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Wave radiation and diffraction problems by a body floating in an open water channel confined
by two semi-infinite ice sheets are considered. The linearized velocity potential theory is used
for fluid flow and the thin elastic plate model is adopted for the ice sheet. The Green function,
which satisfies all the boundary conditions apart from that on the body surface, is first derived.
This is obtained through applying Fourier transform in the longitudinal direction of the channel,
and matched eigenfunction expansions in the transverse plane. With the help of the derived
Green function, the boundary integral equation of the potential is derived and it is shown that the
integrations over all other boundaries, including the bottom of the fluid, free surface, ice sheet,
ice edge as well as far field will be zero, and only the body surface has to be retained. This
allows the problem to be solved through discretization of the body surface only. Detailed results
for hydrodynamic forces are provided, which are generally highly oscillatory due to complex
wave/body/channel interaction and body/body interaction. In depth investigations are made for
the waves confined in a channel, which does not decay at infinity. Through this, detailed analysis
is made on how the wave generated by a body will affect the other bodies even when they are far
apart.
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1. Introduction
The subject of wave interaction with a floating structure due to radiation and diffraction is

of considerable significance in ocean engineering for better design and safe operation, as well
as environmental protection. Generally, the ocean is treated as infinitely large, and the wave
generated by the oscillatory motion of the structure or by its disturbance to an incident wave
propagates outwards to infinity. However, there are many other cases, in which the fluid region is
confined or the fluid surface is not entirely free. In such a case, the wave radiated or diffracted by
the body will be fully or partially reflected back to the body. This makes the interaction of a body
with external environment more complex.
A notable example of a structure in a confined water region is a channel. This problem is
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also related to the experimental set up for an offshore platform in a wave tank. Early work to
investigate the tank wall effect includes that by Eatock Taylor & Hung (1985) on a vertical
cylinder, who placed a number of cylinders at the mirror image positions formed by the two
sidewalls. Yeung & Sphaier (1989) also considered the problem of a truncated vertical circular
cylinder in a channel. Their formulation used an infinite array of cylinders arranged in a plane
perpendicular to the channel, and the tank wall effect, in particular its natural mode effect, was
captured more accurately as a large number of cylinders could be used. A different method was
used by Linton & Evans (1992), who constructed the velocity potential which satisfied the wall
condition directly. This allowed the far field wave in the channel away from the cylinder to be
modelled accurately, and the trappedmodes (Ursell 1951) for cylinders in a channel were captured.
Wu (1998) considered a fully submerged sphere in an arbitrary position of the channel through the
multipole expansion. It was found that in many cases the frequency corresponding to the trapped
mode could be very close to the natural frequency. The sphere problem was also considered by
Ursell (1999), who constructed the velocity potential in an integral form. For a more realistic
structure with a complicated shape, the integral equation approach based on the Green function
can be used. Linton (1999) derived an alternative representation of the Green function for the
channel, which could be calculated more efficiently. Newman (2016) compared three numerical
approaches to include the tank wave effect, i.e. the mirror image, inclusion of the sidewall in the
integral equation, and the free surface Green function satisfying the wall conditions. The results
from the first two approaches became less accurate when the waves became longer, as the effects
of the truncation in the mirror images or the tank wall in the integral equation became more
important. Through the third method, Newman (2017) further provided trapped wave modes for
several bodies either fixed or freely floating in the channel.
A related problem is an open water channel confined between two semi-infinite ice sheets,

an example of which is that created by an icebreaker for the navigation of commercial ships
(Appolonov et al. 2013). This has become an increasingly interested topic in the context of
Arctic engineering. Different from the tank problem above, where the impermeable condition on
sidewalls will force the wave to fully reflect back, the waves can pass into the region below the ice
sheets. A relatively thin ice sheet can be treated as an elastic plate (Robin 1963; Squire et al. 1988).
The plate will be set into motion, which will in turn create a flexural gravity wave. As the free
surface wave and flexural gravity wave propagate in different media, which are reflected by their
different dispersion relationships, the disturbed wave can be partially reflected back to the body.
This makes the wave/body interaction more complex. Through linear velocity potential theory for
fluid flowand thin elastic platemodel for ice deflection, Chung&Linton (2005) solved the problem
of incoming wave from the region below the ice sheet and then passing through the channel using
residual calculus technique. Through Wiener-Hopf and residual calculus techniques, Williams &
Squire (2006) considered the problem of three connected ice sheets with the first and last ones to
be semi-infinite, and an open water channel could be modeled by setting the thickness of middle
ice sheet zero. Free surface in confined region can also be seen through a polynya in the three
dimensional (3D) problem. This was for example solved by Bennetts & Williams (2010), and the
results showed that the polynya shape could have a significant effect on the diffracted wave field.
For a body inside the fluid confined by the ice sheet, Sturova (2015) considered a two

dimensional (2D) problem of wave radiation by a body submerged in the free surface channel
through boundary integral equations. For a body floating on the channel surface, Ren et al. (2016)
obtained the solution for a rectangle through the matched eigenfunction expansions. Li et al.
(2018a) developed a hybrid numerical scheme for an arbitrary shaped body, which combined
eigenfunction expansions under ice sheets and boundary integral equation in the channel. Based
on the solution for a body in open water and that for an ice channel without a body, Li et al. (2017)
provided a solution for a body in a wide channel, and explicit equations for the hydrodynamic
forces and motion responses were obtained. Although the solution was based on wide-spacing
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approximations, the results were in very good agreement with those without the approximation.
Through these explicit equations, the mechanism for oscillatory behaviours of the results were
uncovered.

For the 3D problems, Ren et al. (2018) considered a vertical circular cylinder in a polynya
with circular shape through the series expansion. For a general 3D problem with a practical
structure and arbitrary polynya edge shape, its solution through conventional numerical methods
becomes a major challenge. One of the reason is that the commonly used Green function in
ocean engineering, which allows the discretization of the structure surface only, is very difficult
to construct. Another reason is the fifth derivative on the ice sheet is not easy to compute
numerically. Therefore, Li et al. (2020a) developed a hybrid method for this problem, in which
a series of integral equations under the ice sheet were constructed and coupled with the inner
boundary integral equation through an orthogonal inner product. The solution procedure is highly
efficient if the polynya is finite, and is effective even when there are more than one polynya or
more than one structure. However, the method is less effective for an infinitely long channel. In
addition, apart from a different methodology is required, there are some different physic features
of the waves in the channel and their effect on the body motions need to be better understood. In
particular, it has been observed by Porter (2018) that there could be waves trapped in the channel,
which do not propagate into infinity beneath the ice sheet. The implication of this is that the wave
due to a structure may continuously propagate along the channel and affect other structures away
at relatively large distance.

In this work, we shall develop a method which is effective for this type of channel problem.
Through detailed analysis and numerical results, we shall acquire some in depth understanding
of the wave/body interaction in a channel confined between ice sheets. The differential equation
(2.2) is first converted into an integral equation through the Green function. This may seem to
be conventional for the velocity potential which satisfies Laplace equation. However, in general,
the integral equation involves the full boundary of the fluid domain, which in this case is infinite.
Thus, in the free surface problem, the Green function which satisfies the boundary condition
on all other surfaces apart from that on the body surface is usually first derived (Wehausen &
Laitone 1960). As a result, it can then be shown that other boundaries in the integral equation
can be removed apart from the body surface. The same principle may be used here. However,
the derivation is not trivial and is far more complicated than the free surface problem. The
Green function is obtained through taking Fourier transform in the direction along the channel,
and matched eigenfunction expansions are applied in the transverse plane. Through the Green
function, those waves which may be trapped in the channel are identified and captured. With
this derived Green function, it is then further shown that as in the free surface problem the other
boundaries in the integral equation can indeed be removed, and only the body surface needs to
be retained. Numerical discretization is then applied, through which the solution are obtained.
From the solution, the complex wave/channel/body interaction is investigated, together with the
body/body interaction.

The paper is organized as follows. The mathematical model is formulated in §2, and the
governing equation for ice deflection together with the free ice edge conditions are described. In
§3.1 the velocity potential due to an oscillating source or the Green function is derived, based
on which the boundary integral equation for the disturbed velocity potentials is constructed in
§3.2, and the formula for the hydrodynamic forces are also provided. Results are presented and
discussed in §4, followed by the conclusion in §5. In appendix A, the special case for ice sheet with
a zero thickness is given, while in appendix B the boundary integral equation for the disturbed
velocity potential is derived.
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with O xy  plane being the undisturbed mean free water surface, and z  axis pointing 1 

vertically upwards. The channel is confined by two semi-infinite ice sheets bounded by y b   2 

respectively. Following Squire (2011) and others, the ice sheet is modelled as a thin elastic plate 3 

with its properties, Young’s modulus E , Poisson’s ratio  , density 
i  and thickness h , being 4 

assumed to be constant and its draught effect being ignored. The motion of the body is assumed to 5 

be excited by an incident wave, which propagates from infinity from an angle   with the 6 

positive x  axis.  7 

 8 
Figure 1. Coordinate system and sketch of the problem.  9 

The fluid with density 
w  and constant depth H  is assumed to be inviscid, incompressible 10 

and homogeneous, and its motion to be irrotational. Thus, the velocity potential   can be 11 

introduced to describe the fluid flow. When the amplitudes of wave motion and body motion are 12 

small compared to wavelength and the dimension of body, the linearized velocity potential theory 13 

can be further used. For sinusoidal motion in time with radian frequency  , the total velocity 14 

potential can be written as  15 
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j  ( 0, ,6j   ) should satisfy the Laplace equation throughout the fluid, 22 
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Figure 1: Coordinate system and sketch of the problem.

2. Mathematical model
The interaction of wave with an arbitrarily shaped body floating in an open water channel is

sketched in figure 1. To describe the problem, a Cartesian coordinate system 𝑂 − 𝑥𝑦𝑧 is defined,
with 𝑂 − 𝑥𝑦 plane being the undisturbed mean free water surface, and 𝑧 -axis pointing vertically
upwards. The channel is confined by two semi-infinite ice sheets bounded by 𝑦 = ±𝑏 respectively.
Following Squire (2011) and others, the ice sheet is modelled as a thin elastic plate with its
properties, Young’s modulus 𝐸 , Poisson’s ratio 𝜈, density 𝜌𝑖 and thickness ℎ, being assumed to
be constant and its draught effect being ignored. The motion of the body is assumed to be excited
by an incident wave, which propagates from infinity from an angle 𝛽 with the positive 𝑥 -axis.
The fluid with density 𝜌𝑤 and constant depth 𝐻 is assumed to be inviscid, incompressible and

homogeneous, and its motion to be irrotational. Thus, the velocity potential𝛷 can be introduced
to describe the fluid flow. When the amplitudes of wave motion and body motion are small
compared to wavelength and the dimension of body, the linearized velocity potential theory can
be further used. For sinusoidal motion in time with radian frequency𝜔, the total velocity potential
can be written as

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = Re
𝜂0𝜙0 (𝑥, 𝑦, 𝑧)ei𝜔𝑡 +

6∑︁
𝑗=1
i𝜔𝜂 𝑗𝜙 𝑗 (𝑥, 𝑦, 𝑧)ei𝜔𝑡

 , (2.1)

where 𝜙0 = 𝜙𝐼 + 𝜙𝐷 is the scattering potential with 𝜙𝐼 and 𝜙𝐷 as the incident and diffracted
potentials respectively, 𝜂0 is the amplitude of the incident wave; 𝜙 𝑗 is the radiation potential due
to the j-th mode of body motion in six degrees of freedom with complex amplitude 𝜂 𝑗 . Here,
𝜂 𝑗 ( 𝑗 = 1, 2, 3) are for the translational modes along 𝑥, 𝑦 and 𝑧 directions respectively, while 𝜂 𝑗

( 𝑗 = 4, 5, 6) are for the corresponding rotational modes. The conservation of mass requires that
the velocity potential 𝜙 𝑗 ( 𝑗 = 0, . . . , 6) should satisfy the Laplace equation throughout the fluid,
or

∇2𝜙 𝑗 +
𝜕2𝜙 𝑗

𝜕𝑧2
= 0, (2.2)

where

∇2 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
, (2.3)

is the Laplacian in horizontal plane. In the water channel, the combination of linearized dynamic
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and kinematic free surface boundary conditions provides

− 𝜔2𝜙 𝑗 + 𝑔
𝜕𝜙 𝑗

𝜕𝑧
= 0 ( |𝑦 | 6 𝑏 − 0 and 𝑧 = 0), (2.4)

where 𝑔 is the acceleration due to gravity. It is assumed that there is no gap between ice sheet and
water surface. This gives

𝜕𝑊

𝜕𝑡
=
𝜕𝛷

𝜕𝑧
( |𝑦 | > 𝑏 + 0 and 𝑧 = 0), (2.5)

where𝑊 is the deflection of the ice sheet. Similar to equation (2.1), we may write𝑊 as

𝑊 (𝑥, 𝑦, 𝑡) = Re
𝜂0𝑤0 (𝑥, 𝑦)ei𝜔𝑡 +

6∑︁
𝑗=1
i𝜔𝜂 𝑗𝑤 𝑗 (𝑥, 𝑦)ei𝜔𝑡

 , (2.6)

with

𝑤 𝑗 =
1
i𝜔

𝜕𝜙 𝑗

𝜕𝑧

����
𝑧=0

. (2.7)

This combines with the dynamic condition on the interface gives(
𝐿∇4 + 𝜌𝑤𝑔 − 𝑚𝑖𝜔

2
) 𝜕𝜙 𝑗

𝜕𝑧
− 𝜌𝑤𝜔2𝜙 𝑗 = 0 ( |𝑦 | > 𝑏 + 0 and 𝑧 = 0), (2.8)

where 𝐿 = 𝐸ℎ3/
[
12(1 − 𝜈2)

]
and 𝑚𝑖 = 𝜌𝑖ℎ are the effective flexural rigidity and mass per unit

area of the ice sheet, respectively. Here, it might be noticed that in equations (2.4) and (2.8),
𝑏 − 0 and 𝑏 + 0 indicate that the ice edge is approached from the channel side and ice sheet side,
respectively. Zero bending moment and shear force conditions are imposed at the ice edge, or
(Timoshenko & Woinowsky 1959)

B
(
𝜕𝜙 𝑗

𝜕𝑧

)
= 0 and S

(
𝜕𝜙 𝑗

𝜕𝑧

)
= 0 ( |𝑦 | = 𝑏 + 0 and 𝑧 = 0), (2.9)

for 𝑗 = 0, . . . , 6, where the operators B and S are respectively defined as

B =
𝜕2

𝜕𝑦2
+ 𝜈 𝜕

2

𝜕𝑥2
, (2.10)

S =
𝜕

𝜕𝑦

[
𝜕2

𝜕𝑦2
+ (2 − 𝜈) 𝜕

2

𝜕𝑥2

]
. (2.11)

The impermeable condition on the mean wetted body surface 𝑆𝐵 can be written as

𝜕𝜙 𝑗

𝜕𝑛
= 𝑛 𝑗 and

𝜕𝜙𝐷

𝜕𝑛
= −𝜕𝜙𝐼

𝜕𝑛
( 𝑗 = 1, . . . , 6), (2.12)

where (𝑛1, 𝑛2, 𝑛3) = ®𝑛 are the components related to the translational modes, with ®𝑛 as the unit
normal vector pointing into the body, (𝑛4, 𝑛5, 𝑛6) = (®𝑟 − ®𝑟0) × ®𝑛 are those related to the rotational
modes with ®𝑟 being the position vector measured from the origin and ®𝑟0 being the vector to the
rotational centre (𝑥0, 𝑦0, 𝑧0). On the flat seabed, we have

𝜕𝜙 𝑗

𝜕𝑧
= 0 (𝑧 = −𝐻), (2.13)

for 𝑗 = 0, . . . , 6. At infinity, the radiation condition requires that the radiated and diffracted waves
should propagate outwards.



