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Being able to accurately describe the dynamics steady states of driven and/or dissipative but quantum
correlated lattice models is of fundamental importance in many areas of science: from quantum information
to biology. An efficient numerical simulation of large open systems in two spatial dimensions is a
challenge. In this work, we develop a tensor network method, based on an infinite projected entangled pair
operator ansatz, applicable directly in the thermodynamic limit. We incorporate techniques of finding
optimal truncations of enlarged network bonds by optimizing an objective function appropriate for open
systems. Comparisons with numerically exact calculations, both for the dynamics and the steady state,
demonstrate the power of the method. In particular, we consider dissipative transverse quantum
Ising, driven-dissipative hard-core boson, and dissipative anisotropic XY models in non-mean-field
limits, proving able to capture substantial entanglement in the presence of dissipation. Our method enables
us to study regimes that are accessible to current experiments but lie well beyond the applicability of
existing techniques.
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I. INTRODUCTION

In recent experiments across a variety of architectures,
the ability to sustain quantum correlations in a dissipative
environment and study the evolution of strongly interacting
many-body lattice systems in a precisely controlled manner
has progressed enormously. Among these experimental
platforms are cavity [1,2] and circuit [3–6] QED systems,
arrays of coupled optical cavities [7–9] or of quantum dots
[10], hybrid systems [11], polariton lattices [12–19], and
certain implementations of ultracold atoms [20].
In the modeling of these systems, the inclusion of degrees

of freedom that are external to the lattice, such as a driving
field or a bath of oscillators, requires extending the descrip-
tion from a closed to an open quantum lattice model, as
illustrated in Fig. 1. Open quantum systems are often well
described by a Lindblad master equation [21], which
facilitates the study of a range of collective phenomena
including nonequilibrium criticality [22–27], quantum
chaos [28,29], and time crystallinity [30–32], many of
which have no counterparts in closed systems at equilibrium.

Recent years have seen great strides in the theoretical
modeling of open quantum systems [33]; however, to better
understand, control, and utilize the dissipative nonequili-
brium dynamics of correlated quantum systems, simulation
techniques that are scalable to large lattices are still missing,
especially in higher dimensions.
The investigation of large many-body quantum systems

is hindered by the exponential growth of the Hilbert
space. As the size of the system increases, solving the
Lindblad master equation exactly using methods such as

FIG. 1. Open quantum lattice model of interacting spins.
Nearest-neighbor spins are coupled via a hopping J and interact
with an external bath via a coherent drive Ω and/or a dissipative
process γ. The open system can be modeled by describing the unit
cell and its environment using a tensor network.
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diagonalization of the Liouvillian or averaging over
ensembles of exact quantum trajectories [34–36] quickly
become infeasible. To simplify the problem, many have
resorted to a mean-field-type approximation [25,37–43] in
which correlations between small individual subsystems
are approximated by an average field. However, this
simplification may often give qualitatively incorrect results
in regions where intersubsystem correlations become
important—for instance, near criticality. Moreover, key
aspects such as entanglement and quantum information
cannot be treated at this level. Progressing beyond mean-
field approximations should therefore involve the system-
atic inclusion of correlations between subsystems in a
controlled and tractable manner.
In this vein, phase-space methods such as those based on

the Wigner [44], positive-P [45], and Q [46] representations
attempt to find classical stochastic processes for which the
hierarchy of coupled moments is a good approximation to
that of the quantumproblem. For highly nonlinear problems,
phase-space techniques often fail dramatically in important
regimes [47–49]. Cluster-based methods [24,50] separate
large lattices into small clusters and capture correlations
within lattice sites belonging to each cluster, an approach
that can become inaccurate when correlation lengths exceed
cluster sizes. Variational approaches [51,52] based on the
parametrization of the state in terms of a suitable functional
and their optimization rely on good intuition, whichmay not
be available for some problems. Recently, methods based on
neural networks and the variational minimization of an
appropriate cost function [53–55] have provided an inter-
esting proof of concept; however, like most of these
methods, they are restricted to small system sizes or may
fail to capture long-range correlations.
A different approach is to restrict the growth of the

system’s Hilbert space by retaining only the most important
correlations or most probable states [56]. Tensor network
(TN) methods [57] belong to this class. Here, truncation of
Hilbert space is controlled by the so-called bond dimension
(usually denoted D or χ) of indices that connect a set of
tensors representing the quantum state. In the context of
closed quantum many-body systems, the significant suc-
cess of TN methods is underpinned by an area law in the
growth of entanglement entropy possessed by ground states
of gapped Hamiltonians [58]. For open systems, the picture
is less clear. In particular, it is not obvious whether transient
or steady states can be efficiently represented by a TN.
Nevertheless, in the context of dissipative or driven-
dissipative systems, we can reasonably expect that in many
cases, dissipative processes should curtail the growth of
entanglement and limit correlations generated by entan-
gling dynamics; this is found to hold true in the fixed points
of rapidly mixing dissipative quantum systems, which obey
an area law [59–61].
Despite this expectation, TN algorithms for open systems

