sizes in brackets) which compare the quality indicators
(IGD, IHV , IC ) of CoGEENSGAII , to the ones obtained by
four alternative MOEAs over 30 runs.

Dataset CoGEENSGAII vs IGD IHV IC

China

CoGEEIBEA <0.0125 (1.00) <0.0125 (1.00) <0.0125 (0.63)
CoGEEMOCell <0.0125 (0.67) 0.7479 (0.47) 0.9777 (0.43)
CoGEENSGAIII 0.9325 (0.44) 0.9522 (0.43) 0.9981 (0.39)
CoGEESPEA2 1.0000 (0.02) 1.0000 (0.13) 1.0000 (0.00)

Desharnais

CoGEEIBEA <0.0125 (1.00) <0.0125 (1.00) <0.0125 (0.71)
CoGEEMOCell 0.4240 (0.57) 0.9563 (0.43) 0.8969 (0.45)
CoGEENSGAIII 0.9977 (0.38) 0.7130 (0.48) 0.9607 (0.43)
CoGEESPEA2 1.0000 (0.67) 1.0000 (0.21) 1.0000 (0.00)

Finnish

CoGEEIBEA <0.0125 (1.00) <0.0125 (1.00) <0.0125 (0.89)
CoGEEMOCell 1.0000 (0.23) 1.0000 (0.33) 1.0000 (0.26)
CoGEENSGAIII 1.0000 (0.15) 0.9903 (0.40) 1.0000 (0.12)
CoGEESPEA2 1.0000 (0.30) 0.9965 (0.38) 1.0000 (0.06)

Maxwell

CoGEEIBEA <0.0125 (1.00) <0.0125 (1.00) <0.0125 (0.75)
CoGEEMOCell 0.1525 (0.55) 0.2521 (0.53) <0.0125 (0.59)
CoGEENSGAIII 0.9999 (0.26) 0.3428 (0.52) 0.9994 (0.36)
CoGEESPEA2 1.0000 (0.00) 1.0000 (0.06) 1.0000 (0.00)

Miyazaki

CoGEEIBEA <0.0125 (1.00) <0.0125 (1.00) <0.0125 (1.00)
CoGEEMOCell 1.0000 (0.50) 1.0000 (0.50) <0.0125 (1.00)
CoGEENSGAIII 1.0000 (0.50) 1.0000 (0.50) 1.0000 (0.00)
CoGEESPEA2 1.0000 (0.50) 1.0000 (0.50) 0.9219 (0.49)

Table 9 shows the results of the Wilcoxon test between
the distribution of the quality indicator values achieved by
CoGEENSGAII against each of the other MOEAs. These
results are corrected for multiple tests using Bonferroni
correction (making α level at α < 0.0125). Therefore, we
can reject our null hypothesis (see Section 3.4) only for
CoGEEIBEA, with a medium to high effect size depend-
ing on the datasets. On the other hand, all other MOEAs
produce solutions with equal quality in comparison with
CoGEENSGAII .
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Fig. 2: RQ4. Comparison with claimed optimal industrial practice when the (a) the Magnitude of Relative Error (MRE) and
(b) overrun of each project in a given dataset is considered.

On the other end, when comparing the running time
of CoGEE with each of the five MOEAs (see Table 10),
we can observe that IBEA and SPEA2 are the slowest
algorithms (their running time ranges from 10,000 to more
than 100,000 milliseconds), while all the other MOEAs ex-
ecute in less than 1,500 milliseconds. Table 11 shows the
results of the Wilcoxon test comparing the running time of
CoGEENSGAII against other MOEAs. The results suggest
that the null hypothesis (see Section 3.4) is rejected for
CoGEENSGAIII , CoGEEIBEA, and CoGEESPEA2, which
means that the median running time for these three algo-
rithms is higher than that of CoGEENSGAII .

Based on both the SA and quality indicator analysis, and
considering the running time of the MOEAs, we conclude
that CoGEEMOCell and CoGEENSGAII are able to achieve
the best quality with a faster running time.

