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Abstract—Traditional defence strategies of physical layer
security (PLS) are highly dependent on channel environments.
This work investigates a waveform-defined security (WDS)
framework, which can fundamentally prevent signal intercep-
tion. In the traditional WDS framework, by intentionally tun-
ing waveform parameters to weaken feature diversity and en-
hance feature similarity, eavesdroppers cannot correctly iden-
tify feature-similarity dominant signals using deep learning
(DL) classifiers. The imperfect signal classification would result
in subsequent detection errors. This work aims to optimize the
framework by further complicating signal classification using
a newly proposed signal generation architecture. Results show
that the new signal generator can cut distinguishable signal
features. In this case, classification accuracy at eavesdroppers
is reduced by up to 53% leading to an enhanced WDS
framework. Meanwhile, legitimate users maintain performance
reliability regardless of signal generation architectures.

Index Terms—Waveform-defined security (WDS), waveform,
non-orthogonal, secure communications, physical layer secu-
rity, deep learning, signal classification.

I. INTRODUCTION

Radio signals are broadcasted over the air making physi-
cal layer security (PLS) vulnerable to eavesdropping. Beam-
forming [1] is the commonly used PLS defense technique,
which will produce a narrow and directional beam towards
a legitimate user. This solution is theoretically robust but
practically has some challenges [2]. Firstly, beamforming
based PLS requires channel state information (CSI) from
both legitimate users and eavesdroppers. Since most eaves-
droppers are passive, their CSI are not easily known by a
transmitter. Secondly, beamforming requires multiple anten-
nas or even multiple radio frequency (RF) chains, which
might be realistic to proprietary systems but would not
be realistic to resource-constrained internet of things (IoT)
applications [3]. Thirdly, beamforming will be challenged
when a legitimate user and an eavesdropper are spatially
close or the worst case when they are aligned with the
beam direction. Artificial noise [4] can avoid the CSI
from eavesdroppers via broadcasting noise to eavesdroppers.
However, extra power will be wasted for the noise genera-
tion. Directional modulation [5] is another PLS technique,
which generates directional beams via specially designed
antennas with limitations similar to beamforming. With the
advancement of artificial intelligence (AI), adversarial attack
[6] is becoming a threat that can use deep learning to
intentionally interfere with legitimate user communications.
An efficient defence solution is to use fake data to fool
eavesdroppers but at the cost of reduced data rate.

Non-orthogonal signal waveforms, which are independent
on CSI, are becoming potential candidate solutions for PLS.
Existing waveform based PLS techniques are filter hopping

[7], [8] and waveform-defined security (WDS) framework.
In filter hopping schemes, filterbank based multicarrier
(FBMC) and faster than Nyquist (FTN) waveforms will use
flexible filter shaping to complicate eavesdropping signal
detection. However, the signal generation for those filtering
based signals is more complex than orthogonal frequency
division multiplexing (OFDM), which makes integration to
available communication systems unrealistic. In addition,
the signal structure difference between the filtering wave-
forms and non-filtering OFDM will let eavesdroppers easily
identify different signal features. The WDS framework was
originally proposed in [9], which shows that interception
can be prevented by intentionally confusing eavesdrop-
pers via specially tuned waveform patterns. The benefit of
WDS is that the employed spectrally efficient frequency
division multiplexing (SEFDM) waveform [10] can bring
either higher data rate or compressed spectral bandwidth.
In addition, the signal generation is very similar to OFDM.
In this case, the WDS framework can be easily integrated
in available communication systems.

In this work, we will optimize the WDS framework from
a signal generation perspective. This work evaluates two
signal generation methods for the WDS framework. Results
show that signal generation has impacts on signal classifi-
cation and the proposed signal generation architecture can
greatly reduce classification accuracy at eavesdroppers while
maintaining performance reliability at legitimate users.

