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Abstract—Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose
advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout
technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate.
Specifically, the distribution parameters are optimized by stochastic gradient variational Bayes in order to carry out an end-to-end
training. We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets
(five small-scale datasets and two large-scale datasets) with various base models. The advanced dropout outperforms all the referred
techniques on all the datasets.We further compare the effectiveness ratios and find that advanced dropout achieves the highest one on
most cases. Next, we conduct a set of analysis of dropout rate characteristics, including convergence of the adaptive dropout rate, the
learned distributions of dropout masks, and a comparison with dropout rate generation without an explicit distribution. In addition, the
ability of overfitting prevention is evaluated and confirmed. Finally, we extend the application of the advanced dropout to uncertainty
inference, network pruning, text classification, and regression. The proposed advanced dropout is also superior to the corresponding
referred methods. Codes are available at https://github.com/PRIS-CV/AdvancedDropout.

Index Terms—Deep neural network, dropout, model-free distribution, Bayesian approximation, stochastic gradient variational Bayes.

1 INTRODUCTION

IGNIFICANT progress has been made in deep learning
Sin recent years, especially for computer vision tasks
such as image classification [1], [2], [3], [4], [5] and image
retrieval [6], [7], [8], [9]. Given that deep neural networks
(DNNSs) have millions or even billions of parameters, they
require a large amount of data for training. However, lim-
ited labeled data can be obtained in many applications [4],
[10], [11], [12], [13]. Thus, overfitting ubiquitously exists
in real-world data analysis, which negatively affects the
performance of DNNSs.

To address this issue, a dropout technique [14] was
proposed to regularize the model parameters by randomly
dropping the hidden nodes of DNNs in the training steps to
avoid co-adaptations of these nodes. The standard dropout
technique and its variants have played an important role in
preventing overfitting and popularizing deep learning [15],
[16].

Various dropout techniques have been widely utilized
in deep neural network training and inference as surveyed
in [17]. Existing works [14], [15], [16], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
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[34], [35], [36], [37], [38] differentiate from each other in their
use of distributions as shown in Figure 1. Most of the works
utilized the Bernoulli distribution for their dropout masks to
perform the “dropping” and “holding” in DNNs [14], [20],
[21], [22], [23], [24], [25], [26]. In order to regularize model
parameters, they randomly drop hidden nodes of DNNs
by multiplying Bernoulli distributed masks during train-
ing. Meanwhile, some other works applied binary dropout
masks, which can be considered as a special Bernoulli distri-
bution in the viewpoint of Bayesian learning [27], [28], [29],
[30]. Gaussian distribution is another popular choice for
modeling the dropout masks [18], [19], [31], [32]. They con-
sidered the Gaussian distribution as a fast approximation of
the Bernoulli distribution [31], which was applicable in the
local reparameterization trick and better than the Bernoulli
distribution [19]. In addition, other distributions including
log-normal [16], uniform [18], concrete [33], or beta [15], [34]
distributions, were also used in dropout variants.

One issue in common among all the aforementioned
dropout techniques is that they all model the dropout masks
via model-specific distributions, mainly with Bernoulli dis-
tribution [14], [20], [21], [22], [23], [24], [25], [26], [39], and
also with Gaussian [18], [19], [31], [32], [40], log-normal [16],
uniform [18], concrete [33], or beta [15], [34] distributions.
The assumption of a specific distribution introduces a bias
that can limit their ability of modeling the dropout masks,
as the specific distribution may undesirably restrict the
possibility of changes. Few works exceptionally consider
whether the distributions are suitable for modelling dropout
or not. Soft dropout [15] and [-dropout [34] applied the
beta distribution which is able to approximate all the other
aforementioned distributions, but it is difficult to optimize
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Fig. 1: Development of the distributions applied in various dropout techniques.

the parameters of the beta distribution for dropout masks.
One solution to this problem is Bayesian approximation us-
ing tractable distributions [15] and manual selection of beta
distribution parameters [34], which both have limitations for
dropout training.

In this paper, we propose a model-free methodology for
dropout, named advanced dropout, to further improve the
capability of overfitting prevention and boost the perfor-
mance of DNNs. The dropout technique applies a model-
free and easily implemented distribution with a parametric
prior to adaptively adjust the dropout rate. Furthermore, the
prior parameters are optimized by the stochastic gradient
variational Bayes (SGVB) inference [41] to perform an end-
to-end training procedure of DNNs. Our major contribu-
tions can be summarized as follows:

e We introduce a novel model-free methodology that
is more flexible than the existing techniques with
specifically explicit distributions in dropouts. By
choosing proper parameters, the proposed method-
ology is able to replace all the aforementioned dis-
tributions to generalize the other dropout variants
under the model-free framework (Section 4.1).

e We apply a parametric prior form for the model-
free distribution’s parameters to adaptively adjust the
dropout rate based on input features. The prior can be
integrated into the end-to-end training such that the
calculation is facilitated (Section 4.2).

o We propose advanced dropout consisting of the two
key components, i.e., a model-free distribution for
dropout masks and a parametric prior for the param-
eters of the distribution. We evaluate the effective-
ness of the advanced dropout with image classifica-
tion task. Experimental results demonstrate that the
advanced dropout outperforms all the nine recently
proposed techniques on seven widely used datasets
with various base models. We further compare train-
ing time and effectiveness ratios and find that the ad-
vanced dropout achieves highest effectiveness ratios
on most of the datasets (Section 5.1).

e We extensively study the advanced dropout tech-
nique on the following aspects: the effectiveness of
each component, dropout rate characteristics, and
the ability of overfitting prevention. We clarify that
the key components are essential for the technique
(Section 5.2). Meanwhile, the analysis of dropout
rate characteristics demonstrates that the technique
is able to achieve a stable convergence of dropout rate
(Section 5.3.1), illustrates the learned distributions of
dropout masks (Section 5.3.2), and shows its better
performance than the one using dropout rate gener-

ation without an explicit distribution (Section 5.3.3).
Finally, superior ability of preventing overfitting of the
advanced dropout technique is shown (Section 5.4).

e We extend the application of the advanced dropout
technique to uncertainty inference, network prun-
ing, text classification, and regression. We conduct sev-
eral experiments on the model uncertainty inference
and show the improvement of the advanced dropout
technique (Section 6.1). We also employ the advanced
dropout technique as a network pruning technique
and compare it with the state-of-the-art methods to
show the performance improvement (Section 6.2). In
addition, we apply the advanced dropout technique
on text classification (Section 6.3) and regression
(Section 6.4), and find its superiority among all the
referred dropout techniques.

2 RELATED WORK

After Hinton et al. [14] introduced the standard dropout
in 2012, many variants of dropout have been proposed in
recent years, as the significant effectiveness of dropout on
preventing overfitting has been discovered when applied on
deep and wide DNN structures. Distinct distributions were
applied by the dropout variants to their own design strate-
gies of DNN regularization. In particular, six distributions
were introduced, including Bernoulli [14], [20], [21], [22],
[23], [24], [25], [26], [39], Gaussian [18], [19], [31], [32], [40],
log-normal [16], uniform [18], concrete [33], and beta [15],
[34] distributions. As shown in Figure 1, the dropout tech-
niques can be divided into four development stages with
their own kinds of distributions. The following parts of this
section will review the works with different distributions in
the stages, respectively.

2.1 On Discrete Distributions

In the research of dropouts, the discrete distributions com-
monly refer to the Bernoulli distribution and the binary
distribution, while the latter can be considered as a special
Bernoulli distribution in the viewpoint of Bayesian learning.

Most of works utilized the Bernoulli distribution for their
dropout masks to perform “dropping” and “holding” in
DNN:Ss. This standard dropout aims to regularize the model
parameters and reduce overfitting by randomly dropping
hidden nodes of an fully connected (FC) neural network
with Bernoulli distributed masks during training [14]. Drop-
Connect [20] randomly selected a subset of weights within
the network to zero, rather than activations in each layer.
Meanwhile, standout [22] performed as a binary belief net-
work, was trained jointly with the DNN using stochastic
gradient descent (SGD), and computed the local expecta-
tions of binary dropout variables. Maeda [23] introduced
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a Bayesian interpretation to optimize the dropout rate,
which was beneficial for model training and prediction. Gal
and Ghahramani [24] utilized standard dropout to predict
model uncertainty in DNNs in regression, classification, and
reinforcement learning. All the aforementioned techniques
rely on standard dropout with fixed parameters which are
empirically set. Later, a dropout variant has been proposed
for RNNs focusing on time dependence representation
and demonstrated outstanding effectiveness [25]. Spectral
dropout [26] instead implemented standard dropout on
the spectrum dimension of the convolutional feature maps,
preventing overfitting by eliminating the weak Fourier
domain coefficients of activations. Jumpout [21] sampled
the dropout rate from a monotone decreasing distribution
and adaptively normalized the rate at each layer to keep
the effective rate. Wang et al. [39] proposed a lightweight
complexity algorithm called Rademacher Dropout (Rad-
Dropout) to achieve adaptive adjustment of dropout rates.

Furthermore, some works applied the binary distribu-
tion for the dropout masks, and selected or dropped nodes
according to some specific rules. Ko et al. [27] introduced
controlled dropout and intentionally chose the activations
to drop non-randomly for improving the training speed
and the memory efficiency. Alpha-divergence dropout [28]
applied the alpha divergence as a regularization term, re-
placing the conventional Kullback-Leibler (KL) divergence
in approximate variational inference for dropout training.
Ising-dropout [29] dropped the activations in a DNN using
Ising energy of the network to eliminate the optimization
of unnecessary parameters during training. In addition,
Chen et al. [30] proposed mutual information-based dropout
(DropMlI), introducing mutual information dynamic analy-
sis to the model and highlighting the important activations
that are beneficial to the feature representation.

However, one issue with the discrete distributions is the
difficulty of dropout rate optimization combined in DNN
training, which does not exist with continuous distributions.
Except the fixed dropout rate in [14], [20], [24], [26], some
works addressed the issue by updating asynchronously [22],
adding regularization terms into the loss functions [23], and
randomly selecting from other distributions [21].

2.2 On Continuous and Unbounded Distributions

The works in [16], [18], [19], [31], [32] introduced the contin-
uous and unbounded distributions to dropouts, mainly in-
cluding the Gaussian and the log-normal distributions. They
took advantages of the continuity and the differentiability of
the distributions for end-to-end training of DNNS.

The Gaussian distribution is another popular choice for
the dropout masks. It is considered a fast approximation
of the Bernoulli distribution [31] and is applicable in the
local reparameterization trick, better than the Bernoulli dis-
tribution [19]. Wang and Manning [31] proposed a Gaus-
sian approximation of standard dropout under the vari-
ational Bayes framework, called fast dropout, with virtu-
ally identical regularization performance but much faster
convergence. Another extension of dropout in [32] applied
Gaussian multiplicative noise with unit mean, replacing
the Bernoulli noise. It can be interpreted as a variational
method given a particular prior over the network weights
to some extent [32]. Kingma et.al. [19] introduced variational
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dropout where the dropout rate was optimized by the
stochastic gradient variational Bayes (SGVB) inference [41].
Continuous dropout [18] replaced the Bernoulli distribution
by a Gaussian distribution with mean 0.5 or a uniform
one as the prior of continuous masks in practice, even
though the variance of the Gaussian distribution could not
be optimized during training. Liu et al. [40] proposed a
variational Bayesian dropout with a hierarchical prior.

In addition, information dropout [16] improved dropout
by information theory principles and adapted the dropout
rate to the data automatically under the Bayesian theory.
It applied the log-normal distribution, which is also an
unbounded-domain distribution as the Gaussian distribu-
tion, and obtained positive dropout masks.