4.6 RQ6. CoGEE’s Running Time: Java vs. R

To assess whether the running time of CoGEE decreases due
to the new Java implementation, we analyse and compare
it with the running time of the original R implementation.
Table 10 shows the average running time and standard
deviation of CoGEENSGAII implemented in Java, and its
R counterpart CoGEENSGAII−R.

Overall, CoGEENSGAII runs 718 and 5,358 times faster
than CoGEENSGAII−R for Finnish (the smallest dataset)
and China (the biggest one), respectively. This translates in
a decrease in running time between 99.86% and 99.98%
when comparing the R version to its Java counterpart.
CoGEENSGAII−R is extremely slow and it took days to

execute all experiments. On the other hand, the same ex-
periments run by using CoGEENSGAII terminated in few
minutes. Given the magnitude of this difference, unsurpris-
ingly, the results of the Wilcoxon test (see Table 11) confirm
that, for all datasets, the running time of CoGEENSGAII

is statistically significantly lower than the running time
of CoGEENSGAII−R with a large effect size in all cases
considered.

These results are in line with previous studies suggesting
that R is not well-suited for computationally intensive algo-
rithms [76], [110]. Since the results in terms of accuracy are
similar (see Table 2), we recommend using the Java version
and we have made it publicly available [105], [106].

5 DISCUSSION

Overall, we can observe that the results of our replication
(RQ1, RQ2, RQ3) are consistent with the original study,
thus reinforcing the conclusions previously made. There are
some minor discrepancies, which, however, do not change
the conclusions, as discussed in the following.

The results for RQ1 and RQ2 provide scientific evidence
that, overall, CoGEENSGAII outperforms both baseline and
state-of-the-art approaches, which confirm previous finding.
CoGEENSGAII significantly outperformed all the baseline
benchmarks for all datasets, and also the state-of-the-art
techniques in the three largest cross-company datasets (i.e.,
China, Maxwell, and Miyazaki) with large effect sizes for 22
out of 23 cases. For the other two datasets, i.e., Desharnais
and Finnish, CoGEENSGAII is ranked second only to LP
and CART, respectively, where the results of the statistical
analysis shows a small effect size. We observe that the SA
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TABLE 10: RQs5–6. Mean, Median and Standard Deviation
(SD) of the running time over 30 runs of all MOEA vari-
ants, including the R version used in the original study
(CoGEENSGAII−R).

Running Time (milliseconds)
Dataset Technique Mean Median Std. Dev.

China

CoGEEIBEA 11,550 11,537 66
CoGEEMOCell 1,035 1,035 47
CoGEENSGAII 1,100 1,101 35
CoGEENSGAIII 1,381 1,381 51
CoGEESPEA2 212,582 212,251 3,292
CoGEENSGAII−R 5,894,548 5,746,701 272,092

Desharnais

CoGEEIBEA 11,699 11,688 60
CoGEEMOCell 473 476 18
CoGEENSGAII 530 526 19
CoGEENSGAIII 725 725 18
CoGEESPEA2 148,815 150,599 6,504
CoGEENSGAII−R 1,257,656 1,248,304 13,946

Finnish

CoGEEIBEA 11,698 11,701 39
CoGEEMOCell 570 592 54
CoGEENSGAII 545 534 55
CoGEENSGAIII 742 741 9
CoGEESPEA2 171,462 172,003 5,958
CoGEENSGAII−R 391,719 392,129 20,187

Maxwell

CoGEEIBEA 11,682 11,678 37
CoGEEMOCell 539 538 17
CoGEENSGAII 562 556 16
CoGEENSGAIII 743 740 14
CoGEESPEA2 128,248 128,514 504
CoGEENSGAII−R 2,606,284 2,598,778 77,340

Miyazaki

CoGEEIBEA 11,616 11,612 35
CoGEEMOCell 451 452 6
CoGEENSGAII 553 552 5
CoGEENSGAIII 770 770 5
CoGEESPEA2 143,218 143,216 119
CoGEENSGAII−R 514,834 503,486 96,071

values obtained by our study are slightly different from
those reported in the original study. This is mainly due to
the stochastic nature of these algorithms involved, and are
small enough to not change the ranking of the techniques
considered, so can be neglected and the previous findings
can be confirmed.