6

3. Solution procedure
3.1. Green function for an open water channel confined by two semi-infinite ice sheets

To solve the boundary value problem for the disturbed velocity potential, we may first seek the
corresponding Green function 𝐺 (𝑝, 𝑞) which is defined as the velocity potential at field point
𝑝(𝑥, 𝑦, 𝑧) due to a source at point 𝑞(𝜉, 𝜂, 𝜁). 𝐺 should satisfy the following governing equation

∇2𝐺 + 𝜕
2𝐺

𝜕𝑧2
= −4𝜋𝛿(𝑥 − 𝜉)𝛿(𝑦 − 𝜂)𝛿(𝑧 − 𝜁), (3.1)

throughout the fluid, and the same boundary conditions in (2.4), (2.8), (2.9), (2.13) and the
radiation condition. Here, 𝛿(𝑥) is the Dirac delta function.
To derive 𝐺, we shall use the Fourier transform

𝐺̃ =
1
2𝜋

∫ +∞

−∞
𝐺e−i𝛼𝑥 d𝑥. (3.2)

It should be mentioned that 𝐺 is an oscillatory function as |𝑥 | → +∞. To perform Fourier
transform for this kind of function, one way is to introduce a small negative imaginary part in
the radian frequency 𝜔 (Lighthill 1978). In the inverse Fourier transform, the imaginary part will
tend to zero. The integration path at the singularities are deflected and the radiation condition
is then satisfied automatically. This procedure is used by Li et al. (2018b). Alternatively, we do
not introduce the imaginary part in 𝜔. Once 𝐺̃ is derived and its inverse transform is performed,
the integration path at the singularities will be decided by the radiation condition, as can be seen
later. The governing equation (3.1) for 𝐺 then becomes after Fourier transform

− 𝛼2𝐺̃ + 𝜕
2𝐺̃

𝜕𝑦2
+ 𝜕

2𝐺̃

𝜕𝑧2
= −2e−i𝛼𝜉 𝛿(𝑦 − 𝜂)𝛿(𝑧 − 𝜁). (3.3)

Similar to equation (3.3), Fourier transform is applied to the boundary conditions in (2.4), (2.8)
and (2.13), which provides

− 𝜔2𝐺̃ + 𝑔 𝜕𝐺̃
𝜕𝑧

= 0 ( |𝑦 | 6 𝑏 − 0 and 𝑧 = 0), (3.4)[
𝐿

(
𝛼2 − 𝜕2

𝜕𝑦2

)2
+ 𝜌𝑤𝑔 − 𝑚𝑖𝜔

2

]
𝜕𝐺̃

𝜕𝑧
− 𝜌𝑤𝜔2𝐺̃ = 0 ( |𝑦 | > 𝑏 + 0 and 𝑧 = 0), (3.5)

and
𝜕𝐺̃

𝜕𝑧
= 0 (𝑧 = −𝐻). (3.6)

In the channel with |𝑦 | 6 𝑏 − 0, we may write 𝐺̃ in the vertical direction into the eigenfunction
expansion as

𝐺̃ ≡ 𝐺̃ 𝑓 =

∞∑︁
𝑚=0
e−i𝛼𝜉 𝑓𝑚 (𝑦)𝑍𝑚 (𝑧), (3.7)

where the subscript 𝑓 implies that the field point is in the water channel, and

𝑍𝑚 (𝑧) =
cosh[𝑘𝑚 (𝑧 + 𝐻)]
cosh(𝑘𝑚𝐻)

, (3.8)

with 𝑘𝑚 as the roots of the dispersion equation for free surface, or

𝐾1 (𝜔, 𝑘) ≡ 𝑔𝑘 tanh(𝑘𝐻) − 𝜔2 = 0, (3.9)

Here, 𝑘0 is the purely positive real root, and 𝑘𝑚 (𝑚 = 1, . . . ,∞) are an infinite number of purely
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negative imaginary roots. It should be noticed that the eigenfunction expansion of 𝐺̃ in (3.7) has
already satisfied the boundary conditions in (3.4) and (3.6). Without loss of generality, we may
assume that the source is in the channel or |𝜂 | < 𝑏. Substituting equation (3.7) into (3.3), we have

∞∑︁
𝑚=0

𝑍𝑚 (𝑧) [ 𝑓 ′′𝑚 (𝑦) + 𝛽2𝑚 𝑓𝑚 (𝑦)] = −2𝛿(𝑦 − 𝜂)𝛿(𝑧 − 𝜁), (3.10)

where 𝛽2𝑚 = 𝑘2𝑚 −𝛼2, and the prime denotes derivative with respect to 𝑦. Using the orthogonality
of the vertical mode 𝑍𝑚 (𝑧), we obtain

𝑓 ′′𝑚 (𝑦) + 𝛽2𝑚 𝑓𝑚 (𝑦) = − 2
𝑃𝑚

𝛿(𝑦 − 𝜂)𝑍𝑚 (𝜁), (3.11)

where ∫ 0

−𝐻
𝑍𝑚 (𝑧)𝑍𝑚 (𝑧) d𝑧 = 𝑃𝑚, (3.12)

with

𝑃𝑚 =
2𝑘𝑚𝐻 + sinh(2𝑘𝑚𝐻)
4𝑘𝑚 cosh2 (𝑘𝑚𝐻)

. (3.13)

A particular solution of equation (3.11) can be written as

𝑓𝑚 (𝑦) =
1

i𝛽𝑚𝑃𝑚

e−i𝛽𝑚 |𝑦−𝜂 |𝑍𝑚 (𝜁). (3.14)

Here, we have assumed Im(𝛽𝑚) 6 0 when it is a complex number and 𝛽𝑚 > 0 when it is a purely
real number. Substituting equation (3.14) into (3.7), we can write the general solution as

𝐺̃ 𝑓 = 𝐹̃ +
∞∑︁

𝑚=0
(𝑎𝑚𝛹 𝑎

𝑚 + 𝑏𝑚𝛹 𝑏
𝑚), (3.15)

for |𝑦 | 6 𝑏 − 0, where

𝐹̃ =

∞∑︁
𝑚=0

1
i𝛽𝑚𝑃𝑚

e−i𝛼𝜉 e−i𝛽𝑚 |𝑦−𝜂 |𝑍𝑚 (𝜁)𝑍𝑚 (𝑧), (3.16)

and
𝛹 𝑎
𝑚 = e−i𝛼𝜉 e−i𝛽𝑚 (𝑏−𝑦)𝑍𝑚 (𝑧), (3.17)

𝛹 𝑏
𝑚 = e−i𝛼𝜉 e−i𝛽𝑚 (𝑏+𝑦)𝑍𝑚 (𝑧). (3.18)

The summation in equation (3.15) is the general solution of (3.3) when its right hand side is zero.
As shown in appendix A, the first term on the right hand side of equation (3.15) is in fact the
Fourier transform of the Green function for full free surface without an ice sheet, which is the
same as that in Wehausen & Laitone (1960).
In the ice covered waters, since 𝑦 ≠ 𝜂, equation (3.3) can be further written as

− 𝛼2𝐺̃ + 𝜕
2𝐺̃

𝜕𝑦2
+ 𝜕

2𝐺̃

𝜕𝑧2
= 0. (3.19)

Then by following the procedure in Li et al. (2020b), we have

𝐺̃ ≡ 𝐺̃± =

∞∑︁
𝑚=−2

𝑐±𝑚𝛹
±
𝑚, (3.20)

where the subscript + and − in 𝐺̃ are for 𝑦 > 𝑏 + 0 and 𝑦 6 −𝑏 − 0, respectively,

𝛹±
𝑚 = e−i𝛼𝜉 e∓i𝛾𝑚 (𝑦∓𝑏)𝑄𝑚 (𝑧), (3.21)
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and

𝑄𝑚 (𝑧) =
cosh[𝜅𝑚 (𝑧 + 𝐻)]
cosh(𝜅𝑚𝐻)

, (3.22)

with 𝜅𝑚 being the roots of the dispersion equation for ice sheet or

𝐾2 (𝜔, 𝑘) ≡ (𝐿𝑘4 + 𝜌𝑤𝑔 − 𝑚𝑖𝜔
2)𝑘 tanh(𝑘𝐻) − 𝜌𝑤𝜔2 = 0. (3.23)

Here, 𝜅−1 and 𝜅−2 are two complex roots with negative imaginary parts and symmetric about the
imaginary axis, 𝜅0 is the purely positive real root, and 𝜅𝑚 (𝑚 = 1, . . . ,∞) are an infinite number
of purely negative imaginary roots. In equation (3.21), 𝛾2𝑚 = 𝜅2𝑚 − 𝛼2 and Im(𝛾𝑚) 6 0 when it is
a complex number and 𝛾𝑚 > 0 when it is a purely real number, which is based on the requirement
of the radiation condition. It should be noticed that 𝐺̃ in (3.20) has already satisfied the boundary
conditions in (3.5) and (3.6).
There are four sets of unknown coefficients in equations (3.15) and (3.20), i.e. 𝑎𝑚, 𝑏𝑚, 𝑐+𝑚 and

𝑐−𝑚. These can be determined through the continuous conditions at the interfaces 𝑦 = ±𝑏 or

𝐺̃±
��
𝑦=±𝑏 = 𝐺̃ 𝑓

��
𝑦=±𝑏 , (3.24)

and

𝜕𝐺̃±
𝜕𝑦

����
𝑦=±𝑏

=
𝜕𝐺̃ 𝑓

𝜕𝑦

�����
𝑦=±𝑏

, (3.25)

together with the ice edge conditions. We may apply the Fourier transform (3.2) to the free ice
edge conditions (2.9), which provides

B̃
(
𝜕𝐺̃

𝜕𝑧

)
= 0 and S̃

(
𝜕𝐺̃

𝜕𝑧

)
= 0, (3.26)

with

B̃ =
𝜕2

𝜕𝑦2
− 𝜈𝛼2, (3.27)

S̃ =
𝜕

𝜕𝑦

[
𝜕2

𝜕𝑦2
− (2 − 𝜈)𝛼2

]
. (3.28)

To impose these conditions, we may adopt the Green’s second theorem over the boundary 𝛤+ of
the domain with 𝑦 > 𝑏 + 0, which provides∮

𝛤+

(
𝐺̃+

𝜕𝛹 +
𝑚

𝜕𝑛
− 𝜕𝐺̃+

𝜕𝑛
𝛹 +
𝑚

)
d𝑙 = 0. (3.29)

Here, it should be noticed that 𝐺̃+ and𝛹 +
𝑚 should satisfy the same boundary conditions on the flat

seabed, ice sheet and the vertical surface at far field 𝑦 = +∞. Removing the zero terms, we have

−
∫ 0

−𝐻

(
𝐺̃+

𝜕𝛹 +
𝑚

𝜕𝑦
− 𝜕𝐺̃+

𝜕𝑦
𝛹 +
𝑚

)
𝑦=+𝑏

d𝑧 +
∫ +∞

+𝑏

(
𝐺̃+

𝜕𝛹 +
𝑚

𝜕𝑧
− 𝜕𝐺̃+

𝜕𝑧
𝛹 +
𝑚

)
𝑧=0
d𝑦 = 0. (3.30)

Equation (3.5) provides

𝐺̃+ =
𝐿

𝜌𝑤𝜔
2

(
𝛼4 − 2𝛼2 𝜕

2

𝜕𝑦2
+ 𝜕4

𝜕𝑦4

)
𝜕𝐺̃+
𝜕𝑧

+ 𝜌𝑤𝑔 − 𝑚𝑖𝜔
2

𝜌𝑤𝜔
2

𝜕𝐺̃+
𝜕𝑧

, (3.31)

which is also satisfied by 𝜓+
𝑚. Substituting (3.31) into (3.30), and using integration by parts over
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the ice sheet surface, we can obtain∫ 0