However, masks with large values approaching infinite
can be sampled and negatively affect gradient backprop-
agation, resulting in gradient exploding, which is a huge
problem in practice.

2.3 On [0, 1]-bounded Distributions

In addition, other distributions with [0, 1] bound were also
used in the dropout variants. The [0,1]-bounded distri-
butions contain the concrete, the uniform, and the beta
distributions, which are also continuous distributions.

Gal et al. [33] proposed concrete dropout by introducing
a concrete distribution for the dropout masks. The concrete
distribution is the first [0, 1]-bounded distribution applied
to dropout and obtained remarkable improvement on over-
fitting prevention. Furthermore, the uniform distribution
was also applied by the continuous dropout and com-
pared with the Gaussian distribution with different variance
settings [18]. The uniform distribution usually performed
worse than the Gaussian distribution according to the ex-
perimental results in [18], due to the low degree of freedom.

Given that beta distribution with different parameters
can approximate the Bernoulli, the Gaussian, and the uni-
form distributions to some extent [34], it should be great
potential than other distributions in dropout regularization.
The B-dropout technique performed best over others and
conducted finer control of its regularization; however, the
parameters of the beta distributed masks have to be man-
ually selected [34]. In soft dropout [15], the soft dropout
masks were expressed by beta distributed variables which
have better continuity than the Bernoulli distribution and
higher flexibility in shape than the Gaussian distribution.
However, the beta distribution is unfeasible to be directly
extended to the SGVB inference which is one of the most
effective solutions combining variational inference with the
SGD optimization [15]. To utilize soft dropout in the SGVB
inference, the beta distribution was approximated by half-
Gaussian and half-Laplace distributions, respectively, and
the technique could adaptively adjust its dropout rate in
the training process [15]. However, the half-Gaussian and
half-Laplace approximations are complex and can only
approximate part of shapes (U shape) well, but hardly
represent other shapes (e.g., uniform shape). Furthermore,
the parameters of these two approximations are optimized
without following any prior distributions, which affects the
performance of overfitting prevention.

In this context, we consider to design a more generalized
and model-free distribution followed by the dropout masks,
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which is able to approximate the widely used Bernoulli,
Gaussian, uniform, concrete, and beta distributions to gener-
alize the fundamental principles of all the dropout variants
and has an easy implementation in the SGVB inference
for optimization. Although all the aforementioned tech-
niques introduced exact distributions to explicitly explain
the dropout mask, we utilize the model-free distributions
and overcome the difficulties of them (i.e., shape limitations
and distribution parameter optimization) discussed above.
In addition, a suitable prior is essential in Bayesian learning.
We introduce a parametric prior which is supported by
features and integrate information to better optimize the
parameters of the model-free distribution.

3 PRELIMINARIES

We start with an L-layer DNN, which has K;,{ =1, -+, L,
features in the [*" layer. The parameter set of the DNN is
defined as © = {8} |, where 8 € RE1*Ki-t s the
network parameter matrix of the [* layer. For each layer,
we define a layer model with standard dropout [14] as

20 =4 (m(l) ® (9<l)w(l))> , 1))

where £ and z®, with £+) = 20 for 1 < | < L,
are the input and the output of the layer, respectively. a(-)
is the activation function, e.g., rectified linear unit (ReLU)
function, ® is the Hadamard product operation, and m() is
the dropout mask vector.

In the standard dropout framework [14], the elements in
m() are random variables following i.i.d. Bernoulli distri-

butions with the dropout rate p; = 1 — E[mgl)] =1-—p,j=
, K, as
K (l) )
~ H Bernoulli; (p;) = H p,? (1— pl)limj ) ()]

where p; is the parameter of the Bernoulh distribution. In the
training step, the dropout mask vector m(?) is sampled from
its distribution, producing a binary mask vector. Meanwhile,
x () is scaled by the mean vector [p;]x, in the test step [14].

In order to better express the continuity of the dropout
masks, the Bernoulli distribution is replaced by differ-
ent distributions including Gaussian [32], log-normal [16],
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uniform [18], concrete [33], and beta [15] distributions.
Considering the recent soft dropout [15] as an example,
the prior distribution of m® is modified into a multi-
dimensional beta distribution, which can be considered as
a product of i.i.d. beta distributions with the dropout rate
as

pl:l_az-‘rﬂz

K
M~ H Beta; (ag, Br)
Jj=1
e .
B =1 fol wr=1(1 —u)fi—ldy
where «y, 8; > 0 are the shape parameters. Similar to stan-
dard dropout, 2 is scaled by the mean vector [ 2 T |k, in
the test step.

By replacing the binary dropout masks with the beta
distributed variables, the soft dropout masks are continu-
ously distributed in the interval [0, 1], rather than only zero
or one. Thus, it samples the masks from an infinite space
for parameter selection, giving infinite states of each soft
dropout mask. The binary mask optimization space of the
standard dropout [14] can be considered as a subset of the
soft one.

4 ADVANCED DROPOUT

In this section, an advanced dropout technique is proposed
for DNNs. The probabilistic graphical model is shown in
Figure 2, including two key components in the architec-
ture, ie., the model-free distribution and the parametric
prior. After introducing the two parts in Section 4.1 and Sec-
tion 4.2, respectively, we discuss how to optimize the whole
advanced dropout technique by the SGVB inference [41] in
DNN training within the SGD algorithm in Section 4.3.

4.1 Model-free Distribution for Advanced Dropout

The development of the distributions applied in various
dropout techniques is illustrated in Figure 1. The dropout
masks firstly followed the Bernoulli distribution, a discrete
distribution, to perform the fully “dropping” and “holding”
in DNNs [14], [20], [21], [22], [23], [24], [25], [26], [39].
Then, the distribution was replaced by the Gaussian [18],
[19], [31], [32], [40] or the log-normal [16] distributions,
which are continuous and unbounded distributions. These
distributions, as the approximations of the Bernoulli distri-
bution, performed well. However, masks with large values
approaching infinity can be sampled to some extent, leading
to gradient exploding, which can be a huge problem in
practice.

To address this problem, [0, 1]-bounded distributions in-
cluding the concrete [33], the uniform [18], and the beta [15],
[34] distributions were introduced and achieved better per-
formance. In addition, the asymmetry of a distribution can
introduce more flexible shapes of the probability density
function (PDF) for the distribution and adapt different
dropout rates in DNN training, which are beneficial to the
dropout techniques. As we know that a symmetric distri-
bution can merely present dropout with its dropout rate at
0.5 (e.g., the Gaussian distribution with mean 0.5 and the
uniform distribution in [18]), an asymmetric one can express
not only the half-dropping case, but also all the other cases
of the dropout rate, implemented by different values of the
parameters.
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Fig. 3: PDFs of the model-free distribution g applied in experiments
with different parameter settings. The parameter settings of g with
different shapes are y = 0,0 = 3 for the “U” shape, = 0,0 = 1.6 for
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for the skewed bell shape. Note that we can approximate the Gaussian
distribution by the bell-shaped g and the log-normal distribution by the
skewed bell-shaped g, and the beta distribution by the U-, bell-, skewed
bell-shaped g, respectively.

In addition, shape is significant for the dropout distribu-
tion, because different shapes (e.g., “U” and bell shapes) can
represent distinct states of the masks, mediately reflecting
the state of the model. The beta distribution has different
shapes of PDF, including the “U”, the bell, the skewed bell,
and the uniform shapes. However, the concrete distribution
has only the “U” shape in practice. Thus, the beta distribu-
tion is preferred to the other distributions mentioned above.
Although all the aforementioned dropout techniques have
their own distributions, do these distributions suit the needs of
dropout itself?

To further address the issue, we introduce a model-free
distribution which satisfies all the properties of the afore-
mentioned distributions and all the requirements of soft
dropout. The model-free distribution will not be restricted
by any distribution forms and can prevent soft dropout from
the infeasibility incurred by some distributions, such as the
beta distribution, in the end-to-end training [15]. It can be
defined in arbitrary forms and we are able to produce the
various shapes by adjusting the parameters.

Here, we propose a model-free distribution, which is
denoted by g. For the j'* element of the dropout mask
m;l) ~ g(mgl)) in the I*" layer of the DNN, another hidden

variable T§l) is introduced as the seed variable, following a

seed distribution s(-). Then, by introducing a monotonic and
differentiable function k(-) as the mapping function, which
has its value space in the interval of [0,1], we obtain the
[0, 1]-bounded continuous variable m{) = k(r](-l)) directly.
In this case, the seed distribution 5(7) and the mapping

function k(-) should satisfy two conditions:

1)  s(-) can be transformed into a differentiable function
of its parameters and standard distribution, and
should be easy to be sampled. For example, Gaus-
sian, Laplace, exponential, or uniform distributions.

2) k(-) should be monotonic and differentiable in its
domain, and the domain of output values of k(-)
should be in the interval of [0,1]. For example,

5

Sigmoid function and some piecewise differentiable
functions.

In principle, any seed distribution and mapping function
pair can be applied to construct the model-free distribution,
as long as they satisfy the conditions 1) and 2), respectively.
The model-free distribution g can be any form satisfying
J g(x)d x = 1. The relationship between s(-), k(-), and g can
be obtained via the formula for calculating the distribution
of functions of random variablesas =~
o 1y )
g(m;7) = s(k™"(m;")) ———5—

dm >
where k~1(-) is the inverse function of k(-). Note that k(-) is
a monotonic function, so that k() can be always obtained.
As we know in DNNs, the Gaussian distribution is a
popular assumption and the Sigmoid function is widely
used, which satisfy the conditions of s(-) and k(-), respec-
tively. We involve them into the model-free distribution
framework. The linear additivity of the Gaussian distribu-
tion and differentiability of the Sigmoid function make the
model-free distribution g feasible for the SGVB inference.
In addition, k(-) allows mgl) falling in the bounded interval
O]

J

; ©)

[0,1]. In this case, the variable m’ can be explicitly defined

by 7“§l) as )
— ®)
1+ efr;'l)

m;D = k(r;D) = Sigmoid(rj(.l)) =

T;l) NN(,U‘l:U]?):

where p; and o; are the mean and the standard deviation of
the seed variable rgl). Furthermore, the PDF of g in this case
can be defined as

dk=(m{")

(1)
dmj

2
- <1n mg-l)fln(lfm‘g-l))—,ul>
-t 207 I
V2mo; m;l)(l _ m;_l))

6
where mg-l) is subject to the interval of [0, 1] by k(-). Her(ea
although any seed distribution and mapping function pairs
satisfying the conditions 1) and 2) can be introduced into the
model-free distribution, we use the Gaussian distribution as
the seed distribution for the purpose of easy implementa-
tion. It is worth to mention that the PDF of g in (6) has the
same form with that of logit-normal distribution. The logit-
normal distribution can be considered as a special case of the
model-free distribution. We introduce the logit-normal dis-
tributed variables generated by Gaussian variables through
the Sigmoid function to exhibit the effectiveness of the
proposed methodology in experiments merely.

The expectation of the variable m§»l) is then calculated as

1
1 1 1 1
E[mi)] :/0 m;)g(m;))dm;)

+oo
= / Sigmoid(rj(l))N(r(l); wiso2)d r§l)
oo

g(mi) = N (k1 m); , 0F)

J

oo T (1 ! !
~ o 5N oy
i

/s 2
= 1o

Hi @)

2 b
\1+ 5o;

=9

~ Sigmoid

where
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o(z) = /z N (t;0,1)dt ~ Sigmoid (\/Ex) 8)
is the cumulative distribution function of a standard normal
distribution [42].