II. NON-ORTHOGONAL WAVEFORM FUNDAMENTALS

The initial motivation of SEFDM waveform is to save
spectral bandwidth resources via packing sub-carriers closer
as shown in Fig. 1. Such an advantage of spectral effi-
ciency improvement meets the requirements of 5G and be-
yond. Meanwhile, the non-orthogonality characteristic of the
waveform introduces self-created inter carrier interference
(ICI), which is regarded as a natural defence mechanism.

A. Signal Principle

The fundamental OFDM signal is defined with the sub-
carrier spacing of ∆f = 1/T where T is the time period of
one OFDM symbol. To get SEFDM signals, the sub-carrier
spacing is compressed to ∆f = α/T where α is termed
bandwidth compression factor (BCF), which determines the
ratio of bandwidth compression.

The definition of an SEFDM signal is straightforward by
adding α in a traditional OFDM signal expression as

Xk =
1√
Q

Q−1∑
n=0

Sn exp

(
j2πnkα

Q

)
, (1)
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Fig. 1. Illustration of bandwidth compression in SEFDM. (a)
OFDM sub-carrier packing. (b) SEFDM sub-carrier packing.

Fig. 2. Signal generation architecture for OFDM.

where Q = ρN indicates the number of samples with the
oversampling factor ρ and the number of sub-carriers N . Xk

is the kth time sample with the index k = 0, 1, ..., Q − 1,
Sn is the nth single-carrier symbol with the index n =
0, 1, ..., Q − 1. It should be noted that since oversampling
is applied, some elements in the vector S are zeros.

B. Signal Generation

OFDM signal generation is straightforward using inverse
fast Fourier transform (IFFT) when α = 1 in (1). Its signal
generation block diagram is illustrated in Fig. 2. Typically, a
signal requires protection guard bands on both sides of a raw
input vector. Therefore, in Fig. 2, the original input symbol
vector [I0, I1, ..., IN−1] is expanded to a Q-dimensional
vector as

[S0, S1, ..., SQ−1] = [ 0, ..., 0︸ ︷︷ ︸
(Q−N)/2

, I0, I1, ..., IN−1, 0, ..., 0︸ ︷︷ ︸
(Q−N)/2

],

(2)
where a Q-point IFFT is applied on the zero padded vector
S leading to an oversampled Q-dimensional OFDM signal.

As expressed in (1), the direct operation for SEFDM
signal generation will cause high computational complexity
due to the parameter α. The effect of α can be removed via
introducing a new parameter M = Q/α where M should
be rounded to its closest integer. Traditionally, following
previous work [11], the original vector S will be further
expanded to a longer vector S

′
with the following stage-II

zero padding operation

S
′

n =

{
Sn 0≤n < Q
0 Q≤n < M

. (3)

Fig. 3. Signal generation for SEFDM. (a) Typical architecture via
padding zeros at the end: SigGen-I. (b) Proposed architecture via
padding zeros on both sides: SigGen-II.

The traditional stage-II zero padding is demonstrated in
Fig. 3(a) where a vector of M −Q zeros are padded at the
end of S as

[S
′

0, S
′

1, ..., S
′

M−1] = [S0, S1, ..., SQ−1, 0, ..., 0︸ ︷︷ ︸
M−Q

]. (4)

The direct signal generation in (1) is thus simplified into
an M-point IFFT operation as

X
′

k =
1√
M

M−1∑
n=0

S
′

n exp

(
j2πnk

M

)
, (5)

where n, k = [0, 1, ...,M − 1]. The output will be truncated
with only Q samples reserved while the rest of the samples
are discarded leading to a Q-point SEFDM signal.

Due to the stage-II unequal zero padding in Fig. 3(a), the
protection guard band created by the stage-I zero padding
will be compressed resulting in the shift of an SEFDM
spectral band according to the value of α. Therefore, its
spectrum will not be centralized in the middle. This will
not affect receiver side signal detection but will introduce
additional signal features, which might be beneficially used
by eavesdroppers.

