
Morger et al. J Cheminform           (2021) 13:35  
https://doi.org/10.1186/s13321-021-00511-5

RESEARCH ARTICLE

Assessing the calibration in toxicological 
in vitro models with conformal prediction
Andrea Morger1, Fredrik Svensson2, Staffan Arvidsson McShane3, Niharika Gauraha3,4, Ulf Norinder3,5,6, 
Ola Spjuth3† and Andrea Volkamer1*†  

Abstract 

Machine learning methods are widely used in drug discovery and toxicity prediction. While showing overall good 
performance in cross-validation studies, their predictive power (often) drops in cases where the query samples have 
drifted from the training data’s descriptor space. Thus, the assumption for applying machine learning algorithms, that 
training and test data stem from the same distribution, might not always be fulfilled. In this work, conformal predic-
tion is used to assess the calibration of the models. Deviations from the expected error may indicate that training 
and test data originate from different distributions. Exemplified on the Tox21 datasets, composed of chronologically 
released Tox21Train, Tox21Test and Tox21Score subsets, we observed that while internally valid models could be 
trained using cross-validation on Tox21Train, predictions on the external Tox21Score data resulted in higher error rates 
than expected. To improve the prediction on the external sets, a strategy exchanging the calibration set with more 
recent data, such as Tox21Test, has successfully been introduced. We conclude that conformal prediction can be used 
to diagnose data drifts and other issues related to model calibration. The proposed improvement strategy—exchang-
ing the calibration data only—is convenient as it does not require retraining of the underlying model.
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Introduction
Machine learning (ML) methods are ubiquitous in drug 
discovery and toxicity prediction [1, 2]. In silico toxicity 
prediction is typically used to guide toxicity testing in 
early phases of drug design [3]. With more high-quality 
standardised data available, the (potential) impact of ML 
methods in regulatory toxicology is growing [4]. The col-
lection of available toxicity data is increasing, thanks in 
part to high-throughput screening programs such as 
ToxCast [5] and Tox21 [6, 7], but also with public-private 
partnerships such as the eTOX and eTRANSAFE pro-
jects, which focus on the sharing of (confidential) toxicity 

data and ML models across companies [8, 9]. In any case, 
no matter which underlying data and ML method is used, 
it is essential to know or assess if the ML model can be 
reliably used to make predictions on a new dataset.

Hence, validation of ML models is crucial to assess 
their predictivity. Several groups investigated random vs. 
rational selection of optimal test/training sets, e.g. using 
cluster- or activity-based splits, with the goal of better 
reflecting the true predictive power of established models 
[10–14]. Martin et al. [11] showed that rational selection 
of training and test sets—compared to random splits—
generated better statistical results on the (internal) test 
sets. However, the performance of both types of regres-
sion models on the—artificially created—external evalua-
tion set was comparable.

Thus, further metrics to define the applicability domain 
(AD), the domain in which an ML classifier can reliably 
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be applied [15–21], are needed. Besides traditional met-
rics accounting for chemical space coverage, Sheridan 
[20] discussed uncertainty prediction regression mod-
els, fitted with the activity prediction errors as labels and 
diverse AD metrics as descriptors (e.g. accounting for 
variation among RF tree predictions, predicted activity 
ranges with different confidence, or similarity to nearest 
neighbours). Since in classification models, the response/
activity is a categorical value, only the chemical space 
remains to define the AD. Mathea et al. [15] categorised 
the available methods into novelty and confidence esti-
mation  techniques. The former consider the fit into the 
underlying chemical descriptor space as a whole, whereas 
the latter focus on the reliability of predictions, i.e. data 
points may be well embedded in the descriptor space but 
abnormal regarding their class label.

A popular method for confidence estimation is con-
formal prediction (CP), which has in recent years been 
widely applied in the drug discovery and toxicity predic-
tion context [15, 22]. In CP, ML models are trained, and 
with the help of an additional calibration set (inductive 
conformal prediction [23]), the predictions are calibrated, 
i.e. ranked based on previously seen observations, result-
ing in so-called conformal p-values or simply p-values 
(not to be confused with statistical p-values from hypoth-
esis testing). The design of the CP statistical framework 
guarantees that the error rate of the predictions will not 
exceed a user-specified significance level. The control of 
this significance level makes CP advantageous compared 
to traditional confidence estimation methods, such as 
distance from the decision boundary, or ensemble mod-
els [15].

ML algorithms rely on the assumption that the prob-
ability distribution of the training data and test data 
are I.I.D. (independent and identically distributed). For 
conformal prediction, a slightly weaker assumption in 
the form of exchangeability is assumed for producing 
well-calibrated models [24]. This assumption is never-
theless not always fulfilled, especially when training and 
test data come from different sources. For example, data 
drifts were observed between training and test data of the 
USPS (handwritten digits) and the Statlog Satellite (satel-
lite image) datasets [25]. Similar observations were made 
in the toxicity prediction context when applying andro-
gen receptor agonism CP models trained on publicly 
available data to an industrial dataset [26]. Some efforts 
to look at data exchangeability include studies using mar-
tingales to uncover exchangeability issues in an online 
setting [25].

