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Abstract
We investigate meta-learning procedures in the
setting of stochastic linear bandits tasks. The
goal is to select a learning algorithm which works
well on average over a class of bandits tasks, that
are sampled from a task-distribution. Inspired
by recent work on learning-to-learn linear regres-
sion, we consider a class of bandit algorithms
that implement a regularized version of the well-
known OFUL algorithm, where the regularization
is a square euclidean distance to a bias vector.
We first study the benefit of the biased OFUL
algorithm in terms of regret minimization. We
then propose two strategies to estimate the bias
within the learning-to-learn setting. We show both
theoretically and experimentally, that when the
number of tasks grows and the variance of the
task-distribution is small, our strategies have a
significant advantage over learning the tasks in
isolation.

1. Introdution
The multi-armed bandit MAB (Lattimore & Szepesvári,
2020; Auer et al., 2002; Siegmund, 2003; Robbins, 1952;
Cesa-Bianchi, 2016; Bubeck et al., 2012) is a simple frame-
work formalizing the online learning problem constrained
to partial feedback. In the last decades it has receiving in-
creasing attention due to its wide practical importance and
the theoretical challenges in designing principled and effi-
cient learning algorithms. In particular, applications range
from recommender systems (Li et al., 2010; Cella & Cesa-
Bianchi, 2019; Bogers, 2010), to clinical trials (Villar et al.,
2015), and to adaptive routing (Awerbuch & Kleinberg,
2008), among others.

In this paper, we are concerned with linear bandits (Abbasi-
Yadkori et al., 2011; Chu et al., 2011; Auer, 2003), a con-
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solidated MAB setting in which each arm is associated with
a vector of features and the arm payoff function is mod-
eled by a (unknown) linear regression of the arm feature
vector. Our study builds upon the OFUL algorithm intro-
duced in (Abbasi-Yadkori et al., 2011), which in turned
improved the theoretical analysis initially investigated in
(Chu et al., 2011; Auer, 2003). Nonetheless, it may still
require a long exploration in order to estimate well the un-
known linear regression vector. An appealing approach
to solve this bottleneck is to leverage already completed
tasks by transferring the previously collected experience to
speedup the learning process. This framework finds its most
common application in the recommendation system domain,
where we wish to recommend contents to a new user by
matching his preference. Our objective is to rely on past
interactions corresponding to navigation of different users
to speedup the learning process.

Previous Work During the past decade, there have been
numerous theoretical investigation of transfer learning, with
a particular attention to the problems of multi-task (MTL)
(Ando & Zhang, 2005; Maurer & Pontil, 2013; Maurer et al.,
2013; 2016; Cavallanti et al., 2010) and learning-to-learn
(LTL) or meta-learning (Baxter, 2000; Alquier et al., 2017;
Denevi et al., 2018a;b; 2019; Pentina & Urner, 2016). The
main difference between these two settings is that MTL
aims to solve the problem of learning well on a prescribed
set of tasks (the learned model is tested on the same tasks
used during training), whereas LTL studies the problem
of selecting a learning algorithm that works well on tasks
from a common environment (i.e. sampled from a prescribe
distribution), relying on already completed tasks from the
same environment (Pentina & Urner, 2016; Balcan et al.,
2019; Denevi et al., 2018a; 2019). In either case the base
tasks considered have always been supervised learning ones.
Recently, the MTL setting has been extended to a class
of bandit tasks, with encouraging results empirically and
theoretically (Azar et al., 2013; Calandriello et al., 2014;
Zhang & Bareinboim, 2017; Deshmukh et al., 2017; Liu
et al., 2018), as well as the case where tasks belong to a
(social) graph, a setting that is usually referred to as collab-
orative linear bandit (Cesa-Bianchi et al., 2013; Soare et al.,
2014; Gentile et al., 2014; 2017). Differently from these
works, the principal goal of this paper is to investigate the
adoption of the meta-learning framework, which has been
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successfully considered within the supervised setting, to the
setting of linear stochastic bandits.

Contributions Our contribution is threefold. First, we
introduce in Section 3 a variant of the OFUL algorithm
in which the regularization term is modified by introduc-
ing a bias vector, analyzing the impact of the bias in terms
of regret minimization. Second, and more importantly, in
Sections 4 and 5 we propose two alternative approaches
to estimate the bias, within the meta-learning setting. We
establish theoretical results on the regret of these methods,
highlighting that, when the task-distribution has a small
variance and the number of tasks grows, adopting the pro-
posed meta-learning methods lead a substantial benefit in
comparison to using the standard OFUL algorithm. Finally,
in Section 6 we compare experimentally the proposed meth-
ods with respect to the standard OFUL algorithm on both
synthetic and real data.