−𝐻

(
𝐺̃+

𝜕𝛹 +
𝑚

𝜕𝑦
− 𝜕𝐺̃+

𝜕𝑦
𝛹 +
𝑚

)
𝑦=+𝑏

d𝑧 + 𝐿

𝜌𝑤𝜔
2

[
2𝛼2

(
𝜕𝐺̃+
𝜕𝑧

𝜕2𝛹 +
𝑚

𝜕𝑦𝜕𝑧
− 𝜕2𝐺̃+
𝜕𝑦𝜕𝑧

𝜕𝛹 +
𝑚

𝜕𝑧

)
+

(
𝜕4𝐺̃+
𝜕𝑦3𝜕𝑧

𝜕𝛹 +
𝑚

𝜕𝑧
− 𝜕𝐺̃+

𝜕𝑧

𝜕4𝛹 +
𝑚

𝜕𝑦3𝜕𝑧

)
−

(
𝜕3𝐺̃+
𝜕𝑦2𝜕𝑧

𝜕2𝛹 +
𝑚

𝜕𝑦𝜕𝑧
− 𝜕2𝐺̃+
𝜕𝑦𝜕𝑧

𝜕3𝛹 +
𝑚

𝜕𝑦2𝜕𝑧

)]
𝑦=+𝑏,𝑧=0

= 0. (3.32)

Similarly, we have at 𝑦 = −𝑏∫ 0

−𝐻

(
𝐺̃−

𝜕𝛹−
𝑚

𝜕𝑦
− 𝜕𝐺̃−

𝜕𝑦
𝛹−
𝑚

)
𝑦=−𝑏

d𝑧 + 𝐿

𝜌𝑤𝜔
2

[
2𝛼2

(
𝜕𝐺̃−
𝜕𝑧

𝜕2𝛹−
𝑚

𝜕𝑦𝜕𝑧
− 𝜕2𝐺̃−
𝜕𝑦𝜕𝑧

𝜕𝛹−
𝑚

𝜕𝑧

)
+

(
𝜕4𝐺̃−
𝜕𝑦3𝜕𝑧

𝜕𝛹−
𝑚

𝜕𝑧
− 𝜕𝐺̃−

𝜕𝑧

𝜕4𝛹−
𝑚

𝜕𝑦3𝜕𝑧

)
−

(
𝜕3𝐺̃−
𝜕𝑦2𝜕𝑧

𝜕2𝛹−
𝑚

𝜕𝑦𝜕𝑧
− 𝜕2𝐺̃−
𝜕𝑦𝜕𝑧

𝜕3𝛹−
𝑚

𝜕𝑦2𝜕𝑧

)]
𝑦=−𝑏,𝑧=0

= 0. (3.33)

Invoking the free ice edge condition (3.26), we have

𝜕3𝐺̃±
𝜕𝑦2𝜕𝑧

= 𝜈𝛼2
𝜕𝐺̃±
𝜕𝑧

and
𝜕4𝐺̃±
𝜕𝑦3𝜕𝑧

= (2 − 𝜈)𝛼2 𝜕
2𝐺̃±
𝜕𝑦𝜕𝑧

(3.34)

at 𝑦 = ±𝑏 and 𝑧 = 0. Substituting this equation into (3.32) and (3.33), we obtain∫ 0

−𝐻

(
𝐺̃ 𝑓

𝜕𝛹±
𝑚

𝜕𝑦
− 𝜕𝐺̃±

𝜕𝑦
𝛹±
𝑚

)
𝑦=±𝑏

d𝑧 + 𝐿

𝜌𝑤𝜔
2

{
𝛼2

[
(2 − 𝜈) 𝜕𝐺̃±

𝜕𝑧

𝜕2𝛹±
𝑚

𝜕𝑦𝜕𝑧

−𝜈 𝜕
2𝐺̃±
𝜕𝑦𝜕𝑧

𝜕𝛹±
𝑚

𝜕𝑧

]
+𝜕
2𝐺̃±
𝜕𝑦𝜕𝑧

𝜕3𝛹±
𝑚

𝜕𝑦2𝜕𝑧
− 𝜕𝐺̃±

𝜕𝑧

𝜕4𝛹±
𝑚

𝜕𝑦3𝜕𝑧

}
𝑦=±𝑏,𝑧=0

= 0, (3.35)

where the continuity condition (3.24) has been used. It should be noticed that the free ice edge
condition has been imposed in equation (3.35) through replacing the corresponding terms on the
ice edge in equations (3.32) and (3.33). There is no need to have further actions to impose this
condition. The way to satisfy the ice edge condition here is similar to that of Ren et al. (2016).
To impose the continuity condition (3.25), we multiply both sides of equation (3.15) with 𝑍𝑚 (𝑧)
and then integrate with respect to 𝑧. This gives∫ 0

−𝐻

𝜕𝐺̃+
𝜕𝑦

𝑍𝑚 (𝑧) d𝑧 =
∫ 0

−𝐻

𝜕𝐺̃ 𝑓

𝜕𝑦
𝑍𝑚 (𝑧) d𝑧

= i𝛽𝑚𝑃𝑚 (𝑎𝑚 − 𝑏𝑚e−2i𝛽𝑚𝑏) − e−i𝛼𝜉 e−i𝛽𝑚 (𝑏−𝜂)𝑍𝑚 (𝜁),
(3.36)

∫ 0

−𝐻

𝜕𝐺̃−
𝜕𝑦

𝑍𝑚 (𝑧) d𝑧 =
∫ 0

−𝐻

𝜕𝐺̃ 𝑓

𝜕𝑦
𝑍𝑚 (𝑧) d𝑧

= i𝛽𝑚𝑃𝑚 (𝑎𝑚e−2i𝛽𝑚𝑏 − 𝑏𝑚) + e−i𝛼𝜉 e−i𝛽𝑚 (𝑏+𝜂)𝑍𝑚 (𝜁),
(3.37)

for 𝑦 = +𝑏 and 𝑦 = −𝑏, respectively, in which equation (3.12) has been used. Substituting (3.15)
and (3.20) into (3.35) and (3.36), we have at 𝑦 = +𝑏

𝛾𝑚

∞∑̃︁
𝑚=0

(𝑎𝑚̃ + 𝑏𝑚̃e−2i𝛽𝑚̃𝑏)𝑉𝑚,𝑚̃ − 𝑐+𝑚𝛾𝑚𝑈𝑚 − 𝐿𝑇𝑚

𝜌𝑤𝜔
2

∞∑︁
𝑚̃=−2

𝑐+𝑚̃𝑇𝑚̃ [𝜈𝛼2 (𝛾𝑚̃ + 𝛾𝑚)

− 2𝛼2𝛾𝑚 + 𝛾2𝑚 (𝛾𝑚̃ − 𝛾𝑚) − 𝛾𝑚̃ (𝜅2𝑚 + 𝜅2𝑚̃)] = i𝛾𝑚
∞∑̃︁

𝑚=0

1
𝛽𝑚̃𝑃𝑚̃

e−i𝛽𝑚̃ (𝑏−𝜂)𝑍𝑚̃ (𝜁)𝑉𝑚,𝑚̃,

(3.38)

𝛽𝑚𝑃𝑚 (𝑏𝑚e−2i𝛽𝑚𝑏 − 𝑎𝑚) −
∞∑︁

𝑚̃=−2
𝑐+𝑚̃𝛾𝑚̃𝑉𝑚̃,𝑚 = ie−i𝛽𝑚 (𝑏−𝜂)𝑍𝑚 (𝜁), (3.39)
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where

𝑇𝑚 = 𝜅𝑚 tanh(𝜅𝑚𝐻), (3.40)

𝑈𝑚 =
2𝜅𝑚𝐻 + sinh(2𝜅𝑚𝐻)
4𝜅𝑚 cosh2 (𝜅𝑚𝐻)

+ 2𝐿𝑇
2
𝑚𝜅
2
𝑚

𝜌𝑤𝜔
2 , (3.41)

𝑉𝑚,𝑚̃ =

∫ 0

−𝐻
𝑄𝑚𝑍𝑚̃ d𝑧 =

𝑇𝑚 − 𝑘𝑚̃ tanh(𝑘𝑚̃𝐻 )
𝜅2𝑚 − 𝑘2

𝑚̃

. (3.42)

It may be noticed that in (3.38) the following relationship has been used∫ 0

−𝐻
𝑄𝑚𝑄𝑚̃ d𝑧 = 𝛿𝑚,𝑚̃𝑈𝑚 − 𝐿𝑇𝑚𝑇𝑚̃

𝜌𝑤𝜔
2 (𝜅2𝑚 + 𝜅2𝑚̃), (3.43)

where 𝛿𝑚,𝑚̃ is the Kronecker delta function. Similarly, we have at 𝑦 = −𝑏

𝛾𝑚

∞∑̃︁
𝑚=0

(𝑎𝑚̃e−2i𝛽𝑚̃𝑏 + 𝑏𝑚̃)𝑉𝑚,𝑚̃ − 𝑐−𝑚𝛾𝑚𝑈𝑚 − 𝐿𝑇𝑚

𝜌𝑤𝜔
2

∞∑︁
𝑚̃=−2

𝑐−𝑚̃𝑇𝑚̃ [𝜈𝛼2 (𝛾𝑚̃ + 𝛾𝑚)

− 2𝛼2𝛾𝑚 + 𝛾2𝑚 (𝛾𝑚̃ − 𝛾𝑚) − 𝛾𝑚̃ (𝜅2𝑚 + 𝜅2𝑚̃)] = i𝛾𝑚
∞∑̃︁

𝑚=0

1
𝛽𝑚̃𝑃𝑚̃

e−i𝛽𝑚̃ (𝑏+𝜂)𝑍𝑚̃ (𝜁)𝑉𝑚,𝑚̃,

(3.44)

𝛽𝑚𝑃𝑚 (𝑎𝑚e−2i𝛽𝑚𝑏 − 𝑏𝑚) −
∞∑︁

𝑚̃=−2
𝑐−𝑚̃𝛾𝑚̃𝑉𝑚̃,𝑚 = ie−i𝛽𝑚 (𝑏+𝜂)𝑍𝑚 (𝜁). (3.45)

From equations (3.39) and (3.45), we can obtain

𝑎𝑚 =
1

𝛽𝑚𝑃𝑚 (e−4i𝛽𝑚𝑏 − 1)

∞∑︁
𝑚̃=−2

(𝑐+𝑚̃ + 𝑐−𝑚̃e−2i𝛽𝑚𝑏)𝛾𝑚̃𝑉𝑚̃,𝑚 + i𝑍𝑚 (𝜁)
e−i𝛽𝑚 (3𝑏+𝜂) + e−i𝛽𝑚 (𝑏−𝜂)

𝛽𝑚𝑃𝑚 (e−4i𝛽𝑚𝑏 − 1)
,

(3.46)

𝑏𝑚 =
1

𝛽𝑚𝑃𝑚 (e−4i𝛽𝑚𝑏 − 1)

∞∑︁
𝑚̃=−2

(𝑐+𝑚̃e−2i𝛽𝑚𝑏 + 𝑐−𝑚̃)𝛾𝑚̃𝑉𝑚̃,𝑚 + i𝑍𝑚 (𝜁)
e−i𝛽𝑚 (𝑏+𝜂) + e−i𝛽𝑚 (3𝑏−𝜂)

𝛽𝑚𝑃𝑚 (e−4i𝛽𝑚𝑏 − 1)
.

(3.47)
Substituting the above two equations into (3.38), we have

−𝑐+𝑚𝛾𝑚𝑈𝑚 + 𝛾𝑚
∞∑̃︁

𝑚=0

𝑉𝑚,𝑚̃

𝛽𝑚̃𝑃𝑚̃ (e−4i𝛽𝑚̃𝑏 − 1)

∞∑︁
𝑛=−2

[𝑐+𝑛 (1 + e−4i𝛽𝑚̃𝑏) + 2𝑐−𝑛e−2i𝛽𝑚̃𝑏]𝛾𝑛𝑉𝑛,𝑚̃

− 𝐿𝑇𝑚

𝜌𝑤𝜔
2

∞∑︁
𝑚̃=−2

𝑐+𝑚̃𝑇𝑚̃ [𝜈𝛼2 (𝛾𝑚̃ + 𝛾𝑚) − 2𝛼2𝛾𝑚 + 𝛾2𝑚 (𝛾𝑚̃ − 𝛾𝑚) − 𝛾𝑚̃ (𝜅2𝑚 + 𝜅2𝑚̃)]

= −2i𝛾𝑚
∞∑̃︁

𝑚=0

e−i𝛽𝑚̃ (𝑏−𝜂) + e−i𝛽𝑚̃ (3𝑏+𝜂)

𝛽𝑚̃𝑃𝑚̃ (e−4i𝛽𝑚̃𝑏 − 1)
𝑍𝑚̃ (𝜁)𝑉𝑚,𝑚̃.

(3.48)

Similarly, we have for equation (3.44)

−𝑐−𝑚𝛾𝑚𝑈𝑚 + 𝛾𝑚
∞∑̃︁

𝑚=0

𝑉𝑚,𝑚̃

𝛽𝑚̃𝑃𝑚̃ (e−4i𝛽𝑚̃𝑏 − 1)

∞∑︁
𝑛=−2

[2𝑐+𝑛e−2i𝛽𝑚̃𝑏 + 𝑐−𝑛 (1 + e−4i𝛽𝑚̃𝑏)]𝛾𝑛𝑉𝑛,𝑚̃

− 𝐿𝑇𝑚

𝜌𝑤𝜔
2

∞∑︁
𝑚̃=−2

𝑐−𝑚̃𝑇𝑚̃ [𝜈𝛼2 (𝛾𝑚̃ + 𝛾𝑚) − 2𝛼2𝛾𝑚 + 𝛾2𝑚 (𝛾𝑚̃ − 𝛾𝑚) − 𝛾𝑚̃ (𝜅2𝑚 + 𝜅2𝑚̃)]

= −2i𝛾𝑚
∞∑̃︁

𝑚=0

e−i𝛽𝑚̃ (𝑏+𝜂) + e−i𝛽𝑚̃ (3𝑏−𝜂)

𝛽𝑚̃𝑃𝑚̃ (e−4i𝛽𝑚̃𝑏 − 1)
𝑍𝑚̃ (𝜁)𝑉𝑚,𝑚̃.