In this work, we explored how the above described con-
cepts of conformal prediction can be used to assess the 
quality of the model calibration when trained and applied 
on various toxicological in vitro datasets or subsets. For 

this purpose, the freely available Tox21 datasets [27], ini-
tially prepared for a data challenge to encourage model 
building and benchmarking toxicity prediction, were 
used. We show that conformal prediction allows us to 
identify data drifts between the Tox21 datasets, and we 
also propose strategies to mitigate this.

Data and methods
In this section, first the used Tox21 datasets are intro-
duced. Second, the general conformal prediction frame-
work along with aspects such as aggregation, evaluation 
and strategies to improve the calibration are described. 
Finally, the set-up and the individual computational 
experiments of this work are explained, including a refer-
ence to code and data availability.

Data collection, preprocessing and encoding
Tox21 datasets
The investigations in this work were performed on the 
freely available Tox21 datasets [27]. They consist of 
approximately 10,000 chemicals, which were tested on up 
to 12 endpoints of the nuclear receptor (NR) and stress 
response (SR)  pathways. As the dataset was released 
in a challenge setting, the three subsets were chrono-
logically published to the Tox21 Data Challenge partici-
pants: Tox21Train for training the models, Tox21Test 
as an intermediate set for the leaderboard to check the 
performance (and for participants to improve their mod-
els), and Tox21Score as the final dataset to determine the 
best performing models. The respective datasets were 
downloaded from the US National Center for Advanc-
ing Translational Sciences [28] on January 29th, 2019. 
Each compound was provided in sdf-format together 
with a binary value (0/non-toxic, or 1/toxic) for each of 
the 12 endpoints (X if no assay outcome was available for 
the compound). Note that throughout this manuscript, 
the Tox21 datasets are, consistently, referred to as Tox-
21Train, Tox21Test and Tox21Score, this should not be 
confused with additional training and test set splits nec-
essary for the ML/CP model set-ups.

Data preprocessing
The datasets were standardised as described in Morger 
et  al. [26]. Briefly, the IMI eTox standardiser tool was 
applied to discard non-organic compounds, to exert cer-
tain structure standardisation rules, to neutralise, and to 
remove salts [29]. Before and after applying the stand-
ardisation protocol, compounds with duplicate InChIs 
(IUPAC International Chemical Identifiers [30]) but disa-
greeing labels were discarded. Furthermore, remaining 
mixtures and fragments with less than four heavy atoms 
were removed. The numbers of data points available per 
dataset and endpoint after standardisation are presented 
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in Table 1. The corresponding numbers before standardi-
sation can be found in the Additional file 1: Table S1.

Compound encoding
Converting molecules into numerical data was per-
formed using the signature molecular descriptor [32, 33], 
using the program CPSign [34] version 0.7.14. The sig-
nature descriptor has been used extensively in previous 
QSAR studies [35–37]. In brief, the signature molecular 
descriptor enumerates all fragments of a molecule using 
a specified number of atomic bonds, often referred to 
as height, here using height 1 to 3 (e.g., height 1 creates 
fragments containing a center atom and all its one-bond 
connected atoms). This descriptor is often extremely 
sparse as there is a large number of fragments in a dataset 
and each molecule contains only a small set of these frag-
ments. Herein, the count of each fragment was used; it is 
also possible to use a bit-type vector, where 0/1 indicates 
whether the fragment is present or not. The composition 
of the training set and hence the number of descriptors 
is different per endpoint. On average 36,721 (± 2363 std) 
fragments were defined per endpoint in the Tox21Train 
set, whereas the signatures for Tox21Test and Tox-
21Score are based on the fragments in Tox21Train.

Modelling
Conformal prediction
Conformal prediction (CP) is a statistical framework, 
which provides means for confidence estimation [15, 38]. 
The baseline conformal predictor is the computationally 
efficient inductive conformal predictor (ICP) [23] (indi-
cated in purple in Fig. 1a). An ICP operates on the out-
put from an underlying model. To allow calibration of the 

outputs, the training set is divided into a proper train-
ing set and a calibration set. An underlying model, most 
often a machine learning model, is fitted on the proper 
training set, predictions are made for both the test and 
the calibration set compounds, and transformed into so-
called nonconformity scores. In a binary Mondrian set-
ting [38, 39], for each test compound two p-values are 
calculated, one per class, by comparing the outcome of 
each instance with the outcomes of the corresponding 
calibration set compounds. Given the two p-values and 
a predefined significance level ǫ = 1− confidence level , a 
prediction set is calculated. The prediction set contains 
all class labels, for which the p-value is larger than the 
significance level. For more information on conformal 
prediction, see Alvarsson et  al. [40] and Norinder et  al. 
[41].