2. Learning Foundations
In this section we start by briefly recalling the standard
stochastic linear bandit framework and we then present the
considered LTL setting.

2.1. Linear Stochastic Bandits

Let T be a positive integers and let [T ] = {1, . . . , T}. A
Linear Stochastic MAB is defined by a sequence of T in-
teractions between the agent and the environment. At each
round t ∈ [T ], the learner is given a decision set Dt ⊆ Rd
from which it has to pick an arm xt ∈ Dt. Subsequently, it
observes the corresponding reward yt = x>t w

∗ + ηt which
is defined by a linear relation with respect to an unknown
parameter w∗ ∈ Rd combined with a sub-gaussian random
noise term ηt. Thanks to the knowledge of the true param-
eter w∗, at each round t the optimal policy picks the arm
x∗t = arg maxx∈Dt x

>w∗, maximizing the instantaneous
reward. The learning objective is to maximize the cumula-
tive reward, or equivalently, to minimize the pseudo-regret

R(T,w∗) =

T∑
t=1

(x∗t − xt)
>w∗.

As learning algorithm we consider OFUL (Abbasi-Yadkori
et al., 2011). At each round t ∈ [T ], it estimates w∗ by
ridge-regression over the observed arm reward pairs, that is,

ŵλ
t+1 = arg min

w∈Rd
‖Xtw − yt‖22 + λ ‖w‖22 (1)

where Xt is the matrix whose rows are x>1 , . . . ,x
>
t , I is the

d × d identity matrix and yt = (y1, . . . , yt)
>. A key in-

sight behind OFUL is to update online a confidence interval
Ct containing the true parameter w∗ with high probability
and centered in ŵλ

t . According to Theorem 2 of (Abbasi-
Yadkori et al., 2011), assuming ‖w∗‖2 ≤ S and ‖x‖2 ≤ L

∀x ∈ ∪ts=1Ds, then for any δ > 0, w.p. ≥ 1 − δ, ∀t ≥ 0,
w∗ lies in

Ct(δ) =

{
w ∈ Rd :

∥∥ŵλ
t −w

∥∥
Vλ
t

≤ R
√
d log

1 + tL2/λ

δ
+ λ

1
2S =: βλt (δ)

}
(2)

where Vλ
t = λI+X>t Xt. According to the optimism in the

face of uncertainty principle, at each round t OFUL picks
the arm xt by solving the following optimization problem:

xt = arg max
x∈Dt

max
w̃λt ∈Ct

x>w̃t. (3)

As was proved in Lemma 5 of (Kuzborskij et al., 2019), this
corresponds to pick:

xt ∈ arg max
x∈Dt

{
x>ŵλ

t−1 + βt−1(δ) ‖x‖(Vλ
t−1)

−1

}
. (4)

Finally, with probability at least 1− δ, OFUL satisfies (see
Theorem 3 of (Abbasi-Yadkori et al., 2011)):

R(T,w∗) ≤ 4

√
Td log

(
1 +

TL

λd

)(
λ

1
2S+

+R
√

2 log(1/δ) + d log(1 + TL/(λd))

)
.

We can now formally introduce the considered LTL learning
framework for the family of tasks we analyze in this work:
biased regularized linear stochastic bandits.

2.2. LTL with Linear Stochastic Bandits.

We assume that each learning task w ∈ Rd representing
a linear bandit, is sampled from a task-distribution ρ of
bounded support in Rd. The objective is to design a meta-
learning algorithm which is well suited to the environment.
Specifically, we assume to receive a sequence of tasks
w1, . . . ,wN , . . . which are independently sampled from
the task-distribution (environment) ρ. Due to the interac-
tive nature of the bandit setting, we do not have any prior
information related to a new task; we collect information
about it along the interaction with the environment. After
completing the j-th task, we store the whole interaction in
a dataset Zj which is formed by T entries (xj,t, yj,t)

T
t=1.

Clearly, the dataset entries are not i.i.d sampled from a given
distribution, but each dataset Zj corresponds to the record-
ing of the learning policy in terms of the arm xj,t picked
from the decision set Djt and its corresponding reward yj,t
while facing the task specified by the unknown vector wj .
Starting from these datasets, we wish to design an algorithm
A which suffers a low regret on a new task wN+1 ∼ ρ. This
can be stated into requiring that A trained over N datasets
has small transfer-regret:

R(T, ρ) = Ew∼ρ

[
E
[
R(T,w)

]]
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where the inner expectation is with respect to rewards real-
izations due to their noisy components.