(3.49)
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This shows 𝑐+𝑚 and 𝑐−𝑚 can be solved first independently from (3.48) and (3.49), after which 𝑎𝑚
and 𝑏𝑚 can be obtained directly from (3.46) and (3.47).
In practical computations, equations (3.48) and (3.49) can be solved through truncating the

infinite summation at a finite number𝑚 = 𝑀 . Here, it should be noticed that thematrix coefficients
for the unknowns only depend on the value of 𝛼 and is independent of the source position.
Therefore, its inverse does not have to be recalculated at different source position. Also, from
equations (3.46) and (3.47), we can see that the truncation for 𝑎𝑚 and 𝑏𝑚 can be made at a value
different from 𝑀 .
The Green function 𝐺 can be found through applying the inverse Fourier transform to 𝐺̃, or

𝐺 =

∫ +∞

−∞
𝐺̃e+i𝛼𝑥 d𝛼. (3.50)

Substituting equations (3.15) and (3.20) into the above equation, and using the symmetry property
of 𝐺̃, we have

𝐺 =



2
∞∑

𝑚=−2
𝑄𝑚 (𝑧)

∫ +∞
0 𝑐+𝑚e−i𝛾𝑚 (𝑦−𝑏) cos[𝛼(𝑥 − 𝜉)] d𝛼, 𝑦 > 𝑏 + 0

𝐹 + 2
∞∑

𝑚=0
𝑍𝑚 (𝑧)

∫ +∞
0 (𝑎𝑚e−i𝛽𝑚 (𝑏−𝑦) + 𝑏𝑚e−i𝛽𝑚 (𝑏+𝑦) ) cos[𝛼(𝑥 − 𝜉)] d𝛼, |𝑦 | 6 𝑏 − 0

2
∞∑

𝑚=−2
𝑄𝑚 (𝑧)

∫ +∞
0 𝑐−𝑚e+i𝛾𝑚 (𝑦+𝑏) cos[𝛼(𝑥 − 𝜉)] d𝛼, 𝑦 6 −𝑏 − 0.

(3.51)
where

𝐹 =

∞∑︁
𝑚=0

1
i𝑃𝑚

𝑍𝑚 (𝜁)𝑍𝑚 (𝑧)𝐼𝑚, (3.52)

with

𝐼𝑚 =

∫ +∞

−∞

1
𝛽𝑚
e+i𝛼(𝑥−𝜉 )e−i𝛽𝑚 |𝑦−𝜂 | d𝛼 = 𝜋𝐻

(2)
0 (𝑘𝑚𝑅). (3.53)

Here, 𝐹 is identical to the Green function for free surface in (A 16), and (A 11) and (A 14) have
been used in (3.53). It may be noted that when the ice thickness ℎ = 0, the Green function in
(3.51) will become that for free surface, as shown in appendix A. As shown in appendix B, we
also have that the Green function is symmetric regarding the source and field points or

𝐺 (𝑝, 𝑞) − 𝐺 (𝑞, 𝑝) = 0. (3.54)

When 𝛼 → 𝑘0 or 𝛽20 = 𝑘20 − 𝛼2 → 0, equations (3.38) and (3.44) show that there is a
singularity on the right hand side. However, it is of square root order, or 1/(𝑘20 − 𝛼

2)1/2 in the
inverse Fourier transform, which numerically can be computed through the Gauss-Chebyshev
procedure (Abramowitz & Stegun 1965). Special care should be paid to the integrals over the
domain 𝜅0 < 𝛼 < 𝑘0 when 𝑘0 > 𝜅0. In such a case, there are non decaying wave modes at 𝑥 = ±∞
at discrete wave numbers of 𝜅0 < 𝛼1 < . . . < 𝛼𝑁 < 𝑘0, which correspond to the trapped modes
in Porter (2018). This means that there may be a number of poles at 𝛼 𝑗 ( 𝑗 = 1, . . . , 𝑁) of the
integrand in equation (3.51). To satisfy the radiation condition, which states that the waves should
propagate away from the source, the integral route in (3.51) from 0 to +∞ should pass over these
poles. Then, through applying the Fourier integrals in Wehausen & Laitone (1960), we can obtain
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the asymptotic expression of (3.51) at |𝑥 − 𝜉 | → +∞, or

𝐺∞ ≡ lim
|𝑥−𝜉 |→+∞

𝐺 = −2i𝜋
𝑁∑︁
𝑗=1
e−i𝛼𝑗 |𝑥−𝜉 |

×



∞∑
𝑚=−2

𝑄𝑚 (𝑧) lim
𝛼→𝛼𝑗

[(𝛼 − 𝛼 𝑗 )𝑐+𝑚e−i𝛾𝑚, 𝑗 (𝑦−𝑏) ], 𝑦 > 𝑏 + 0

∞∑
𝑚=0

𝑍𝑚 (𝑧) lim
𝛼→𝛼𝑗

{(𝛼 − 𝛼 𝑗 ) [𝑎𝑚e−i𝛽𝑚, 𝑗 (𝑏−𝑦) + 𝑏𝑚e−i𝛽𝑚, 𝑗 (𝑏+𝑦) ]}, |𝑦 | 6 𝑏 − 0

∞∑
𝑚=−2

𝑄𝑚 (𝑧) lim
𝛼→𝛼𝑗

[(𝛼 − 𝛼 𝑗 )𝑐−𝑚e+i𝛾𝑚, 𝑗 (𝑦+𝑏) ], 𝑦 6 −𝑏 − 0.
(3.55)

For |𝑦 | 6 𝑏 − 0, the wave component of 𝛼 𝑗 exists inside the channel. However, for |𝑦 | > 𝑏 + 0
below the ice sheet, 𝛾𝑚, 𝑗 , corresponding to 𝛼 𝑗 , always have Im(𝛾𝑚, 𝑗 ) < 0, which indicates
that the wave of 𝛼 𝑗 will decay exponentially with 𝑦. It may be also noticed that 𝐹 in (3.51) for
|𝑦 | 6 𝑏−0 corresponds to the cylindrical wave at far field, the amplitude of which decreases with
1/
√
𝑅. Therefore, this term has been dropped in (3.55) because it will diminish as |𝑥 − 𝜉 | → +∞.
To search for 𝛼 𝑗 numerically, we may use the fact that the singularities of 𝑎𝑚, 𝑏𝑚, 𝑐+𝑚 and

𝑐−𝑚 are of the form of 1/(𝛼 − 𝛼 𝑗 ). When equations (3.46) to (3.49) are solved at different 𝛼,
sufficiently small step Δ𝛼 is used. When the results become very large at both 𝛼 and 𝛼 + Δ𝛼,
and their signs are different, one of the 𝛼 𝑗 will exist within this step. The accuracy of 𝛼 𝑗 can be
refined by using the further smaller steps within the region.
The calculation of limit in equation (3.55) needs some special attention. In theory, the limit can

be obtained through L’Hospital’s rule. However, the integrand and its singularities here are not
explicitly given and they are obtained from the numerical procedure above. Thus, the following
method is used to calculate the limit. We may consider a function 𝑓 (𝛼), which has a singularity
in the form 𝑓 (𝛼) → 𝑔(𝛼)/(𝛼 − 𝛼 𝑗 ) as 𝛼 → 𝛼 𝑗 . Then, 𝑔(𝛼 𝑗 ) = lim𝛼→𝛼𝑗

(𝛼 − 𝛼 𝑗 ) 𝑓 (𝛼) can be
found numerically by

𝑔(𝛼 𝑗 ) =
𝑔(𝛼 𝑗 + Δ𝛼) + 𝑔(𝛼 𝑗 − Δ𝛼)

2
+𝑂 [𝑔′′(𝛼 𝑗 ) (Δ𝛼)2]

≈ Δ𝛼
𝑓 (𝛼 𝑗 + Δ𝛼) − 𝑓 (𝛼 𝑗 − Δ𝛼)

2
.

(3.56)

3.2. Solution to the disturbed velocity potential for a body in the ice channel
As shown in appendix B, we have the boundary integral equation for the disturbed velocity

potential 𝜙 as follow

ℓ𝜙(𝑝) =
∫
𝑆𝐵

[
𝐺 (𝑝, 𝑞) 𝜕𝜙(𝑞)

𝜕𝑛𝑞
− 𝜕𝐺 (𝑝, 𝑞)

𝜕𝑛𝑞
𝜙(𝑞)

]
d𝑠𝑞 , (3.57)

where only the integral over the mean wetted body surface 𝑆𝐵 is needed, and ℓ is the solid angle at
point 𝑝. As noted by Lee et al. (1996) in the free surface problem, for floating bodies there could
exist a discrete spectrum of irregular frequencies, at which the solution to the boundary integral
equation is non-unique. Similar irregular frequencies also exist in equation (3.57). To remove the
irregular frequencies, we follow the procedure described in Lee et al. (1996) and rewrite (3.57)
equivalently as

ℓ𝜙(𝑝) +
∫
𝑆𝐵+𝑆𝐸

𝜕𝐺 (𝑝, 𝑞)
𝜕𝑛𝑞

𝜙(𝑞) d𝑠𝑞 =

∫
𝑆𝐵

𝐺 (𝑝, 𝑞) 𝜕𝜙(𝑞)
𝜕𝑛𝑞

d𝑠𝑞 for 𝑝 ∈ 𝑆𝐵, (3.58)
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and

− 4𝜋𝜙(𝑝) +
∫
𝑆𝐵+𝑆𝐸

𝜕𝐺 (𝑝, 𝑞)
𝜕𝑛𝑞

𝜙(𝑞) d𝑠𝑞 =

∫
𝑆𝐵

𝐺 (𝑝, 𝑞) 𝜕𝜙(𝑞)
𝜕𝑛𝑞

d𝑠𝑞 for 𝑝 ∈ 𝑆𝐸 , (3.59)

where 𝑆𝐸 is the extended surface interior the body at 𝑧 = 0. This has been found to remove the
irregular frequencies effectively.
For the radiation problem, 𝜙 = 𝜙 𝑗 and 𝜕𝜙 𝑗/𝜕𝑛 = 𝑛 𝑗 can be used directly in the integral

equations (3.58) and (3.59). However, for the diffraction problem, it has two components. The
incident wave will be diffracted by both the channel and the body. Thus, similar to Li et al.
(2018b), we write the total diffracted potential as,

𝜙𝐷 = 𝜙1𝐷 + 𝜙2𝐷 , (3.60)

where 𝜙1
𝐷
is the diffracted potential of the flexural gravity incident potential 𝜙𝐼 by the water

channel, and 𝜙2
𝐷
is that by the body to 𝜑 = 𝜙𝐼 + 𝜙1𝐷 . It should be mentioned that 𝜑 satisfies the

ice edge condition (2.9). Here, the incident potential 𝜙𝐼 can be written as

𝜙𝐼 = 𝜑𝐼 (𝑦, 𝑧)e−i𝜅𝑥 𝑥 , (3.61)

with
𝜑𝐼 = 𝐴e−i𝜅𝑦 𝑦𝑄0 (𝑧), (3.62)

where 𝐴 = i𝜔/[𝜅0 tanh(𝜅0𝐻)], 𝜅𝑥 = 𝜅0 cos 𝛽 and 𝜅𝑦 = 𝜅0 sin 𝛽. Correspondingly, the potential 𝜑
can be written as

𝜑 = 𝜑̄(𝑦, 𝑧)e−i𝜅𝑥 𝑥 . (3.63)
𝜑̄ or 𝜙1

𝐷
can be obtained virtually in the same way as that used for 𝐺̃. The main difference is

that 𝛼 should be replaced by 𝜅𝑥 and terms on the right hand sides due to 𝐹̃ in equations (3.46)
to (3.49) should be replaced by the contribution due to 𝜙𝐼 . Because 𝜑 = 𝜙𝐼 + 𝜙1𝐷 satisfies the
conditions at the ice sheet edge, then 𝜙2

𝐷
should also satisfy these conditions. Thus, we can apply

the integral equation (3.57) to 𝜙2
𝐷
by imposing the boundary condition 𝜕𝜙2

𝐷
/𝜕𝑛 = −𝜕𝜑/𝜕𝑛 on

the body surface.
After the velocity potentials have been found, the pressure at any point in fluid can be computed

through the linearized Bernoulli equation. Then the hydrodynamic forces on the body can be
obtained through integrating the pressure over its surface. Based on the decomposition of the
velocity potential in equation (2.1), we may divide the total hydrodynamic loads into two parts,
i.e. the radiation force due to the forced oscillatory motions, and the wave exciting force due to
the scattering potential (Newman 1977). For the radiation potential, we have

𝜇 𝑗𝑘 − i
𝜆 𝑗𝑘

𝜔
= 𝜌𝑤

∫
𝑆𝐵

𝜙𝑘𝑛 𝑗 d𝑠, (3.64)

where 𝜇 𝑗𝑘 and 𝜆 𝑗𝑘 are the added mass and damping coefficient, respectively. For the scattering
potential, we have

𝑓𝐸, 𝑗 = −i𝜔𝜌𝑤
∫
𝑆𝐵

𝜙0𝑛 𝑗 d𝑠, (3.65)

where 𝑓𝐸, 𝑗 is the wave exciting force.

4. Numerical results
To provide meaningful results in physics, the typical values of the parameters of ice sheet and

fluid are taken to be

𝐸 = 5GPa, 𝜈 = 0.3, 𝜌𝑖 = 922.5 kg/m3, ℎ = 1m, 𝜌𝑤 = 1025 kg/m3, 𝐻 = 100m, (4.1)
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Figure 2: The first symmetric trapped mode 𝛼 at a large water depth 𝐻/ℎ = 100 against
𝐾 = 𝜔2/𝑔. Open circles: 𝛼 taken from figure 3 of Porter (2018) for infinite water depth.
(The parameters of ice sheet and fluid as well as the characteristic length scale are taken to

be the same as those in Porter (2018))

which are similar to those obtained from the field experiment in polar regions (Squire et al. 1995).
The channel width is chosen as 60m 6 2𝑏 6 100m, which for example can be developed by an
icebreakerwith azimuth thrusters (Riska et al. 2005). In the following text, all the numerical results
will be provided in the dimensionless form, based on the combinations of three basic parameters,
i.e. density of water 𝜌𝑤 , acceleration due to gravity 𝑔 = 9.8m/s2, and a characteristic length
scale. For each case, the wave number 𝑘0 for free surface wave is given, and the corresponding
wave frequency 𝜔 can be obtained through the dispersion equation (3.9).