Aggregated conformal prediction methods
To reduce the variance in efficiency of ICPs, multiple 
conformal predictors can typically be aggregated [42, 43] 
(see Fig. 1). In the commonly used aggregated conformal 
prediction (ACP) [43] aggregation method, the training 
set is randomly split n times into a proper training set 
and a calibration set, with which n ICPs are trained and 
calibrated (Fig. 1a). The p-values resulting from the dif-
ferent ICPs are then averaged. While the consolidation of 
multiple models stabilises the predictions, a uniform dis-
tribution of the p-values is not necessarily observed after 
their averaging [42].

The influence of ACPs on the calibration can be ana-
lysed by additionally incorporating the recently devel-
oped synergy conformal prediction (SCP) method 
(Fig.  1b) [44]. In the SCP, one fixed calibration set is 

Table 1 Number of compounds (separated as actives and inactives) available per Tox21 dataset and endpoint after standardisation. 
The full names for the endpoints are adopted from Huang et al. [31]

Endpoint Tox21Train Tox21Test Tox21Score

Actives Inactives Actives Inactives Actives Inactives

Aryl hydrocarbon receptor (NR_AhR) 933 6687 29 236 71 506

Androgen receptor, full length (NR _AR) 373 8370 3 282 11 549

Androgen receptor, ligand binding domain (NR_AR_LBD) 295 7742 4 242 8 543

Aromatase (NR_Aromatase) 338 6362 18 192 36 466

Estrogen receptor, full length (NR_ER) 901 6290 27 231 49 441

Estrogen receptor, ligand binding domain (NR_ER_LBD) 419 7763 10 270 20 548

Peroxisome proliferator-activated receptor gamma (NR_PPAR) 204 7414 15 245 31 543

Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive 
element (SR_ARE)

1032 5653 47 181 89 433

ATAD5 (SR_ATAD5) 322 8179 25 240 36 554

Heat shock factor response element (SR_HSE) 386 7233 10 250 19 558

Mitochondrial membrane potential (SR_MMP) 1094 5719 38 195 56 457

p53 (SR_p53) 515 7542 28 234 40 543
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randomly selected, and the proper training set is split 
into n subsets to train multiple sub-models. Note that 
the analysis of other options to build an SCP, e.g. train-
ing several models using different ML algorithms on the 
same (sub)set, is out of scope for this work. The predic-
tions made with every sub-model are aggregated before 
calculating the p-values and prediction sets. A fixed 
calibration set reduces the number of available training 
compounds, but the needlessness of averaging p-values 
ensures a uniform distribution of the latter and hence 
leads to theoretically valid models [44].

Model evaluation
CP models are typically evaluated by their validity and 
efficiency [15]. Validity, for a given significance level, is 
defined as the ratio of prediction sets that contain the 
true label. The efficiency of a model is a way to measure 
the information content of the model, and we herein use 
the most widely used efficiency metric: ratio of single 
label sets at a given significance level. In binary CP, the 
possible prediction sets are { ∅ }, {0}, {1} and {0,1}, where 
only the {0} and {1} (i.e. single label sets) are informative, 
and ‘empty’ and ‘both’ sets are uninformative in a sense. 
Thus, the fraction of single label sets should be maxim-
ised for best efficiency.

Model calibration
When evaluating the predictive performance on a test 
set, deviations from the underlying assumption that all 
data come from the same distribution will lead to predic-
tions that are invalid and hence the results might be mis-
leading. In this work, we use calibration plots to identify 
deviations from acceptable levels of calibration, and also 
discuss potential mitigation strategies.

Assessing model calibration
In a conformal prediction setting, the observed error rate 
of predictions is theoretically proven to not be larger than 
the specified significance level. In return, any deviations 
between these values  may indicate data drifts (or other 
causes for the deviations, such as a too small test set). 
The level of calibration can be visualised in a so-called 
calibration plot, where the observed error rate (y-axis) 
is plotted versus the significance level (desired error 
rate, x-axis). For valid (well-calibrated) models the val-
ues should lie on the diagonal line. Deviations from this 
behaviour signals deviations from perfect calibration. We 
also include efficiency in the plot, calculated as the frac-
tion of single-class predictions. These plots, from hereon 
called calibration and efficiency plots (CEPs), were used 
in this work to assess the model calibration and efficiency 
(see Fig. 2). As a measure of the level of calibration, we 

a b
Fig. 1 Inductive conformal predictor (ICP) and the aggregated conformal prediction methods used in this study. a Aggregated conformal 
prediction (ACP) and ICP (box with purple edge): The dataset is split into a training set and a test set. The training set is further split into a proper 
training set to train the model and a calibration set. The predictions made for the test set compounds are used to calculate nonconformity scores 
(nc) and compared to nonconformity scores in the calibration set to calculate p-values and generate prediction sets. In ACP, multiple models are 
trained and calibrated with randomly selected proper training and calibration sets, and p-values from these are averaged. b Synergy conformal 
prediction (SCP): In order to ensure a uniform distribution of p-values, SCP averages the nonconformity scores instead. Multiple models are trained 
on (subsets of ) the proper training set and with each model predictions are made for the test set and for a fixed calibration set
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use the root-mean-square deviation (RMSD) between the 
specified significance and the observed error rate.