An alternative way for SEFDM signal generation is to
pad zeros on both sides of S as illustrated in Fig. 3(b).
This newly proposed architecture will maintain an SEFDM
spectral band in the center. The stage-II zero padding is thus
modified in the following

[S
′

0, S
′

1, ..., S
′

M−1] = [ 0, ..., 0︸ ︷︷ ︸
(M−Q)/2

, S0, S1, ..., SQ−1, 0, ..., 0︸ ︷︷ ︸
(M−Q)/2

].

(6)
In summary, both SigGen-I and SigGen-II signal gener-

ation architectures in Fig. 3 can achieve signal bandwidth
compression advantages. However, the traditional genera-
tion method in Fig. 3(a) will additionally compress guard
bands leading to a spectral band shift proportional to the
value of α. Such an additional feature could be used by



eavesdroppers to break communications security. Therefore,
the robust SigGen-II architecture in Fig. 3(b) is proposed to
limit the spectral compression only to the signal band.

Although Fig. 3 shows two signal generation architec-
tures, they all have the same computational complexity [11]
as M×log2M . With a pruned operation, the complexity
could be reduced to M×log2Q. It is apparent that the
computational complexity of SEFDM signal generation is
similar to that of OFDM, which is Q×log2Q.

III. PRINCIPLE OF WAVEFORM-DEFINED SECURITY

The self-created ICI can be evaluated via computing the
instantaneous power of Xk in (1) as the following

|Xk|2 =
1

Q

Q−1∑
n=0

Q−1∑
m=0

SnS
∗
m exp

(
j2π(n−m)kα

Q

)

=
1

Q

Q−1∑
n=0

|Sn|2︸ ︷︷ ︸
Signal

+

1

Q

Q−1∑
n=0

Q−1∑
m ̸=n,m=0

SnS
∗
m exp

(
j2π(n−m)kα

Q

)
︸ ︷︷ ︸

ICI

.

(7)

It is clearly seen that ‘Signal’ is a common term for both
OFDM and SEFDM signals. When α = 1, the ‘ICI’ term is
cancelled for OFDM. When α < 1, the ‘ICI’ term will be
reserved for SEFDM signals. The variation of ICI is the key
factor to enable waveform based communication security.

To simplify the analysis without considering zero
padding, a matrix format of SEFDM signal generation is
expressed as

X = FI, (8)

where X is a Q-dimensional vector, I is an N-dimensional
vector without oversampling and F is a Q × N sub-
carrier matrix. At the receiver, when additive white Gaussian
noise (AWGN) Z is considered, the received signal will be
expressed as

Y = X + Z. (9)

Signal demodulation is realized by multiplying (9) with
the complex conjugate sub-carrier matrix F∗ leading to

R = F∗X + F∗Z = F∗FI + F∗Z = CI + ZF∗ , (10)

where C is an N × N correlation matrix, which contains
ICI information. It is inferred that to successfully recover
SEFDM signals, two steps have to be operated. Firstly, the
perfect correlation matrix C has to be known. Secondly,
an optimal signal detector has to be applied to remove the
effect of C.

A commonly used secure communication topology is
presented in Fig. 4. Alice is the information sender, Bob
is the legitimate user and Eve is the eavesdropper. Due
to the nature of the waveform-defined security framework,
Alice does not need channel state information at transmitter
(CSIT) from Bob and Eve. Since signal format information
is pre-shared with Bob, therefore only a signal detector is
required by Bob. Eve is assumed to be passive and has no

Fig. 4. Waveform based secure communication.

information of the signal format. Therefore, Eve’s first step
is to learn the signal format to determine the correlation
matrix C. With the estimate of C, a signal detector will be
applied at the second step. It is anticipated that an imperfect
signal classification (i.e. imperfect estimation of C) will
cause the failure of subsequent signal detection.

IV. SIGNAL CLASSIFICATION

Signal classification is the first step for a successful signal
recovery. The aim of signal classification is to identify
signal formats for each received signal. In this work, it
will be used to determine the correlation matrix C. With an
accurate classification, the subsequent signal demodulation
and signal detection will be reliable.