4.1. Wave induced by a source submerged in the ice channel
We first consider the wave induced by a source submerged in the channel confined by two

semi-infinite ice sheets, with the ice sheet thickness ℎ = 1m taken as the characteristic length
scale and the half channel width fixed to be 𝑏 = 50m. This is to shed some lights on some features
of the free surface and the ice sheet deflection pattern. Numerical calculations are carried out
through truncating the infinite summations in (3.51) to a finite number, or keeping only the first
𝑀𝐺 +1 terms. The wave elevation is computed based on the kinematic boundary condition, which
gives

𝑤 =
1
i𝜔

𝜕𝐺

𝜕𝑧

����
𝑧=0

. (4.2)

The values of𝛼 𝑗 are obtained through the procedure described towards the end of §3.1. It should
be noted that 𝛼 𝑗 do not depend on the location of the source. However, each 𝛼 𝑗 corresponds to
a wave in the channel either symmetric or antisymmetric about 𝑦 = 0 (Porter 2018). When the
source is located at the centre of the channel, only symmetric waves will be triggered. Thus, to
capture all 𝛼 𝑗 , corresponding to both symmetric and antisymmetric modes, they are computed
through the case with the source located at (0, 𝑏/2,−𝐻/100). To ensure the accuracy of 𝛼 𝑗 , as
well as the accuracies of integration and the approximation of equation (3.56), the step Δ𝛼 is
chosen from the lowest value among 0.0001, (𝛼 𝑗 − 𝛼 𝑗−1)/50 and (𝛼 𝑗+1 − 𝛼 𝑗 )/50 when 𝛼 is
between 𝛼 𝑗−1 and 𝛼 𝑗+1, where 𝛼0 = 𝜅0 for 𝑗 = 1 and 𝛼𝑁+1 = 𝑘0 for 𝑗 = 𝑁 with 𝑁 as the number
of the singularities. Searching for 𝛼 𝑗 is done numerically through the Gauss elimination with
partial pivoting for the matrix equation. When the solution of the unknown in the last line jumps
from a large positive (negative) number R to a large negative (position) number −R within a
samll Δ𝛼, it is assumed that 𝛼 𝑗 is within Δ𝛼. Here we have used R = 1010 and Δ𝛼 = 10−16.
Figure 2 provides the first symmetric trapped mode 𝛼 at a large water depth 𝐻/ℎ = 100 against
𝐾 = 𝜔2/𝑔. The infinite summations are truncated at 𝑀𝐺 = 100. As a comparison, the result in
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Figure 3: The real part (Re) and imaginary part (Im) of wave elevation 𝑤 induced by a
source at (𝜉, 𝜂, 𝜁) = (0, 0,−1). (a) 𝑤 varies along the longitudinal cut with 𝑦/𝑏 = 0. (b) 𝑤
varies along the transverse cut with 𝑥/𝑏 = 35. (𝑘0 = 0.1, 𝑏 = 50, ℎ = 1m is taken as the

characteristic length scale)

Porter (2018) for infinite water depth is also provided, and the same parameters of ice sheet and
fluid as well as the characteristic length scale are taken. It can be observed from this figure that
the values of 𝛼 for 𝐻/ℎ = 100 are close to the values in Porter (2018) for infinite water depth. It
should be noted that in the present formulation, the expansion in the vertical direction is in fact
a cosine series. When 𝐻 is very large, the terms required in the expansion to ensure convergence
will increase rapidly. In particular, the series expansion cannot be used when 𝐻 = +∞. Instead,
an integral form should be used to replace the series, similar to that Fourier series should be
replaced by Fourier transform. Thus, the present work cannot used for 𝐻 = +∞ directly. In fact,
when 𝐻 is very large, the series expansion will require a very large number of terms to ensure
accuracy and the method become very inefficient. Therefore, larger water depth is not attempted.
A more efficient method in such a case would be to use the integral form in the vertical direction,
for example as in Li et al. (2018b).
Figure 3 shows the wave elevation𝑤 induced by a source with position (𝜉, 𝜂, 𝜁) = (0, 0,−1) and

wave number 𝑘0 = 0.1 (the corresponding dimensional wave radian frequency 𝜔 is 0.99 rad/s).
It can be observed from the figure that there is no visible difference between the results obtained
by 𝑀𝐺 = 50 and 𝑀𝐺 = 100, indicating that the convergence has been achieved, and the former
will be used for numerical computations of the Green function in this and following sections if it
is not specifically specified.
In figure 4, the transverse variation of 𝑤 with 𝑦 at four different 𝑥 are given, with the wave

number being the same as that in figure 3. Two source positions are considered, namely (𝜉, 𝜂, 𝜁) =
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Figure 4: The modulus of wave elevation 𝑤 induced by a source. (a) (𝜉, 𝜂, 𝜁) = (0, 0,−1) ;
(b) (𝜉, 𝜂, 𝜁) = (0, 25,−1). (𝑘0 = 0.1, 𝑏 = 50, ℎ = 1m is taken as the characteristic length

scale)

(0, 0,−1) and (𝜉, 𝜂, 𝜁) = (0, 25,−1). For 𝑥/𝑏 = 30, the wave elevation 𝑤∞ computed by the
asymptotic formula (3.55) is also provided, and the result agrees well with that obtained by the
exact formula (4.2) for both central and non-central source positions. From figure 4, it can be
seen that 𝑤 is generally discontinuous at the ice edge between free surface and ice sheet. This
is because that although the kinematic boundary conditions on free surface and ice sheet are the
same, their dynamic boundary conditions are different.
The discontinuity of 𝑤 across the ice sheet edge can be observed more clearly from 𝑤

respectively at 𝑦/𝑏 = 1 − 0 and 𝑦/𝑏 = 1 + 0 in figure 5, which shows the wave elevation
𝑤∞ along the longitudinal cut at different 𝑦 computed by the asymptotic formula (3.55). It is well
known that for full free surface problem (Wehausen & Laitone 1960) or ice sheet problem (Li
et al. 2018c), the Green function will decrease in form of 1/

√
𝑅 with 𝑅 as the horizontal distance

between the field and source points. However, this is not the case for the problem of an open
water channel confined by two semi-infinite ice sheets. From figure 5, it can be seen that at far
field when 𝑥 changes, 𝑤 will oscillate with periodical components both in the channel and in
the ice sheet, and the wave numbers of the oscillation are 𝛼1, . . . , 𝛼𝑁 . In equation (3.55), since
𝜅0 < 𝛼 𝑗 < 𝑘0 we have that all 𝛾𝑚, 𝑗 will be complex with a negative imaginary part. This indicates
that the wave components corresponding to the trapped wave modes 𝛼 𝑗 will decay exponentially
with 𝑦 away from the ice sheet edge. The decay can be seen from figure 5 for wave elevation 𝑤∞
by the asymptotic formula along the longitudinal cut at different 𝑦, and more clearly observed
from figure 6, which shows a contour plot of 𝑤∞ as a function of 𝑥 and 𝑦.
In figure 7, the wave elevation 𝑤 along the longitudinal cut 𝑦/𝑏 = 0 at large 𝑥 is shown for
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Figure 5: The wave elevation 𝑤 induced by a source at (𝜉, 𝜂, 𝜁) = (0, 0,−1). (a) real part
(Re) of 𝑤∞; (b) imaginary part (Im) of 𝑤∞. (𝑘0 = 0.1, 𝑏 = 50, ℎ = 1m is taken as the

characteristic length scale)

𝑘0 = 0.1 with 𝑁 = 3
(𝜅0 = 0.0624)

𝑘0 = 0.2 with 𝑁 = 6
(𝜅0 = 0785)

𝑘0 = 0.3 with 𝑁 = 10
(𝜅0 = 0.0877)

𝑘0 = 0.4 with 𝑁 = 13
(𝜅0 = 0.0943)

𝑗 𝛼 𝑗 𝑤 𝑗 𝛼 𝑗 𝑤 𝑗 𝛼 𝑗 𝑤 𝑗 𝛼 𝑗 𝑤 𝑗

1 0.0666 0.0501 0.1036 0.0000 0.0879 0.0000 0.1049 0.2591
2 0.0850 0.0000 0.1389 0.1182 0.1405 0.1936 0.1765 0.0000
3 0.0964 0.0630 0.1632 0.0000 0.1845 0.0000 0.2264 0.1762
4 — — 0.1802 0.0936 0.2167 0.1315 0.2643 0.0000
5 — — 0.1914 0.0000 0.2414 0.0000 0.2947 0.1372
6 — — 0.1979 0.0859 0.2606 0.1105 0.3195 0.0000
7 — — — — 0.2754 0.0000 0.3400 0.1196
8 — — — — 0.2864 0.1010 0.3569 0.0000
9 — — — — 0.2940 0.0000 0.3705 0.1101
10 — — — — 0.2985 0.0971 0.3814 0.0000
11 — — — — — — 0.3896 0.1049
12 — — — — — — 0.3954 0.0000
13 — — — — — — 0.3989 0.1026

Table 1: Trapped wave modes 𝛼 𝑗 at different wave number 𝑘0 for ice channel with half
width 𝑏 = 50. The amplitude of each wave component 𝑤 𝑗 along the longitudinal cut due

to 𝛼 𝑗 is also provided. ((𝜉, 𝜂, 𝜁) = (0, 0,−1), 𝑦/𝑏 = 0, ℎ = 1m is taken as the
characteristic length scale)
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Figure 6: The real part (a) and imaginary part (b) of wave elevation 𝑤∞ induced by a
source at (𝜉, 𝜂, 𝜁) = (0, 0,−1). (𝑘0 = 0.1, 𝑏 = 50, ℎ = 1m is taken as the characteristic

length scale)

four different wave numbers, namely 𝑘0 = 0.1, 0.2, 0.3 and 0.4 (the corresponding dimensional
wave radian frequencies 𝜔 are 0.99, 1.40, 1.71 and 1.98 rad/s). The source point 𝑞 is located
at (0, 0,−1), and 𝑤 is computed by the asymptotic formula (3.55). The corresponding trapped
modes 𝛼 𝑗 for each 𝑘0 are provided in table 1 with four decimals, together with the corresponding
amplitude 𝑤 𝑗 . Because 𝜂 = 0, only the symmetric modes are nonzero. It can be seen from table 1
that the number 𝑁 of 𝛼 𝑗 increases with 𝑘0. This leads to a more oscillatory 𝑤, as can be observed
in figure 7. From table 1, it can be also observed that at larger 𝑘0, when 𝑗 is close to 𝑁 , different
𝛼 𝑗 are close to each other and 𝛼𝑁 is very close to 𝑘0. In the numerical computation, it is noticed
that when 𝛼 = 𝛼 𝑗 ± Δ𝛼, the magnitudes of 𝑎𝑚, 𝑏𝑚, 𝑐+𝑚 and 𝑐−𝑚 are no longer exceedingly large
when Δ𝛼 = 𝑂 (10−4). Here, 𝛼 𝑗+1 − 𝛼 𝑗 = 𝑂 (10−3), and 𝛼 𝑗+1 does not have a major effect on 𝑤 𝑗 .
The stress (strain) of the ice sheet is associated with its possible breakup when it becomes

excessive. The principal strain 𝜀 can be obtained by the eigenvalues of the strain tensor matrix
(Timoshenko & Woinowsky 1959)

𝜎 = − ℎ
2

[
𝜕2𝑊
𝜕𝑥2

𝜕2𝑊
𝜕𝑥𝜕𝑦

𝜕2𝑊
𝜕𝑥𝜕𝑦

𝜕2𝑊
𝜕𝑦2

]
, (4.3)
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Figure 7: The wave elevation 𝑤 induced by a source at (𝜉, 𝜂, 𝜁) = (0, 0,−1). (a) real part
(Re) of 𝑤∞; (b) imaginary part (Im) of 𝑤∞. (𝑦/𝑏 = 0, 𝑏 = 50, ℎ = 1m is taken as the

characteristic length scale)

or the solution of det[𝜎 − 𝜀𝐼] = 0, which provides

𝜀1,2 = − ℎ
4


(
𝜕2𝑊

𝜕𝑥2
+ 𝜕

2𝑊

𝜕𝑦2

)
±

√︄(
𝜕2𝑊

𝜕𝑥2
+ 𝜕

2𝑊

𝜕𝑦2

)2
+ 4

(
𝜕2𝑊

𝜕𝑥𝜕𝑦

)2 . (4.4)

Invoking equation (4.2), the physical deflection of the ice sheet can be written as

𝑊 (𝑥, 𝑦, 𝑡) = Re(𝑤) cos(𝜔𝑡) − Im(𝑤) sin(𝜔𝑡). (4.5)

Then, at each point in the ice sheet the maximum principal strain, can be found as the largest
eigenvalue 𝜀𝑀 of 𝜎 in equation (4.3) as 𝜔𝑡 varies from 0 to 2𝜋. Figure 8 shows the maximum
principal strain 𝜀𝑀 induced by a source with position (𝜉, 𝜂, 𝜁) = (0, 0,−1). The wave numbers are
taken to be the same as those in figure 7. From figure 8(a) which gives 𝜀𝑀 along the longitudinal
cut with 𝑦/𝑏 = 1+ 0, we have that 𝜀𝑀 will rise to a maximum at a distance away from the source.
When |𝑥 − 𝜉 | is very large or only the waves due to the trapped wave modes have contributions to
𝜀𝑀 , it can be expected from equation (3.55) that 𝜀𝑀 will oscillate with periodical components
(wave numbers as 𝛼1, . . . , 𝛼𝑁 ) against |𝑥− 𝜉 |. When 𝑥 = 𝜉 and 𝑦 varies, it can be seen from figure
8 that 𝜀𝑀 will first decrease with 𝑦 and it will then increase and reach its maximum rapidly. After
the maximum 𝜀𝑀 it will decrease with 𝑦 slowly. From equation (3.55), at each of these 𝛼 𝑗 modes
𝐺 decays exponentially with 𝑦. However, at a finite |𝑥 − 𝜉 |, in addition to these modes, there are
also some local modes at which 𝐺 decays in form of 1/

√︁
|𝑦 | which is similar to that in the case

when water surface is fully covered by an ice sheet Li et al. (2018c).
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Figure 8: The maximum principal strain 𝜀𝑀 induced by a source at (𝜉, 𝜂, 𝜁) = (0, 0,−1).
(a) along the longitudinal cut with 𝑦/𝑏 = 1 + 0; (b) along the transverse cut with 𝑥/𝑏 = 0.