Model update strategies
In a setting where a model has been trained but new data 
on the same or a similar endpoint is made available, it is 
interesting to consider how the new data should be uti-
lised in order to improve primarily the level of calibra-
tion but also the efficiency. We investigated two update 
strategies, see Fig. 3. The first strategy included updating 

the whole training set with new data followed by subse-
quent retraining of the model (see Fig. 3a). In the second 
strategy, the proper training set was kept and only the 
calibration set was exchanged with more recent data (see 
Fig. 3b).

Study design
In this work, six different CP experiments were explored 
as illustrated in Fig. 4 and Table 2. The first experiment 
consisted of a cross-validation  (CV) using ACP on the 
Tox21Train dataset (1-internal_CV), the second com-
prised predictions with the CV-models from experiment 
1 on the Tox21Score dataset (2-pred_score). In the third 
experiment, the influence of ACP on the calibration was 
assessed by training an SCP model on Tox21Train and 
predicting Tox21Score (3-pred_score_SCP). Finally, in 
the last three experiments, the model update strategies to 
improve the calibration were evaluated (see Fig. 3). Thus, 
in experiment 4 the training set was updated (4-train_
update) and the model retrained, while in experiment 5 
and 6 only the calibration set was updated (5-cal_update 
and 6-cal_update_2).

The individual experiments were conceptualised in a 
way that the proper training sets were consistent across 
all experiments (where applicable). A fivefold CV was 
implemented, not only for internal validation (1-inter-
nal_CV), but conserved for all experiments. Hence, the 
selected data per CV loop of a fivefold CV were retained 
for all trained models (i.e. in the 1-internal_CV, 4-train_
update and 3-pred_score_SCP experiments). Specifically, 
the indices of the training compounds were saved, so that 
the same training sets could be used for the subsequent 
experiments. This ensures that the results from the dif-
ferent experiments can be directly compared. For the 
ACP model, 20 aggregated ICPs were used with 30% (of 
the training set) set aside as a calibration set and 70% as a 

Fig. 2 Calibration and efficiency plot. The dark lines show the 
mean error rate for the active (dark red) and inactive (dark blue) 
compounds. For a well-calibrated model, the error rate ideally follows 
the dashed diagonal line. The light coloured lines illustrate the mean 
efficiencies expressed as ratio of single label sets for the active (light 
red) and inactive (light blue) compounds. The shaded areas indicate 
the respective standard deviations within the fivefold CV. Class 0: 
inactive compounds, class 1: active compounds

a b
Fig. 3 Model update strategies analysed to improve calibration. a Update training set: The whole training set is updated with new data. This 
involves retraining a new model. b Exchange calibration set: Only the calibration set is updated with new data. Models can hereby be re-calibrated 
without training a new model
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proper training set. For the 3-pred_score_SCP experiment 
(using SCP, see Fig. 1a), the training set was split into a 
fixed 30% calibration set and the proper training set 
divided into four equally sized partitions. For the 4-train_
update experiment, the training set was first updated 
with the Tox21Test dataset and then split into calibra-
tion and proper training set using the above described 
ratios. For the two experiments updating the calibration 
set, the same trained CV-model from 1-internal_CV was 

calibrated with only the Tox21Test dataset (5-cal_update) 
and in the last experiment (6-cal_update_2) replacing the 
calibration examples with 50% randomly stratified split 
Tox21Score data.

SVM models were trained using  the Scikit-learn 
Python library [45] version 0.23.2 with an RFB kernel, 
C =  50, γ =  0.002) [37]. For conformal prediction, the 
nonconformist Python library [46] was used with margin 
error function, Mondrian condition [38, 39] version 2.1.0. 

Fig. 4 Overview of the experiments discussed in this work. Top: Splitting of Tox21 data into (proper) training, calibration and test set. Bottom: Data 
for training, calibration, and prediction as well as aggregator used in the specific experiments.

Table 2 Overview of the experiments discussed in this work. Note that all splits were performed randomly stratified

Nr. Name Explanation

1 internal_CV A fivefold CV, training one ACP per fold, is performed on the Tox21Train dataset and internally evaluated on the respective hold 
out data.

2 pred_score Using the CV-models trained within the above described CV, the Tox21Score data are predicted.

3 pred_score_SCP The same CV splits are applied as described above. The training set is then split into a fixed calibration set and four proportion-
ate sub-proper training sets. For each of the four corresponding sub-proper training sets, an ML model is trained. Predictions 
are made for Tox21Score (and the calibration set compounds) with every model; the four nonconformity scores (ncs) are 
averaged before calculating the p-values.

