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Abstract—Non-cooperative communications using non-
orthogonal multicarrier signals are challenging since self-
created inter carrier interference (ICI) prevents successful sig-
nal classification. Deep learning (DL) can deal with the classi-
fication task without domain-knowledge at the cost of training
complexity. Previous work showed that a tremendously trained
convolutional neural network (CNN) classifier can efficiently
identify feature-diversity dominant signals while it fails when
feature-similarity dominates. Therefore, a pre-processing strat-
egy, which can amplify signal feature diversity is of great
importance. This work applies single-level wavelet transform to
manually extract time-frequency features from non-orthogonal
signals. Composite statistical features are investigated and the
wavelet enabled two-dimensional time-frequency feature grid
is further simplified into a one-dimensional feature vector
via proper statistical transform. The dimensionality reduced
features are fed to an error-correcting output codes (ECOC)
model, consisting of multiple binary support vector machine
(SVM) learners, for multiclass signal classification. Low-cost
experiments reveal 100% classification accuracy for feature-
diversity dominant signals and 90% for feature-similarity
dominant signals, which is nearly 28% accuracy improvement
when compared with the CNN classification results.

Index Terms—Signal classification, wavelet, machine learn-
ing, SVM, non-cooperative, non-orthogonal, SEFDM, wave-
form, experiment, software-defined radio.

I. INTRODUCTION

With the commercial deployment of 5G [1] and the recent
advancement of 6G [2], [3], enhanced spectral efficiency
with better intelligence will be expected. For a reliable
signal recovery, traditional communication systems will
occupy signalling overhead to send a mutually known side
information from a transmitter to notify a receiver the signal
format at the cost of wasting spectral efficiency. In addition,
wireless channels are time-variant and received signals
might be affected by timing/phase/frequency impairments.
Compensation has to be operated before extracting accurate
side information. Any imperfect operations would cause
wrong decisions on signal format.

An intelligent deep learning receiver can automatically
identify signal format in a non-cooperative way based
on data training without any signal compensation pre-
processing. A representative deep learning technique is con-
volutional neural network (CNN), which employs multiple
convolutional layers for automatic feature extractions. CNN
has been successfully applied in single carrier modulation
classification [4] and multicarrier orthogonal frequency di-
vision multiplexing (OFDM) modulation classification [5].

Non-orthogonal signals might be considered for future
communications due to their enhanced spectral efficiency.
A potential waveform candidate is termed spectrally effi-
cient frequency division multiplexing (SEFDM) [6], which

can achieve either higher data rate or compressed spectral
bandwidth. One unique advantage of SEFDM is its similar
signal generation method with OFDM. The classification for
SEFDM signals has been theoretically and practically inves-
tigated in work [7], in which a trained CNN classifier can
efficiently identify signals with distinguishable features (i.e.
feature-diversity dominant) but it cannot accurately classify
signals when features are similar (i.e. feature-similarity
dominant). The tremendous fine-tuning for optimal CNN
hyperparameters is time consuming. Therefore, manually
extracting signal features, based on expert knowledge and
traditional machine learning (ML), would be more efficient
and convincing.

This work aims to accurately classify the feature-
similarity dominant SEFDM signals, such that non-
cooperative SEFDM communications will be achievable.
Firstly, one-dimensional statistical features are evaluated
using support vector machine (SVM). Then, a wavelet
transform [8], [9] based time-frequency feature extraction
approach is applied in this work. Unlike traditional mul-
tilevel structured wavelet decomposition [10], [11], this
work focuses on a basic single-level wavelet filtering (WF)
strategy. Results indicate that the two-dimensional time-
frequency feature with statistical dimensionality reduction
can assist SVM to identify feature-similarity dominant sig-
nals at high accuracy. Finally, a low-cost experiment is set
up to verify the trained classifiers using over-the-air signals.

The main contributions of this work are as the following.

o Statistical features are investigated in SVM for non-
orthogonal signal classification.

o Two-dimensional time-frequency features are evalu-
ated via single-level wavelet transform. Various time-
frequency feature dimensionality reduction methods
are studied to simplify the features and further improve
classification accuracy.

o Low-cost over-the-air experiment is designed to verify
the robustness of the wavelet classification.