The results for RQ3 show that CoGEENSGAII is able
to produce higher quality solutions than the two single-
objective variants as well as than NSGAII-UO. The SA
results alongside the Pareto Front analysis, reveal that the
single-objective variants were not able to produce satisfac-
tory solutions for neither of the two objectives (i.e., they
often produced solutions which had worse SAE or CI with
respect to CoGEENSGAII as can be observed for example
for the Finnish dataset in Figure 3)11, whereas NSGAII-UO
was able to produce a few good quality solutions but the
majority were very poor (see, for example, Figure 4)11.
These results suggest that simultaneously optimising for
CI and SAE (which basically combines underestimates and
overestimates into one objective) makes CoGEENSGAII

able to reach such a good performance. The results of
the quality indicators for RQ3.1 and RQ3.2 are slightly
different from those obtained in the original study but
consistent. The replication study showed more significant
differences in the comparison of CoGEENSGAII vs. GA-SAE
and GA-CI, which reinforces the conclusions drawn for
RQ3.1 in the original study. The reason is mainly due to

11. For sake of space we make all plots available on-line [106]

the stochastic nature of the approaches considered and the
different frameworks used12, which has been mitigated by
executing 30 independent executions. The differences ob-
served, though, did not change the overall conclusion that
CoGEE outperformed the other three evolutionary-based
techniques (RQ3).

The results for RQ4 show that the median project over-
run for CoGEENSGAII lies within the bounds of current
claims for industrial best practice for all five datasets, and
the distribution of its MRE lies below this thresholds for
three out of five datasets. These are the same results of the
original study, thus confirming the same conclusions. It is
possible that the current reluctance to take-up intelligent
effort estimation within the industry is due to the risk
aversion and reticence to risk overrun. The result of RQ4
shows that CoGEE can produce estimations with a lower
risk of cost overrun, as a result of optimisation for CI, thus,
mitigates the managers’ natural concern for underestimates
and consequent budget overrun.

Furthermore, the newly investigated questions, RQ5 and
RQ6, shed light on the role played by different types of
MOEAs and their efficacy in terms of running time when
coded with two different languages (i.e., R and Java). In
the original study an R implementation of NSGA-II was
used to realise CoGEE, while in this replication we also
used GA, NSGA-II, NSGA-III, SPEA2, MOCell and IBEA
(all realised in Java based on the JMetal framework). We
did not find any statistical significant differences among
the accuracy of the estimation models built by using these
NSGA-II and the other MOEAS (except for IBEA which was
significantly worse for all datasets studied). On the other
end, although SPEA2 and NSGA-III produced models of
comparable quality to NSGA-II, they were slower. This is in
line with the findings of Khare et al. [57] who compared the
performance of NSGA-II and SPEA2 in a different domain.
They found that SPEA2 scales well in terms of maintaining
the diversity of the solutions in the Pareto Front; however,
it suffers in running time [57]. The higher running time
of SPEA2 is due to the maintenance of a separate archive
population and a higher volume of computations that it
needs in order to rank the solutions for selection since it uses
an additional factor (i.e., domination strength [116]) to de-
termine the ranks of the solutions. Similarly, previous work
showed that NSGA-III was found to be worse than NSGA-II
for some problems [49], and generally slower when used
with fewer objectives or smaller instances [18]. On the other
hand, IBEA, which also uses an additional computation of a
quality indicator (i.e., Hypervolume) to rank its solutions,
fails to produce good quality solutions for the problem
investigated herein. Sayyad et al. [90] showed that IBEA
could be very slow to converge, although it delivers better
scalability in a higher number of objectives in comparison
with NSGA-II. Finally, we have also found that using the
JMetal version of CoGEE allows us to decrease the running
time by over 99.8% with respect to using its R counterpart.
Based on the results we obtained for RQ5 and RQ6, we can
conclude that the effectiveness of CoGEE is generally not
limited to nor dependent on the choice of the multi-objective