(𝑏 = 50, ℎ = 1m is taken as the characteristic length scale)

Figure 9: General view of the geometry and distribution of panels on the floating barge.

4.2. Wave interactions with a body floating on the ice channel
We now consider the wave interactions with a body floating on the ice channel. The body used

for this case study is a barge of length 𝐿𝐿 , beam 𝐿𝐵 and draught 𝐷. The half beam or 𝐿𝐵/2 = 10m
is chosen as the characteristic length scale. Computations are carried out for 𝐿𝐿/𝐿𝐵 = 4 and
𝐷/𝐿𝐵 = 0.25. These ratios are the same as those in Newman (2017) for the tank problem. The
rotational centre (𝑥0, 𝑦0, 𝑧0) of the barge is taken at the geometry centre. Both the wave radiation
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Figure 10: Added mass 𝜇 𝑗 𝑗 of a barge floating on different transverse positions of the ice
channel with different widths against wavenumber 𝑘0. (𝐿𝐿/𝐿𝐵 = 4, 𝐷/𝐿𝐵 = 0.25,

(𝑥0, 𝑧0) = (0,−𝐷/2), 𝛽 = 𝜋/4, 𝐿𝐵/2 = 10m is taken as the characteristic length scale)

and diffraction problems are solved, and the incident flexural gravity wave is assumed to be from
𝛽 = 𝜋/4. The barge is assumed to float at the centre of the channel or 𝑦0 = 0. Two channel widths
are considered, i.e. 𝑏 = 3 and 𝑏 = 5. To conduct numerical computations, the body surface 𝑆𝐵
is discretized into 𝑁𝐵 = 1408 flat panels, as shown in figure 9. The extended interior surface
𝑆𝐸 introduced to remove the irregular frequencies is discretized into 𝑁𝐸 = 156 flat panels. To
obtain the diffracted potential 𝜙1

𝐷
by the channel due to 𝜙𝐼 , the first 𝑀𝐷 + 1 terms are kept in its

eigenfunction expansion, and 𝑀𝐷 = 200 is taken for calculation. It has been observed that further
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Figure 11: Damping coefficient 𝜆 𝑗 𝑗 of a barge floating on different transverse positions of
the ice channel with different widths against wavenumber 𝑘0. See the caption of figure 10

for further information.

increase of 𝑁𝐵 and 𝑁𝐸 , 𝑀𝐷 and 𝑀𝐺 will give graphically indistinguishable results in the figures
given here.
The diagonal terms of the added mass and damping coefficient for 𝑏 = 3 with 𝑦0 = 0 and for

𝑏 = 5 with 𝑦0 = 0 and 𝑦0 = 2, are respectively presented in figures 10 and 11 against free surface
wave number 𝑘0, while the wave exciting forces are plotted in figure 12. The hydrodynamic forces
for the barge in open sea are also provided. The wave number 𝑘0 varies from 0.02 to 4, and the
increment has been chosen to be 0.02 to capture the more detailed oscillatory features of the
curves. When 𝑘0 is small, it can be seen that the hydrodynamic forces in the ice channel case are
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Figure 12: Wave exciting force 𝑓𝐸, 𝑗 on a barge floating on different transverse positions of
the ice channel with different widths against wavenumber 𝑘0. See the caption of figure 10

for further information.

all very close to those in the open sea case. When 𝑘0 → 0 or 𝜔 → 0, both the leading term of
the boundary conditions on ice sheet and free surface will be 𝜕𝜙 𝑗/𝜕𝑧 = 0. This indicates that as
𝑘0 → 0 the upper surface boundary condition for ice channel will tend to be the same as that for
open sea. Thus the hydrodynamic forces for ice channel will be very similar to those for open sea
when 𝑘0 is small.
As 𝑘0 increases, the hydrodynamic forces for ice channel with different widths begin to depart

from each other, and all of them show an oscillatory behavior with 𝑘0 and the oscillation is around
the results for open sea. The problem for a barge in a channel with two solid side walls has been
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Figure 13: General view of the geometry and distribution of panels on the truncated
vertical circular cylinder.

studied previously, and the numerical result of Newman (2017) revealed that at some discrete
wave numbers the wave due to the barge oscillation would not propagate to infinity along the
channel or the wave would be confined near the body. At these wave numbers, the added mass
would be infinite and the damping coefficient would be zero. Here, only the free surface in the
channel is confined by two semi-infinite ice sheets, while the fluid domain below the surface still
tends to infinity. This means that the radiated wave will propagate not only along the channel on
the free surface, but also into the domain below the ice sheet. Therefore, no zero damping case is
observed. On the other hand, as in the 2D problem (Li et al. 2017), there will be wave motions in
the channel, which may resemble a “transverse sloshing wave”, leading to the oscillatory behavior
of the results with the wave number.
As the channel width increases or the barge floats off-centrally, it can be seen from the figures

that the hydrodynamic forces become more oscillatory. This may be partly explained by the 2D
approximate solution for a body in a wide channel (Li et al. 2017). The obtained explicit formulas
reveal that the oscillatory behaviors of the hydrodynamic forces will depend on two parameters,
namely 𝑏 and 𝑦0, or the oscillation has two periods 2𝑘0𝑏 and 2𝑘0 |𝑦0 | respectively. This indicates
that at a larger 𝑏 or a larger 𝑦0, the hydrodynamic forces will oscillate more quickly with 𝑘0, as
observed in the figures.

4.3. Wave interactions with two bodies floating on the ice channel
As discussed in §3 and illustrated in §4.1, a major feature of this ice channel problem is those

𝛼 𝑗 waves, which do not decay along the channel. This means when there are two bodies in the
channel at the same time, the wave generated by one body will significantly affect the other
one, even when the distance between them is relatively large. Here, we shall undertake a case
study of two bodies floating in the channel. Both bodies have the same geometry shape, i.e. a
truncated vertical circular cylinder with radius 𝑎 and draught 𝐷. The radius 𝑎 = 10m is chosen
as the characteristic length scale with 𝐷/𝑎 = 0.5 and 𝑏 = 5. The rotational center is taken at the
geometry centre. The incident flexural gravity wave is assumed to be from 𝛽 = 𝜋/4. The first
cylinder is taken to be at 𝑥10 = 0, while three positions of the second cylinder are considered,
namely 𝑥20 = 2.5, 10 and 40 respectively. Here, the superscript 1 and 2 indicate the rotational
centres of the first and second cylinders, respectively. To conduct numerical computations, each
cylinder surface 𝑆𝐵 is discretized into 𝑁𝐵 = 845 flat panels, as shown in figure 13, while the
corresponding extended interior surface 𝑆𝐸 is discretized into 𝑁𝐸 = 153 flat panels. The other
parameters or 𝑀𝐷 and 𝑀𝐺 for the truncation of infinite summations are taken to be the same as
those in §4.2. These are found to be sufficient to provide the converged hydrodynamic forces.
The computed diagonal terms of the added mass and damping coefficient in 𝑂 − 𝑥𝑧 plane for

the first cylinder with 𝑥10 = 0 are respectively shown in figures 14 and 15 against wave number 𝑘0.
The corresponding wave exciting force is presented in figure 16. For full open water or ℎ = 0, it
can be observed from the figures that when there is another body at 𝑥20, the hydrodynamic forces
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Figure 14: Added mass 𝜇 𝑗 𝑗 of the first cylinder at 𝑥10 = 0 against wavenumber 𝑘0 with the
second cylinder at different longitudinal position 𝑥20. (a), (c) and (e) are for ice channel;

(b), (d) and (f ) are for open water. (𝐷/𝑎 = 0.5, (𝑦10, 𝑧
1
0) = (0,−𝐷/2),

(𝑦20, 𝑧
2
0) = (0,−𝐷/2), 𝑏 = 5, 𝛽 = 𝜋/4, 𝑎 = 10m is taken as the characteristic length scale)

on the first body at 𝑥10 = 0 show that results oscillate around those of a single body. The results
may become more oscillatory as 𝑥20 − 𝑥

1
0 increases. However, the amplitude of oscillation decays,

which suggests the interaction between the two bodies becomes weak. This can be partially
explained through the approximate formula in Srokosz & Evans (1979) based on wide spacing
approximation. They showed that the results would oscillate with a period of 2𝑘0 (𝑥20 − 𝑥

1
0).

However, the wave generated by a body in open water will decay at the rate proportional to the
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Figure 15: Damping coefficient 𝜆 𝑗 𝑗 of the first cylinder at 𝑥10 against wavenumber 𝑘0 with
the second cylinder at different longitudinal position 𝑥20. See the caption of figure 14 for

further information.

square root of the distance from the body. Thus, its effect in a region far away from the body will
diminish. This can be seen in figures 14 to 16. For the case of 𝑥20 = 40, the results for the first
cylinder are almost the same as those for a single cylinder.
In the case of the ice channel, the wave generated by the body does not always decay, because

there may exist those wave components of 𝛼 𝑗 which oscillate with 𝑥 periodically as shown in
§4.1. This means that as 𝑥20 − 𝑥

1
0 → +∞ although the wave component with wave number 𝑘0 will

tend to be zero, the interactions due to the wave components of 𝛼 𝑗 will still be there. Then it can
be expected that no matter how large 𝑥20 − 𝑥

1
0 is, the interaction effect for two bodies floating on
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Figure 16: Wave exciting force 𝑓𝐸, 𝑗 on the first cylinder at 𝑥10 against wavenumber 𝑘0 with
the second cylinder at different longitudinal position 𝑥20. See the caption of figure 14 for

further information.

the ice channel will always be there unless 𝑁 = 0. The interaction effect is given in figures 14 to
16, which show that even at 𝑥20 = 40, the results for the first body still oscillate around those for a
single body.
As can be seen in table 1, the values of 𝛼 𝑗 as well as 𝑁 change with 𝑘0. On the other hand,

the interactions between the two cylinders are expected to depend very much on 𝑘0 (𝑥20 − 𝑥
1
0)

and 𝛼 𝑗 (𝑥20 − 𝑥
1
0), 𝑗 = 1, . . . , 𝑁 . As 𝛼 𝑗 do not form a linear relationship with 𝑘0, the oscillatory

behaviours of the results due to the interaction do not change periodically with 𝑘0. In fact, the
oscillation seems to highly erratic. In some cases, several peaks and troughs are very close to
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each other, especially at larger 𝑥20 − 𝑥
1
0. At larger 𝑘0, the effect of the second cylinder on the added

mass seems to have decreased significantly. The effect on damping and exciting force is, however,
still rather strong. In fact, when the damping of the single cylinder is not small, it means that its
generated wave is not negligible. Thus, the wave generated by one cylinder will still affect the
other one, or their mutual interactions will remain to be significant, as can be seen from figure
15(a) and 15(e).

5. Conclusions
The hydrodynamic problem of a body floating on the water surface in a channel confined by

two semi-infinite ice sheets has been solved, based on the linearized velocity potential theory
and thin elastic plate model. The Green function is first derived, which satisfies all the boundary
conditions apart from that on the body surface. Through its integral form, singularities are
identified numerically, which correspond to the non decaying waves propagating along the
channel. With the help of this Green function, it is found that similar to the problem without
ice sheet, the differential equation for the velocity potential can be transformed into an integral
equation over the body surface only, which is solved numerically through the boundary element
method.
From the solution of the Green function, it is observed that when wave number 𝑘0 of the

free surface is larger than the wave number 𝜅0 of the ice sheet, there will be a number of non
decaying waves with wave numbers 𝛼 𝑗 , 𝑗 = 1, . . . , 𝑁 respectively, and 𝜅0 < 𝛼1 < . . . < 𝛼𝑁 < 𝑘0,
which is consistent with the trapped modes found by Porter (2018) previously. These waves decay
exponentially away from the channel in its transverse direction. When 𝑘0 increases, the number
𝑁 of these waves will increase and several of the largest wave numbers are quite close to 𝑘0.
For a floating body in the channel, the usual interaction between the free surface wave and

the body will be complicated by the ice sheets. Their presence leads the wave in the channel to
continuously propagate outwards and inwards, causing the effects similar to that due to sloshing.
This is reflected by the results of the hydrodynamic forces, which show that they will oscillate
around those for open sea, and they will become more oscillatory as the channel width increases
or the body is away from the channel centre. The interaction is made more complex by those non
decaying waves of 𝛼 𝑗 in the channel.
When there are multi bodies in the channel, their mutual interactions will not decrease even

when the distance between them is very large. This is mainly due to the effect of non decaying
waves in the channel. Though detailed simulations for two bodies in the channel, it is found that
the hydrodynamic forces on the first body oscillate around those of a single body, and the results
will become more oscillatory as their distance increases. The effect on the added mass on the
first body by the second body may decrease as their distance increases. However, the effect on the
wave damping remains significant, a result of the non decaying wave in the channel.
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Appendix A. Special case for ice sheet with zero thickness or full free surface
When the ice thickness becomes zero or ℎ = 0, 𝐿 = 0 and equations (3.41) and (3.42) become

𝑈𝑚 = 𝑃𝑚 and 𝑉𝑚,𝑚̃ = 𝛿𝑚,𝑚̃𝑃𝑚. (A 1)