[62–66] have mostly been restricted to one-dimensional

lattices, where the simple geometry plays a central role in the
algorithm. In dimensions greater than one, progress has been
limited. The work of Ref. [67] introduced the infinite
projected entangled pair operator (iPEPO) to represent
the mixed state of an infinite-periodic two-dimensional
square lattice and employed the so-called simple update
(SU) algorithm to apply the Lindblad dynamical map,
evolving the system in real time towards a steady state.
Although SU is efficient, in order to integrate the equation
of motion, it isolates a subsystem—for example, one unit
cell—from the rest of the lattice and applies the dynamical
map to the subsystem in isolation until a steady state is
reached. It has been questioned whether this approach can
produce accurate results, and there are concerns over the
convergence of this method in non-mean-field regimes [68].
While algorithms going beyond SU exist for closed and
finite temperature systems [69–71], advancing beyond
the SU approach in the driven-dissipative context remains
undeveloped.
In this paper, we devise a new TN method to accurately

simulate time dynamics and steady states of many-body
quantum lattice models in two spatial dimensions and
directly in the thermodynamic limit. The method uses the
iPEPO as an ansatz for the mixed state of the open system
and incorporates techniques inspired by those presented in
Ref. [72]—full environment truncation (FET) and fixing
the network to weighted trace gauge (WTG)—to calculate
accurate time dynamics and steady-state solutions of open
quantum lattice models. The central step in the algorithm
involves finding an optimal truncation of enlarged bonds
with respect to an objective function appropriate for mixed
quantum states.
The method successfully reproduces numerically exact

calculations for both dynamics and steady states while also
agreeing with results obtained using the so-called corner-
space renormalization method of Ref. [56]. Importantly, it
performs well in non-mean-field limits, proving able to
capture substantial correlations in the presence of dissipa-
tion and therefore enabling the study of regimes that are
accessible to current experiments but lie well beyond the
applicability of existing techniques.
The paper is organized as follows. In Sec. II, we describe

the algorithm, including a brief introduction to the Lindblad
master equation and the TN ansatz. As a benchmark, we
calculate the time dynamics of a dissipative transverse
quantum Ising model in Sec. III A and find that the
systematic inclusion of correlations—controlled by the
TN bond dimension—coupled with the incorporation of
the unit cell’s environment when truncating enlarged
bonds, yields results that agree very well with the exact
dynamics. Furthermore, we demonstrate the applicability
of the algorithm outside the exactly solvable regime. In
Sec. III B, we show that the FET method outperforms the
SUmethod by finding more optimal truncations of enlarged
bonds and removing redundant internal correlations in the
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network. In Sec. III C, we show that lattice models with
drive and dissipation can also be treated using this method,
and we compare steady-state results for a driven-dissipative
hard-core boson model with the values in the literature.
In Sec. III D, we apply the algorithm to a dissipative
anisotropic XY model and show that the iPEPO steady-
state solution is qualitatively different from the mean-
field theory. Finally, in Sec. IV, we conclude with a short
discussion.

II. ALGORITHM

A. Master equation

The goal of the algorithm is to calculate time dy-
namics and steady states of translationally invariant, two-
dimensional, quantum lattice models, which interact with a
bath via a Lindblad master equation (1) (ℏ ¼ 1),

dρ̂
dt

¼ L̂ðρ̂Þ ¼ −i½Ĥ; ρ̂� þ D̂ðρ̂Þ; ð1Þ

where Ĥ governs the coherent dynamics of the system and
the dissipator D̂, which models the coupling of the system
to its bath, has the form

D̂ðρ̂Þ ¼
X
α

�
L̂αρ̂L̂

†
α −

1

2
fL̂†

αL̂α; ρ̂g
�
; ð2Þ

with L̂α being the Lindblad operators. We focus on the case
of time-independent nearest-neighbor Hamiltonians such
that H can be decomposed as a sum of Hermitian operators
that act nontrivially on at most two nearest-neighbor lattice
sites. Although the algorithm allows for up to two local
dissipators, for simplicity, we focus only on local coupling
to the environment such that each Lindblad operator acts on
one site only and respects the translational invariance of the
Hamiltonian.

B. TN ansatz

We represent the system’s density matrix ρðtÞ as an
iPEPO. The iPEPO is composed of a network of tensors
fAjg, where we associate each node j of the network with
one site of the square lattice shown in Fig. 2(a). To reflect
the translational invariance of the system and to simplify
the algorithm, we use a pair of independent tensors Aj and
Al to represent the unit cell. The infinite system is the
repetition of this unit cell over the two-dimensional plane.
Each sixth-rank tensor A has a pair of physical indices of
dimension d and a set of four bond indices of dimensionD,
reflecting the coordination number z ¼ 4 associated with a
square lattice. The physical dimension d corresponds to the
dimension of the local Hilbert space at each lattice site
(d ¼ 2 for the two-level spin), whereas D is a variational
parameter that controls the accuracy of the ansatz. It is
convenient to use the vectorized form of the density

operator, which, at the level of the iPEPO, corresponds
to vectorization of the pair of local Hilbert space indices as
shown in Fig. 2(a) and has the effect of transforming the
iPEPO into the form of a infinite projected entangled pair
state (iPEPS) commonly used in TN algorithms for two-
dimensional closed systems [57]. Finally, to each unique
bond, we associate a bond matrix σ.
As with other algorithms based on matrix product

operators (MPOs), the PEPO ansatz is not inherently
positive, and therefore not all PEPOs represent physical
states. For the present case of an iPEPO, we do not have
access to the full spectrum of eigenvalues, and it has been
shown for the case of MPOs that the problem of deciding
whether a given iMPO represents a physical state in the
thermodynamic limit is provably undecidable [73].
Therefore, we rely on the positivity of the dynamical
map to maintain the physicality of the iPEPO throughout
the time evolution and find in practice that, in most

FIG. 2. Main steps in the time evolution algorithm. (a) Vector-
ized form of the iPEPO. (b) Contraction of Aj0 and Al0 with the
dynamical map L. (c) SVD of eτLAjAl. (d) D0 singular values of
relative tolerance greater than ϵD0 retained in the diagonal bond
matrix σ0. (e) Isometries ũ and ṽ, which truncate the enlarged
bond from D0 to D, giving the new bond matrix D. (f) Updated
tensors Ãj and Ãl. (g) Full environment truncation algorithm to
find the isometries ũ and ṽ, which maximize the fidelity between
truncated and untruncated bonds.
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cases, the reduced density matrices calculated from the
iPEPO are physical.
We refer to all of the spins in the system that are not part

of the unit cell as its environment (see Fig. 1.), not to be
confused with the system’s bath, which is accounted for in
the Lindblad master equation (1). Since the system is
infinite, we represent the environment approximately by
associating to each tensor in the unit cell an effective
environment E. Note that E is, itself, made up of a set of
tensors including four corner transfer matrices Cμν and four
half-row or half-column tensors Tμ, where the labels μ and
ν take the appropriate first letter of left, right, up, and down
as illustrated in Figs. 3(d) and 3(e).
We consider two distinct types of effective environments.