Finally, we discuss the distinct shape advantages of the
model-free distribution utilized in this paper. As shown in
Figure 3, the model-free distribution g (with the Gaussian
seed distribution and the Sigmoid function) has various
shapes corresponding to different parameter settings, in-
cluding “U”, bell, skewed bell, and approximated uniform
and Bernoulli shapes. It can approximate the Bernoulli, the
uniform, the Gaussian, the log-normal, and the beta dis-
tributions by adjusting 1; and 0;. Meanwhile, the concrete
distribution is a special case in the form of the model-free
PDF g. Therefore, the model-free distribution can replace
all the aforementioned distributions applied in dropout
variants.

4.2 Parametric Prior Distribution for Parameters of
Model-free Distribution

After defining the model-free distribution form of the
dropout masks m() in Figure 2, a prior distribution of
the distribution parameters p; and o7 is required in the
Bayesian inference. We know that the prior of y; and o;
given the input features () of the I'" layer can integrate
information and extract features for helping the dropout
technique learning a better distribution [16], [22], which
means that we can adaptively adjust the dropout rate by
optimizing distribution parameters with the prior. In this
case, we introduce the prior distribution p(y;, 07|z as

P, 0| ®) = / (1R D)po (01 R O)pp (RO [z D)d RO, (9)

where h() is the multivariate Gaussian distributed hidden
states of the [*" layer.

To simplify Bayesian optimization later on, we assume
w1 and o follow Gaussian and inverse gamma distributions,
respectively. That is, we set their prior distributions as

e~ N () & pp (R D), (10)
o1 ~ IG(o1|) ~ po(or| A1), 11
R ~ N(RD]) 2 pp(RO]2D), (12)
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where ZG is the inverse gamma distribution. Here, p,, and
Do perform as encoders, and the maximization of the distri-
butions p,, (1 1h() and py(oy|hY) can be approximated by
multi-layer perceptrons (MLPs) with Gaussian outputs [41]
as

N
~ l
fu = argmax [ | pu (i)

S|
LR o0p M, 0
zNZnM nY + by, (13)
i=1
N
67 = argmax Hp[,(al\hgl))
T =1
1 N 1), (1 l
~ <> Softplus (29R? +60), (14)
i=1

where v(1) = {Qg), o, bff), b} are the weights and the
biases of the MLPs, N is sample number, and the softplus
function Softplus(-) is defined as

Softplus(z) = In(1 + €”). (15)

Here, we define the inverse gamma approximation by
the softplus function with Gaussian input as softplus-
Gaussian distribution, which is a normalized distribution.
To evaluate the effectiveness of the softplus-Gaussian distri-
bution, we conduct a group of experiments in comparison
with the classical log-normal distribution used in [41], as
shown in Figure 4. The distributions approximate the true
inverse gamma approximation by moment matching. The
subfigures in Figure 4 show that the proposed softplus-
Gaussian distribution is better than the referred one, due
to smaller KL divergences in all the different cases.

~ (1
In addition, the optimal hidden state h( ) (by maximiz-
ing pn(hY |£(1))) can be inferred as
A = argmax py, (R ]2(")
h)

~Pz® 4, (16)

where §() = {Qg), bgll )} are the weights and the biases of
the MLP.

4.3 Stochastic Gradient Variational Bayes (SGVB) for
Advanced Dropout

After constructing the whole advanced dropout technique
as shown via the probabilistic graphical model in Figure 2,
we consider how to optimize it using the SGVB infer-
ence [41].

We first define the dataset D = {X,Y} for DNN
training where X = {x;}Y, and Y = {y,}}Y, are sets
of input and target with N samples, respectively, and the
dropout-masked parameter set W = {w()}%_, in which

w®) = diag(rn,(l))e(l)7 17)

where diag(-) is the matrix operation that transforms a
vector into a squared diagonal matrix with the vector as
the main diagonal. In addition, we define the parameter
set A = {\ 1}, where \; = {1, 01,v®, 8D}, The joint
parameter set including original parameters ® and A is
defined as ® = {©®,A}.

We can then obtain the joint distribution of the dataset
D and the dropout-masked parameter set W' as
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p(D, W) = p(D|W)p(W). (18)

Introducing the approximated distribution g (W'|Z) of W
given Z = (20, - ,z(E-D} (20 = 2+D) as

43 (W|2) = [ [ g (w®]20), (19)
l

we divide the left-hand side (LHS) and the right-hand side
(RHS) of (18) by g&(W|Z) and take the logarithms of each
side which give

p(D,W) _  p(DW)p(W)
95 (W|Z) 72(W|2)

We consider the expectation of the LHS and the RHS
of (20), w.rt. g (W|Z) as

log (20)

p(D, W)
W|Z)log —————dW
J Wiz s G
L(®)
W\Z
= [ aa(W12)1osp(DIW) aW — [ aa (W12 108 20 vy,
p(W)
Lp(®) Di1(ge (W Z)||p(W))
21)

where the LHS L(®) is the lower bound of the expecta-
tion of posterior distribution Eg[p(W|D)] of W given D
in the approximated variational inference, Lp(®) in the
RHS is the expected log-likelihood of DNN training, and
DkL(ge(W1Z)||p(W)) in the RHS is the KL divergence
term from the approximated distribution of W to the prior
distribution of W' as a regularization term.

In the optimization of the approximated variational in-
ference, we commonly maximize the RHS of (21), rather
than maximizing the lower bound L(®) directly. Here,
in SGVB inference, we approximate the expected log-
likelihood Lp(®) by a mini-batch-form log-likelihood as
we usually apply the mini-batch SGD algorithm for DNN
training. The approximated log-likelihood L35VE(®) for a
mini batch can be considered as

LEYP(®) = > 92 (W |2) log p(y; |z:, W)d W
(x4,9;)€(Xp,Yp)
N X
b1
~ Lp(®), (22)

where (X, Y;) = {(@;,y;)}Yt, is the b mini batch
stochastically selected from D, N, = [(X,,Y})| is the
mini batch size, and f(e; ®, Z) is a differentiable function
for reparameterizing the dropout mask in the set M =
{mW}E | by random samples €, and for generating W.
Parameters in A are estimated directly by (22), respectively.

For the ['" layer as an example, the dropout-masked
parameter matrix w() can be computed as

w® = f (e(l); [:10N )\l)
= diag(m(l))e(l)

= diag (Sigmoid(,ul + oy % e<l>)) 00, 23)

where element egl) ~ N(0,1),j = 1,--- ,K; in e is
randomly sampled from the normal distribution with zero
mean and unit variance.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS
5.1 Advanced Dropout for Classification
5.1.1 Datasets

We evaluated the advanced dropout technique on seven
image classification datasets, including MNIST [43], CIFAR-
10 and -100 [44], minilmageNet [45], Caltech-256 [46],
ImageNet-32 x 32 [47], and ImageNet [48] datasets. Note
that in the minilmageNet dataset, 500 and 100 images per
class were randomly selected from the training set of the full
ImageNet dataset as the training set and the test set of this
work, respectively. In the Caltech-256 dataset, 60 samples
were randomly selected from each class, gathering as the
training set. The remaining samples were for the test set.
The ImageNet-32 x 32 dataset is more difficult than the full
ImageNet dataset (with 224 x 224 images in general), since
all the images are downsampled to 32 x 32 for both training
and test [47]. The former five ones are small-scale datasets,
while the ImageNet-32 x 32 and the ImageNet datasets are
large-scale ones. We will separately discuss the two kinds.

5.1.2 Implementation Details

For the MNIST dataset, a FC neural network with two hid-
den layers and 800 hidden nodes each was constructed for
the evaluation, while VGG16 [1] and ResNetl8 [2] models
were considered as the base models for all the other datasets.
In DNN training on the MNIST dataset, we trained the
FC neural network with different dropout techniques for
200 epochs with the fixed learning rate as 0.01. For the
ImageNet-32 x 32 dataset, we trained the models under 100
epochs with the initialized learning rate as 0.1 and decayed
by a factor of 10 at the 50 and the 75" epochs, respec-
tively. For all the other datasets, we trained the models
300 epochs with the initialized learning rate as 0.1 and
decayed by a factor of 10 at the 150" and the 225" epochs,
respectively. The batch size on each dataset was set as 256.
In addition, we adopted the SGD optimizer, of which the
momentum and the weight decay values were set as 0.9 and
5 x 1074, respectively. All the models with the advanced
dropout technique and the referred techniques have been
experimented 5 runs with random initialization, while we
compared the results of the advanced dropout technique on
the ImageNet dataset (with standard experimental settings)
with those reported in references [18], [34]. The means and
the standard deviations of the classification accuracies are
presented in the following sections for comparison.
Meanwhile, nine referred techniques were selected
based on their distributions of the dropout masks in-
cluding standard dropout with Bernoulli noise (“dropout,
Bernoulli”) [14], Gaussian noise (“dropout, Gaussian”) [32],
and uniform noise (“dropout, uniform”) [18], varia-
tional dropout [19], concrete dropout [33], continuous
dropout [18], S-dropout [34], information dropout [16], and
soft dropout [15]. We reimplemented and compared them
with the advanced dropout technique. The two adaptive
version of the soft dropout, i.e., Gaussian soft dropout and
Laplace soft dropout, were implemented on all the datasets
for comparison, respectively. For the standard dropout with
Bernoulli noise and Gaussian noise, we fixed the dropout
rate as 0.5 during training. For the continuous dropout, we
selected the variance o2 of its Gaussian prior from the set
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TABLE 1: Test accuracies (%) on MNIST, CIFAR-10, CIFAR-100, minilmageNet, and Caltech-256 datasets. Note that the best results are marked

in bold and the second best results are marked by

underline, respectively.

CIFAR-10
VGG16/ResNet18

CIFAR-100
VGG16/ResNet18

minilmageNet
VGG16/ResNet18

Caltech-256
VGG16/ResNet18

Dataset MNIST

Base model 784-2 % 800-10
No dropout 98.23 £0.11
Dropout, Bernoulli 98.46 £ 0.06
Dropout, Gaussian 98.45 + 0.05
Dropout, uniform 98.50 + 0.12
Concrete dropout 98.45 £ 0.04
Variational dropout ~ 98.46 + 0.14

B-dropout 98.62 £ 0.09
Continuous dropout  98.45 £ 0.20
Information dropout  98.22 £ 0.25
Gaussian soft dropout 98.64 + 0.04
Laplace soft dropout  98.70 £ 0.10
Advanced dropout

93.86 + 0.10/94.83 £ 0.08
93.81 £0.14/94.84 £ 0.07
93.83 £0.14/95.02 £ 0.14
93.82 £ 0.09/94.86 £ 0.14
93.79 £ 0.14/94.99 £ 0.11
93.81 £0.10/95.05 £ 0.10
93.95 £ 0.19/95.07 £ 0.11
93.86 £ 0.08/94.92 £ 0.10
93.88 £ 0.18/94.97 £ 0.16
93.97 £ 0.24/95.09 + 0.09

73.62 £ 0.38/76.44 £ 0.14
73.77 £0.14/76.67 £ 0.22
73.78 £0.19/76.62 £ 0.14
73.76 £0.17/76.76 £ 0.11
73.67 £0.16/76.48 £ 0.26
73.98 £0.25/76.76 £ 0.38
74.03 £0.10/76.79 £ 0.28
73.85 £ 0.21/76.90 £ 0.27
73.70 £0.49/76.47 £ 0.28
74.07 £0.38/77.22 £ 0.23

93.95 £0.11/95.03 £ 0.11

74.05 £0.23/77.13 £ 0.27

76.35 £ 0.08/71.80 £ 0.02
76.21 £ 0.09/72.02 £ 0.40
76.14 £ 0.09/71.98 + 0.45
76.84 £0.07/72.07 £ 0.02
76.35 £ 0.08/71.56 £ 0.11
76.56 £0.07/72.06 £ 0.04
77.13+£0.13/72.24 + 0.06

76.71 £0.13/72.33 £ 0.04

76.44 £ 0.08/71.90 £ 0.06
76.56 £0.05/71.74 £ 0.03
76.61 £ 0.06/71.55 £ 0.02

63.87 £+ 0.07/61.36 £ 0.10
64.76 &£ 0.14/61.64 £ 0.10
64.47 £ 0.22/61.97 +£ 0.29
64.43 +0.10/62.14 £ 0.08
63.79 £ 0.07/62.12 & 0.08
64.46 +0.11/61.98 £ 0.18
64.84 £ 0.07/62.14 £ 0.08
64.69 £+ 0.09/61.80 £+ 0.16
64.11 £ 0.13/61.76 & 0.09
63.80 £ 0.10/58.68 £ 0.24
64.60 £ 0.05/57.22 £ 1.15

98.89 + 0.04 94.28 + 0.03/95.52 + 0.09 74.94 + 0.24/77.78 + 0.08 77.35 + 0.01/72.89 + 0.06 65.09 &+ 0.03/62.53 + 0.01
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TABLE 2: The p-values of student’s t-tests between the accuracies of the advanced dropout technique and all the referred techniques with
different base models on MNIST, CIFAR-10, CIFAR-100, minilmageNet, and Caltech-256 datasets, respectively. The significance level was 0.05.
The advanced dropout technique has statistically significant difference from a referred technique if the corresponding p-value is smaller than 0.05.