12. The original study used R with nsgr2r library version 1.0, while
this study uses the Java JMetal framework version 5.4
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TABLE 11: RQs5-6. Results of the Wilcoxon test (Â12 effect sizes in brackets) comparing the distribution of the running
time obtained over 30 runs by all the MOEA variants and the original R version (CoGEENSGAII−R).

CoGEENSGAII vs China Desharnais Finnish Maxwell Miyazaki

CoGEEIBEA <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEEMOCell 1.000 (0.07) 1.000 (0.01) 0.001 (0.63) 1.000 (0.13) 1.000 (0.00)
CoGEENSGAIII <0.001 (1.00) <0.001 (1.00) <0.001 (0.98) <0.001 (1.00) <0.001 (1.00)
CoGEESPEA2 <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
CoGEENSGAII−R <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Fig. 3: RQ3.1. Pareto Fronts for CoGEENSGAII (CoGEE) vs. GA-SAE and GA-CI on the Finnish dataset. The non-dominated
solutions for CoGEE and the best solution for GA-SAE and GA-CI for each of the 30 independent runs are plotted.
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Fig. 4: RQ3.2. Pareto Fronts obtained by CoGEENSGAII (CoGEE) and NSGAII-UO for the Finnish dataset (one randomly
selected run among the 30 performed).
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evolutionary algorithm (RQ5), however different MOEAs
exhibit different running times (RQ6), and the framework
used to realise them have a significant impact on their speed
(RQ6).

6 THREATS TO VALIDITY

Since this study is a replication and an extension of the
research performed by Sarro et al. [89] it shares some of
the threats to validity and implements further mitigations.

Construct validity deals with the degree to which the
predictor and response variable measures what they sup-
pose to be measuring [71]. To mitigate possible threats
arising from the predictors and target variables used to
build the prediction models we used five publicly available
datasets which were collected from real-world projects and
contain reliable measures of software effort and size, such as
Function Point, which are still in use in industrial settings
and widely used in research studies [2], [27], [87]. Moreover,
this data has been widely used in previous empirical studies

to validate estimation models [10], [47], [48], [87]. Further, to
mitigate possible threats in measuring the accuracy perfor-
mance of our models we used robust evaluation measures
such as the Mean Absolute Error and the Standard Accuracy,
which are widely used and recommended in previous work
[64], [88], [95]. To compare the evolutionary algorithms, we
followed best practice by using a complementary set of
Pareto Front quality indicators, which fairly compare all
algorithms against a common reference front [43], [67].

Conclusion validity or internal validity represents to
what extend it is valid to draw conclusions about the causal
relation between the predictor and response variables [71].
In other words, is it valid to draw conclusions based on
the results of the tests? In this regard, following the best
practice, we chose standardized measures [97] to compare
the results of our experiments and carefully applied the
statistical significance tests with correction for multiple tests
[6]. The new independent implementation strengthens the
internal validity of the study.

Since the team of researchers involved in this replication
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study partially overlaps with the authors of the original
study, potential researcher bias may arise in answering the
RQs replicated from the original study (i.e., RQs 1–4). To
minimise this threat, only the author who was not involved
in the original study, was responsible for answering these
questions. Specifically, the first author had access only to
the original paper and the data used in the original study in
order to replicate it, and he was responsible for coding the
approaches and experiments, executing them and analysing
the results from scratch, based on the experimental design
explained in the paper. At the end of the replication the first
author produced a report with the experimental results of
the replicated RQs 1–4, and was given access to the origi-
nal source code and raw results for comparison purposes.
Throughout the replication, the first author sought consul-
tation from the authors of the original study only on matters
that needed some clarifications beyond the information pro-
vided in the original paper (e.g., additional information on
the algorithmic setting which were unclear/missing from
the original paper). Since RQ5 and RQ6 are new research
questions, which were not included in the original study, no
mitigation measures were needed for these goals.