The trace effective environment Etr of Fig. 3(d) is calculated
by first tracing over the local Hilbert space dimensions d of
the tensors at each node of the network, giving the set of
fourth-rank tensors fatrj g as shown in Fig. 3(a). We use Etr

to calculate the reduced density matrices of the system.
Second, the Hilbert-Schmidt effective environment EHS

[Fig. 3(e)] is that formed by first contracting aHSj ¼ trAjA
†
j ,

giving the Hilbert-Schmidt inner product, where all bond
indices fDg are left open as shown in Fig. 3(c). Note that
EHS is used during the algorithm to calculate an optimal

truncation of enlarged bond dimensions as discussed in
Sec. II D. In both cases, we calculate the effective envi-
ronment using a corner transfer matrix method [74–79]. In
particular, we use a variant of the corner transfer matrix
renormalization group (CTMRG) algorithm [80] that
makes use of an intermediate SVD to improve the stability,
details of which are given in the Appendix A.

C. Time evolution

To calculate dynamics and find a TN representation
of the steady state, we use a time-evolving block
decimation (TEBD) algorithm. The time evolution is
obtained by application of the dynamical map ρt¼etLρ0.
In principle, it may also be possible to find the steady
state directly by searching for the ground state of the
Hermitian operator → L†L, for example, via imaginary
time evolution. However, in general, L†L is a highly
nonlocal operator; therefore, it is not straightforward to
implement it using standard techniques for an infinite
system [81]. Finally, access to the transient dynamics is
often of direct interest in many physical contexts.
The dynamical map etL is approximated by a set of

Trotter layers as is common in algorithms based on TEBD.
In particular, consider the evolution of the state from a time
t to a short time later tþ τ; then, in vectorized notation,
where we note that the density matrix is vectorized column
by column, the dynamical map takes the form

ρðtþ τÞ ¼ eτLρðtÞ: ð3Þ

The Liouvillian superoperator L is two-local and can
therefore be written as a sum of superoperators acting
on nearest neighbors of the square lattice, where the labels
α and β correspond to the coordinates of the lattice sites j
and l, respectively. The full Liouvillian takes the form

L ¼
X
hα;βi

Lα;β ¼
X
hα;βi

Hα;β þDα;β: ð4Þ

The Hamiltonian part of the evolution is included in the
superoperator H and the dissipative part in the super-
operator D; each is constructed as shown in Eqs. (5) and
(6), respectively:

Hα;β ¼ −iðIα;β ⊗ Hα;β −HT
α;β ⊗ Iα;βÞ; ð5Þ

Dα;β ¼
1

2
ð2L�

α;β ⊗ Lα;β − Iα;β ⊗ L†Lα;β − LTL�
α;β ⊗ Iα;βÞ:

ð6Þ

We then split the vectorized operators in the exponent into
those acting on even and odd pairs of lattice sites along both
the x and y lattice dimensions, giving four sets of vectorized
operators Le

x, Lo
x , Le

y, and Lo
y , where

FIG. 3. Environment of the unit cell. Panel (a) shows the tensor
atrj ¼ trdðAjÞ, which is found by tracing over the physical

dimension, while in panel (c), aHSj ¼ trA†
jAj is given by the

inner product; in each case, the bond matrices (b) are split in two.
(d) Trace effective environment Etr

j of the iPEPO tensor Aj used to
calculate the d × d reduced density matrix ρj. (e) Hilbert-Schmidt
effective environment EHS

j of the tensor aHSj used in constructing
the bond environment.
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Le
r ¼

X
L2r;2rþ1; Lo

r ¼
X

L2r−1;2r; ð7Þ

which allows us to decompose etL into a set of layers via a
Trotter decomposition with τ ¼ t=n, where n ≫ 1 is the
Trotter number with

eτL ¼ eτL
e
xeτL

o
x eτL

e
yeτL

o
y þOðτ2Þ: ð8Þ

Each dynamical map in the decomposition is applied to
pairs of nearest-neighbor tensors Aj and Al in turn. We first
construct the linear map LðAjAlÞ, where the linear operator
Lj0;l0
j;l acts on the pair of tensors Aj and Al such that AjAl

behaves as a vector in the linear map, as illustrated in
Fig. 2(b). By repeated application of this map, an approxi-
mation to the tensor eτLAjAl [Fig. 2(c)] is calculated using
Krylov subspace methods, eliminating the need for explicit
calculation of eτL, where τ is a real number for the case of
real time evolution.
To complete the update, the resulting tensor A0

j;l ¼
eτLAjAl needs to be decomposed into a new pair of
tensors A0

j and A0
l, illustrated in Figs. 2(c) and 2(d).

Typically, this decomposition is accomplished via
singular value decomposition (SVD), where, in general,
the new bond dimension D0—equal to the number of
singular values associated with the SVD—will be
enlarged ðD0 > DÞ and therefore needs to be truncated
in an appropriate way for the algorithm to remain efficient;
in particular, we would like to truncate D0 back to D after
each dynamical map.