Dataset MNIST CIFAR-10 CIFAR-100 MinilmageNet Caltech-256
Base model 784-2 x 800-10 VGG16/ResNet18 VGG16/ResNet18 VGG16/ResNet18 VGG16/ResNet18
No dropout 9.04 x 107°  2.92x 107%/1.31 x 107 3.59 x 107%/1.69 x 107°  6.16 x 107°/2.81 x 10™°  1.09 x 1077/8.60 x 10~°
Dropout, Bernoulli 7.32 x 107° 1.06 x 107%/8.69 x 1077 1.92 x 107°/1.30 x 10~*  7.44 x 107%/5.62 x 107%  8.43 x 107°/2.64 x 10~°
Dropout, Gaussian 1.23 x 1076 1.37 x 1073/3.39 x 107*  1.93 x 107°/2.56 x 107°  4.26 x 107°/4.84 x 1072 1.91 x 107%/6.67 x 1073
Dropout, uniform 2.25 x 1072 1.08 x 1074/6.39 x 107°  1.55 x 107°/7.18 x 1077 6.62 x 107°/2.94 x 10°7  6.53 x 107°/3.34 x 104
Concrete dropout 3.00 x 1077 843 x107%/5.18 x 107°  9.07 x 107%/1.62 x 10~*  6.07 x 107°/6.74 x 1077 1.35 x 10~ 7/2.45 x 10~ *
Variational dropout 2.32x 1073  1.86 x 1074/7.19 x 107° 2,14 x 107%/2.60 x 107 1.12x 107°/7.26 x 107°  1.24 x 10~ */1.76 x 103
B-dropout 410x 1072  1.18 x 1072/1.25 x 10~*  1.51 x 107%/7.66 x 10°*  1.30 x 1072/1.76 x 10~7  1.77 x 107%/3.34 x 10~*
Continuous dropout 9.67x 107 1.12x107%/8.41 x 107° 411 x 107°/1.03 x 1072 2.76 x 107*/1.24 x 1077 5.47 x 10~ */4.30 x 10~ *
Information dropout 273 x 107%  3.76 x 107%/2.52 x 107" 1.24 x 107%/1.16 x 107*  8.20 x 107°/2.22 x 107°  2.28 x 107°/2.23 x 107°
Gaussian soft dropout ~ 5.58 x 10~° 1.21 x 1072/4.35 x 107°  1.88 x 1073/7.72 x 107>  1.28 x 107%/3.12 x 107%  1.19 x 107/1.73 x 107
Laplace soft dropout 291 x 1072 9.80 x 107%/3.46 x 107°  1.53 x 107%/2.05 x 107%  4.59 x 107%/1.09 x 1077 1.52 x 1077/2.47 x 10~*

{0.2,0.3,0.4}, following the strategy in [18]. Meanwhile, for
the S-dropout, the shape parameter 5 was set as values
drawn from the set {0.001,0.1,0.2,0.5,1,3}, as suggested
in [34]. For the information dropout, the multiplier 3 in its
loss function was empirically selected as 0.1.

In order to check whether the advanced dropout tech-
nique has statistically significant performance improvement
compared with the referred techniques, we conducted Stu-
dent’s t-tests between accuracies of them with the null-
hypothesis that the means of two populations are equal. The
significance level was set as 0.05.

5.1.3 Performance on MNIST Dataset

From Table 1, the advanced dropout technique achieves the
best accuracy at 98.89% among the other techniques with
the two-hidden-layer FC neural network on the MNIST
dataset. At the meantime, it obtains the smallest standard
deviation at 0.04% as well. While the second best technique,
the Laplace soft dropout, achieves the classification accuracy
at 98.70%, the proposed technique outperforms the second
best one slightly at about 0.2%, but has an increase at about
0.7% compared with the model without dropout.

5.1.4 Performance on CIFAR-10 and -100 Datasets

On the CIFAR-10 dataset, the advanced dropout technique
performs best again with both VGG16 and ResNet18 mod-
els. It achieves the averaged classification accuracies of
94.28% and 95.52% for each base model, respectively, while
the accuracies of all the others are less than 94% and 95.1%
with the VGG16 and the ResNetl8 base models, respec-
tively. Meanwhile, the proposed technique outperforms the
second best technique, by about 0.3% and 0.5%, and the
base model by about 0.4% and 0.7%, respectively.
Moreover, the advanced dropout technique achieves
the classification accuracies of 74.94% and 77.78% on the
CIFAR-100 dataset with the VGG16 and the ResNet18 base
models, respectively, which are the best results among all
the referred techniques. The VGG16 model with the ad-
vanced dropout technique obtains an improvement of 0.9%
and 1.3%, compared with the Gaussian soft dropout and the

base model, while the ResNetl8 with it also achieves more
than 0.5% and 1.3% higher performance compared with the
Gaussian soft dropout and the base model.

5.1.5 Performance on MinilmageNet Dataset

In Table 1, the advanced dropout technique achieves the
classification accuracies at 77.35% and 72.89%, respectively,
which is the best results with the VGG16 and the ResNet18
models among the referred methods on the minilmageNet
dataset. The accuracies obtained by most of the referred
techniques with the VGG16 model are lower than 77%.
The proposed technique outperforms the base model by 1%
and the second best model, the 5-dropout with the VGG16
model, by more than 0.2%.

Furthermore, the advanced dropout-based ResNetl8
model also shows improvement in classification accuracies
on the minilmageNet dataset. Compared with the base
model, the advanced dropout technique with the ResNet18
model increases its accuracy by about 1.1%, which is a
promising performance improvement. Meanwhile, it sur-
passes continuous dropout with the ResNet18 (72.33%) by
more than 0.5%.

5.1.6 Performance on Caltech-256 Dataset

In the last column of Table 1, the advanced dropout tech-
nique with the VGG16 and the ResNet18 models performs
the best on the Caltech-256 dataset and achieve the averaged
accuracies of 65.09% and 62.53% with the smallest standard
deviations of each at 0.03% and 0.01%, respectively. Com-
pared with their corresponding base models, the models
based on the advanced dropout technique improve the accu-
racies by a large margin of around 1.2% for both. Applying
the VGG16 model as the base model, the classification accu-
racy of the advanced dropout is higher than the second best
model, the S-dropout, more than 0.2%. Meanwhile, with
the ResNet18 base model, the advanced dropout technique
shows considerable performance improvements compared
with the base model and the second best model as well. It
improves the accuracy by 0.4% more than the second best
technique, the dropout with uniform noise.
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TABLE 3: Test accuracies (%) and the p-values of Student’s t-tests between the accuracies of the advanced dropout technique and all the referred
techniques on the ImageNet-32 x 32 dataset. Note that the best results are marked in bold and the second best results are marked by underline,
respectively. The significance level was set as 0.05.

Dataset
Base model

Top-1 acc./p-value

VGG16

Top-5 acc./p-value

ResNet18

Top-1 acc./p-value Top-5 acc./p-value

No dropout
Dropout, Bernoulli
Dropout, Gaussian
Dropout, uniform
Concrete dropout
Variational dropout
B-dropout
Continuous dropout
Information dropout
Gaussian soft dropout
Laplace soft dropout
Advanced dropout

40.58 £ 0.15/3.57 x 10~%
41.26 £ 0.21/1.67 x 10~°
41.33 +£0.14/3.36 x 107
41.36 £ 0.16/2.35 x 1076
41.37 £ 0.05/1.73 x 1077
41.45 £ 0.06/2.29 x 107
41.51 4 0.08/8.15 x 1072
41.23 +£0.11/2.63 x 102
41.35+0.12/1.50 x 1077
41.69 + 0.07/4.30 x 1077
41.57 £0.14/1.33 x 1076
42.65 4+ 0.11/ N/A

64.50 + 0.22/1.56 x 1076
64.14 + 0.12/1.63 x 1078
64.22 + 0.08/9.44 x 10~%
64.88 + 0.15/5.63 x 1077
64.33 +0.19/2.90 x 1077
64.35 + 0.10/5.48 x 108
64.27 +0.13/2.85 x 1072
64.07 £ 0.08/8.76 x 1078
64.12 + 0.09/6.00 x 10~8
64.59 4 0.10/2.47 x 1077
65.45 £ 0.10/2.88 x 107°
66.23 £ 0.16/ N/A

45.46 £ 0.39/5.44 x 1074
45.72 +0.13/1.46 x 1076
45.00 £ 0.07/7.09 x 10!
45.26 + 0.08/5.27 x 107°
45.75 4 0.12/7.26 x 1077
45.53 £ 0.09/4.26 x 10~°
45.09 £ 0.08/1.47 x 10~ *°
44.60 + 0.12/6.45 x 10~°
45.55 + 0.07/6.71 x 1070
46.33 £ 0.13/4.06 x 107°
46.31 £ 0.19/3.85 x 1074
47.03 4 0.07/ N/A

70.47 + 0.38/9.05 x 104
70.73 + 0.08/4.24 x 1077
69.74 +0.19/6.72 x 10~ 7
69.62 + 0.07/2.47 x 107°
70.55 + 0.17/5.68 x 1076
69.63 £ 0.14/1.09 x 108
69.73 +0.13/6.11 x 10~°
69.39 + 0.09/5.56 x 1071°
70.31 4 0.12/7.02 x 1078
71.04 £ 0.06/1.09 x 10~°
71.14 + 0.06/3.14 x 10~°
71.75 £ 0.12/ N/A

TABLE 4: Test accuracies (%) and the p-values of Student’s t-tests
between the accuracies of the advanced dropout technique and all
the referred techniques on the ImageNet dataset. Note that the best
results are marked in bold and the second best results are marked by
underline, respectively. The significance level was set as 0.05. Note that
“1” means the results in the row are reported in [18] and “}” means the

results in the row are reported in [34].