Then equations (3.48) and (3.49) give

𝑐+𝑚 =
1

i𝛽𝑚𝑃𝑚

e−i𝛽𝑚 (𝑏−𝜂)𝑍𝑚 (𝜁) and 𝑐−𝑚 =
1

i𝛽𝑚𝑃𝑚

e−i𝛽𝑚 (𝑏+𝜂)𝑍𝑚 (𝜁), (A 2)

and equations (3.46) and (3.47) provide

𝑎𝑚 = 0 and 𝑏𝑚 = 0. (A 3)

This means that

𝐺̃ = 𝐹̃ =

∞∑︁
𝑚=0

1
i𝛽𝑚𝑃𝑚

e−i𝛼𝜉 e−i𝛽𝑚 |𝑦−𝜂 |𝑍𝑚 (𝜁)𝑍𝑚 (𝑧), (A 4)

is valid below both the free surface and the ice sheet. Substituting 𝐺̃ into (3.50), we obtain

𝐺 =

∞∑︁
𝑚=0

1
i𝑃𝑚

𝑍𝑚 (𝜁)𝑍𝑚 (𝑧)𝐼𝑚, (A 5)

where

𝐼𝑚 =

∫ +∞

−∞

1
𝛽𝑚
e+i𝛼(𝑥−𝜉 )e−i𝛽𝑚 |𝑦−𝜂 | d𝛼. (A 6)

We may replace the integral variable with 𝛼 = i𝑘𝑚 sinh 𝑡, which gives 𝛽𝑚 = 𝑘𝑚 cosh 𝑡 based on
the fact that 𝛽2𝑚 = 𝑘2𝑚 −𝛼2. Then for 𝑚 > 1, i.e. when 𝑘𝑚 is a purely negative imaginary number,
equation (A 6) can be rewritten as

𝐼𝑚 = i
∫ +∞

−∞
e+i𝛼(𝑥−𝜉 )i𝑘𝑚 sinh 𝑡e−i |𝑦−𝜂 |𝑘𝑚 cosh 𝑡 d𝑡. (A 7)

Letting i(𝑥 − 𝜉) = 𝑅 sinh 𝑡 ′ and |𝑦 − 𝜂 | = 𝑅 cosh 𝑡 ′, where 𝑅2 = (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 and
𝑡 ′ = i𝜃 ∈ (−i𝜋/2, +i𝜋/2) is a pure imaginary number, the above equation can be further written
as

𝐼𝑚 = i
∫ +∞

−∞
e−i𝑘𝑚𝑅 cosh(𝑡−𝑡′) d𝑡. (A 8)

Letting 𝑘𝑚 = −i𝑘̄𝑚 with 𝑘̄𝑚 being real and positive, and 𝜏 = −i(𝑡 − 𝑡 ′), equation (A 8) becomes

𝐼𝑚 = −
∫ −𝜃−i∞

−𝜃+i∞
e−𝑘̄𝑚𝑅 cos 𝜏 d𝜏. (A 9)

From Erdélyi (1953), we have
𝐼𝑚 = 2i𝐾0 ( 𝑘̄𝑚𝑅), (A 10)

where 𝐾0 is the modified Bessel function. From equation (9.6.4) of Abramowitz & Stegun (1965),
we further have

𝐼𝑚 = 𝜋𝐻
(2)
0 (𝑘𝑚𝑅). (A 11)

While for 𝑚 = 0, i.e. 𝑘0 is a purely positive real number, 𝑡 must be a complex number if we write
𝛼 = i𝑘𝑚 sinh 𝑡. When the integral route for 𝛼 is from −∞ to +∞ along the real axis, the route 𝐶
for 𝑡 is shown in figure 17. Substituting this into equation (A 6), we have

𝐼0 = i
∫
𝐶

e−i𝑘0𝑅 cosh(𝑡−𝑡
′) d𝑡. (A 12)
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i ( i / 2, i / )' 2t       is a pure imaginary number, the above equation can be further written 1 

as  2 
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
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
  . (A8) 3 

Letting im mk k   with mk  being real and positive, and i( ')t t    , equation (A8) becomes  4 
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
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From Erdélyi (1953), we have  6 

 
02 ( )im mI K k R , (A10) 7 

where 
0K  is the modified Bessel function. From equation (9.6.4) of Abramowitz and Stegun 8 

(1965), we further have  9 

 (2)

0 ( )m mI H k R . (A11) 10 

While for 0m  , i.e. 
0k  is a purely positive real number, t  must be a complex number if we 11 

write s hi inmk t  . When the integral route for   is from   to   along the real axis, the 12 

route C  for t  is shown in figure A1. Substituting this into equation (A6), we have  13 

 0i cos (

0

h ')
i e d

k tR t

C
I t


  . (A12) 14 

 15 
Figure A1. Integral route C  for t  in equation (A12) and C  for   in equation (A13).  16 

Letting i( ')t t     , we have  17 

 0i co

0

s
e d

k R

C
I

 
  , (A13) 18 

where the integral route C  is shown in figure A1 with ( ,2 )a    and (0, )b  . From 19 

Erdélyi (1953), we have  20 

 (2)

0 0 0( )I RH k  (A14) 21 

Based on equations (A11) and (A14), we then have that the Green function G  in (A4) is 22 

identical to that for free surface, or (Li, Shi and Wu, 2020) 23 

Re( )  

(a) (b) 

ia    
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Im( )t   

Re( )t  

i / 2  

i / 2  

Figure 17: Integral route 𝐶 for 𝑡 in equation (A 12) and 𝐺̃ for 𝜏 in equation (A 13).

Letting 𝜏 = −i(𝑡 − 𝑡 ′) + 𝜋, we have

𝐼0 = −
∫
𝐶̃

e+i𝑘0𝑅 cos 𝜏 d𝜏, (A 13)

where the integral route 𝐶̃ is shown in figure 17 with 𝑎 ∈ (𝜋, 2𝜋) and 𝑏 ∈ (0, 𝜋). From Erdélyi
(1953), we have

𝐼0 = 𝜋𝐻
(2)
0 (𝑘0𝑅). (A 14)

Based on equations (A 11) and (A 14), we then have that the Green function𝐺 in (A 4) is identical
to that for free surface, or (Li et al. 2020a)

𝐺 =

∞∑︁
𝑚=0

1
i𝑃𝑚

𝑍𝑚 (𝜁)𝑍𝑚 (𝑧)𝜋𝐻 (2)
0 (𝑘𝑚𝑅). (A 15)

It may be noticed that equation (A 15) can be also written in an integral form as (Wehausen &
Laitone 1960)

𝐺 =
1
𝑟1

+ 1
𝑟2

+ 2
∫ +∞

0
e−𝑘𝐻

𝑔𝑘 + 𝜔2
𝐾1 (𝜔, 𝑘)

cosh[𝑘 (𝜁 + 𝐻)]
cosh(𝑘𝐻) cosh[𝑘 (𝑧 + 𝐻)]𝐽0 (𝑘𝑅) d𝑘, (A 16)

where the integral route from 0 to +∞ should pass over the pole at 𝑘 = 𝑘0, 𝑟1 is the distance
between 𝑝 and 𝑞, 𝑟2 is the distance between 𝑝 and the mirror image of 𝑞 about the flat seabed,
𝐽0 (𝑘𝑅) is the zeroth order Bessel function of first kind (Abramowitz & Stegun 1965), with 𝑅 as
the horizontal distance between 𝑝 and 𝑞.

Appendix B. Boundary integral equation for the disturbed velocity potential
To obtain the boundary integral equation for the disturbed velocity potential, we shall first show

the symmetry property of the Green function regarding the source and field points. Assuming
𝐺𝑎 (𝑝, 𝑞𝑎) and 𝐺𝑏 (𝑝, 𝑞𝑏) are two solutions to the governing equation (3.1) for sources located
at 𝑞𝑎 and 𝑞𝑏 , respectively. Applying Green’s second identity to them, we have

− 4𝜋[𝐺𝑎 (𝑞𝑏 , 𝑞𝑎) − 𝐺𝑏 (𝑞𝑎, 𝑞𝑏)]

=

∫
𝑆

[
𝐺𝑎 (𝑝, 𝑞𝑎) 𝜕𝐺

𝑏 (𝑝, 𝑞𝑏)
𝜕𝑛𝑝

− 𝜕𝐺𝑎 (𝑝, 𝑞𝑎)
𝜕𝑛𝑝

𝐺𝑏 (𝑝, 𝑞𝑏)
]
d𝑠𝑝 , (B 1)
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where the fluid boundary 𝑆 includes the ice sheet 𝑆+
𝐼
(𝑆−

𝐼
) for 𝑦 > 𝑏 + 0 (𝑦 6 −𝑏− 0), free surface

𝑆𝐹 in the channel bounded by 𝑦 = 𝑏 − 0 and 𝑦 = −𝑏 + 0, sea bed 𝑆𝐻 and a vertical rectangular
surface 𝑆∞ at infinity. For the full free surface problem, the right hand of (B 1) can be easily
found to be zero when the boundary conditions are used. However, for the present problem, this
is far less straightforward because of complex ice sheet condition and multiple wave components
at 𝑥 = ±∞. Therefore, rigorous proof is needed.
As discussed below equation (3.55), the wave components of 𝛼 𝑗 decay exponentially with

respect to 𝑦. Thus, the leading term will be that due to the ring wave (Li et al. 2020a), which is
in form of exp(−i𝜅0𝑅)/

√
𝑅 with 𝑅 =

√︁
𝑥2 + 𝑦2. Using this, it can be seen that the contribution

from 𝑦 = ±∞ in equation (B 1) is zero. The boundary conditions (2.4) and (2.13) provide that the
integral over 𝑆𝐹 and 𝑆𝐻 equal zero. Invoking the boundary condition (2.8) on 𝑆±𝐼 , we have

𝐺 =
𝐿

𝜌𝑤𝜔
2∇
2 𝜕𝐺

𝜕𝑧
+ 𝜌𝑤𝑔 − 𝑚𝑖𝜔

2

𝜌𝑤𝜔
2

𝜕𝐺

𝜕𝑧
, (B 2)

where 𝐺 can be either 𝐺𝑎 or 𝐺𝑏 . Substituting equation (B 2) into (B 1) and then applying the
Gauss’s theorem, we obtain (Li et al. 2018c)∫

𝑆±
𝐼

(
𝐺𝑎 𝜕𝐺

𝑏

𝜕𝑛𝑝
− 𝜕𝐺𝑎

𝜕𝑛𝑝
𝐺𝑏

)
d𝑠𝑝 = 𝐼𝑏+ + 𝐼𝑛+ − 𝐼𝑛−, (B 3)

for 𝑦 > 𝑏 + 0, where

𝐼𝑏+ = − 𝐿

𝜌𝑤𝜔
2

∫ +∞

−∞

(
𝜕3𝐺𝑎

𝜕𝑧3
𝜕2𝐺𝑏

𝜕𝑧𝜕𝑦

+𝜕𝐺
𝑎

𝜕𝑧

𝜕4𝐺𝑏

𝜕𝑧3𝜕𝑦
− 𝜕3𝐺𝑏

𝜕𝑧3
𝜕2𝐺𝑎

𝜕𝑧𝜕𝑦
− 𝜕𝐺𝑏

𝜕𝑧

𝜕4𝐺𝑎

𝜕𝑧3𝜕𝑦

)
𝑧=0,𝑦=𝑏+0

d𝑥,
(B 4)

𝐼𝑛± =
𝐿

𝜌𝑤𝜔
2

∫ +∞

𝑏+0

(
𝜕3𝐺𝑎

𝜕𝑧3
𝜕2𝐺𝑏

𝜕𝑧𝜕𝑥

+𝜕𝐺
𝑎

𝜕𝑧

𝜕4𝐺𝑏

𝜕𝑧3𝜕𝑥
− 𝜕3𝐺𝑏

𝜕𝑧3
𝜕2𝐺𝑎

𝜕𝑧𝜕𝑥
− 𝜕𝐺𝑏

𝜕𝑧

𝜕4𝐺𝑎

𝜕𝑧3𝜕𝑥

)
𝑧=0,𝑥=±∞

d𝑦.
(B 5)

Here, the line integral at 𝑦 = +∞ is zero and has been removed. The free ice edge conditions (2.9)
provide

𝜕3𝐺

𝜕𝑧3
= −∇2 𝜕𝐺

𝜕𝑧
= −(1 − 𝜈) 𝜕

3𝐺

𝜕𝑥2𝜕𝑧
and

𝜕4

𝜕𝑧3𝜕𝑦
= −∇2 𝜕

2𝐺

𝜕𝑦𝜕𝑧
= (1 − 𝜈) 𝜕4𝐺

𝜕𝑦𝜕𝑥2𝜕𝑧
, (B 6)

for |𝑦 | = 𝑏 + 0 and 𝑧 = 0. Substituting (B 6) into (B 4), we obtain

𝐼𝑏+ = 𝐼𝑏+𝑥+ − 𝐼𝑏+𝑥−, (B 7)

where

𝐼𝑏+𝑥± =
𝐿 (1 − 𝜈)
𝜌𝑤𝜔

2
𝜕

𝜕𝑦

[(
𝜕2𝐺𝑎

𝜕𝑥𝜕𝑧

𝜕𝐺𝑏

𝜕𝑧
− 𝜕𝐺𝑎

𝜕𝑧

𝜕2𝐺𝑏

𝜕𝑥𝜕𝑧

)
𝑥=±∞

]
. (B 8)

Invoking equation (3.55), at 𝑥 = +∞ we may write 𝐺 as

𝐺𝑎 =

𝑁∑︁
𝑗=0
𝐺𝑎

𝑗 (𝑦, 𝑧)e−i𝛼𝑗 𝑥 and 𝐺𝑏 =

𝑁∑︁
𝑘=0

𝐺𝑏
𝑘 (𝑦, 𝑧)e

−i𝛼𝑘 𝑥 . (B 9)

Here, 𝛼 𝑗 ( 𝑗 = 1, . . . , 𝑁) correspond to the first order singularities of 𝐺̃ in equation (3.50), and
𝐺𝑎

𝑗
and 𝐺𝑏

𝑘
does not decay at 𝑥 = ±∞. While 𝛼0 = 𝑘0 with |𝑦 | 6 𝑏 − 0 (𝛼0 = 𝜅0 with |𝑦 | > 𝑏 + 0)
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corresponds to the square root singularity of 𝐺̃, and 𝐺𝑎
0 and 𝐺

𝑏
0 decay in the form of 1/

√︁
|𝑥 | as

𝑥 = ±∞, which can be reflected by the Hankel function equation (3.53). Strictly speaking, 𝐺𝑎
0

and 𝐺𝑏
0 are also functions of 𝑥. However, as d𝐺

𝑎
0 /d𝑥 and d𝐺

𝑏
0 /d𝑥 are of higher order of 𝑥, they

have been written as functions of 𝑦 and 𝑧 only. The remaining terms in 𝐺 decay in a higher order
form, and their contribution to equation (B 1) will be zero. The substitution of (B 9) into (B 8)
gives

𝐼𝑏+𝑥+ = i
𝐿 (1 − 𝜈)
𝜌𝑤𝜔

2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

(𝛼𝑘 − 𝛼 𝑗 )e−i(𝛼𝑗+𝛼𝑘 )𝑥

(
𝜕2𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
+
𝜕𝐺𝑎

𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)

= i
𝐿 (1 − 𝜈)
𝜌𝑤𝜔

2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝛼2𝑘

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 𝛼2𝑗

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧
− 𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
.