D. Truncation of enlarged bonds

For TNs without closed loops (acyclic), finding
an optimal truncation benefits greatly from the ability
to efficiently apply a gauge transformation and recast a
network to a so-called canonical form; for details, we refer
the reader to Ref. [57]. For TNs with closed loops (cyclic),
however, such a canonical form cannot be defined
uniquely, and truncating the enlarged bond in an optimal
way is much less straightforward. Moreover, cyclic TNs
can host so-called internal correlations, which have no
influence on the properties of the quantum state but can
cause computational problems if they are allowed to
accumulate [72].
After applying the dynamical map, we choose to

decompose the tensors using SVD and truncate the bond
irrespective of the state of the environment, leaving a new
dimension D0 ≥ D chosen such that only those singular
values greater than some small tolerance ϵD0 ≪ 1 are
retained. We are then left with a bond matrix σ with the
remaining D0 singular values along its diagonal and the
tensors Ai and Aj as shown in Fig. 2(d). The final step in
the truncation involves replacing σ with the product
ũ σ̃ ṽ†, where ũ and ṽ are isometries of dimension

ðD0; DÞ such that ũũ† ¼ ṽṽ† ¼ I and σ̃ is a new
D-dimensional diagonal bond matrix. The enlarged bond
is then truncated by contracting Aj and Al with ũ and ṽ as
illustrated in Fig. 2(e).
To calculate the set ũ, σ̃, and ṽ, we adapt the FET

algorithm of Ref. [72], which prescribes a method to find
the truncation of an internal index of an arbitrary network
for closed systems, which is optimal with respect to a
fidelity measure for pure states. In our case, since we are
dealing with an open system, we optimize the truncation
with respect to an objective function suitable for mixed
states. More precisely, we maximize a mixed-state fidelity
measure between the state ρ in which the enlarged bond
dimension is left untruncated and the state ϕ in which the
same bond has been truncated by ũ, σ̃, and ṽ. Supposing
that a global maximum is found, this procedure finds the
isometries that leave ϕ as close as possible to ρwith respect
to the chosen fidelity measure.
We choose to maximize the fidelity F ðρ;ϕÞ, which has

the Hilbert-Schmidt inner product of ρ and ϕ in its
numerator and the geometric mean of their purities
trðρ2Þ and trðϕ2Þ in its denominator [82],

F ðρ;ϕÞ ¼ trðρϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðρ2Þtrðϕ2Þ

p : ð9Þ

Since squaring F is convex, the ρ and ϕ that maximize
F 2ðρ;ϕÞ also maximize F ðρ;ϕÞ. We therefore construct
F 2ðρ;ϕÞtrðρ2Þ as a Rayleigh quotient of tensors, which can
be maximized to find an optimal ũ, σ̃, and ṽ. Details of the
optimization procedure are given in Appendix B.
Finally, there exists a gauge freedom across the newly

truncated bond, which we fix to so-called weighted trace
gauge (WTG) as described in Ref. [72]. This gauge
freedom allows for the recycling of the environment EHS

calculated for use at each FET step of the algorithm as an
initial guess for the renormalization procedure (CTMRG, in
our case), which precedes the following FET step, thereby
reducing the number of renormalization iterations required
at each step. We refer to the algorithm outlined in this
section as full environment truncation in weighted trace
gauge (FETþWTG).
It is straightforward to recover a SU method by bypass-

ing the FET and WTG steps above and instead choosing
both ũ → ũSU and ṽ → ṽSU as D0 ×D matrices with all
diagonal entries equal to one and all other entries equal to
zero and by retaining the D largest singular values of σ0 in
the truncated σ̃SU. In general, the set of ũ, ṽ, and σ̃ that we
find using FET is not equivalent to the set ũSU, ṽSU, and
σ̃SU, showing that, in the general case, SU does not yield a
truncation that is optimal with respect to the objective
function we use. A comparison between SU and FETþ
WTG is made in Sec. III B.
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III. RESULTS

A. Dissipative transverse Ising model

As a first benchmark of the algorithm, we simulate the
dynamics of a dissipative transverse quantum Ising model
with Hamiltonian

Ĥ ¼ V
z

X
hj;li

σ̂zjσ̂
z
l þ

X
j

hx
2
σ̂xj ; ð10Þ

where V is the hopping coupling, hx is the strength of a
transverse field, and z is the lattice coordination number,
which we set to z ¼ 4 for the square lattice. The spins
undergo dissipation at a rate γ described by local Lindblad
jump operators L̂j ¼ ffiffiffi

γ
p 1

2
ðσ̂yj − iσ̂zjÞ, which are the same at

each lattice site. For zero transverse field hx=γ ¼ 0, the
purely dissipative dynamics DðρdisÞ ¼ 0 drive the system
towards a steady state ρdis ¼⊗ j↓xih↓xj, which does not
commute with the Hamiltonian; thus, ordered phases of the
Hamiltonian can be frustrated by the dissipation. Moreover,
in the specific case of hx=γ ¼ 0, this Liouvillian belongs to
a family of efficiently solvable dissipative models [83] (see
Appendix D for further details) in which correlations
remain localized; therefore, the Liouvillian admits an
efficient, exact solution for local observables. We denote
this method EXACT and use it as a benchmark.
For all parameters considered, we initialize the lattice

spins in a product state ρ0 ¼⊗ j↑zih↑zj and simulate their
evolution in time in strongly dissipative (V=γ¼0.2;
hx=γ¼0), moderately dissipative (V=γ¼1.2, hx=γ ¼ 1.0),
and weakly dissipative (V=γ ¼ 4.0, hx=γ ¼ 0) regimes, as
well as in a regime (V=γ ¼ 0.5, hx=γ ¼ 1.0), which does
not admit an efficient solution using the EXACT method.
For all results pertaining to this model, we choose
ϵD0 ¼ 10−8 and set the convergence criteria for both the
CTMRG and FET algorithms to 10−10. We choose a time
step τγ ¼ 0.01 in all cases except for the weakly dissipative
regime, where we choose τγ ¼ 0.005.
In each regime, we calculate reduced density matrices ρj

and ρl for each lattice site labeled j and l in the two-site unit
cell, as well as the set of four nearest-neighbor reduced
density matrices ρjl and four next-nearest-neighbor reduced
density matrices ρjj0 , where j and j0 are at a distance of 2

lattice constants rather than
ffiffiffi
2

p
(i.e., they are in the

same row or column). Although we find that all reduced
density matrices within each set are equivalent to a high
precision, it is convenient to plot expectation values
averaged over each set. We therefore calculate the average
magnetization mx ¼ 1