II. SEFDM WAVEFORM

The discrete format of a time-domain SEFDM signal is

defined as
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where the expression is very similar to that of OFDM

except the bandwidth compression factor « = Af-T, in

which Af is the sub-carrier spacing and 7T is the time

period of one SEFDM symbol. The number of sub-carriers
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Fig. 1. Time-domain signal visualization by modulating the same
QPSK data. Values in the bracket indicate the bandwidth compres-
sion factor a. (a) Type-I signal pattern with strong feature diversity.
(b) Type-II signal pattern with strong feature similarity.

is determined by N. s, is the n'" single-carrier symbol

within one SEFDM symbol and X, is the k" time sample
with £ = 0,1, ..., N — 1. The signal spectral bandwidth in
(1) is compressed when a < 1 and is equivalent to that of
OFDM when o = 1.

Two signal patterns with different « are illustrated in Fig.
1. All of the signals occupy the same 7. Therefore, the sub-
carrier spacing A f will be narrower with the reduction of «.
Type-I signal pattern packs four signal classes while Type-II
signal pattern has more signal options, which can support
a wider range of services. However, Type-II will have
challenging classification since signal features are similar
to each other.

The instantaneous power for one SEFDM symbol is
computed in the following
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It is apparent that the inter carrier interference (ICI) term
in (2), which is caused by «, determines the possibility of
identifying different SEFDM signals. It is inferred that when
SEFDM signals have similar values of «, the ICI term will
become similar and would complicate signal classification.

III. CLASSIFICATION STRATEGIES

A. CNN Classification

A multi-layer CNN classifier, shown in Fig. 2, is trained
in a recent work [7] to automatically extract signal features
in either time-domain or frequency-domain. The automatic
feature extractor has seven neural network (NN). The first
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Fig. 2. Neural network architecture of the CNN classifier.
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Fig. 3. CNN classification accuracy for SEFDM signals consider-
ing either time-domain or frequency-domain features. Classifiers
are trained by datasets after data augmentation at Es/NO=20 dB.

six NN modules has four sub-layers, namely convolutional
layer, normalization layer, ReLU layer and MaxPool layer.
For the last NN module, it specifically employs an Average-
Pool layer instead of the MaxPool layer in order to obtain
smooth features at the end. The classification part packs a
full connection layer and a SoftMax layer.

Based on the extracted features, classification results
are compared in Fig. 3, in which the time-domain clas-
sifier achieves higher accuracy than its frequency-domain
counterpart. Classification accuracy can reach 95% when
considering limited number of non-orthogonal signal classes
in Type-1. However, the accuracy drops greatly when adding
more similar signals in Type-II.

B. SVM Classification

The limitation of the previous work [7] is obviously
shown in Fig. 3 and the motivation for this work is to
accurately classify Type-II signals. The training of an op-
timal multi-layer CNN classifier is time-consuming since
it requires extensive hyperparameter tuning and iterative
back propagation optimization. Therefore, it would be more
efficient to use traditional machine learning strategies with
manual feature extractions. The SVM classifier, based on
domain-knowledge dependent features, is applied in this
work. Firstly, the training is fast since features are obtained
in advance rather than time-consuming data training. Sec-
ondly, the methodology of machine learning is deterministic
and its working principle can be well explained. Since there
are multiple signal classes in Type-I and Type-II, therefore
a multiclass error-correcting output codes (ECOC) model
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Fig. 4. Spectrogram of OFDM and SEFDM signals after wavelet
transform. For the purpose of illustration, the signals are simply
generated with N=12 sub-carriers at a data rate R,=1 bit/s.

[12] is applied here. A one-versus-one [13] coding strategy
is implemented to separate different signal classes, which
simplifies the multiclass classification task into multiple
binary class classification tasks. Thus, multiple binary SVM
learners, with a polynomial kernel of order two, are used
for the multiclass classification.