4 train_update The training set from the CV is combined with the Tox21Test set. This updated training set is then split into proper training and 
calibration set to train new ACP models for the CV set-up. Tox21Score data are predicted with the new models.

5 cal_update The CV-models from experiment 1 are used, but the calibration is updated with the Tox21Test data to predict Tox21Score.

6 cal_update_2 The CV-models from experiment 1 are used, but the calibration is updated with 50% of Tox21Score data. The other 50% of 
Tox21Score are predicted. In every fold of the CV, Tox21Score is split in two equal subsets.
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For ACP, p-values were aggregated by median (see [42]), 
for SCP the nonconformity scores were averaged before 
calculating p-values.

Code and data availability
A GitHub repository associated with this work is avail-
able at https:// github. com/ volka merlab/ cptox 21_ manus 
cript_ SI. It contains the signature fingerprints for all 
pre-processed datasets as well as example code to dem-
onstrate how the different ACP experiments were per-
formed. The repository also provides the result files 
containing the respective measures for all experiments, 
from which the CEPs and boxplots can be generated. The 
SCP code is available from the original SCP repository by 
Gauraha et al. [44, 47].

Results and discussion
The aim of this study was to assess the level of calibration 
between the initial release of the Tox21Train data and the 
subsequently released Tox21Score data using conformal 

prediction (experiments 1–3). In follow-up experiments, 
we also investigated two model update strategies for 
incorporating the Tox21Test data (experiments 4–6). An 
overview of the error rates and efficiencies at significance 
level 0.2 for all experiments is provided in the Additional 
file 1: Table S2.

Experiment 1: Cross‑validation on the Tox21Train datasets
Before applying a model to external data, it needs to be 
validated by ensuring that the model is internally well 
calibrated. Hence, in a first experiment (1-internal_CV), 
models were built in a fivefold CV scenario on the Tox-
21Train datasets. The models for the 12 Tox21 endpoints 
were internally valid with a mean error rate of 0.17 (± 
0.01 std) at significance level 0.2, as well as a high mean 
efficiency of 0.77 (± 0.13 std).

The error rates and efficiencies over all significance 
levels (mean and std of the five CV folds per model) 
are illustrated in CEPs (Fig.  5a) for three example end-
points (namely SR ARE, NR_Aromatase and NR_AR; the 

a

b
Fig. 5 CEPs for models trained on Tox21Train and subsequent internal cross-validation (a) and predictions on Tox21Score (b). CEPs for a selection of 
three example endpoints (SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed explanation of all 
the components in the CEP, see Fig. 2

https://github.com/volkamerlab/cptox21_manuscript_SI
https://github.com/volkamerlab/cptox21_manuscript_SI
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remaining CEPs are shown in the Additional file 1: Figure 
S1). While the models are overall well calibrated, i.e. the 
observed error rates follow the diagonal line in the CEPs, 
and the standard deviations between the individual runs 
are low, there are a few outliers. The high variance (see 
shaded areas in the CEPs) for the active compounds and 
the low efficiency for NR_AR reflect the observations 
in the Tox21 data challenge that NR_AR was one of the 
most difficult targets to model and has, with 387 active 
and 9201 inactive compounds, the lowest active com-
pound rate after NR_PPARγ and NR_AR_LBD [31]. The 
well-calibrated models were ready to be applied to exter-
nal data which stem from the same distribution as the 
training data.

Experiment 2: Model performance on the Tox21Score 
datasets
To investigate how well the CP models from the cross-
validation perform on an external dataset, predictions 
were made for the Tox21Score data (2-pred_score). A 
mean error rate at significance level 0.2 of 0.31 (± 0.12 
std) was achieved. The efficiency dropped only slightly to 
0.72 (± 0.14 std). The deviations from the diagonal line in 
the CEPs (Fig. 5b, Additional file 1: Figure S2) for most of 
the endpoints indicate that the calibration of the models 
was poor when predicting Tox21Score.

Note that predictions were also made for the Tox21Test 
compounds (shown in the  Additional file  1: Figure S3 
only, referred to as pred_test). This set-up was similar to 
the intermediate setting in the Tox21 challenge, where 
predictions on Tox21Test were decisive for the leader-
board. The mean error rate at significance level 0.2 over 
all endpoints was higher than expected (0.26 ± 0.11 std). 
So, the models were not well-calibrated for predictions 
on Tox21Test. The mean efficiency was 0.70 (± 0.15 std), 

i.e. similar to 2-pred_score  results. The poor calibration 
for the predictions on both (external) datasets is an indi-
cation that the Tox21Score and the Tox21Test data might 
come from a different distribution than the Tox21Train 
data.

Experiment 3: Influence of aggregation method 
on the calibration
Reasons for poor calibration can be the difference 
between the distribution of two datasets, but also the 
data set size (discussed later) or the aggregation strategy 
for the conformal predictor (here ACP). From a theoreti-
cal perspective, the use of ACP can affect the calibration, 
as ACPs have not been proven to be always valid [42]. In 
ACP, the p-values from all ICPs are aggregated, which 
in theory could result in a non-uniform distribution. To 
rule out that the use of ACP is the (main) reason for the 
poor calibration, the recently developed SCP aggregation 
method was applied. In the SCP framework (see Fig. 1b), 
nonconformity scores are averaged before calculating 
the p-values, which are the basis for the calibration. This 
aggregation method has been shown to be theoretically 
valid [44].