Method

Top-1 acc./p-value

Top-5 acc./p-value

No dropout
Adaptive dropoutt
DropConnect?
Dropout, Bernoullif
Dropout, Gaussian®
Dropout, uniform’
;3-cl1ropout3t
Continuous dropoutt
Advanced dropout

73.42 £ 0.059/2.43 x 10~ 11
73.73 4 0.046/2.65 x 10~16
73.18 £ 0.050/3.70 x 10718
73.01 £0.065/2.71 x 10~17
74.21 £ 0.045/3.60 x 10713
74.09 £ 0.046/4.67 x 10714
74.25 4 0.052/4.92 x 10~12
74.21 £ 0.045/3.60 x 10713
74.82 £ 0.017/N/A

91.68 4 0.025/6.30 x 10710
91.59 4 0.061/6.56 x 10~ 12
91.44 4 0.037/2.04 x 10715
91.14 4 0.042/1.36 x 10~16
92.01 £ 0.065/1.98 x 10~6
91.92 £ 0.048/2.25 x 1077
92.04 + 0.046/2.64 x 10~7
92.01 £ 0.065/1.98 x 1076
92.26 £ 0.029/N/A

5.1.7 Performance on ImageNet-32 x 32 Dataset

In this section, we evaluate the proposed advanced dropout
on a large-scale dataset, i.e., the ImageNet-32 x 32 dataset.
The accuracies and p-values are listed in Table 3. According
to the table, the advanced dropout achieves statistically
significant improvements over all the referred methods,
improving top-1 accuracy by about 1% and 0.7% and top-
5 accuracy by about 0.8% and 0.6% with VGG16 and
ResNet18 models, respectively.

5.1.8 Performance on ImageNet Dataset

In this section, the proposed advanced dropout was eval-
uated on the ImageNet dataset with VGG16 model as the
base model. The accuracies and the corresponding p-values
are listed in Table 4. According to the table, the advanced
dropout achieves statistically significant improvements over
all the referred methods, improving top-1 accuracy by about
0.6% and top-5 accuracy by about 0.2%, respectively.

5.1.9 Trade-off between Performance and Time

In this section, we compare the training time (in sec-
ond/epoch) of the proposed advanced dropout with those
of the other dropout variants by using one NVIDIA
GTX1080Ti. Note that the dropout techniques for regu-
larization are only used when training the models. Their
inference time is the same as the models without dropouts.
Thus, we only compare the training time on MNIST, CIFAR-
10, CIFAR-100, MinilmageNet, Caltech-256, and ImageNet-
32x32 datasets, respectively. According to the results shown
in Table 5, the models without dropouts always take the
shortest time. Meanwhile, the proposed advanced dropout
indeed required relatively longer time in each epoch, but
it is not the slowest one. Moreover, the differences among
the dropout techniques are not large. This indicates that
time consumption for the dropout technique is mainly for

sampling the dropout masks and the parametric prior does
not take much training effort.

Furthermore, in order to quantitatively compare the
accuracy improvement over the training time, we design a
effectiveness ratio, which is similar to the cost effectiveness
in [49], to rank all the dropout techniques based on their
differences from the base model without dropout. A higher
effectiveness ratio means more accuracy improvement can
be achieved over the same unit of training time cost. We
define the two metrics for the calculation of the effective-
ness ratio and name them as “metric 1”7 and “metric 2”7,
respectively. For the “metric 1”, the effectiveness ratio s; is

__ Sigmoid (a — a’)
*! Sigmoid (¢ — /)/#)

(24)

where a and t are the accuracy (in %) and training time
(in second/epoch) of a dropout technique, and a’ and ¢’
are those of the base model with no dropout. The Sigmoid
functions here are for scaling the accuracy improvement and
the training time into the same range. For the “metric 2”, the
Sigmoid functions are removed and the effectiveness ratio
So is
a—a')/d

For better illustration, we normalize all the effectiveness
ratios of different dropout techniques from one dataset
by their maximum and minimum values. The normalized
effectiveness ratio st of the “metric i” (i = 1,2) for one
specific dataset is defined as

: /
; _ $—mingeg, S
Snorm =

€3 €S, (26)
maxy cs, § — ming¢g,; s
where S;,i = 1,2 is the set of effectiveness ratios of the
dropout techniques calculated by the two metrics, respec-
tively. Here, “normalized” means mapping the effectiveness
ratios from one dataset and in a base model (called a case)
into the interval of [0, 1] for comparing their relative values.
Figure 5 demonstrates the normalized effectiveness ra-
tios of different dropout techniques on each dataset. By
using “metric 1”7 (Figure 5(a)), the advanced dropout can
outperform all the other dropout techniques on nine cases
out of all the eleven cases. Meanwhile, with “metric 2”
(Figure 5(b)), the advanced dropout can outperform all the
other dropout techniques on six cases in all eleven cases and
perform the second best on three cases.

5.1.10 Performance with other Base Models

We further evaluated the advanced dropout technique with
three other base models, including DenseNet40 [3], Mo-
bileNet [50], wide residual network (WRN) [51], on both the
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TABLE 5: Comparison of training time per epoch (in second/epoch) on MNIST, CIFAR-10, CIFAR-100, minilmageNet, Caltech-256, and
ImageNet-32 x 32 datasets by using one NVIDIA GTX1080Ti. All the models with different dropout variants are trained under equal conditions.
The shortest time and the longest time on each dataset are highlighted in bold and italic, respectively.

Dataset MNIST CIFAR-10 CIFAR-100 MinilmageNet Caltech-256 ImageNet-32 x 32
Base model 784-2 x 800-10 VGG16/ResNet18 VGG16/ResNet18 VGG16/ResNet18 VGG16/ResNet18 VGG16/ResNet18
No dropout 3.95 18.34/38.07 45.41/20.62 301.55/174.75 127.74/60.20 406.87/556.13
Dropout, Bernoulli 4.00 23.32/44.65 48.81/26.95 302.47/175.18 127.77/62.50 411.62/572.08
Dropout, Gaussian 9.45 24.69/57.83 49.77/53.54 365.86/183.41 148.12/70.09 438.49/579.57
Dropout, uniform 4.22 20.87/41.87 52.55/46.56 307.60/177.50 136.59/65.71 416.47/572.70
Concrete dropout 4.55 20.57/41.58 52.93/36.79 308.47/175.54 128.62/64.35 425.68/564.60
Variational dropout 5.47 20.89/41.38 54.17/37.28 309.19/176.44 128.27/64.81 446.90/581.87
B-dropout 15.15 24.27/55.00 63.84/57.75 520.72/210.97 221.21/90.25 605.93/696.83
Continuous dropout 4.55 19.81/52.66 53.93/49.33 319.40/178.57 132.48/66.20 420.53/559.86
Information dropout 4.93 22.52/53.06 52.21/42.44 309.12/175.60 127.96/65.11 413.30/575.36
Gaussian soft dropout 6.15 21.25/47.10 58.17/44.10 321.40/179.45 138.53/67.18 418.97/586.96
Laplace soft dropout 5.52 22.01/45.19 51.49/42.39 321.01/179.04 135.81/66.35 425.97/582.75
Advanced dropout 6.87 21.08/52.16 59.43/48.93 323.18/181.20 163.28/65.41 419.59/582.22
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Fig. 5: Normalized effectiveness ratios of the advanced dropout technique and various dropout techniques for quantitative comparison of
accuracy improvement over training time. We show the results with the two metrics in (a) and (b), respectively. The red squares are the proposed
advanced dropout technique, while other circles represent the referred dropout techniques. Note that for the ImageNet-32 x 32 dataset, top-1

accuracies are used only.

CIFAR-10 and -100 datasets. For hyperparameter selection
of the base models, the growth rate and the reduction rate
were set as 12 and 0.5 for the DenseNet40, respectively. o
was set as 1 for the MobileNet, and k& was set as 10 for the
WRN16. The optimizer, the batch sizes, and the learning

TABLE 6: Test accuracies (%) and p-values of Student’s t-tests between
the accuracies of the advanced dropout technique and all the referred
techniques with other base models on CIFAR-10 and -100 datasets, re-
spectively. Note that the best results are marked in bold and the second
best results are marked by underline, respectively. The significance level
was set as 0.05.

. . Dataset CIFAR-10
rates were set the same as those of the previous settings. All Base model DenseNet40/p-value MobileNet/p-value WRN16-10/p-value
the models with the advanced dropout technique and the No dropout 92.54 £ 0.33/1.47 x 1072 90.82+£0.12/8.99 x 10™°  94.29 + 0.37/9.36 x 10~*
92.06 £ 0.26/4.96 x 107°  90.95 £ 0.12/1.32 x 107°  94.65 & 0.40/4.59 x 10~ *

Dropout, Bernoulli
Dropout, Gaussian
Dropout, uniform
Concrete dropout
Variational dropout
B-dropout
Continuous dropout
Information dropout
Gaussian soft dropout
Laplace soft dropout
Advanced dropout

94.93 £ 0.12/2.22 x 10+
94.83 £ 0.35/6.59 x 1072
94.94 £ 0.05/1.25 x 107°¢
94.98 £ 0.11/1.65 x 10~*
94.83 £0.12/1.02 x 10~
94.95 £ 0.13/3.38 x 10~*
94.94 +0.13/3.19 x 107*
94.97 £0.07/1.94 x 107°
94.87 £ 0.05/9.74 x 107
95.50 £ 0.02/ N/A

91.23 £ 0.19/2.04 x 10~
90.95 £+ 0.30/2.36 x 1072
91.04 £ 0.17/3.09 x 10~*
91.17 £ 0.27/5.71 x 10~
90.94 +0.25/9.98 x 1074
90.85 £ 0.34/2.47 x 1073
91.29 +0.20/4.82 x 1072
91.34 4+0.22/1.17 x 1072
91.34 £ 0.25/1.65 x 1072
91.76 + 0.05/ N/A

92.05 £ 0.25/3.70 x 10~
92.41 £ 0.21/6.69 x 1072
92.50 &+ 0.26/3.95 x 10~*
92.71 £ 0.15/2.87 x 10~
92.41 £0.21/5.18 x 107
92.08 £ 0.18/3.20 x 10~°¢
92.68 £+ 0.15/2.14 x 1072
92.73 4+ 0.17/8.64 x 107°
92.71 £ 0.20/2.20 x 10~
93.41 £ 0.09/ N/A

referred techniques were experimented 5 runs with random
initialization. In addition, Student’s t-tests was conducted
between the accuracies of the advanced dropout technique
and all the referred techniques.

The accuracies and the p-values are listed in Table 6.

It can be observed that the advanced dropout achieves

1sti 1 1fi 1 Dataset CIFAR-100
statistically significant improvement on all the base models. et DenseNeti0/p-value Mot 00 e WRNI16-10/ povalue
No dropout 68.36 + 0.27/6.75 x 1077 67.12+0.25/1.89 x 107°%  77.67 4 0.19/2.83 x 1072

5.2 Ablation Studies

To investigate the effectiveness of the components of the
advanced dropout technique, including the parametric prior
and the SGVB inference, we conducted quantitative com-
parisons on the MNIST [43], the CIFAR-10 and -100 [44],
the minilmageNet [45], and the Caltech-256 [46] datasets.