IV. FEATURE SELECTION
A. Statistical Features

The commonly used statistical feature is arithmetic mean,
which computes the average value of a dataset. Variance
is used to measure the variations of a dataset. Small
variance indicates that the values of dataset elements are
closer to the arithmetic mean while large variance indicates
that the dataset elements are spread out away from the
mean. Skewness [14] is a way to measure data distribution
characteristics. Negative skewness indicates that a dataset
distributes more data to the left side relative to its mean;
positive skewness indicates that data is more distributed to
the right side of the mean. The ratio between the maximum
value and the minimum value is also studied here and
the Max-Min ratio can tell the fluctuations of a dataset.
Interquartile range (IQR) [15] is a way to measure data
dispersion, which equals the difference between the 25th
percentile and the 75th percentile.

B. Time-Frequency Features

The previous work [7] revealed that independent time-
domain features or frequency-domain features cannot effi-
ciently identify Type-II signals. Therefore, the joint analysis
of time-frequency signal features is important since feature
diversity would be enhanced by considering two domains.
This section applies wavelet transform [8] to manually
extract hidden signal features in time-frequency dimensions.

There are two types of wavelet transform for time-
frequency analysis, namely continuous wavelet transform
(CWT) and discrete wavelet transform (DWT). CWT pro-
vides a detailed representation for signals by using fine scale
factors. It therefore leads to high-resolution signal analy-
sis and can capture crucial signal features. However, the
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Fig. 5. One-dimensional wavelet feature generation based on
wavelet filtering and statistical feature dimensionality reduction.

obvious disadvantage of CWT is its higher computational
complexity over DWT. A large time-frequency spectrogram
grid would be obtained with the fine representation of scales.
In this work, we would like to explore the accurate signal
transient localization via detailed time-frequency analysis.
Therefore, the high-resolution wavelet transform CWT is
used rather than its coarse wavelet transform DWT.

There are several wavelet candidates for wavelet trans-
form. This work employs the widely used Morse wavelet
and the effects of different wavelets are not taken into
account. The CWT time-frequency analysis for OFDM and
SEFDM signals using Morse wavelet is illustrated in Fig.
4. It is clearly shown that with the reduction of «, the
frequency scales for SEFDM shrink to show the effect of
bandwidth compression while its time scales are stretched
to show the time-domain sample characteristics. The typical
artificial intelligent solution is to feed the time-frequency
grid as an image to a deep learning neural network such as
CNN. However, this would cause extra training complexity
since the optimal neural network hyperparameters have to be
tuned based on iterative attempts. Therefore, pre-processing
is required to simplify the two-dimensional time-frequency
feature representation into a one-dimensional feature vector
as illustrated in Fig. 5. The strategy is to maintain the fine
frequency scales of CWT while reducing time samples using
the statistical knowledge explained in Section IV-A.

V. CLASSIFIER TRAINING AND TESTING

To have a realistic training scenario, channel/hardware
impairments are considered in this work. A three-path
wireless channel power delay profile (PDP) with path delay
(s) [0 9e-6 1.7e-5] and path relative power (dB) [0 -2 -
10] are reused from [4]. The maximum Doppler frequency
is 4 Hz considering indoor people walking speed. The K-



Table I: Signal specifications

Parameter Signal
Sampling frequency (kHz) 200
IFFT sample length 2048
Oversampling factor 8

No. of data sub-carriers 256
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Fig. 6. Statistical feature based SVM classification accuracy trained
and tested at Es/N0=20 dB.

factor is 4 and the frequency offset is configured to be
2 parts per million (PPM). It should be noted that this
work focuses on classifying OFDM/SEFDN signals and
external signal interference and multi-antenna interference
are not considered. Signals are generated according to
Table 1T where 2048 time samples are produced at the
transmitter for each OFDM/SEFDM symbol. There is no
synchronization mechanism between the transmitter and the
receiver. Therefore, the receiver would randomly truncate
1024 samples for training. At the training stage, 2,000
OFDM/SEFDM symbols are generated for each class (i.e.
each «) following the data augmentation principle in [7].
In this case, there are overall 8,000 symbols for the Type-
I signal pattern and 14,000 symbols for the Type-II signal
pattern. For testing, there are overall 3,200 OFDM/SEFDM
symbols for Type-I and 5,600 symbols for Type-II.