3. Biased Regularized OFUL
We now introduce BIAS-OFUL, a biased version of OFUL,
which is instrumental for our meta-learning setting. Al-
though not feasible, the proposed algorithm it serves as a
basis to study the theoretical properties of meta-learning
with stochastic linear bandit tasks. In Section 6 we will
present a more practical version of it.

Regularized Confidence Sets The idea of following a
bias in a specific family of learning algorithms is not new
in the LTL literature (Denevi et al., 2018a; 2019; 2018b).
Inspired by (Denevi et al., 2019) we modify the regular-
ization in the computation of the confidence set centroid
ŵλ
t , where the regularization is now defined as a square

euclidean distance to the bias parameter h ∈ Rd. Given a
fixed vector h, at each round t ∈ [T ] BIAS-OFUL estimates
the regularized centroid of the confidence ellipsoid as

ŵh
t = arg min

w

∥∥X>t w −Yt

∥∥2
2

+ λ ‖w − h‖22

whose solution is given by

ŵh
t =

(
Vλ
t

)−1
X>t (Yt −Xth) + h. (5)

This result follows directly from the standard ridge-
regression by using the substitution v = w − h.
As we have mentioned in the previous section, at each round
t OFUL keeps also updated a confidence interval Ct (see
Equation 2) centered in ŵλ

t which contains w∗ with high
probability. We now derive a confidence set for the biased
regularized estimate ŵh

t , assuming that we have access to
an oracle to compute the distance ‖h−w∗‖2. This seems
quite restrictive, however later in the paper we will show
how levering similar related tasks we can exploit this bound
to take advantage of the bias version of OFUL, without
having to know the above distance a-priori.

Theorem 1. Assuming ‖h‖2 ≤ S, ‖w∗‖2 ≤ S and ‖x‖2 ≤
L ∀ x ∈ ∪ts=1Ds, then for any δ > 0, with probability at
least 1− δ, ∀t ≥ 0, w∗ lies in the set

Cht (δ) =

{
w ∈ Rd :

∥∥ŵh
t −w

∥∥
Vλ
t
≤ λ 1

2 ‖h−w∗‖2 +

+R

√√√√2 log

(
det
(
Vλ
t

)1/2
det (λI)

1/2
δ

)
= βh

t (δ)

}
. (6)

The proof can be found in the appendix material. We will
now study the impact of the bias h in terms of regret.

3.1. Regret Analysis with Fixed Bias

Given the confidence set defined in Theorem 1 and the
optimism principle translated into selecting the next arm ac-
cording to Equation 4, we can analyze the expected pseudo-
regret depending on the value of h.

Lemma 1. (BIAS-OFUL Expected Regret) Under the same
assumptions of Theorem 1, if in addition, for all t and all
x ∈ Dt, x>w∗ ∈ [−1, 1], and considering λ ≥ 1, we have

R(T,w∗) = E [R(T,w∗)]

≤ C

√
Td log

(
1 +

TL

λd

)(
λ

1
2 ‖w∗ − h‖2 +

+R
√
d log(T + T 2L/(λd))

)

where the expectation is respect to the reward generation
and C > 0 is a constant factor.

We now analyze the regret for two different values of h. In
particular we wish to highlight how setting a good bias can
speedup the process of learning with respect to using the
standard OFUL approach (Abbasi-Yadkori et al., 2011).

Corollary 1. Under the conditions of Lemma 1, the follow-
ing bounds on the expected regret of BIAS-OFUL holds:

(i) Independent Task Learning (ITL), given by setting h =
0 satisfies the following expected regret bound

R(T,w∗) ≤ C

√
Td log

(
1 +

TL

λd

)(
λ

1
2S+

+R
√
d log(T + T 2L/(λd))

)
which is of order O(d

√
T ) for any λ ≥ 1.

(ii) The Oracle, given by setting h = w∗satisfies

R(T,w∗) ≤ C

√
Td log

(
1 +

TL

λd

)
(
R
√
d log(T + T 2L/(λd))

)
which is 0 as λ→∞.