It should be noted that signal classification is different
compared with modulation classification [12]. Signal clas-
sification aims to separate different multi-carrier signals
while modulation classification is normally for signal-carrier
signals. Since single-carrier signals are derived from multi-
carrier signals, therefore accurate signal classification will
determine the success of modulation classification. For mod-
ulation classification, constellation patterns are finite and
pre-defined. Therefore, maximum likelihood classifiers are
possible. However, the value of α in SEFDM is continuous
and the infinite variations of α will prevent the use of
maximum likelihood classifiers.

To effectively classify SEFDM signals, this work will rely
on deep learning. The convolutional neural network (CNN)
classifier has been applied in modulation classification [12]
with reduced computational complexity. A CNN classifier
has also been tested in SEFDM [13] with its potential
applications in physical layer security in [9]. Therefore, this
work will still use the CNN classifier to evaluate the security
impact from different signal generation architectures. A gen-
eral CNN classifier training framework is presented in Fig.
5 where multiple neural network (NN) modules are packed
for automatic signal feature extraction. Each NN module
includes four layers, namely Convolution, Normalization,
ReLU and MaxPool. The last NN module, termed NN-out,
has a unique AveragePool layer, which is used to obtain
smooth features at the end. With the extracted features, a
fully connected layer and a SoftMax layer are applied to
classify signals.



Fig. 5. CNN classifier training framework for the non-orthogonal
signal classification.

The signal classification complexity mainly comes from
the off-line training stage and a pre-trained model can be
directly used for online classification tasks. It should be
noted that the CNN classifier is only used by eavesdroppers.
The high computational complexity of classifier training
complicates eavesdropping and will therefore be beneficial
to the WDS framework.

V. SIGNAL DETECTION

Once the correlation matrix C is determined via signal
classification, signal detection has to be operated to recover
original signals from the self-created ICI. The optimal signal
detection method is maximum likelihood which will search
all possible solutions and find the optimal one. However, its
computational complexity is exponentially increased when
the number of sub-carriers increases. Its simplified version
is sphere decoding (SD), which searches for the optimal
solution within a pre-defined space.

The SD search for the optimal estimate I
SD

is defined as

I
SD

= arg min
I∈ON

∥R−CI∥2 ≤ g, (11)

where O is the constellation cardinality and ON covers all
possible solutions. g is the pre-defined search radius and
it equals the distance between the demodulated R and the
coarse hard-decision I

ZF
. It is noted that the hard-decision

I
ZF

is computed based on the zero forcing (ZF) method
using a rounding function ⌊.⌉ as I

ZF
= ⌊C−1R⌉. Therefore,

the search radius is defined as

g = ∥R−CI
ZF

∥2 (12)

The final solution I
SD

is obtained as a N-dimensional
vector that meets the condition in (11). Each symbol esti-
mation in I

SD
is dependent on the symbols from its previous

dimensions. The perfect knowledge of C plays an important
role since an imperfect estimate of C will give a wrong
decision in (11)(12) and cause no solution at the end.
Therefore, the first step signal classification is crucial to
the second step signal detection if an eavesdropper aims to
accurately recover SEFDM signals.

The BER performance of different α at legitimate users
is demonstrated in Fig. 6. To simplify signal detection, the
MultiSD detector [14] is commonly used instead of SD
when a signal is equipped with a large number of sub-
carriers. Computational complexity will be reduced since
multiple small size SD detectors are operated in parallel
within the MultiSD. More details on the complexity com-
parison between SD and MultiSD are referred to [9]. Results
in Fig. 6 show that the traditional matched filter (MF) signal
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Fig. 6. BER performance at various α with detector (MultiSD)
and without detector (MF) when perfect signal classification is
assumed. The number of data sub-carriers is N=256.

detector is not powerful to recover non-orthogonal signals
properly while the specially designed MultiSD detector
can efficiently mitigate ICI and reach theory achievable
performance. In addition, Fig. 6 reveals that a strong ICI
effect (i.e. small α) will degrade signal recovery while better
performance will be achieved with the increase of α.