We alleviated the threats to external validity using mul-
tiple datasets from different contexts with a high diversity
in the type of features and the number of instances, which
also mitigate the threats related to the number of observa-
tions. The datasets, coming from different contexts, might be
characterised by some specific projects and human factors,
such as development process, developer experience, tools
and techniques used, and different time and budget, that
makes it hard to claim that our results generalise beyond
the subjects that we studied [89]. The external validity of
the original study has been further strengthened herein by
using four additional MOEAs with CoGEE, each one com-
ing from a different family of multi-objective optimisation
algorithms. To compare the results of CoGEENSGAII with
industrial practice we adopted the thresholds of industrial
prediction from a survey of industry practices carried out in
2003 [75], thus one should take this into consideration while
generalizing this result to other periods.

7 RELATED WORK

Sarro et al. [89] classified previous work on robust effort
estimation with confidence intervals into two broad cate-
gories: (i) those that produced confidence interval for point
estimates during the estimation process, and (ii) those that
produce probabilities of the predefined intervals prior to the
effort estimation.

CoGEE falls in the first category as it optimises the con-
fidence interval while building the model, thus prediction
models produced by it optimise both the accuracy of the
point estimates and the confidence interval associated with
them [89].

7.1 Confidence Interval for Point Estimates

The first study in the first category, proposed a bootstrap-
based model for tuning an analogy based effort estima-
tion model [5], however as pointed out by Jørgensen [52]
this work confuses the Prediction Interval (PI) with the

confidence interval of the mean effort. In a subsequent
study, Jørgensen and Sjoeberg [54] introduced an approach
assuming that the estimation accuracy of earlier software
projects is a prediction for the effort PI of new projects.
They evaluated their approach with two empirical studies
to provide insight into when it is appropriate to use the
proposed approach, regression-based approaches, or soft-
ware professionals’ judgement. The results showed that
with a sufficiently high number of observations the regres-
sion model will result in more accurate effort PIs. On the
other hand, when there are few samples and outliers are
presented, the proposed approach may lead to better effort
PIs. Finally, they suggest supporting and training software
professionals to reduce their bias towards overconfidence
may be the optimal solution.

Braga et al. [11] introduced a machine learning method
which provides the estimation of the effort and a corre-
sponding confidence interval. Their method for computing
the confidence interval is independent of the probability
distribution of the errors in the training set, unlike previous
work in which the confidence intervals for predictions were
computed by assuming that the errors follow some probabil-
ity distribution. They evaluated the proposed approach on
two datasets. The results showed that the proposed method
was able to build robust confidence intervals.

Song et al. [102] introduced Relevance Vector Machine
(RVM), a probabilistic model based on Bayesian inference,
to construct Prediction Intervals (PI) with a confidence
level. Song et al. in a recent study [103] stated that RVM
sometimes provided too wide PIs that were not informative,
therefore proposed a new PI estimator based on RVM called
Synthetic Bootstrap ensemble of Relevance Vector Machines
(SynB-RVM). This estimator adopts Bootstrap re-sampling
to produce multiple RVM models based on modified train-
ing bags whose replicated data projects are replaced by their
synthetic counterparts. Results showed that SynB-RVM’s hit
rates and relative widths are no worse than the other com-
pared methods that can provide uncertain estimations. They
evaluated their method using 11 datasets (four of which
are publicly available) including Maxwell, on which they
attained standard accuracy of 0.54 with the best performing
variant of SynB-RVM, while this value for the best variant
of CoGEE is 0.56.