77.55 4+ 0.18/1.35 x 10*
77.68 £0.16/4.95 x 10+
77.63 £0.14/3.80 x 1072
77.69 £ 0.16/5.24 x 107°
7773 4£0.17/1.26 x 1072
77.78 £0.12/1.09 x 10~*
77.56 £ 0.14/1.28 x 1072
77.85 4 0.05/1.74 x 10*
77.83 £0.11/6.03 x 107¢
77.74 £0.19/2.94 x 10°
78.22 4 0.15/ N/A

67.39 +£0.51/7.27 x 10~ *
67.30 +0.41/1.25 x 104
67.87 +0.12/8.34 x 107°
67.87 £ 0.23/7.79 x 107°
67.81 +0.27/1.04 x 1074
67.26 £ 0.36/4.02 x 10~°
67.12 + 0.36/2.62 x 107°
67.69 % 0.36/2.68 x 10~*
67.75 +0.32/1.83 x 1074
67.8 4£0.13/4.93 x 10°°
68.85 + 0.24/ N/A

68.39 & 0.27/7.10 x 1077
68.43 £ 0.31/3.50 x 10~°¢
68.29 £ 0.36/8.24 x 107°¢
68.48 £ 0.49/1.19 x 10~*
69.70 £ 0.28/2.38 x 1074
68.52 £ 0.35/1.08 x 102
68.43 £ 0.33/5.09 x 107°¢
69.40 & 0.25/1.69 x 107
69.20 £ 0.16/3.61 x 1077
69.46 & 0.13/1.46 x 10~
70.65 4+ 0.17/ N/A

Dropout, Bernoulli
Dropout, Gaussian
Dropout, uniform
Concrete dropout
Variational dropout
f-dropout
Continuous dropout
Information dropout
Gaussian soft dropout
Laplace soft dropout
Advanced dropout

The experimental results are shown in Table 7. We compare

the full advanced dropout technique with the techniques
whose the parametric prior component is removed (“ad-
vanced dropout w/o prior” in Table 7) and whose param-
eters 1y and oy are fixed at 0.5 (“advanced dropout w/o
optimization” in Table 7). The model we applied is the two-
hidden-layer FC neural network with 800 hidden nodes in
each layer on the MNIST dataset, while the VGG16 model
is used on the other datasets as the base models.

It can be observed that, the full advanced dropout tech-
nique outperforms the base model without any dropout

training by about 0.7%, 0.5%, 1.3%, 1%, and 1.2% on the
five datasets, respectively. When removing the parametric
prior from the full technique, the classification accuracies
decrease slightly on all the datasets, even though the tech-
nique performs better than the base model as well. When
we continue removing the SGVB inference and setting the
technique with fixed parameters j; and o3, classification
accuracies further decrease. Therefore, the parametric prior
and the SGVB inference play their own positive roles in the
advanced dropout, which are both essential.
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TABLE 7: Test accuracies (%) of ablation studies on MNIST, CIFAR-10, CIFAR-100, minilmageNet, and Caltech-256 datasets. “Advanced dropout
w/o optimization” means the advanced dropout with fixed parameters; “Advanced dropout w/o prior” mean the advanced dropout minus the

prior. Note that the best results are marked in bold, respectively.

11

Dataset MNIST CIFAR-10 CIFAR-100 MinilmageNet Caltech-256
Base Model 784-2 x 800-10 VGG16 VGG16 VGG16 VGG16
No dropout 98.23 £0.11 93.86 £0.10 73.62 £ 0.38 76.35 £ 0.08 63.87 £0.07
Advanced dropout w/o optimization 98.70 4+ 0.04 93.98 + 0.09 74.55 £ 0.19 77.20 +0.08 64.88 £0.11
Advanced dropout w/o prior 98.81 £ 0.02 94.20 £0.07 74.77 £ 0.10 77.30 £0.08 65.03 £0.01
Advanced dropout 98.89 +0.04 94.28 £0.03 74.94+0.24 77.35+0.01 65.09+ 0.03
0.6 0.6 0.6
— = = Initialization: i1, 0=4 (p~0.6) = = = Initialization: =1, o= — = — Initialization: =-1, o=4 (p~0.6)
Initialization: =0, ’J(p:US\ Initialization: =0, Initialization: i
05 L N Initialization o5t e nitialization: 1.
—;::::jz:::z: ——— Initialization: 4 Initialization Test acc. (%)
A N = = niaizaion <os S v el p=—1,0=4(~0.6) 98.85
l_; Iwmlu\\lun 1=10, o= 4(/~00 5) }_é Initialization: =1 =4 (p=0.025) % 1 #=10, o=4 (p=0.025) /.l —_ 0, o= 4 (p ~ 05) 9889
503 503 zoaf] nw=0,0=3(p=0.5) 98.94
s £y Eop p=00=2(~0.5) 98.87
S0z 02 02 p=30=4(p~025) 98.91
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Fig. 6: Nlustration of the adaptive dropout rates in the advanced dropout technique on the MNIST dataset. The subfigures illustrate the dropout
rate curves of the advanced dropout of (a) the input features, (b) the first hidden layer, and (c) the second hidden layer. Note that differently
initialized dropout rates p (see legends) are set for initialization of the parameters p; and o;. Please refer to (27) for the calculation formula of the

dropout rate. Corresponding test accuracies (acc.) with different initializations are also reported in (d).
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Fig. 7: Illustration of the adaptive dropout rates in the advanced dropout technique on the CIFAR-10 dataset. The subfigures mean the dropout
rate curves of the advanced dropout of (a) the convolutional features of the last convolutional layer, (b) the first hidden layer, and (c) the second

hidden layer. Differently initialized dropout rates p (see legends) are set for initialization of the parameters p; and o;.

accuracies (acc.) with different initializations are also reported in (d).

5.3 Analysis of Dropout Rate Characteristics

In this section, we extensively study the characteristics of
the advanced dropout technique, especially its dropout rate
learning process. Firstly, we analyze the convergence of the
adaptive dropout rate and the learned distributions of the
dropout masks. Then, to compare the advanced dropout
technique with the one generating dropout rate directly
(without an explicit distribution), we design a dropout
variant in this kind and conduct several experiments.

5.3.1 Convergence of Adaptive Dropout Rate

In this section, we discuss the convergence of the advanced
dropout technique. Due to the importance of the distri-
bution parameters y; and o; of each layer in DNNs, we
investigate their convergence via a quantitative indicator,
called dropout rate which is essential in dropout techniques.
In standard dropout [14], the dropout rate is considered as
one minus the parameter p of the Bernoulli distribution.
Given that the parameter p represents the mean of the
Bernoulli distribution, we can generalize the calculation of
the dropout rate by one minus the mean of the distribution
of the dropout masks. In particular, the dropout rate p;
of the advanced dropout technique for all the K; nodes

mgl), e mg{) can be explicitly calculated by ; and o7 as

Corresponding test

%

In this case, we conducted groups of experiments and
illustrate their dropout rate curves in Figure 6 and 7. The
MNIST and the CIFAR-10 datasets were used for evalua-
tions. For the MNIST dataset, a FC neural network with two
hidden layers and 800 hidden nodes of each was trained for
200 epochs with the fixed learning rate of 0.01, while we
applied a VGG16 model as the base model and trained it for
200 epochs on the CIFAR-10 dataset but with the dynamic
learning rate same as that in Section 5.1.2.

In Figure 6 and 7, with different initial dropout rates,
it can be observed that the dropout rate of the proposed
advanced dropout technique converged to similar values
on the two datasets, respectively (i.e., = 0.06 on the MNIST
dataset and = 0.15 on the CIFAR-10 dataset). This indicates
that different initial dropout rates do not influence the opti-
mization results and can converge to the similar last values.
All the models with different initializations converge to the
same values gradually after the 150" epoch. Therefore, we
can conclude that the advanced dropout technique has good
convergence performance. We should note that the initial
dropout rate 0.5 (a commonly used value in [14], [18])
is an okay choice and the other values are also suitable.

pr=1-E[m{"] ~ 1 - Sigmoid @7)



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, 20XX

epoch 1, p=0.5 epoch 10, p=0.55241

epoch 20, p=0.48156

12

epoch 30, p=0.41593

PDF
PDF

0 0.5 1 0 0.5 1 0

epoch 50, p=0.36824 epoch 60, p=0.36097

0.5 1 0 0.5 1

epoch 150, p=0.33758

0 50 100 150 200 250 300
Epoch

(b) Test accuracies

epoch 300, p=0.15626

2 Y
5 w 20 w 20
210 2 g
- 10 10

0 0 0

0 0.5 0 0.5 1 0

(a) Learned distributions of different epochs

0.5 0 0.5

100 150 200 250 300
Epoch

(c) KL divergences

Fig. 8: Learned distributions of the dropout masks with the VGG16 model on the CIFAR-10 dataset. Learned distributions of eight selected
epochs are shown in (a). Note that for other datasets and base models, the distributions are similar with the shown ones. To further discuss the
relationship between the convergence of the model and the distributions, we illustrate the curve of test accuracies in (b) and KL divergences from

the distributions of different epochs to that of the last epoch in (c).

TABLE 8: Comparison of the advanced dropout and a dropout variant that directly computes the dropout rate by the MLP. The test accuracies
(%) and the p-values of Student’s t-tests on CIFAR-10 and -100 datasets are shown, respectively. Note that the best results are marked in bold.

Dataset CIFAR-10 CIFAR-100
Base model VGG16/p-value ResNet18/p-value VGG16/p-value ResNet18/p-value
Concrete+MLP 94.10 +0.08/3.87 x 1073 95.08 4 0.04/4.13 x 10=5  73.77 £0.19/1.76 x 10=°  76.45 £ 0.19/1.77 x 10~°

Advanced dropout 94.28 + 0.03/ N/A

95.52 + 0.09/ N/A

74.94 + 0.24/ N/A 77.78 + 0.08/ N/A

No dropout
Dropout, Bernoulli
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Concrete dropout
Variantional dropout |
B-dropout
Continuous dropout
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Fig. 9: Test accuracy curves with VGG16 on the CIFAR-10 dataset as
an example. We only illustrate the last 100 epochs for better compar-
isons of the accuracies of different dropout variants and the proposed
advanced dropout technique.

Meanwhile, the dropout rates for each layer are optimized
and vary during training, which means that different epochs
need different values of dropout rate. The low dropout rates
at the last epochs are just suitable for the last epochs only.

An interesting phenomenon is observed in Figure 7. In
the different layers, the dropout rates with distinct initializa-
tions fall immediately until reaching a local minimum of the
dropout rate curves and then increase continuously. Before
reaching the local minimum, the model fits the data rapidly
and the dropout rates of different layers are adaptively
reduced to a low level in a quick way for fully optimizing
model parameters. Then after the local minimum, failing of
convergence of the optimization (because of too large learn-
ing rate) occurs and a smaller learning rate is required to de-
crease optimization steps (i.e., the learning rate multiplying
gradients in SGD). As the decrease of the optimization steps
can be also led to by multiplying smaller dropout masks
onto the outputs of each layer (i.e., increasing the dropout
rates), the dropout rates are driven to rise automatically. In
addition, at the 150" and the 225" epochs, the dropout
rates fall off again due to the decay of the learning rate.

In addition, different initializations of y and o only
slightly affect the test accuracies of the models, as demon-
strated in Figure 6(d) and 7(d).

5.3.2 Learned Distributions of the Dropout Masks

We discuss the shapes of the learned distributions of the
dropout masks, as shown in Figure 8(a). We only illustrate
the distributions optimized with the VGG16 model on the
CIFAR-10 dataset, since the distributions for other datasets
and base models are similar with the shown ones. As
shown in Figure 8(a), the distributions change dramatically
between epoch 1 and epoch 60, and then converged till the
end of the training process. Based on the view of Bayesian
inference, the variance of an estimated posterior distribution
will converge to a small value and the estimated posterior
distribution will be concentrated in a compact area, if the
data amount is large enough [42], [52].

To further discuss the relationship between the conver-
gence of the model and the distributions, we illustrate the
curve of test accuracies in Figure 8(b) and the curve of the
KL divergences from the distributions on different epochs
to that of the last epoch in Figure 8(c). The KL divergences
decrease significantly at the beginning of training and then
converge. During the whole training process, the KL diver-
gences continuously decrease until the last epoch as the test
accuracies increase. This means that the distributions are
optimized gradually with model training.