The proofs can be found in the supplementary material. The
main intuition is that, as long as we can set h = w∗, the
bigger the the regularization parameter λ is, the more the
Oracle policy tends to select the arm only based on w∗,
thereby becoming equivalent to the optimal policy.
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3.2. Transfer Regret Analysis with Fixed Bias

Following the above analysis for the single task case, we
now study the impact of the bias in the transfer regret bound.
To this end, we introduce the variance and the mean absolute
distance of a bias vector h relative to the environment of
task,

Varh = Ew∼ρ
[
‖w − h‖22

]
, Marh = Ew∼ρ

[
‖w − h‖2

]
and we observe that w = Ew∼ρw = arg minh∈Rd Varh
and m = arg minh∈Rd Marh. With this in hand, we can
now analyze how the transfer regret can be upper bounded
as a function of the introduced terms.
Lemma 2. (Transfer Regret Bound) Under the same con-
ditions in Theorem 1 and Lemma 1, the expected transfer
regret of BIAS-OFUL can be upper bounded as:

R(T, ρ) ≤ C

√
Tdλ log

(
1 +

TL

λd

)
Marh+

+RCd

√
T log

(
T +

T 2L

λd

)
log

(
1 +

TL

λd

)

≤ C

√
Tdλ log

(
1 +

TL

λd

)
Varh+

+RCd

√
T log

(
T +

T 2L

λd

)
log

(
1 +

TL

λd

)
Proof. The first statement is the expectation with respect
to the task-distribution ρ applied to Lemma 1, while the
second follows by applying Jensen’s inequality.

We can now replicate what we have done in Corollary 1 and
consider the transfer regret bound for two different values
of the hyper-parameter h. The main difference is that here,
there is not an a-priori correct value for h as it depends on
the task-distribution ρ.
Corollary 2. Under the same assumptions in Theorem 1
and Lemma 1, and setting λ = 1

TVarh
, the following bounds

on the transfer regret hold
(i) Independent Task Learning (ITL), given by setting the

bias hypeparameter h equal to 0, satisfies

R(T, ρ) ≤

[
1 +

√
Td log

(
T +

T 3LVar0
d

)]

C

√
d log

(
1 +

T 2LVar0
d

)
(ii) The Oracle, given by setting the bias hyperparameter

h equal to the mean task w, satisfies

R(T, ρ) ≤

[
1 +

√
Td log

(
T +

T 3LVarρ
d

)]

Algorithm 1 Within Task Algorithm: BIAS-OFUL

Require: λ > 0, ĥ0 ∈ Rd
1: ŵh

0 = ĥ0,V
−1
0 = 1

λI.
2: for t = 1 to T do
3: GET decision set Dt

4: SELECT xt ∈ Dt with bias h = ĥλj,t
5: OBSERVE reward yt
6: UPDATE Vt = Vt−1 + xtx

>
t

7: UPDATE ĥt according to the meta-algorithm
8: UPDATE ŵh

t using Equation 5
9: end for

Algorithm 2 Meta-Algorithm: Estimating ĥλ

1: for j = 1 to N do
2: SAMPLE new task wj ∼ ρ
3: SET ĥλj,0
4: RUN Algorithm 1 with parameter ĥλj,0
5: end for

C

√
d log

(
1 +

T 2LVarρ
d

)
where Varρ = Varw.

Proof. These results directly follow from Lemma 2. We
have picked λ = 1

TVarh
in order to highlight the multi-

plicative term log(1 + Varh) which tends to zero as the the
variance Varh goes to zero.

Therefore, running BIAS-OFUL with bias h equal to w
brings a substantial benefit with respect to the unbiased
case when the second moment of the task-distribution ρ is
much bigger than its variance. Specifically, we introduce
the following assumption.

Assumption 1. (Low Biased Variance)

Varρ = Ew∼ρ ‖w −w‖22 � Ew∼ρ ‖w‖22 = Var0. (7)

Notice also that the choice λ = 1/(TVarh), implies that, as
Varw tends to 0, the regret upper bound of the oracle case
tends to zero too reflecting the result of Corollary 1. More
in general, we can state that when the environment (i.e. the
task-distribution ρ) satisfies Assumption 1, leveraging on
tasks similarity would gives a substantial benefit compared
to learning each task separately. Since in practice the mean
task parameter w is unknown, in the following sections we
propose two alternative approaches to estimate w.

4. A High Variance Solution
In this section, we present our first meta-learning method.
We begin by introducing some additional notation. We
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let xh
j,t be the arm pulled by the BIAS-OFUL algorithm

(Algorithm 1) at round t-th of the j-th task. We denote by
Vj,T =

∑T
s=1 x

h
j,sx

h>
j,s the design matrix computed with

the T arms picked during the j-th task. For each terminated
task j ∈ [N ] we also define bj,T = X>j,TYj,T . Finally, we
introduce the mean estimation error

εN,t(ρ) =
∥∥∥w − ĥλN,t

∥∥∥2
2

which is the error of our estimate ĥλN,t with respect to the
true mean task w, at round t of the N + 1-th task.