Mensah et al. [72] proposed a model that automatically
determines categorical intervals. They introduce a categori-
cal level of effort (high, moderate, and low) based on a quan-
tile discretisation of the effort values on the training set, and
provide this level with each estimation alongside their point
estimate. This level contributes to the easy interpretation of
the model.

Ezghari and Zahi [30] introduced an improvement on
Fuzzy Analogy-based Software Effort Estimation model
which employs successfully fuzzy logic with approximate
reasoning theory to handle imprecision and reasoning under
uncertainty. However, their technique had a detrimental
effect on SA for datasets like China, suspecting that the
distribution of the samples in this dataset does not allow the
uncertainty management parameters to reach an acceptable
optimisation degree.
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7.2 Probabilities for Predefined Intervals
Only two works fall in the second category. Sentas et al. [91]
investigated an ordinal regression technique to model the
probability of correctly classifying a new project to one of
the predefined cost categories, each of which corresponds
to an effort interval. The work by Bakir et al. [7] differs
from the previous studies in that the effort intervals are not
predefined manually but determined by clustering analysis.
They evaluated their approach using seven public datasets.
The results of point estimations were comparable to the
previous work, but estimation hit around 90− 100%, which
was higher than those obtained in the previous studies.

8 CONCLUSION

This paper is a replication of a previously published study
[89], where a bi-objective software effort estimation al-
gorithm was proposed and evaluated. The original work
showed that the proposed technique, namely CoGEE, out-
performs state-of-the-art techniques and produces human
competitive results [89].

In this replication, we carried out a large empirical study
in order to answer the same research questions by means
of the same experimental design extended by the use of a
recent state-of-the-art baseline benchmark, four additional
variants of multi-objective evolutionary algorithms under
the hood of CoGEE, execution time evaluation of the dif-
ferent variants, and a completely new and independent
implementation of CoGEE based on a popular Java Evolu-
tionary Computation framework (i.e., JMetal [78]), which
runs significantly faster than the original R version.

Our replication shows that the results are consistent with
the original study to a large extent and there are small
differences, which are justified by the stochastic nature of
the algorithms used, and do not affect the overall find-
ings. According to our results, CoGEENSGAII outperforms
all benchmarks considered including state-of-the-art tech-
niques. Moreover, it provides estimates within (and even
close to the lower) thresholds of industrial best practice.
Therefore, confirming CoGEE provides human-competitive
results.

The analysis of the Pareto Fronts showed that SPEA2 ei-
ther dominated the other Fronts or produced solutions with
the same quality. However, it seems that the diversity of
the solutions on the Front produced by SPEA2 contributed
to the lower SA value of this MOEA in comparison with
the others on four of the datasets. We also found that
among the five MOEAs compared, NSGA-II, NSGA-III and
MOCell produce comparable results in terms of solution
quality but 100 times quicker than SPEA2. On the other
hand, IBEA took 10 times longer than NSGA-II, NSGA-III
and MOCell to run. We conclude that by using CoGEE with
NSGA-II, NSGA-III, and MOCell, one can produce human
competitive results within a minute.

In conclusion, the replication study has increased the
confidence in the findings of the original study by produc-
ing confirmatory results on the effectiveness of the multi-
objective optimisation, and in particular optimising for low
uncertainty of the predictions, in Software Effort Estimation.
It has also further mitigated potential internal and external
threats to the validity of the original study by adding more

dimensions to the experimental design including: bench-
marking against a new robust state-of-the-art baseline, use
of four additional variants of multi-objective evolutionary
algorithms, and an independent implementation, execution,
and analysis of the experiments. We have made CoGEE’s
source code publicly available in order to facilitate its adop-
tion. We also provide the data used in our study to allow for
replications and extensions [105], [106].
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Davide Taibi, Janet Siegmund, Diomidis Spinellis, Miroslaw
Staron, Klaas Stol, Margaret-Anne Storey, Davide Taibi, Damian
Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan,
Xiaofeng Wang, and Sira Vegas. Empirical standards for software
engineering research, 2021. arXiv:2010.03525.
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