5.3.3 Comparison with Dropout Rate Generation w/o Ex-
plicit Distribution

In this section, we compare the proposed advanced dropout
(with an explicit distribution assumption) with the cases
that compute the dropout rates directly (without explicit
distribution assumption). To this end, we design a dropout
variant with the concrete distribution [53], in which the
parameter p, i.e., one minus the dropout rate, is directly com-
puted by an MLP. We name the designed dropout variant
as “concrete+MLP”. Table 8 lists the experimental results
and the p-values of the Student’s f-tests on the CIFAR-
10 and -100 datasets, respectively. The advanced dropout
achieves statistically significantly better performance than
the “concrete+MLP” method on two datasets.

5.4 Capability of Overfitting Prevention

We illustrate the test accuracy curves of the last 100 epochs
with VGG16 on the CIFAR-10 dataset as an example in
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Fig. 10: Training and test accuracy comparisons of the last epoch with VGG16 and ResNet18 models on minilmageNet and Caltech-256 datasets,
respectively. The vertical lines in red are for the proposed advanced dropout, the advanced dropout w/o prior, and the advanced dropout
w/o optimization, respectively. It can be observed that all the essential components in the proposed advanced dropout contribute to overfitting
prevention. The other solid lines (with different colors) are for the referred methods.

TABLE 9: Top-1 and top-5 test accuracies (acc., %) with different training set sizes on Caltech-256 dataset. £ means the training sample number

per class. Note that the best results are marked in bold, respectively.

Model £ =60 £=30 £E=15
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.
No dropout 63.87 +0.07 80.41+0.07 51.124+0.11 70.77 £ 0.08 36.19+£0.10 55.66 &+ 0.15
Dropout, Bernoulli 64.76 £0.14 81.34£0.14 51.88 £0.14 71.21£0.14 36.31 £ 0.27 56.17 £ 0.24
Dropout, Gaussian 64.47 £ 0.22 81.05£0.19 51.97+£0.14 71.36 £0.13 36.35 £ 0.10 56.21 £0.12
Dropout, uniform 64.43 +0.10 81.01+0.10 51.78 +£0.23 71.114+0.11 35.8240.07 56.02 £ 0.06
Concrete dropout 63.79 +0.07 80.37 £ 0.07 50.72 +0.21 70.55+0.11 35.08 £ 0.10 55.30 £ 0.09
Variational dropout 64.46 +£0.11 81.04+0.04 52.08 £ 0.08 70.91+0.14 36.42+0.14 56.14 £+ 0.26
B-dropout 64.84 +0.07 81.07 +0.09 52.134+0.13 71.334+0.04 36.33 +0.04 56.28 +0.14
Continuous dropout 64.69 & 0.09 81.06 = 0.09 52.124+0.18 71.314+0.19 36.24 4+ 0.22 56.16 £ 0.22
Information dropout 64.11+0.13 81.55 + 0.06 51.61 +0.11 70.92 +0.17 35.83+0.13 55.97 £+ 0.09
Gaussian soft dropout ~ 63.80 £ 0.10 80.38 +0.09 51.01 +0.12 70.734+0.14 34.65 4 0.22 55.26 +0.15
Laplace soft dropout 64.60 & 0.05 81.18 +0.04 51.61+0.14 70.80 £ 0.06 35.49+0.21 55.09 £ 0.18
Advanced dropout 65.09 + 0.03 81.644+0.04 52.57+0.05 71.62+0.13 36.95+0.12 56.58+0.16

TABLE 10: Test accuracies (%) of fully connected (FC) neural net-
works with different depth on MNIST dataset. The model structures
mean “hidden layer number x hidden node number per layer”. Note
that the best results are marked in bold, respectively.

Model FC (2% 800) FC (4% 800) FC (8 x800)
No dropout 98.23 £0.11 98.16 £ 0.30 98.06 £ 0.47
Dropout, Bernoulli 98.46 £ 0.06 98.39 £ 0.10 98.18 £ 0.03
Dropout, Gaussian 98.45 4+ 0.05 98.41 £ 0.15 98.05 & 0.11
Dropout, uniform 98.50 £ 0.12 98.68 £+ 0.06 98.40 £ 0.16
Concrete dropout 98.45 £ 0.04 98.54 £ 0.03 98.16 £ 0.21
Variational dropout 98.46 £ 0.14 98.34 £ 0.17 98.20 £+ 0.12
B-dropout 98.62 £ 0.09 98.68 £+ 0.06 98.46 £+ 0.07
Continuous dropout 98.45 £ 0.20 98.42 £ 0.23 98.28 £ 0.07
Information dropout 98.22 £+ 0.25 98.18 + 0.22 97.65 + 0.14
Gaussian soft dropout 98.64 £+ 0.04 98.63 £+ 0.05 98.67 £+ 0.05
Laplace soft dropout 98.70 £ 0.10 98.53 £+ 0.04 98.68 £ 0.06
Advanced dropout 98.89 + 0.04 98.99 + 0.04 98.86 + 0.06

Figure 9. For the proposed advanced dropout technique, an
increase trend can be clearly found and the curve varies
slightly, although the best accuracy may be obtained in
earlier epochs. Meanwhile, for some referred techniques, for
example, the Laplace soft dropout, overfitting can be found
between the 280" and 300" epochs. This means that the
proposed advanced dropout technique can actually reduce
overfitting. Similar results can be also found with other base
models and on other datasets.

One way for overfitting prevention is to trade off the bias
and the variance of a model to achieve small gap between
training and test performance, ie., improved generaliza-
tion. Here, we show the training and the corresponding
test accuracies of the last epoch when applying different
dropout techniques to the base models in Figure 10. It can
be observed that the proposed advanced dropout technique
reduces the gap between training and test accuracies (i.e., re-
ducing overfitting) and achieves the highest test accuracies
at the same time. The models after removing the essential

components (as discussed in Section 5.2) are still able to
reduce the training-test accuracy gap compared with the
referred methods, although they obtain suboptimal results
than that with the “full” advanced dropout technique. This
means all the essential components contribute to overfitting
prevention.

To quantitatively investigate the capability of overfitting
prevention of the advanced dropout technique, we designed
two groups of experiments. Given the actual situation that
overfitting occurs when the model size is too huge or the
training dataset is too small, two groups of experiments are
as follows: one exponentially decreases the training sample
number in each class on the Caltech-256 dataset and the
other exponentially increases the hidden layer number in a
FC neural network on the MNIST dataset. The experimental
results are shown in Table 9 and 10.

On the Caltech-256 dataset, a coefficient £ is introduced
to represent the training sample number per class and
measure the size of the training set. In the experiments, £
is set as {60, 30, 15} with the test set fixed as the remaining
part of the whole dataset by removing 60 samples from each
class (£ = 60). Moreover, we applied the VGG16 model as
the base model for each case. The top-1 and the top-5 test
accuracies are reported in Table 9. With the decrease of &, the
classification accuracies of all the dropout techniques drop
dramatically, which is expected. However, the advanced
dropout technique achieves the best performance on the
three cases with different {. When ¢ is equal to 60, it obtains
the top-1 and the top-5 accuracies of 65.09% and 81.64%,
outperforming the second best technique by about 0.2%
and 0.1%, respectively. At the mean time, it achieves the
top-1 and top-5 accuracies of 52.57% and 71.62%, which
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Predictions

a
Fig. 11: Confusion matrices of different techniques for model uncertaint
and (c) advanced dropout.

TABLE 11: AUROC of max probability (Max.P) and entropy (Ent.),
and test accuracies (acc., %) of model certainty inference on the MNIST
dataset. Note that the best results are marked in bold.

AUROC
Method Max.P Ent. Acc.
MC dropout 0.9210 0.8892 93.49
ApDeepSense 0.9185 0.8951 93.56
Advanced dropout  0.9552 0.9357 97.47

are 0.44% and 0.28% larger than the second best technique,
respectively, with the training set reduced by half (¢ = 30).
Furthermore, For £ = 15, it surpasses the second best
technique by 0.53% and 0.30% in terms of classification
accuracy, where the advantage is clearer than the other two
cases. It can be obviously found that, with the shrinkage of
the training set, the advanced dropout technique maintains
the first place on classification accuracy and enlarges the gap
with the corresponding second best technique.

In Table 10, the numbers of hidden layers of the FC
neural networks are set as 2, 4, and 8. With the increase of
the model depth, most of the referred techniques, except for
the soft dropouts, performs worse and the maximum drop
in classification accuracy is more than 0.5%. Meanwhile,
the performance of the base model without any dropout
techniques also decreases. However, the advanced dropout
technique maintains its classification accuracies of more
than 98.8%. In addition, it achieves the best performance
among all techniques in each model depth.

In summary, the proposed advanced dropout technique
reduces the gap between training and test accuracies (i.e.,
reducing overfitting) and achieves the highest test accu-
racies at the same time. Moreover, the advanced dropout
technique performs best among the referred methods, when
we increase the model depth or decrease the training sample
number. It also performs well in the extreme case, for exam-
ple, £ = 15 or the eight-hidden-layer FC neural network.
The experimental results verify the superior capability of
overfitting prevention of the advanced dropout technique.

6 EXTENSION OF APPLICATIONS OF ADVANCED
DRoPOUT

In this section, we will generalize the advanced dropout as
a practical technique in four other application areas, rather
than merely a regularization technique for DNN training in
image classification. Hence, we apply the advanced dropout
technique in uncertainty inference and network pruning in
computer vision, text classification, and regression.

Predictions

Predictions
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Fig. 12: Examples of uncertaint(y )inference on MNIST dataset. Each
column in the subfigures means a class. (a) A sample 6 which is easily
confused with 4; (b) a sample 0 which is easily considered as a part of
8; and (c) a sample 5 which is predicted as 0 by all the techniques.

6.1 Uncertainty Inference

Although deep learning has attracted significant attention
on research in various fields, such as classification and
regression, standard deep learning tools including CNNs
and RNNs are not able to capture model uncertainty and
confidence through the point estimation in model training
by gradient descent-based algorithms [24]. Therefore, we
need effective methods, for example, Bayesian learning-
based methods, to estimate model uncertainty. In recent
years, various techniques have been proposed for this pur-
pose, such as MC dropout [24] and ApDeepSense [54].

In this paper, we propose to implement the advanced
dropout technique in uncertainty inference to validate its
effectiveness for this propose.

Here, we modify the advanced dropout as a Monte
Carlo (MC) dropout technique, perform moment matching
in the test process, and estimate the mean E[y*|z*] and
the variance Var[y*|z*] of the test output y* given the
corresponding test sample x* as
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Fig. 13: The performance of the advanced dropout technique for (a) node pruning and (b) parameter pruning compared with the random
selection, the winning ticket [55], and Gaussian soft dropout and Laplace soft dropout [15] on the MNIST dataset. Note that the percentages of

parameter preservation are displayed on a logarithmic scale.

Algorithm 1 Parameter pruning with the advanced dropout
technique

Require: Randomly initialized parameter sets ®( and Ag
Ensure: ©;: estimated model parameters in the j*" round
1: Initialize a network with parameter sets ®y and Ay.
2: Train the network with the advanced dropout technique
and obtain parameter sets ®; and A;.
3: Prune ¢% parameters in ®; which correspond to the ¢%
largest dropout rates calculated by (27).
4: Reset the remaining parameters in ®; to their values in
©g and parameters in A; to their values in Ag.
5: Return to the step 2.

Ely"|x"] = / v’ / 42 (W Z)p(y* |z, W)dAWdy*
1 T
~ = Zg*(w*,Wt), (28)
t=1
varly'la’) = [0")? [ aa(WIZply " W)aWdy® — B2y’ o]

o (@@ W — Bl le]), 9)
t=1

where T' is number of times of the stochastic forward passes

through the DNN, and the mean E[y*|x*] and the variance

Var[y*|z*] are considered as the expected output and the

model uncertainty.