Applying SCP improved the calibration on the Tox-
21Score dataset (3-pred_score_SCP), the mean error rate 
decreased to 0.27 (± 0.12 std) and the mean efficiency at 
significance level 0.2 was 0.73 (± 0.13 std). The error rates 
and efficiencies over all significance levels are shown in 
the CEPs in Fig. 6 for the SR_ARE, NR_Aromatase, and 
NR_AR endpoints and in the Additional file 1: Figure S4 
for all 12 endpoints. It is especially noticeable that the 
calibration curves in the CEPs became less sigmoidal for 
many endpoints—such sigmoidal curves have typically 
been observed for ACPs [42, 44]. The sigmoidal shape is 
unfavourable from a theoretical perspective as it means 

Fig. 6 Results from experiment 3-pred_score_scp: SCP models were trained on Tox21Train and predictions made for Tox21Score. CEPs are shown 
for a selection of three example endpoints (SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed 
explanation of all the components in the CEP, see Fig. 2
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that the model is poorly calibrated at low and high signifi-
cance levels, but may be less problematic in an application 
context since the error rate is typically over-conservative 
at lower (i.e. relevant) significance levels. One drawback 
of SCP is the fixed calibration set, which means that part 
of the training set information is never used for training. 
Together with the smaller proper training set partitions, 
this can lead to less efficient predictions. This can be seen 
in the relatively large standard deviations of the error and 
efficiency rates in the CEPs (Fig. 6 and Additional file 1: 
Figure S4). For this reason, and since ACP is commonly 
used in literature, which makes the outcomes more com-
parable with work by other scientists, ACP was used for 
the subsequent experiments.

Summarising the results from experiment 1–3, it was 
concluded that the Tox21Test and Tox21Score data may 
originate from slightly different distributions than the 
Tox21Train data. This could be explained by knowing 
that the three Tox21 datasets were created (screening of 
compounds) at different stages. For the Tox21Train set, 
the actual “Tox21 10K dataset” [31] was used, for which 
data had been available at the start of the challenge. The 
Tox21Test dataset is part of the LOPAC1280 (Library of 
Pharmacologically Active Compounds) dataset, which 
was used to validate the Tox21 assays [31, 48]. The Tox-
21Score data were separately provided by the EPA and 
only screened during the challenge [31]. So-called data 
or assay drifts typically occur over time or when moving 
towards a different chemical space [49].

Experiment 4: Effects on calibration by updating 
the training set
When the model is not well calibrated for the predictive 
task and newer data are available, one would intuitively 
combine these additional data (i.e. Tox21Test) with the 
previous training data (i.e. from 1-internal_CV), train a 
new model, and use it to predict Tox21Score (4-train_
update). Following this strategy, the mean error rate over 
the 12 endpoints dropped to 0.23 (± 0.06 std) compared 
to the predictions with the model built on the Tox21Train 
data (2-pred_score, 0.31 ± 0.12 std). The mean efficiency 
at significance level 0.2 (0.71 ± 0.15 std) was in a simi-
lar range as with the original training set (0.72 ± 0.14 
std). Thus, the updating of the training set and retrain-
ing the model led to a small improvement in calibration 
(see CEPs in Additional file 1: Figure S5). One reason why 
we observed only a minor improvement of the calibration 
could be the sizes of the two datasets. The update set (254 
± 22 compounds) is small compared to the original train-
ing set (7647 ± 692 compounds) and has thus a lower 
influence on the new model. Furthermore, this strategy 
involves additional computational resources and the data 
of the previous model needs to be available for retraining.

Effects on calibration by updating the calibration set
Experiment 5: Replace the calibration set with observations 
from Tox21Test
An alternative to updating the whole training set is to 
replace only the calibration set with the more recent data. 
This comes with the additional advantage that the cali-
bration set can be renewed even if the training data are 
unavailable.

Updating the calibration set did result in a lower mean 
error rate of 0.21 (± 0.05 std) for the predictions on Tox-
21Score (5-cal_update). The mean efficiency at signifi-
cance level 0.2 dropped to 0.51 (± 0.18 std). The loss in 
efficiency at low significance levels can be observed in the 
CEPs (Fig. 7a and Additional file 1: Figure S6), where the 
peak in efficiency is shifted towards higher significance 
levels. In the same CEPs, the improved calibration can 
be seen in the lower error rates. For six endpoints, when 
considering inactive compounds, or 11 endpoints, with 
regard to active compounds, even overconservative valid-
ity, i.e. a lower than expected error rate was achieved.