4.1. Averaging the Estimated Task Parameters

An intuitive solution to bound the estimation error εN,t
is to simply average of the estimated task parameters ŵλ

j

computed according to Equation 1 on the dataset Zj without
considering any bias.

ĥλN,t+1 =
1

NT + t

(
N∑
j=1

T ŵλ
j,T + tŵλ

N+1,t

)
. (8)

By adopting this approach, we have the following bound on
the transfer regret.

Theorem 2. (Transfer Regret Bound). Let the assumptions
of Lemma 2 hold and let ĥλN,t be defined as in Equation (8).
Then, it hold that

R(T, ρ) ≤ dC

√√√√√√√T log

1 +

T 2L

(
Varw + εN,T (ρ)

)
d


where the mean estimation error can be bound as√

εN,T (ρ) ≤ Hρ(N + 1,w) + max
j=1,...,N

βλj
(
1/T

)
λ
1/2
min(Vλ

j,T )
.

Here, βλj
(
1
T

)
refers to the confidence interval computed with

OFUL (see Equation 2) andHρ(N+1,w) =
∥∥w − hN,t

∥∥
2

with hN,t+1 = 1
NT+t

(∑N
j=1 Twj + twN+1

)
.

Proof. We follow the reasoning in Corollary 2, this time
setting h = ĥλN,T , and then observe that√

εN,T (ρ) =
∥∥∥w − ĥλN,T

∥∥∥
2

≤
∥∥w − hN,T

∥∥
2

+
∥∥∥hN,T − ĥλN,T

∥∥∥
2

= Hρ(N + 1,w) +
∥∥∥hN,T − ĥλN,T

∥∥∥
2

≤ Hρ(N + 1,w) + max
1≤j≤N+1

∥∥wj − ŵλ
j,T

∥∥
2

≤ Hρ(N + 1,w) + max
1≤j≤N+1

∥∥wj − ŵλ
j,T

∥∥
Vλ
j,T

λ
1/2
min(Vλ

j,T )

≤ Hρ(N + 1,w) + max
1≤j≤N+1

βλj
(
1/T

)
λ
1/2
min(Vλ

j,T )
.

The term Hρ(N + 1,w) denotes the estimation error of the
empirical mean computed from the N + 1 tasks vectors
(wj)

N+1
j=1 , relative to the true mean w. Since the wj are

independent random d-dimensional vectors drawn from ρ
we can apply the following vectorial version of the Bennett’s
inequality (see, e.g., Smale & Zhou, 2007, Lemma 2).

Lemma 3. Let w1, . . . ,wN be N independent random vec-
tors with values in Rd sampled from the task-distribution
ρ. Assuming that ∀j ∈ [N ] : ‖wj‖ ≤ S, then for any
0 < δ < 1, it holds, with probability at least 1− δ

H(N,w) ≤ 2 log(2/δ) S

N
+

√
2 log(2/δ) Varρ

N
.

The above lemma says that the error Hρ(N,w) goes
to zero as N grows to infinity. Therefore the es-
timation error εN,t(ρ) is dominated by the “variance”
term max1≤j≤N β

λ
j

(
1/T

)
λ
−1/2
min (Vλ

j,T ), associated with
the worst past task. By relying on linear regression re-
sults (Lai & Wei, 1982) we have that λmin(Vj) ≥ log T .
Moreover, as λmin(Vλ

j ) ≥ λ + λmin(Vj), we observe an
increasing sensitivity of the incurred variance to the λ param-
eter for small value of T . Finally, according to our choice
of λ = 1/TVarĥλ , the suffered variance increases with the
variance of our estimator. The latter in turns increases with
the variance of the distribution ρ, which corresponds to the
case in which Assumption 1 tends to be violated.

5. A High Bias Solution
In this section we will present an alternative estimator of the
true mean w, which is inspired by the existing multi-task
bandit literature (Gentile et al., 2014; 2017; Soare et al.,
2014). This estimator exploits together all the samples
associated to the past tasks Z1, . . . , ZN , with the aim of
reducing the variance. This is unlike the previous estimator
which separately considers the ridge-regression estimates
ŵλ

1 , . . . , ŵ
λ
N in Equation 8. As we will see, this approach

will reduce the variance but it will introduce an extra-bias.
Before presenting this second approach we require some
more notation. We let ṼN,t =

∑N
j=1 VN,T + VN+1,t

the global design matrix containing the design matrices
associated to past tasks V1,T , . . . ,VN,T and the current
design matrix VN+1,t. Analogously b̃N,t =

∑N
j=1 bj,T +

bN+1,t refers to global counterpart of bj,t. We denote
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with |A| = sup{‖Ax‖ : x ∈ Rd, ‖x‖ = 1} the norm of
matrix A induced by the norm ‖·‖, which if no specified is
the Euclidean norm. Finally, we denote with σmax(A) the
biggest singular value associated with matrix A.