(B 10)

It may be noticed that each j-th or k-th term in equation (B 9) should satisfy the ice edge conditions
(B 6) at 𝑥 = +∞, with the double derivatives with respect to 𝑥 being replaced by −𝛼2

𝑗
or −𝛼2

𝑘
.

Thus, we can rewrite (B 10) as

𝐼𝑏+𝑥+ = i
𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝜕2𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑧3
+
𝜕4𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧3

𝜕𝐺𝑏
𝑘

𝜕𝑧
−
𝜕𝐺𝑎

𝑗

𝜕𝑧

𝜕4𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧3
−
𝜕3𝐺𝑎

𝑗

𝜕𝑧3

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
.

(B 11)

Substituting equation (B 9) into (B 5), we have

𝐼𝑛+ = i
𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
∫ +∞

𝑏+0

(
𝛼2𝑗

𝜕3𝐺𝑎
𝑗

𝜕𝑧3

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 𝛼2𝑘

𝜕3𝐺𝑎
𝑗

𝜕𝑧3

𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑧3
− 𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑧3

)
d𝑦.

(B 12)

On 𝑆∞ in (B 1), we have ∫
𝑆∞

(
𝐺𝑎 𝜕𝐺

𝑏

𝜕𝑛𝑝
− 𝜕𝐺𝑎

𝜕𝑛𝑝

)
d𝑠𝑝 = 𝐽𝑥+ − 𝐽𝑥−, (B 13)

where

𝐽𝑥± =

∫ +∞

−∞

∫ 0

−𝐻

(
𝐺𝑎 𝜕𝐺

𝑏

𝜕𝑥
− 𝜕𝐺𝑎

𝜕𝑥
𝐺𝑏

)
𝑥=±∞

d𝑧d𝑦, (B 14)

Here, the integrals at 𝑦 = ±∞ are zero and have been removed. From equation (B 9), at 𝑥 = +∞
we have

𝐺𝑎 𝜕𝐺
𝑏

𝜕𝑥
− 𝜕𝐺𝑎

𝜕𝑥
𝐺𝑏 = i

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

(𝛼 𝑗 − 𝛼𝑘 )𝐺𝑎
𝑗𝐺

𝑏
𝑘e

−i(𝛼𝑗+𝛼𝑘 )𝑥 . (B 15)

Since 𝐺 satisfies the Laplace equation, from (B 9), we have

∇2𝑦𝑧𝐺𝑎
𝑗 = 𝛼

2
𝑗𝐺

𝑎
𝑗 and ∇2𝑦𝑧𝐺𝑏

𝑘 = 𝛼2𝑘𝐺
𝑏
𝑘 , (B 16)
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where ∇2𝑦𝑧 = 𝜕2/𝜕𝑦2 + 𝜕2/𝜕𝑧2 is the Laplacian in 𝑂 − 𝑦𝑧 plane. From (B 16), we obtain

𝐺𝑎
𝑗𝐺

𝑏
𝑘 =

∇𝑦𝑧 (𝐺𝑎
𝑗
∇𝑦𝑧𝐺

𝑏
𝑘
− 𝐺𝑏

𝑘
∇𝑦𝑧𝐺

𝑎
𝑗
)

𝛼2
𝑘
− 𝛼2

𝑗

. (B 17)

The substitution of equation (B 17) into (B 15) provides

𝐺𝑎 𝜕𝐺
𝑏

𝜕𝑥
− 𝜕𝐺𝑎

𝜕𝑥
𝐺𝑏 = i

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

∇𝑦𝑧 (𝐺𝑏
𝑘∇𝑦𝑧𝐺

𝑎
𝑗 − 𝐺𝑎

𝑗∇𝑦𝑧𝐺
𝑏
𝑘 ). (B 18)

Invoking equation (B 18), we may write 𝐽𝑥+ in (B 14) as

𝐽𝑥+ = i
𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

∫ +∞

−∞

∫ 0

−𝐻
∇𝑦𝑧 (𝐺𝑏

𝑘∇𝑦𝑧𝐺
𝑎
𝑗 − 𝐺𝑎

𝑗∇𝑦𝑧𝐺
𝑏
𝑘 ) d𝑧d𝑦, (B 19)

or
𝐽𝑥+ = 𝐽𝑏+𝑥+ + 𝐽𝑏−𝑥+ , (B 20)

where

𝐽𝑏+𝑥+ = i
𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

∫ +∞

𝑏+0

(
𝜕𝐺𝑎

𝑗

𝜕𝑧
𝐺𝑏

𝑘 − 𝐺
𝑎
𝑗

𝜕𝐺𝑏
𝑘

𝜕𝑧

)
𝑧=0

d𝑦, (B 21)

𝐽𝑏−𝑥+ = i
𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

∫ −𝑏−0

−∞

(
𝜕𝐺𝑎

𝑗

𝜕𝑧
𝐺𝑏

𝑘 − 𝐺
𝑎
𝑗

𝜕𝐺𝑏
𝑘

𝜕𝑧

)
𝑧=0

d𝑦. (B 22)

Here, the boundary conditions (2.4) and (2.13) have been used to remove integral over the
corresponding boundaries. Applying the ice sheet condition (2.8) to (B 9), we have

𝐺𝑎
𝑗 =

𝐿

𝜌𝑤𝜔
2

(
𝛼2𝑗 −

𝜕2

𝜕𝑦2

)2 𝜕𝐺𝑎
𝑗

𝜕𝑧
+ 𝜌𝑤𝑔 − 𝑚𝑖𝜔

2

𝜌𝑤𝜔
2

𝜕𝐺𝑎
𝑗

𝜕𝑧
, (B 23)

𝐺𝑏
𝑘 =

𝐿

𝜌𝑤𝜔
2

(
𝛼2𝑘 −

𝜕2

𝜕𝑦2

)2 𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 𝜌𝑤𝑔 − 𝑚𝑖𝜔

2

𝜌𝑤𝜔
2

𝜕𝐺𝑏
𝑘

𝜕𝑧
. (B 24)

Replacing 𝐺𝑎
𝑗
and 𝐺𝑏

𝑘
in equation (B 21) respectively with (B 23) and (B 24), we have

𝐽𝑏+𝑥+ = 𝑃𝑏+
𝑥+ +𝑄𝑏+

𝑥+, (B 25)

where

𝑃𝑏+
𝑥+ = i

𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
∫ +∞

𝑏+0

(
𝛼4𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 2𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑦2𝜕𝑧
− 𝛼4𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 2𝛼2𝑗

𝜕3𝐺𝑎
𝑗

𝜕𝑦2𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧

)
d𝑦,

(B 26)

𝑄𝑏+
𝑥+ = i

𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

∫ +∞

𝑏+0

(
𝜕𝐺𝑎

𝑗

𝜕𝑧

𝜕5𝐺𝑏
𝑘

𝜕𝑦4𝜕𝑧
−
𝜕5𝐺𝑎

𝑗

𝜕𝑦4𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧

)
d𝑦. (B 27)
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Applying integration by parts to equation (B 27), we have

𝑄𝑏+
𝑥+ = i

𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝜕4𝐺𝑎

𝑗

𝜕𝑦3𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
−
𝜕𝐺𝑎

𝑗

𝜕𝑧

𝜕4𝐺𝑏
𝑘

𝜕𝑦3𝜕𝑧
+
𝜕2𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑦2𝜕𝑧
−
𝜕3𝐺𝑎

𝑗

𝜕𝑦2𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
𝑦=𝑏+0

.

(B 28)

Invoking equation (B 16) or

𝜕2𝐺𝑎
𝑗

𝜕𝑦2
= 𝛼2𝑗𝐺

𝑎
𝑗 −

𝜕2𝐺𝑎
𝑗

𝜕𝑧2
and

𝜕2𝐺𝑏
𝑘

𝜕𝑦2
= 𝛼2𝑘𝐺

𝑏
𝑘 −

𝜕2𝐺𝑏
𝑘

𝜕𝑧2
, (B 29)

we can write 𝑄𝑏+
𝑥+ in equation (B 28) as

𝑄𝑏+
𝑥+ = i

𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝛼2𝑗

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧
+ 𝛼2𝑘

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
− i 𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝜕4𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧3

𝜕𝐺𝑏
𝑘

𝜕𝑧
−
𝜕𝐺𝑎

𝑗

𝜕𝑧

𝜕4𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧3
+
𝜕2𝐺𝑎

𝑗

𝜕𝑦𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑧3
−
𝜕3𝐺𝑎

𝑗

𝜕𝑧3

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
.

(B 30)

Applying equation (B 29) to (B 26) and using integration by parts, we have

𝑃𝑏+
𝑥+ = i

𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
∫ +∞

𝑏+0

(
𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑧3
− 𝛼2𝑗

𝜕3𝐺𝑎
𝑗

𝜕𝑧3

𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕3𝐺𝑏
𝑘

𝜕𝑦2𝜕𝑧
− 𝛼2𝑘

𝜕3𝐺𝑎
𝑗

𝜕𝑦2𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧

)
d𝑦

+ i 𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
(
𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧
− 𝛼2𝑘

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
− 𝛼2𝑗

𝜕2𝐺𝑎
𝑗

𝜕𝑦𝜕𝑧

𝜕𝐺𝑏
𝑘

𝜕𝑧
+ 𝛼2𝑘

𝜕𝐺𝑎
𝑗

𝜕𝑧

𝜕2𝐺𝑏
𝑘

𝜕𝑦𝜕𝑧

)
𝑦=𝑏+0

.

(B 31)
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Taking summation of equations (B 11), (B 12), (B 30) and (B 31), we have

𝐼𝑏+𝑥+ + 𝐼𝑛+ + 𝐽𝑏+𝑥+ = i
𝐿

𝜌𝑤𝜔
2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
𝑘≠ 𝑗

e−i(𝛼𝑗+𝛼𝑘 )𝑥

𝛼 𝑗 + 𝛼𝑘

×
∫ +∞

𝑏+0

[
𝛼2𝑗

𝜕𝐺𝑎
𝑗

𝜕𝑧

(
𝜕3𝐺𝑏

𝑘

𝜕𝑦2𝜕𝑧
+
𝜕3𝐺𝑏

𝑘

𝜕𝑧3

)
− 𝛼2𝑘

𝜕𝐺𝑏
𝑘

𝜕𝑧

(
𝜕3𝐺𝑎

𝑗

𝜕𝑦2𝜕𝑧
+
𝜕3𝐺𝑎

𝑗

𝜕𝑧3

)]
d𝑦.

(B 32)
Invoking equation (B 29), we further have

𝐼𝑏+𝑥+ + 𝐼𝑛+ + 𝐽𝑏+𝑥+ = 0. (B 33)

Similar results can be obtained for 𝑥 = +∞ and 𝑦 6 −𝑏 − 0, 𝑥 = −∞ and 𝑦 > 𝑏 + 0, 𝑥 = −∞ and
𝑦 6 −𝑏 − 0. This indicates that the summation of the integrals over 𝑆+

𝐼
, 𝑆−

𝐼
and 𝑆∞ equal zero, i.e.

𝐺𝑎 (𝑞𝑏 , 𝑞𝑎) = 𝐺𝑏 (𝑞𝑎, 𝑞𝑏). (B 34)

Similar to equation (B 1), we may apply Green’s second identity to the disturbed velocity
potential 𝜙 and the Green function 𝐺, and obtain

ℓ𝜙(𝑝) =
∫
𝑆

[
𝐺 (𝑝, 𝑞) 𝜕𝜙(𝑞)

𝜕𝑛𝑞
− 𝜕𝐺 (𝑝, 𝑞)

𝜕𝑛𝑞
𝜙(𝑞)

]
d𝑠𝑞 , (B 35)

where 𝑆 = 𝑆+
𝐼
+ 𝑆−

𝐼
+ 𝑆𝐹 + 𝑆𝐻 + 𝑆∞ + 𝑆𝐵 with 𝑆𝐵 as the body surface, and 𝛼 is the solid angle at

point 𝑝. Since 𝜙 satisfies the same boundary conditions as 𝐺 on 𝑆+
𝐼
, 𝑆−

𝐼
, 𝑆𝐹 and 𝑆𝐻 , and has the

same asymptotic forms at 𝑆∞, then by following similar procedure to obtain (B 34), we have that
only the integral over 𝑆𝐵 is nonzero, or

ℓ𝜙(𝑝) =
∫
𝑆𝐵

[
𝐺 (𝑝, 𝑞) 𝜕𝜙(𝑞)

𝜕𝑛𝑞
− 𝜕𝐺 (𝑝, 𝑞)

𝜕𝑛𝑞
𝜙(𝑞)

]
d𝑠𝑞 . (B 36)
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