2
(trðσ̂xρ̂jÞ þ trðσ̂xρ̂lÞ) as well as the

average purity of the single-site reduced density matrices,
Π1 ¼ 1

2
(trðρ̂2jÞ þ trðρ̂2l Þ), as a function of time. To compare

larger reduced density matrices, we calculate Sxx12 and Sxx13,
where Sxxjl ðtÞ ¼ trðσ̂xj ⊗ σ̂xl ρ

tÞ, again averaged over the four
possible choices for j and l. Finally, we show the infidelity

IðtÞ ¼ 1 − F ðtÞ of each truncation averaged over the four
Trotter layers that make up every time step τ where F is the
mixed-state fidelity equation (9). Results are plotted for a
range of bond dimensions D and the environment dimen-
sions χtr and χHS, where we choose χtr ¼ χHS ¼ χ in each
case, and where χtr and χHS are associated with the effective
environments Etr and EHS, respectively. Finally, we have
confirmed the convergence of the results with respect to
increasing χtr and χHS in all results shown.

1. Strong dissipation

In Fig. 4(a), we plot the results of the strongly
dissipative regime, in which the dissipative process
dominates and where the spins are strongly damped.
The exact dynamics of the system can be summarized
as follows. From the initial product state, the average
single-site expectation value trðσxρtÞ decays monotoni-
cally in time towards a steady state, which reflects the
strong spin damping. Each spin is initially in a pure state
with trðρ2t Þ ¼ 1 and becomes mixed during the dynamics,
eventually tending towards a purity of trðρ2t Þ ≈ 0.88 after
the transient evolution. From an initially uncorrelated
state, spin-spin correlations become nonzero and remain
finite after the transient phase.
Comparing the results of FETþWTG with the exact

solution, we find that excellent convergence is achieved for
D ¼ 4 and D ¼ 5, while the results for D ¼ 2 and D ¼ 3
fall somewhere between the “mean-field” D ¼ 1 solution
and the exact solution. The D ¼ 1 solution tends towards
an uncorrelated product state of spins in the j↓xi phase,
which again reflects the dominance of the dissipative
dynamics in the solution of the mean-field theory. As
correlations are included by increasing D to D ¼ 2 and
D ¼ 3, we find that Sxx12 and Sxx13 become nonzero, and for
D ¼ 3, the solution follows the exact dynamics closely at
early times; however, after the transient stage, the spins
tend towards an almost pure steady state in the j↓xi phase,
similar in character to the D ¼ 1 solution. Upon increasing
to D ¼ 4 and D ¼ 5, we see that the FETþWTG method
reproduces the exact dynamics to excellent precision across
all observables calculated.
Figure 4(a.v) plots the infidelity of truncation IðtÞ, the

qualitative behavior of which is similar for all values of D.
As the dynamics progresses from the initial product state
and correlations begin to deviate from zero, IðtÞ increases
from I ≪ 1, where the error introduced by truncation of
enlarged bonds is negligible, to a larger finite value, which
indicates that the truncation causes the state to deviate
slightly from the exact dynamics; nevertheless, for D ¼ 4

and D ¼ 5, IðtÞ remains below approximately 10−10 at all
times and is an indicator of the accuracy of the results. We
note here that IðtÞ has a dependence on the time step τ,
which should be considered when comparing this param-
eter across different values of τ.
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2. Moderate and weak dissipation

An example of the moderate dissipation regime is
presented in Fig. 4(b). In this case, the hopping strength
is comparable to the dissipation, and therefore, the exact
dynamics display some transient oscillations, which are
quickly damped by the dissipation. Here, again, the exact
solution differs significantly from the D ¼ 1 solution in
which the dynamics tend towards a pure steady state with
all spins in the j↓i state. We find that FETþWTG
reproduces the exact dynamics to a good precision for
the single-site observables for D > 3, while Sxx12 and Sxx13

also show very good agreement with EXACT, particularly
for D ¼ 7.
Aweak dissipation case for V=γ ¼ 4.0 and hx=γ ¼ 0.0 is

plotted in Fig. 4(c). The weakly damped oscillations of the
EXACT results at early times reflect the dominance of the
hopping term in this regime.While theD ¼ 1 solution gives
incorrect results, the results forD ¼ 5 andD ¼ 6 reproduce
the exact solution early in the transient phase and begin to
deviate from the exact dynamics after approximately tγ ¼
2–3 while still retaining the same qualitative behavior. The
fact that a larger bond dimension is required to reproduce the

FIG. 4. Dynamics of the dissipative Ising model for hx=γ ¼ 0 in (a) strong (V=γ ¼ 0.2), (b) moderate (V=γ ¼ 1.2), and (c) weak
(V=γ ¼ 4.0) spin-damping regimes calculated using FETþWTG for a range of bond dimensions D and superimposed with results
calculated using the EXACTmethod. (d) Results for a regime not applicable to the EXACTmethod (V=γ ¼ 0.5 and hx=γ ¼ 1.0) but that
can be treated with FETþWTG. In each case, we plot (i) the magnetization mxðtÞ, (ii) the average purity Π1 of the single-site reduced
density matrices, (iii) the nearest-neighbor Sxx12, (iv) the next-nearest-neighbor S

xx
13 spin-spin correlations, and (v) the average infidelity of

truncation IðtÞ at each time step.
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exact results is indicative of the greater role played by
correlations in this coherent hopping-dominated regime.