5.1. Global Ridge Regression

In order to reduce the variance, our second approach esti-
mates, at each round t of the new sampled task N + 1, the
mean task w as a global ridge regression computed over all
the available samples as

ĥλN,t =
(
Ṽλ
N,t−1

)−1
b̃N,t−1. (9)

Our next result provides a bound on the transfer regret of
this proposed strategy.

Theorem 3. (Transfer Regret Bound). Let the assumptions
of Lemma 2 hold and let ĥλN,t be defined as in Equation (9).
Then, the following upper bound holds

R(T, ρ) ≤ dC

√√√√√√√T log

1 +

T 2L

(
Varw + εN,t(ρ)

)
d


where the mean estimation error can be bound as√
εN,T (ρ) ≤ S

λ+νmin
+ 2(N+1) max

1≤j≤N+1
H̃(N+1,wj)

+R

√
2

λ+νmin
log

(
T

(
1 +

NTL2

λd

))
+Hρ(N+1,w)

and defined νmin = λmin(ṼN,T ) and we introduced

H̃(N,wj) = Hρ(j,wj)σmax

(
Vj,T Ṽ

−1
N,T

)
which is a weighted form of the estimation error Hρ(j,wj)
towards the current task vector wj , where the weights are
defined in terms of tasks misalignment σmax

(
Vj,T Ṽ

−1
N,T

)
.

The proof is presented in Section D of the appendix.

The previous variance term
βλj (1/T )

λmin(Vλ
j,T )

has been now re-

placed by βλ(1/NT )
λ+νmin

. It should be easy to observe that
νmin ≥ N

d λmin(Vj) ∀j ∈ [N ] which leads a reduc-
tion of factor d/N to the variance, which goes to zero
as N goes to infinity. This gain does not come for free,
in fact this approach introduces a potentially high bias:
2(N + 1) maxj=1,...,N+1 H̃(N + 1,wj) which increases
with the tasks misalignment σmax

(
Vj,T Ṽ

−1
N,T

)
.

5.2. Tasks Misalignment

We now analyze the tasks misalignment factors appearing
in Theorem 3, namely, the quanitities σmax

(
Vj,tṼ

−1
N,t

)
and

H̃(N,wj). For this purpose, we consider two opposite
environments of tasks.

In the first case we assume that all the tasks parameters are
equal to each other and far from the zero d-dimensional
vector. This scenario, which corresponds to put all the mass
of the task-distribution ρ on a single task parameter w, is
clearly in agreement with Assumption 1. We expect this
to be the most favorable scenario, since after completing
a task, we face exactly the same task again and again. In
this case, independently on the covariance matrices, whose
construction also depends on the decision sets available
in the different tasks, it is simple to observe that we are
not suffering any bias, that is, H̃(N,wj) = 0 for every
j ∈ [N ] as all the task parameters are equal to each other.

The second environment is characterized by a task dis-
tribution ρ that is unform on finitely many orthogo-
nal tasks. For instance, this is the scenario when ρ
is uniform distributed over the standard basis vectors
{(S, 0, . . . , 0), . . . , (0, . . . , 0, S)} ∈ Rd. Differently from
the previous scenario, here after completing a task we will
probably face an orthogonal task. It should be quite natural
to see that this is the most unfavorable case and to expect to
not have transfer learning between tasks. This is confirmed
by the regret bound due to the misalignment expressed by
the covariance matrices σmax

(
Vj,tṼ

−1
N,t

)
. Indeed, since we

can have at most d misaligned arms, we have the follow-
ing upper bound d

N to the term σmax

(
Vj,tṼ

−1
N,t

)
. Based

on these observations we can conclude that the bigger the
cardinality of the set of basis induced by the distribution
ρ, the larger the number of completed tasks required to
have a proper transfer. We will now focus on an interme-
diate case satisfying Assumption 1. In order to control the
term σmax

(
Vj,tṼ

−1
N,t

)
and to give the possibility to gener-

ate aligned matrices when dealing with similar tasks, we
introduce an additional mild assumption:

Assumption 2. (Shared Induced Basis) The decision sets
are shared among all the tasks and tasks sampled according
to Assumption 1 induces that the covariance matrices gen-
erated by running the BIAS-OFUL algorithm (Algorithm 1)
share the same basis:

Vi = PΣiP
∗, ∀i ∈ [N ]. (10)