VI. SIMULATION DESIGN AND RESULTS

The simulation model is designed following the topology
in Fig. 4, in which the eavesdropper requires a classifier
and a signal detector while the legitimate user will use pre-
shared information to detect signals. One OFDM/SEFDM
symbol has N=256 raw QPSK symbols. With a sufficient
oversampling factor ρ=8 [12], the time-domain signal has
2048 samples. To test the impact of signal generation archi-
tectures, two signal patterns are evaluated in the following
with the values of α in the bracket.

• Type-I: OFDM, SEFDM(0.9, 0.8, 0.7)
• Type-II:OFDM, SEFDM(0.95, 0.9, 0.85, 0.8, 0.75, 0.7)
It should be noted that the WDS framework could have

infinite signal patterns and the two patterns above are se-
lected as evaluation examples. Type-I has four signal classes
and the BCF gap between adjacent signals is ∆α=0.1. Type-
II adds more signals leading to a narrower BCF gap of
∆α=0.05. Therefore, the Type-II signal pattern has stronger
feature similarity and it is expected that classifying Type-II
signals is more challenging than the Type-I signals.

For the CNN classifier training, 2,000 OFDM/SEFDM
symbols are generated for each class in either the Type-I pat-
tern or the Type-II pattern based on the data augmentation
generation method [9]. Therefore, there are overall 8,000
training symbols for Type-I and 14,000 training symbols for
Type-II. At the testing stage, 1,000 OFDM/SEFDM symbols
are generated per signal class. In this case, the Type-I pattern
will include 4,000 testing symbols and Type-II has 7,000
symbols. The CNN classifier is trained based on Fig. 5 with
a detailed neural network architecture presented in Table I.
Both training and testing symbols are manually distorted
by pre-defined channel/hardware impairments. A three-path



Table I: CNN classifier neural network layer architecture

Layers Dimension
Input layer 2× 1024
Convolutional layer-1 2× 1024× 64
Convolutional layer-2 2× 512× 64
Convolutional layer-3 2× 256× 64
Convolutional layer-4 2× 128× 64
Convolutional layer-5 2× 64× 64
Convolutional layer-6 2× 32× 64
Convolutional layer-7 2× 16× 64
Full-connection layer 2× 1× 64
SoftMax output layer 1× 1× 4(7)

-20 -10 0 10 20 30 40 50

Es/N0 (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

SigGen-I: Type-I
SigGen-I: Type-II
SigGen-II: Type-I
SigGen-II: Type-II

Fig. 7. Classification accuracy for SigGen-I and SigGen-II gener-
ated signals.

channel is defined with a path delay (s) of [0 9e-6 1.7e-
5] and relative power (dB) of [0 -2 -10]. The maximum
Doppler frequency is 4 Hz, the K-factor equals two and the
frequency offset is 2 parts per million (PPM).

It is assumed that no signal processing is operated to
compensate the channel/hardware impairments before signal
classification. Therefore, a received signal will be randomly
truncated with only 1024 time samples used by the classifier.
Considering both real and imaginary part of a complex
signal, the size of the input layer in the CNN classifier is
therefore 2×1024 in Table I.

Firstly, a CNN classifier is trained based on the SigGen-
I architecture in Fig. 3(a). Unlike the single Es/N0=20 dB
training in [13], the training in this work is pre-contaminated
by AWGN from Es/N0=-20 dB to 50 dB with a 10 dB
increment step. This will ensure a robust CNN classifier that
can universally work in a wide range of channel conditions.
Classification accuracy is a metric that tells the robustness
of classification. The accuracy results for the SigGen-I
signal are presented in Fig. 7 where Type-I signals can be
accurately classified at nearly 100% while Type-II signals
are partially misclassified with a reduced accuracy of 80%.

A separate CNN classifier is trained based on the SigGen-
II architecture in Fig. 3(b). Classification accuracy rates are
therefore reduced to 53% for Type-I and 38% for Type-
II in Fig. 7. Compared to the SigGen-I accuracy, the use
of SigGen-II can cut eavesdropping classification accuracy
by 47% and 53% for Type-I and Type-II, respectively.
This is due to the fact that SigGen-I signals have two-
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Fig. 9. Confusion matrix for Type-I and Type-II signals using
SigGen-II architecture.

dimensional features, namely spectral bandwidth compres-
sion and spectral band shift. When the signal is generated
via SigGen-II, the feature of spectral band shift will be
removed. One-dimensional feature, limited to the spectral
bandwidth compression, can not be effectively used by a
classifier, resulting in the degraded accuracy.