At first, statistical features in either time-domain (i.e.
T-Statistics-SVM) or frequency-domain (i.e. F-Statistics-
SVM) are compared in Fig. 6. Both the training data and
testing data are contaminated by additive white Gaussian
noise (AWGN) at a single Es/N0=20 dB. Results reveal that
single domain features are not sufficient to classify either
Type-I signal pattern or Type-II signal pattern.

The above results naturally lead to the joint time-
frequency analysis, which would enhance the feature ex-
traction efficiency. Wavelet transform will create a two-
dimensional time-frequency feature grid. The scale range
of the Morse wavelet is configured to have 7 octaves and
10 scales per octave. Therefore, considering both real and
imaginary part of a signal, there are overall 140 frequency
scales. In terms of time scale, following the signal specifi-
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Fig. 7. Wavelet based SVM classification accuracy trained and
tested at Es/NO=20 dB.

cations in Table I and the 50% random symbol truncation
mechanism, 1024 time sample scales will be reserved.
Therefore, CWT will generate a two-dimensional 140x 1024
time-frequency analysis matrix.

There are many ways [16], [17] to reduce the time-
frequency feature dimensionality. Considering computa-
tional complexity, this work applies simple statistical meth-
ods to reduce the amount of time samples. Thus, the two-
dimensional 140x1024 time-frequency grid is simplified
into a 140x1 frequency-scale vector following the dimen-
sionality reduction method in Fig. 5. Different statistical
transform methods are evaluated at each frequency scale and
results are shown in Fig. 7. It is clearly seen that the IQR and
variance features enable higher classification accuracy than
other features, which can even classify the feature-similarity
dominant Type-II signals. The following classifier training
will be based on those two statistical features.

A wavelet classifier is firstly trained using data at a fixed
Es/N0O=20 dB and tested at various Es/NO with accuracy
results shown in Fig. 8(a). It clearly shows that all the curves
reach the peak accuracy at 20 dB. However, for other Es/NO
values, accuracy drops significantly. It indicates that training
data at a fixed Es/NO is not robust to train a classifier that
can classify signals at a wide range of Es/NO.

To train a robust classifier, a dataset covering different
Es/NO (20, 30, 40 dB) is generated. The classification results
are shown in Fig. 8(b), in which better accuracy is reached
at high Es/NO for both Type-I and Type-II signals. However,
the accuracy at low Es/NO still needs improvement.

To enhance the classification sensitivity at low Es/NO,
a dataset, covering low Es/NO (0, 10, 20 dBs), is trained
with results shown in Fig. 8(c). All the curves are raised
to achieve higher accuracy at low Es/NO. It should be
noted that the variance feature enabled wavelet classifier
can identify signals even below noise power and it achieves
78% classification accuracy when Es/NO=0 dB. However,
its performance drops obviously at high Es/NO, especially
those beyond Es/N0=20 dB. For the IQR feature trained
classifiers, both Type-I and Type-II curves are stable at
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high Es/NO and the IQR feature trained Type-I classifier
outperforms the variance feature trained model at high
Es/NO. It is concluded from the figure that the variance
trained model is robust at low Es/NO while the IQR trained
model is robust at high Es/NO.

Based on the above results, it is inferred that classifiers
trained at high Es/NO would enable high testing accuracy
merely at high Es/NO while classifiers trained at low Es/NO
would lead to high testing accuracy at low Es/NO. This
indicates that a wider Es/NO range has to be considered for
the training data. In Fig. 8(d), classifiers are trained with
data covering an Es/NO range from 0 dB to 40 dB with an
increment step of 10 dB, which basically combines the two
Es/NO ranges in Fig. 8(b) and Fig. 8(c). It clearly shows
accuracy improvement for all the curves at both low and
high Es/NO. In Fig. 8(e), a wider Es/NO range between -20
dB and 50 dB is considered. The variance feature trained
classifier improves Type-I signal classification accuracy at
high Es/NO while all other curves have no obvious im-
provement. However, there is still a minor performance gap
between the variance trained classifier and the IQR trained
classifier at high Es/NO. The robust feature performance of
variance at low Es/NO and IQR at high Es/NO inspires to
combine the two features for a more reliable classifier.