This assumption is quite mild as it just states that similar
tasks share the same pulled arms with no restrictions on the
pulling frequency. This is the case when the decision set
is fixed among different rounds and tasks, that is, Dj,t =
D ∀j ∈ [N ] and ∀t ∈ [T ], and consists of d orthogonal
arms. If Assumption 2 is satisfied, then we can obtain the
following bound: σmax

(
Vj,tṼ

−1
N,t

)
≤ 1. Furthermore, if

we denote by M the number of tasks necessary to achieve a
stationary behavior of the BIAS-OFUL policy in terms of
covariance matrices, then σmax

(
Vj,tṼ

−1
N,t

)
≤ 1/(N −M).
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5.3. Smallest Global Eigenvalue νmin

It only remains to analyze the term νmin. We observe that it
satisfies the lower bound

νmin = λmin

(
N+1∑
j=1

Vj,T

)
≥
N+1∑
j=1

λmin(Vj,T )

≥ (N + 1) log T

where in the last step we have relied on linear regression
result from (Lai & Wei, 1982) which shows that the condi-
tion O(λmin) = log(λmax) is required to guarantee asymp-
totic consistency, necessary to have sublinear anytime regret.
Since minj∈[N ] λmax(Vj) = O(T ), this condition implies
that minj∈[N ] λmin(Vj) ≥ log T .

6. Experiments
In this section we test the real effectiveness of the proposed
approaches. The theoretical results stated that the method
presented in Section 4 does not introduce any bias but it
may incur an additional variance according to the variance
of the task-distribution Varρ. On the contrary, the solution
proposed in Section 5 which massively uses all the observed
samples together, reduces the variance (at least) by a factor
d/N , at the price of an extra bias term.

As it was mentioned in Section 3, the parameter w∗ asso-
ciated to each single task is unknown, therefore we cannot
compute the gap ‖ĥλ −w∗‖2 defining the term βh

t (1/T ).
The main issue is that according to Equation 4, in order to
pick the next arm, it seems that the algorithm needs to com-
pute its exact value. However, we can simply split the norm
and rely on the assumption that ‖w∗‖ ≤ S, so to remove
the dependency on w∗. Indeed, it is important to emphasize
that the real knowledge transfer happens in terms of wh,
see Equation 5. This can be noticed by observing that the
gap

∥∥∥ĥλ −w∗
∥∥∥ equally affects all the available arms.

6.1. Experimental Results

In all the presented experiments the policy OPT knows the
parameter wj associated to task j and picks the next arm
as xj,t = arg maxx∈Dj,t x

>wj . The policies AVG-OFUL
and RR-OFUL implement Algorithms 1 and 2 and estimate
ĥ as per Equations 8 and Equation 9, respectively. The
Oracle policy knows the mean task parameter w and uses it
as the bias h in BIAS-OFUL (Corollary 2 (ii)). Analogously,
the ITL policy consists of BIAS-OFUL with bias set equal
to 0, see Corollary 2 (i). The regularization hyper-parameter
λ was selected over a logarithmic scale. We will start by
considering a pair of synthetic experiments in which we
show how the hyper-parameter λ affects the performance.
We then present experiments on two real datasets. We will
denote with K the size of the decision set D.

Figure 1. Cumulative reward measured after N = 10 tasks and
averaged over 10 independent test tasks, with λ = 1.

Figure 2. Cumulative reward measured after N = 10 tasks and
averaged over 10 independent test tasks, with λ = 100.

Synthetic Data Similarly to what was done in (Denevi
et al., 2019), we first generated an environment of tasks in
which running the Oracle policy is expected to outperform
the ITL approach. In agreement with Assumption 1, we
sample the task vectors from a distribution characterized
by a much smaller variance than its second moment. That
is, each task parameter wj is sampled from a Gaussian
distribution with mean w given by the vector in Rd with
all components equal to 1 and Varρ = 1. As far as the
decision set concerns, we first generate a random square
matrix P with size d and then compute its qr factorization
P = QR, where Q is a matrix with orthonormal columns
and R is an upper-triangular matrix. We then associate
to each base arm the direction associated to a column of
the matrix Q. This will guarantee having arms that are
almost orthogonal each other. Finally, at each round t ∈
[T ] the decision set Dt is initialized as a set of K random
vector that are first shifted towards the respective arm base
direction and then normalized. Notice that by following this
generation mechanism we avoid any inductive bias between
the task vectors and the arms ones, as they are actually
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independent. Each task consists of T = 50 rounds, in
which we have K = 5 arms of size d = 20. In order to
generate the rewards, we first compute the inner product
between the user (task) vector and the arm (input) vector,
we shift the resulting output interval [0, 1] and then add to a
Gaussian noise N

(
0.5, 1

)
, to compute the rewards. Finally,

we assigned reward 1 to the arm having the maximum final
reward, 0 to the others. In Figures 1 and 2, we report the
results generated with λ = 1 and λ = 100, respectively. It is
easy to observe that the stronger the regularization, the more
the AVG-OFUL tends to the Oracle. Conversely, RR-OFUL
get penalized with the increasing of λ, due to its bias.