Confusion matrix is a metric that shows the classification
details. Two confusion matrices for SigGen-I signals at the
stable Es/N0=30 dB are illustrated in Fig. 8. Perfect classi-
fication indicates that all the predicted elements are within
the diagonal zone while imperfect classification would cause
non-diagonal elements. Based on the principle, it is visually
inferred that classifying Type-I signals is easier than Type-II
signals. Confusion matrices are also presented for SigGen-
II in Fig. 9 where the misclassification for each signal class
is more obvious.

BER is also an efficient metric to evaluate the security
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signals generated by SigGen-I and SigGen-II architectures at
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robustness and performance reliability. We consider BER
measurement based on realistic classification results at
Es/N0=30 dB where eavesdropping classification accuracy
is stable. Since a received signal can be classified into a
random signal class, a weighted eavesdropping BER metric
covering all possible prediction results, will be convincing.
Considering the confusion matrices in Fig. 8 and Fig. 9, a
weighted BER for a given α is computed as

BER =
W1

W
·BER1 + ...+

Wi

W
·BERi, (13)

where W indicates the number of testing symbols, which is
1,000 for each true signal class in this work. Wi indicates
the number of symbols that are predicted to the ith signal
class and BERi is the BER based on the ith predicted class
using the MultiSD detector. It is inferred that the higher
value of Wi, the higher percentage of its corresponding
BERi will dominate the final BER result.

The eavesdropping BER computation in Fig. 10 will
consider the best case and the worst case according to
confusion matrices. The best case for SigGen-I based Type-
I signal in Fig. 8 is α=0.7 while the worst case is α=0.8.
For the Type-II signal, the best case is either α=0.7 or
α=0.75 while the worst case is α=0.9. Since the best case
in SigGen-I based Type-I signal can be perfectly classified,
its BER is thus zero. This is also the case for Type-II
signals. However, the worst case will cause increased BER
due to the mismatch between true class and predicted class.
For SigGen-II generated signals, since the original spectral
band shift feature is removed by the SigGen-II generator, its
reduced classification accuracy in Fig. 9 results in degraded
BER for both Type-I and Type-II patterns in either the best
case or the worst case in Fig. 10. In summary, the use
of SigGen-I signal generation can not completely ensure
physical layer security while SigGen-II can enhance it.

For legitimate users, signal format information is pre-
shared and legitimate users can skip the classification step
and perfectly recover signals using the optimal MultiSD
detector. Fig. 10 reveals that signal generation architecture
has no effect on legitimate user BER performance and both
Type-I and Type-II signals achieve zero BER.

VII. CONCLUSION

Instead of focusing on traditional channel dependent
PLS techniques, this work aims to enhance communication
security from a fundamental perspective using a waveform-
defined security (WDS) framework. The traditional WDS
framework ensures security by confusing eavesdroppers
when signals are characteristically similar. However, the
security will be compromised when signal features are
diversified. Therefore, this work proposed to use a new
signal generation architecture, which can enhance com-
munication security by cutting distinguishable signal fea-
tures. Both a feature-diversity dominant signal pattern and
a feature-similarity dominant signal pattern are tested by
deep learning CNN classifiers. Results show that eaves-
droppers in the traditional WDS framework can classify the
feature-diversity dominant signals at nearly 100% accuracy
while the accuracy slightly reduces to 80% for the feature-
similarity dominant signals. By using the proposed signal
generator, eavesdropping will fail in both signal patterns and
the accuracy is decreased by up to 53%. BER performance
will not be affected by the new signal generation. Therefore,
this work can enhance further WDS framework security and
meanwhile maintain legitimate user performance.
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