3. Outside the exactly solvable regime

For finite transverse field hx, the Lindblad master
equation does not fulfill the conditions for an efficient,
exact solution using the EXACT method, and correlations
may not remain localized; nevertheless, FETþWTG
makes no assumption as to the extent of correlations and
should therefore be applicable for these parameters. As an
example, a case for V=γ ¼ 0.5 and hx=γ ¼ 1.0 is presented
in Fig. 4(d). Using FETþWTG, we find that the dynamics
converge as the iPEPO bond dimension is increased.
Results for D ∈ ½1; 4; 5; 6� converge very well for D ≥ 5.
The behavior of the system is similar to the efficiently
solvable cases; after some transient phase, the initial pure
product state tends towards a correlated mixed state, which
is qualitatively different from the mean-field solution.
The infidelity of truncation in Fig. 4(d.v)remains below
IðtÞ < 10−8 for the converged results, which is in line with
previous benchmarking results.

B. Comparison with simple update

To highlight differences between the FETþWTG and
SU truncation methods, we compare the results calculated
using each method in the moderate damping regime
(V=γ ¼ 1.2, hx=γ ¼ 0) of Sec. III A for a range of bond
dimensions. All parameters are the same for both methods:
τ ¼ 0.01 and ϵD0 ¼ 10−8 and CTRMG and FET conver-
gence criteria set to 10−10, with the only difference being
how ũ, ṽ, and σ̃ are calculated.
In addition to comparing the observables mxðtÞ and

Sxx12ðtÞ, we provide a quantitative measure of the accuracy of
each method by calculating the trace distance between the
EXACT reduced density matrix at each time step and the
corresponding reduced density matrix calculated using
the different TN methods. In particular, we find the trace
distance T2ðtÞ of the nearest-neighbor reduced density

matrices T2ðρjl;ϕjlÞ¼ 1
2
trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρjl−ϕjlÞ†ðρjl−ϕjlÞ

q
Þ, where

T2ðtÞ is averaged over the four nearest-neighbor reduced
density matrices of the two-site unit cell. By observing
mxðtÞ, and Sxx12 and the trace distance T2 in Figs. 5(a)–5(c),
it is clear that the SU method does not reproduce the
EXACT results to the same accuracy as FETþWTG.
Figure 5(a) and its inset demonstrate that, while FETþ
WTG shows clear systematic improvement in accuracy as
D is increased, SU shows only minor and not clearly
systematic reduction in T2ðtγ ¼ 10Þ even if D is increased
well beyond that for which FETþWTG demonstrates
good convergence. For values of D > 3, T2 is consistently
about an order of magnitude smaller for FETþWTG than
for SU, demonstrating the improved compression and
greater accuracy of WTGþ FET. The observables in
Figs. 5(b) and 5(c) calculated using SU deviate from the

EXACT dynamics considerably compared to FETþWTG
[compare to Fig. 4(b)]; at times tγ ⪆ 2, the SU method
struggles to accurately capture the EXACT dynamics for all
bond dimensions shown.
Finally, we compare how the two algorithms deal with

internal correlations in the network and compare the
fidelity of truncation at each time step. TNs with closed
loops (or cyclic TNs) can suffer from an accumulation
of internal correlations, which do not contribute to any
property of the quantum state. To achieve an optimal
TN representation of the state at each truncation step, it
is necessary to remove these internal correlations.
Furthermore, a buildup of these correlations can lead to
problems in computation and breakdown of algorithms
[72]. The cycle entropy Scycle defined in Ref. [72] pre-
scribes a way of quantifying the extent of internal corre-
lations in the network and is conveniently expressed in
terms of the bond environment; details of its calculation in
the present case are given in Appendix E. The cycle entropy
Scycle plotted in Fig. 6(a) shows the extent of internal
correlations in the network as a function of time. Initially,
the network, which represents a product state, has no

FIG. 5. Comparison between FETþWTG (solid lines), SU
(dotted lines), and EXACT (dashed lines) in the moderately
damped regime of the dissipative Ising model V=γ ¼ 1.2,
hx=γ ¼ 0.0. (a) Trace distance T2ðtÞ as a function of time and
at tγ ¼ 10 (inset) for a range of bond dimensions. (b) Magneti-
zation mxðtÞ and (c) nearest-neighbor Sxx12, showing that FETþ
WTG outperforms SU.
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internal correlations. In time, the extent of internal corre-
lations grows and saturates at a finite value. Importantly,
Scycle grows more slowly and saturates at a smaller value for
FETþWTG than it does for SU, illustrating that the proper
truncation of bonds reduces the extent of internal correla-
tions in the network. Although the growth of Scycle in this
case is relatively benign, the failure of SU to curtail the
accumulation of internal correlations may contribute to the
breakdown of the algorithm in some circumstances. As a
final comparison, we plot the infidelity of truncation I as a
function of time for the two different methods in Fig. 6(b)
and find that the FETþWTG method outperforms
SU, decreasing the infidelity between truncated and untrun-
cated bonds by approximately an order of magnitude.
Although the variational degree of the ansatz is the same
in each case—they have the same D and χ—the method by
which enlarged bonds are truncated is crucially important
in finding an optimal representation, thereby reducing the
accumulation of errors due to inadequate truncation and
ultimately giving the most accurate results.