Experiment 6: Exchange the calibration set with half 
of Tox21Score
The chronological order of how the experimental data 
were produced is given by the Tox21 challenge organisers 
[31]. However, it is not clear if the compounds contained 
in Tox21Score (and Tox21Test) were really developed 
later than those in Tox21Train. For a ‘perfect’ calibration, 
it is required that the calibration and the test set stem 
from the same distribution. To simulate this, a second 
updating experiment, i.e. 6-cal_update_2, was imple-
mented. While still using the same proper training set as 
for the former experiments, the updated calibration set 
was created from Tox21Score. In every of the five (origi-
nal) CV folds, 50% of Tox21Score was (randomly strati-
fied) selected to constitute the calibration set while the 
other 50% of Tox21Score was used as test set. With this 
set-up, calibration and test set originate from the same 
distribution. This was also reflected in the mean error 
rate of 0.18 (± 0.01 std) at significance level 0.2, which 
was in a similar range as for the 1-internal_CV with the 
original calibration set (0.17 ± 0.01 std). Similar to the 
previous updating experiment 5-cal_update, the effi-
ciency decreased to 0.50 (± 0.17 std) at significance level 
0.2. Note that also the size of the calibration set was simi-
lar to the former 5-cal_update experiment, as the Tox-
21Score set contains roughly twice as many compounds 
(551 ± 35) as Tox21Test (254 ± 22). On the other hand, 
by using half of Tox21Score for calibration, only the other 
half of the compounds was available for use as test set. 
This could lead to higher variations, e.g. in the error rate, 
especially for datasets with few test compounds. Such an 
example is shown for the NR_AR endpoint, for which 
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Tox21Score only contains 11 actives. The standard devia-
tion (shaded area) for the error rate and efficiency of the 
active compounds (red) increased compared to the 5-cal_
update experiment (Fig.  7). For the other two example 
endpoints in Fig.  7b (SR_ARE and  NR_Aromatase), the 
calibration improved considerably. Summarising, the 
CEPs in the  Additional file  1: Figure S7 illustrate how 
the calibration improved after exchanging the calibra-
tion set with data from the same distribution as the test 
set, but also how the efficiency dropped compared to the 
4-train_update strategy (Additional file 1: Figure S5). The 
decrease in efficiency in the ‘cal_update’ experiments 
is undesired but can be an acceptable trade-off in cases 
where validity could be restored.  However, it has to be 
noted that the 6-cal_update_2 scenario is not often prac-
tically applicable as the updated calibration data needs to 
be available before making predictions.

Ultimately, updating the calibration set has no impact 
on the applicability domain of the underlying model. 

Improved calibration level and lower efficiency rather 
indicate that more compounds outside the applicability 
domain might be detected and classified as ‘both’ pre-
diction sets. Thus, applying the 5-cal_update over the 
4-train_update strategy is mainly promising in a situation 
as described in this work where the number of available 
new compounds is limited.

Quantification of the calibration for all experiments
The error rates (discussed above) depend on the desired 
significance level. In the calibration plot, the error rates 
are plotted over a range of significance levels. However, 
if the model will only be applied at a certain significance 
level, obtaining a good level of calibration at that signifi-
cance level might be enough. But, if the calibration of the 
model is assessed from a theoretical perspective, all sig-
nificance levels must be considered. This was illustrated 
for the individual experiments with the help of CEPs as 

a

b
Fig. 7 Updating the calibration set with more recent data from Tox21Test (a) or Tox21Score (b). CEPs for a selection of three example endpoints 
(SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed explanation of all the components in the 
CEP, see Fig. 2
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discussed above. To have a comparable metric, the root-
mean-square deviation (RMSD) over all significance lev-
els (step-width 0.1) was calculated.

Boxplots illustrating the RMSDs between observed and 
expected error rates over all endpoints are available in 
Fig. 8a for the active compounds and Fig. 8b for the inac-
tive compounds, and show how the error rate deviations 
behave between the individual experiments. The mean 
RMSD values (overall, actives and inactives) for all exper-
iments are provided in the Additional file 1: Table S3.

Clearly, the RMSD for the actives and inactives is low 
in the internal CV with Tox21Train (1-internal_CV) 
for most of the endpoints (mean overall RMSD: 0.022), 
while the deviations increased for the predictions on 
Tox21Score (2-pred_score, mean overall RMSD: 0.150). 
When using the SCP aggregation method (3-pred_score_
SCP), the RMSD decreased for eight endpoints, albeit, 
only by a small amount (Fig.  8, mean overall RMSD: 
0.121). Updating the training set (4-train_update, using 
ACP) led only to a small improvement of the mean 
RMSD of the active compounds (mean RMSD, actives: 
0.135, Fig.  8a), while the improvement was more dis-
tinct for the inactive compounds (mean RMSD, inactives: 
0.089, see Fig. 8b). When exchanging the calibration set 
with Tox21Test (5-cal_update), the RMSD decreased 
for 11 endpoints (except for SR_ARE, for which the cali-
bration was already very good (overall RMSD SR_ARE, 
1-pred_score: 0.055) with the original calibration set). The 
mean overall RMSD (0.054) was, however, still not at the 