We conducted experiments via a FC neural network
with two hidden layers and 800 hidden nodes of each
on the MNIST dataset and compared it with two referred
methods, i.e., MC dropout [24] and ApDeepSense [54].

The performance of each technique is assessed by area
under the receiver operating characteristic curve (AUROC)
of two measurements of uncertainty, i.e., max probability
P and entropy H, which are introduced in the works [56],
[57]. P and H of test output y* given the corresponding test
sample x* are respectively defined as

P=__max p(yle", W), (30)
C
H==> plyilz*, W)n(p(y[z", W)), (@1)

c=1
where C' is the number of classes. From Table 11, it is ob-
served that the advanced dropout technique surpasses both

referred techniques by more than 0.03 and 0.04 on the AUC
of max probability and entropy, respectively. Meanwhile, the
accuracies of these techniques are shown in Table 11, while
the advanced dropout outperforms both referred techniques
with a significant improvement around 4%. Furthermore,
Figure 11 shows the confusion matrices of these techniques,
one subfigure each. The advanced dropout outperforms the
other two techniques in eight classes (class 2-9) with the
largest increase by about 15% and the smallest one by about
2%, while it keeps the same level as the others in the other
two classes.

Figure 12 shows four examples of visualization of the
uncertainty inference results predicted by all three tech-
niques. In Figure 12(a), all the three techniques are confused
between 4 and 6, even though the ground truth is 6. While
the two referred techniques predict the wrong class, the ad-
vanced dropout technique makes a correct prediction with
the highest mean and the smallest variance. This indicates
that it is more confident in the prediction. Similarly in
Figure 12(b), the advanced dropout technique predicts the
correct class, while the referred techniques are all wrong.
Meanwhile, in Figure 12(c), all the three techniques predict
to the wrong class 0, while the true label is 5. However, the
advanced dropout technique hesitates between the classes 0
and 5 with similar means and larger variances. On the other
hand, the referred techniques have their largest prediction
values in class 0 with smaller variances than the advanced
dropout technique.

In summary, the advanced dropout technique is suitable
for model uncertainty inference and performs better than
the referred methods. It can effectively infer the uncertainty
and improve the classification accuracies simultaneously.
6.2 Network Pruning

In this section, we extend the application of the advanced
dropout technique to the field of network pruning, which
is a popular and important topic in deep learning. Network
pruning strategies can be divided into two categories, i.e.,
node pruning and parameter pruning. The algorithm for
parameter pruning with the advanced dropout technique
is summarized in Algorithm 1. The node pruning was
conducted in a similar way, which replaces pruning ¢%
parameters by pruning ¢% nodes.

We conducted experiments on the MNIST dataset in an
FC neural network with two hidden layers and 800 hidden
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TABLE 12: Test accuracies (%) and p-value of Student’s t-tests on the Reuters-21578 dataset. Note that the best results are marked in bold and
the second best results are marked by underline, respectively. The significance level was set as 0.05.

Method 10-1 x 800-10/p-value

10-2 x 800-10/p-value

10-4 x 800-10/p-value

87.68 £ 0.18/8.12 x 107
87.75+0.21/1.45 x 107
87.51 +0.38/6.79 x 10~
88.08 £ 0.19/4.94 x 10~
88.73 +£0.18/2.45 x 104
88.99 + 0.25/4.32 x 103
88.50 £ 0.25/1.14 x 10~%
88.11 + 0.27/1.96 x 1075
88.77 +£0.17/2.63 x 10~*
88.67 +0.26/4.36 x 10~4
88.69 + 0.14/1.05 x 104
89.62 +0.26/ N/A

No dropout
Dropout, Bernoulli
Dropout, Gaussian
Dropout, uniform
Concrete dropout
Variational dropout
B-dropout
Continuous dropout
Information dropout
Gaussian soft dropout
Laplace soft dropout
Advanced dropout

87.58 4+ 0.24/8.12 x 10~7
87.09£0.72/1.45 x 107°¢
87.45+0.28/6.79 x 1076
87.834£0.12/4.94 x 1076
88.82 +0.30/2.45 x 10~4
88.82 & 0.32/4.32 x 1072
88.58 £0.31/1.14 x 10~
88.13 4 0.18/1.96 x 10~
88.3140.28/2.63 x 107*
88.63 +£0.21/4.36 x 10~4
88.50 +0.21/1.05 x 10~4
89.31 +0.11/ N/A

87.63 4 0.07/8.12 x 1077
87.50 £ 0.31/1.45 x 1076
87.95 4 0.20/6.79 x 1076
88.22 4 0.30/4.94 x 107
88.73+£0.19/2.45 x 104
88.83 +0.13/4.32 x 102
88.67 £0.18/1.14 x 10~
88.13 4 0.22/1.96 x 10~°
88.73+£0.15/2.63 x 10~*
88.58 +0.21/4.36 x 1074
88.55 + 0.08/1.05 x 1074
89.35 £ 0.08/ N/A

TABLE 13: Test RMSE and p-value of Student’s t-tests on the four UCI datasets. Note that the best results are marked in bold and the second
best results are marked by underline, respectively. The significance level was set as 0.05.

Dataset Boston Housing

Concrete Strength

Wine Quality Red Yacht Hydrodynamics

Base model 13-2 x 50-1 8-2 x 50-1 11-2 x 50-1 6-2 x 50-1
Method RMSE/ p-value RMSE/p-value RMSE/ p-value RMSE/ p-value
No dropout 8.5535 + 0.0129/5.67 x 10~° 15.8219 4 0.0275/5.92 x 10~ 4 0.8154 + 0.0014/3.51 x 10~2 13.1689 + 0.1765/2.05 x 10~ *

8.5065 =+ 0.0071/6.88 x 10~°
8.5062 £ 0.0092/2.14 x 10~*
8.5446 + 0.0143/1.25 x 10~4
8.7723 £ 0.0909/1.14 x 1072
8.5078 £ 0.0090/1.68 x 10~ *
8.4894 £ 0.0119/2.93 x 1072
8.4728 £ 0.0074/7.36 x 1072
8.4577 £ 0.0009/ N/A

Dropout, Bernoulli
Dropout, Gaussian
Dropout, uniform
Concrete dropout
Variational dropout
Gaussian soft dropout
Laplace soft dropout
Advanced dropout

15.7828 4 0.0131/1.69 x 10~
15.7775 4 0.0123/1.79 x 10~
15.8134 4 0.0244/5.00 x 10~
16.0284 4 0.0283/1.14 x 10~°
15.7920 4 0.0162/2.46 x 10~
15.7604 4 0.0139/8.43 x 10~
15.7488 4 0.0214/9.78 x 1072
15.7085 £ 0.0003/ N/A

13.0169 £ 0.0722/1.11 x 10~°
12.9740 £ 0.1621/3.57 x 10~*
13.0386 £ 0.0791/1.46 x 10~°
13.2463 £ 0.3342/1.74 x 1072
13.0626 =+ 0.0592/3.79 x 10~°
12.3218 £ 0.0419/3.20 x 1072
12.2844 £ 0.0246/1.88 x 1072
12.2142 £ 0.0057/ N/A

0.8130 £ 0.0005/3.86 x 10~2
0.8128 £ 0.0003/1.59 x 10~ 2
0.8135 £ 0.0004/9.25 x 10~*
0.8273 £ 0.0049/1.69 x 10~*
0.8133 £ 0.0004/1.11 x 10~*
0.8128 4 0.0003/2.57 x 10~°
0.8133 £ 0.0005/2.46 x 10~3
0.8119 £ 0.0001/ N/A

nodes of each. We compared the advanced dropout tech-
nique with a random selection method as a baseline, a state-
of-the-art technique (winning ticket [55]), and two dropout
variants (the Gaussian soft dropout and the Laplace soft
dropout [15]). The random selection method stochastically
chooses nodes or parameters in each round. We adopted the
SGD algorithm for model training and set q as 10.

Figure 13(a) shows the performance of node pruning
on the MNIST dataset. The advanced dropout technique
achieves higher accuracy than the referred methods on each
percentage of node preservation. In addition, Figure 13(b)
shows the performance of parameter pruning on the MNIST
dataset, which can also demonstrate the better performance
of the advanced dropout. Therefore, the advanced dropout
technique can be effectively utilized in network pruning and
is better than the referred techniques.

6.3 Text Classification

In this section, in addition to the aforementioned computer
vision tasks, we further evaluated the performance of the
proposed advanced dropout technique in text classification
on Reuter-21578 dataset'. According to the official data
preprocessing procedure, each document in the dataset was
expressed by a 10-dimensional vector. The dropout tech-
niques were implemented by using the FC neural networks
with one, two, and four hidden layer(s) and 800 hidden
nodes each. All the models were trained for 50 epochs using
the SGD algorithm with the learning rate as 0.01 and the
weight decay as 5 x 10~*. We evaluated each model for 5
runs with random initializations.

Experimental results and the p-value of the Student’s t-
tests between the advanced dropout and other referred
dropout variants are shown in Table 12. The proposed ad-
vanced dropout achieves the best accuracies in the models
with different depths. As the p-value are all smaller than
the significance level (i.e., o = 0.05), the advanced dropout
obtains statistically significant improvement.

6.4 Regression

In this section, except for the aforementioned classification
tasks, we evaluated the proposed advanced dropout for

1. http:/ /kdd.ics.uci.edu/databases/reuters21578 /

regression tasks on the UCI datasets [58]. The dropout tech-
niques were implemented by using the FC neural networks
with 2 hidden layers and 50 hidden nodes each. All the
models were trained for 50 epochs using the SGD algorithm
with the learning rate as 0.01 and the weight decay as
5 x 10~*. We evaluated each model for 5 runs with random
initializations. The root mean squared error (RMSE) was
chosen as the evaluation metric.

Experimental results and the p-value of the Student’s ¢-
tests between the advanced dropout and other referred
dropout variants are listed in Table 13. On each dataset, the
proposed advanced dropout achieves the smallest RMSEs.
As the p-value are all smaller than the significance level
(ie, o = 0.05), statistically significant improvement was
obtained by the advanced dropout.

7 CONCLUSIONS

In this paper, we proposed the advanced dropout tech-
nique, a model-free methodology, to improve the ability
of overfitting prevention and the classification performance
of DNNs. The advanced dropout uses a model-free and
easily implemented distribution with a parametric prior
to adaptively adjust the dropout rate. Furthermore, the
prior parameters are optimized by the SGVB inference to
perform an end-to-end training procedure of DNNs. In the
experiments, we evaluated the effectiveness of the advanced
dropout technique with nine referred techniques in different
base models on seven widely used datasets (including five
small-scale datasets and two large-scale datasets). The ad-
vanced dropout statistically significantly outperformed all
the referred techniques. We compared training time and ef-
fectiveness ratios between the techniques and found that the
advanced dropout achieves highest effectiveness ratios on
most datasets. Ablation studies were conducted to analyze
the effectiveness of each component. We further compared
training time and effectiveness ratios between the tech-
niques and found that the advanced dropout achieves high-
est effectiveness ratios on most datasets. Next, we conducted
a series of analysis of dropout rate characteristics, includ-
ing convergence of the adaptive dropout rate, the learned
distributions of dropout masks, and a comparison with
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dropout rate generation without using an explicit distribu-
tion. In addition, the ability of overfitting prevention of the
advanced dropout was evaluated and confirmed. Finally,
we extended the application of the advanced dropout to
uncertainty inference, network pruning, text classification,
and regression, and we found that the advanced dropout is
superior to the corresponding referred methods.
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