C. Driven-dissipative hard-code boson model

In driven-dissipative quantum lattice models, dissipation
to the bath is replenished via a coherent or incoherent drive.
Driven-dissipative systems constitute an important class of
models with direct relevance to experimental platforms
such as driven coupled photon arrays in a variety of
architectures [84]. In this section, we calculate steady-state
properties of a driven-dissipative hard-core boson model
that can be mapped to a lattice of interacting spin-1=2
particles. The Hamiltonian is given in the rotating frame by

Ĥ ¼
X
j

½−Δσ̂þj σ̂−j þ Fðσ̂þj þ σ̂−j Þ� −
J
z

X
hj;li

σ̂þj σ̂
−
l ; ð11Þ

where Δ ¼ ωp − ωc is the detuning between the pump
frequency ωp and the on-site energy ωc, F is the pump field
strength, J is the hopping coupling, and the sum

P
hj;li runs

over nearest neighbors in the lattice of coordination number
z. The spins undergo dissipation at a rate γ described by a
Lindblad operator L̂j ¼ ffiffiffi

γ
p

σ̂−j , which is the same at each
site, where the spin-raising and spin-lowering operators are
defined as σ̂� ≡ 1

2
ðσ̂x � iσ̂yÞ.

We compare steady-state expectation values with those
calculated using the corner-space renormalization method
[56]. To this end, we consider an array of hard-core bosons
with Δ=γ ¼ 5, F=γ ¼ 2, and J=γ ¼ 1 and calculate the
average single-site boson density n ¼ 1=2ðnj þ nlÞ, the
nearest-neighbor (hj; li) correlation functions gð2Þ averaged
over all combinations of (hj; li), where

gð2Þj;l ¼ hσ̂þj σ̂þl σ̂−j σ̂−l i
hσ̂þj σ̂−j ihσ̂þl σ̂−l i

; nj ¼ trðσ̂þj σ̂−j ρssÞ; ð12Þ

and the average real part of Re½trðσ̂−ρssÞ� at each lattice site.
Staring from an initial product state, we find the steady

state for a set of parameters D, χ, and ϵD0 , where
convergence in time is achieved when all expectation
values ô up to the next-nearest neighbor fulfill a con-
vergence criterion of ϵt < 10−6, where

ϵt ¼
jtrðôρtþτÞ − trðôρtÞj

jtrðôρtÞjτ
: ð13Þ

We use the steady-state iPEPO calculated for one set of
variational parameters as an initial state for the next until
convergence to the desired precision is achieved. Results of
this procedure are given in Table I, along with comparable
results from Ref. [56].
The steady-state values converge as the iPEPO varia-

tional parameters are increased, and they are comparable to
the results of the corner-space renormalization method.
Where we might expect increasing the corner-space
renormalization method lattice size Nx × Ny will give
results closer to the FETþWTGmethod, which represents
the thermodynamic limit directly, we find that the opposite
is true, with a lattice size of 4 × 4 closer in agreement to
FETþWTG than 8 × 8. This discrepancy could be due to
finite-size effects or translational symmetry breaking,
which may be present in the Nx × Ny results, and is not
observed in the iPEPO solution where we have enforced
two-site translational invariance by choosing a two-site
unit cell. Translational symmetry breaking could arise
due to a tunneling-induced instability, as was observed in
Refs. [24,40]; this could be investigated using the iPEPO
method by comparing the results of Table I to equivalent
ones calculated using an iPEPOansatzwith a larger unit cell.
Alternatively, the discrepancy might arise from a lack of
convergence in the finite system size of the corner-space

FIG. 6. (a) Accumulation of internal correlations in time
quantified by the cycle entropy ScycleðtÞ, which is more effectively
curtailed by FETþWTG. (b) Infidelity of truncation IðtÞ, which
is an order of magnitude smaller than SU at each truncation step.
The results form a moderately damped regime of the dissipative
Ising model V=γ ¼ 1.2, hx=γ ¼ 0.0 with D ¼ 4.
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renormalization method. Results concerning a driven-
dissipative Bose-Hubbard model on a two-dimensional
Lieb lattice are presented in Table II of Ref. [48] and are
calculated using a positive-P algorithm: amethod that can be
considered to produce the exact solutionwhen the associated
numerics remain stable. Those results suggest that quite
large lattices—greater than or approximately 10 × 10 unit
cells—are required to achieve convergence. Nevertheless,
the precise origin of this discrepancy is left for future work.

D. Anisotropic dissipative XY model

Having demonstrated the capabilities of the algorithm, by
choosing an interesting example, we now show that the
method is highly suitable to address physical questions. In
particular, two-dimensional systems can host a unique set of
phenomena; here, we explore the stability with respect to
fluctuations of a spontaneously symmetry-broken stag-
gered-XY (sXY) phase in the steady state of an anisotropic
dissipative XY model. While the mean-field theory predicts
that the sXY phase is stable in two dimensions, it is not clear
whether it remains accessible if fluctuations at the micro-
scopic level are accounted for and if any long-range order
associated with the sXY phase is present. The anisotropic
dissipative XY model has a Hamiltonian of the form

Ĥ ¼ J
z

X
hj;ki

σ̂xj σ̂
x
k − σ̂yj σ̂

y
k; ð14Þ

with a nearest-neighbor hopping J and coordination number
z ¼ 4, as well as dissipation described by local Lindblad
operators L̂j ¼

ffiffiffi
Γ

p
σ̂−j at each lattice site. The (Gutzwiller)

mean-field phase diagram, plotted in Fig. 7(e), was studied
in Ref. [85] and shows that, for J=Γ > 1=4, the steady state
hosts a staggered-XY symmetry-broken phase in which the
spins divide into A andB sublattices with angles�θ relative
to the x ¼ y line on theBloch sphere, as depicted in Fig. 7(c).
The spontaneous breaking of this continuous Uð1Þ sym-
metry means that θ can take any value and allows for
vortexlike topological defects in the lattice. The question of
whether or not the sXY phase is accessible in two dimen-
sions if corrections beyond mean-field theory are accounted

TABLE I. Steady-state values of a hard-core boson model on an
infinite square lattice with parameters Δ=γ ¼ 5.0, F=γ ¼ 2.0, and
J=γ ¼ 1.0 calculated using FETþWTG. In each case, we use a
time step of τγ ¼ 0.0025. For comparison, we tabulate results for
the same parameters from the corner-space renormalization
method [56] for different sizes Nx × Ny.