The composite classifiers, trained by joint variance and
IQR features, can reach high classification accuracy for both
Type-1 and Type-II signals at both low and high Es/NO
ranges in Fig. 8(f). Therefore, the composite classifiers will
be used in the following over-the-air experiments.

VI. Low-CoST EXPERIMENT AND RESULTS

The experiment is operated in an indoor open space, in
which facilities would cause signal reflections and further

Transmitter
Receiver

Fig. 9. Low-cost experiment setup for the wavelet classifier training
and testing. Four data collection points are labelled as ‘L-a’, ‘L-b’,
‘L-¢’ and ‘L-d’.

result in frequency selective channel impairments. In addi-
tion, people movement in the space would cause Doppler
spread and therefore dynamic spectral fluctuations. This
work will use a pair of low-cost Analog Devices software-
defined radio (SDR) PLUTO [18] to practically transmit
and classify over-the-air signals. The signals are designed
according to Table I and transmitted at a free-licensed 900
MHz (33-centimeter band) carrier frequency.

The experiment setup, shown in Fig. 9, is low cost since
a laptop and two SDR devices are sufficient to realize
signal generation, over-the-air transmission, signal reception
and classifier training. In order to collect diversified data
from an indoor environment, we fix the position of the
transmitter side SDR device and place the receiver side
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Fig. 10. Confusion matrix visualization for wavelet classification.

SDR device at different locations. In this case, a number
of training datasets, impaired by channel multipath fading,
power degradation and Doppler effect, are collected. Unlike
the CNN classifier where a large number of training symbols
are required for feature extractions, the wavelet classifier
can manually extract features based on a limited dataset.
Therefore, in this experiment, at each location, 400 symbols
are collected for the Type-I signal pattern and 700 symbols
for the Type-II signal pattern. There are four data collections
considering four different locations of the receiver. There-
fore, the overall collected training symbols for Type-I and
Type-II are 1,600 and 2,800, respectively. For testing, the
same process is repeated with four data collections. To have
a fair comparison with the previous work [7], the number
of testing symbols per class is fixed at 800.

The collected data will be used to train wavelet classifiers
off-line using Matlab. Once a wavelet classifier is trained,
the model will be saved. Therefore, SDR devices will reuse
the saved model for online signal classification and there is
no need to re-train classifiers. Thus, the off-line training is
a one-time operation. The confusion matrices are presented
in Fig. 10. The classification accuracy for the Type-I signal
pattern is nearly 100%. For Type-II signals, the accuracy is
90%, which is much higher than the 70.75% in [7] where
a transfer learning enabled CNN classifier is applied.

VII. CONCLUSION

This work aims to explore typical machine learning (ML)
algorithms for non-orthogonal signal classification in non-
cooperative communications. Multiple statistical approaches
are tested for feature extractions in either time-domain
or frequency-domain but showing unreliable classification
accuracy. Wavelet transform is therefore applied to extract
two-dimensional time-frequency features, which are further

converted to a one-dimensional feature vector using statis-
tical transform. Simulation results revealed that the most
efficient features are variance and IQR. The combination
of variance and IQR, associated with wavelet transform,
enables classification accuracy up to 100%. Results also
discovered that a wider range of training Es/NO leading
to better classification accuracy. Furthermore, the wavelet
classifier can even identify signals when the signal power is
below its noise power. Results show that the variance fea-
ture enabled wavelet classifier achieves 78% classification
accuracy when Es/NO=0 dB. A low-cost experiment is set
up using one laptop and two SDR devices. Practical results
verified the efficacy of the wavelet enabled time-frequency
features. Confusion matrices are obtained to show nearly
100% classification accuracy for the Type-I signal pattern
and 90% accuracy for Type-II.
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