LastFM Data The first dataset we considered is extracted
from the music streaming service Last.fm (Cantador et al.,
2011). It contains 1892 possible users and 17632 artists.
This dataset contains information about the artists listened
by a given user, and we used this information to define the
payoff function. We first removed from the set of items
those with less than 30 ratings and then we repeat the same
procedure for the users. This operation yields an user rating
matrix of size 741 x 538. Starting from this reduced matrix
we derived the arms and the users vectors by computing an
SVD decomposition where we kept only the first d = 10
features associated to the users and to the items. In order to
consider tasks satisfying Assumption 1, we randomly pick
an user and compute the set of its N = 20 most similar
users according to the l2-distance between their vectors.
Each task lasts T = 5 rounds and consists of K = 5 arms.
At each round t, the decision set consists of one arm whose
rating was at least equal to 4 and K − 1 arms whose ratings
were at most equal to 3. The rewards were then generated
analogously to the synthetic case. The Oracle policy knows
w which is computed as the average between the N = 20
considered user vectors. In Figure 3 (and Figure 4) we
displayed the cumulative regret suffered with respect to the
optimal policy, which during each task j ∈ [N ] knows the
true user parameter wj . The vertical yellow lines indicate
the end of each task. From the presented results we can
observe that both the proposed policies AVG-OFUL and
RR-OFUL outperform the ITL approach, while the Oracle
policy is consistent with Corollary 2 and Assumption 1.

Movielens Here we consider the Movielens data (Harper
& Konstan, 2015). It contains 1M anonymous ratings of
approximately 3900 movies made by 6040 users. As before
we first removed from the set of movies those with less than
500 ratings, and from the set of users those with less than
200 rated movies. This preprocessing procedure yields an
user rating matrix of size 847 x 618. Unlike the Last.fm case,
here adopting SVD to generate the arm/user vectors seems
not appropriate. Indeed, by exploring the retrieved singular
values, we could not find a subspace which provides a good
approximation of the real ratings unless we keep all the
latent features. Therefore, in order to find a set of similar

Figure 3. Empirical Transfer regret associated with Lastfm.

Figure 4. Empirical Transfer regret associated with Movielens.

users we observe better results by using the KMeans cluster-
ing algorithm over the user vectors. The results displayed in
Figure 4 were generated by running KMeans with C = 20
clusters with user vectors of size d = 10. We then picked
all the resulting clusters by filtering out the clusterings with
a silhouette value lower than 0.15 and for each cluster of the
clustering we have discarded those with less than 20 users.
Furthermore, in order to let the tasks be simpler, we reduced
the variance of the noisy components affecting rewards to
0.1. The difficulty in finding a valid set of similar tasks
yields a high task misalignment, which is confirmed by the
fact that the best performance occur for small value of λ.
Indeed, Figure 4 considers λ = 1. Here the AVG-OFUL
policy behaves almost equally to the ITL approach, con-
versely, the task misalignment caused bad performances to
the RR-OFUL policy, confirming its higher sensitivity to
task dissimilarity (see Theorem 3).

7. Conclusions and Future Work
In this work we studied a meta-learning framework with
stochastic linear bandit tasks. We have first introduced a
novel regularized version of OFUL, where the regularization
depends on the Euclidean distance to a bias vector. We
showed that setting appropriately the bias leads a substantial
improvement compared to learning each task in isolation.
This observation motivated two alternative approaches to
estimate this bias: while the first one may suffer a potentially
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high variance, the second might incur a strong bias.

In the future, it would be valuable to investigate the ex-
istence of unbiased estimators which do not suffer any
variance. Furthermore, while in our analysis we set λ =
1/TVarh, in the future it would be also interesting to learn
its value as part of the learning problem. Experimentally,
we observed that when Assumption 1 is satisfied, adopting
the unbiased estimator yields better results than the second
one, which is biased. One more direction of future research
would be to extend other meta-learning approaches, such
as those based on feature sharing, to the banding setting.
Finally, a problem which remains to be studied is the com-
bination of meta-learning with non-stochastic bandits.
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