same level as for 1-internal_CV. This can be attributed to 
overconservative validity, especially for the active com-
pounds (see Additional file 1: Figure S6) which led to an 
increased RMSD for several endpoints. The overconserv-
ative validity almost disappeared when the calibration set 
was exchanged with data which are inherently exchange-
able with the test set (6-cal_update_2). The mean RMSD 
(0.018) value of the inactive compounds is at a similar 
level as for the internal CV on Tox21Train (1-internal_
CV) as shown in Fig. 8b. The RMSD values of the active 
compounds vary more between the different endpoints. 
This may be explained by the small number of active 
compounds available in the calibration and test sets for 
some endpoints. To summarise, the CP models trained 
on Tox21Train were internally well calibrated (1-inter-
nal_CV) but showed poorer calibration for the prediction 
of Tox21Score (2-pred_score). Applying SCP (3-pred_
score_SCP) or updating the training set with Tox21Test 
(4-train_update) did not improve the calibration to the 
same extent as when exchanging the calibration set only 
(5-cal_update, 6-cal_update_2).

Impact of data size on the calibration
Importantly, the proofs on CP validity are made assuming 
an asymptotic number of test examples (i.e. requiring an 
infinite number of test examples) [24]. Hence, the poor 
calibration is not necessarily only due to exchangeability 
issues (or the use of ACP, for which there are no validity 
guarantees). The calibration could also be affected by the 

a b
Fig. 8 Box plots for the root-mean-square deviation (RMSD) between the expected and observed error rates for all 12 Tox21 endpoints compared 
amongst the different experiments are shown. On the left results for the active compounds (a), on the right for the inactive compounds (b) are 
plotted. Note that the y-axis ranges differ
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statistical variation due to finite test sets in all computa-
tional experiments. In the broadest sense, also the over-
conservative validity could be due to the finite number of 
test examples.

Looking at the outliers in the RMSD (Fig.  8), they 
mainly arise from endpoints NR_AR_LBD, NR_AR and 
SR_ATAD5, which are, besides NR_PPARγ , the end-
points with the smallest overall number of actives (in 
all three Tox21 datasets combined). For the NR_AR and 
NR_AR_LBD datasets, the predictive performance (both 
in validity and efficiency) is expected to be less good for 
the active compounds, as the number of available active 
compounds is very small (i.e. 3 and 4 in Tox21Test and 
11 and 8 in Tox21Score, respectively). If we have only 
eight compounds in the calibration set, this means that 
only nine different p-values can be obtained for a new 
active compound. This low resolution obviously makes 
it impossible to obtain perfect calibration. Since it is dif-
ficult to define a minimum required number of actives, 
and since the resolution for the p-values of the inactive 
compounds is much higher, results for all endpoints were 
included in the evaluation. The calibration might gener-
ally improve if the experiments were repeated on larger 
and/or more balanced datasets.

Although, the composition of the three Tox21 datasets 
may not conform with all model assumptions, this may 
more closely resemble many real-life scenarios where 
data is generated at different time points and older data 
is often used to predict new outcomes. All the more, it 
is therefore important to have strategies to improve the 
calibration and thus the application of CP models on new 
data.

Conclusions
In this work, the potential of CP to diagnose data drifts 
in toxicity datasets was investigated on the Tox21 data. 
Deviations between observed and expected error rates 
was monitored using calibration plots and quantified 
using the  RMSD from  the expected calibration level. 
Poor calibration was observed for models trained on Tox-
21Train and predictions made on Tox21Score, indicat-
ing the presence of drifts between the two datasets. The 
distribution of the data may not be the only reason for 
error rate deviations in the calibration plot. In additional 
experiments using the newly introduced SCP framework, 
it was ruled out for 10 endpoints that the employed CP 
aggregation method (ACP) has a major impact. A sec-
ond influencing factor on the calibration can be the 
small data set size. It was discussed that the calibration 
may be improved to some extent by having larger data-
sets, especially containing more active compounds, for 
model training, calibration and testing. Overall, it was 
concluded that the three Tox21 datasets likely do not 

originate from the same distribution and may be chal-
lenging for ML methods. Nonetheless, these datasets do 
reflect outcomes that may occur in experimental screen-
ing scenarios.

Two different model update strategies using the inter-
mediate Tox21Test data were investigated with the aim to 
improve the poor calibration. The calibration of predic-
tions on Tox21Score could be slightly enhanced by updat-
ing the training set with more recent data (Tox21Test) 
and retraining the models—the more natural behaviour 
if new data has been obtained. However, exchanging only 
the calibration set with newer data (Tox21Test) led to a 
slightly smaller error rate, albeit often with a reduction in 
efficiency. As an additional advantage of the 5-cal_update 
strategy, retraining of the model is not required.
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