J=γ ¼ 1.0 F=γ ¼ 2.0 Δ=γ ¼ 5.0

D χ ϵD0 n Reðhσ̂−iÞ gð2Þhj;li

1 1 10−6 0.09482 0.27619 1.0

3 9 10−4 0.09545 0.27674 1.06243
9 10−5 0.09534 0.27680 1.06353
9 10−6 0.09534 0.27681 1.06360
9 10−7 0.09535 0.27680 1.06344

15 10−7 0.09535 0.27680 1.06344

4 8 10−7 0.09548 0.27670 1.06440
12 10−7 0.09548 0.27670 1.06443

5 10 10−7 0.09548 0.27670 1.06443
15 10−7 0.09548 0.27670 1.06443

Nx × Ny Corner-space renormalization method
4 × 4 0.0954(1) 0.2764(2) 1.0643(3)
8 × 4 0.09527(2) … 1.0436(3)
8 × 8 0.0948(2) … 1.0237(6)

FIG. 7. Fate of staggered-XY phase at J=Γ ¼ 0.3. (a,b) Local
magnetizations mx;y;zðtÞ on the A and B sublattices as the state
evolves from the D ¼ 1 steady-state solution for bond dimen-
sions D ∈ ½3; 4; 5; 6�. (c,d) Representation of a 2 × 2 plaquette of
the lattice in (c) the staggered-XY phase (D ¼ 1 steady state) and
(d) the uniform phase (D ¼ 6 steady state). (e) Mean-field phase
diagram with a transition at J=Γ ¼ 1

4
. Inset: radii r ¼ jk⃗ − j⃗j of an

odd (red) and even (blue) number of steps on the lattice.
(f) Correlation function Sxxj;k ¼ hσxjσxki versus distance r, which
has a staggered form that is a remnant of the staggered-XY phase.
Correlations at odd step radii (red squares) are zero, and those at
even step radii (blue circles) are finite and decay with r. Inset:
exponential fit to even step correlations, giving a correlation
length ξ ≈ 0.93.
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for has previously been addressed using a Keldysh field
theory approach [85,86]. In this approach, an effective
model is constructed by mapping the spins to bosons, an
approach that does not capture the microscopic physics of
the spin model but addresses the behavior in the long-
wavelength limit. In that approximation, it was found that
the steady-state physics of the effective model is described
by a partition function in the same universality class as the
classical XY model, and therefore, one should expect a
Kosterlitz Thouless transition in two dimensions. However,
it was also predicted in Ref. [86], based on a simple mean-
field theory analysis, that the effective temperature of the
model will be greater than the Kosterlitz Thouless temper-
ature, such that the ordered phasewill not be accessiblewhen
quantum fluctuations are included and any long-range
algebraic order will be absent or at least significantly
diminished. We can now use our method to address this
question exactly by directly solving the microscopic spin
model close to the transition point J=Γ ¼ 1=4, where the
mean-field theory is expected to break down. Moreover, we
are able to give a quantitative picture of the system by
calculating not only local observables as a function of time
but also spatial correlation functions in the steady state.
We first find the steady-state iPEPO representation of the

model for a bond dimensionD ¼ 1—equivalent to a mean-
field solution—at J=Γ ¼ 0.3, which lies just within the
sXY phase. To do this, we initialize the iPEPO in a state for
which the symmetry is explicitly broken, hσxAi¼−hσxBi¼1,
and calculate the D ¼ 1 steady state with WTGþ FET.
Then, using the symmetry-broken D ¼ 1 iPEPO solution
as an initial state, we systematically add quantum fluctua-
tions by calculating steady states for bond dimensions D ∈
½3; 4; 5; 6� until convergence. Results of this procedure are
presented in Fig. 7. For bond dimensions D ¼ 3, we find
that the system remains in the sXY phase. ForD ∈ ½4; 5; 6�,
however, the spin magnetization mzðtÞ, which is uniform
across the lattice, is slightly modified, and the magnetiza-
tions mxðtÞ and myðtÞ on each sublattice slowly tend
towards zero such that the continuous symmetry no longer
appears broken—depicted in Fig. 7(d). Therefore, the
mean-field sXY phase is unstable to fluctuations, corrobo-
rating the Keldysh field theory predictions of Ref. [86].
This proves that long-wavelength fluctuations captured by
the approximate theory dominate over other microscopic
fluctuations. In Fig. 7(f), we plot the correlation function
Sxxk;j ¼ hσxjσxki (note that hσxjihσxki ≈ 0), which shows a
staggered structure reminiscent of the sXY phase where
correlations at a radii r [see Fig. 7(e) inset] corresponding
to an odd number of steps on the lattice are zero, whereas
even step correlations are finite and decay with r.
Considering only the even step correlations in the inset
of Fig. 7(f), we find that the decay is well approximated by
an exponential function of the form Sxxr∈even ∝ e−r=ξ, with
ξ ≈ 0.93; any long-range algebraic order that may have
been associated with the symmetry-broken phase is not

present in the iPEPO solution, suggesting that the system is
in the disordered phase. Good convergence is found for
D ¼ 6 and τΓ ¼ 0.01, resulting in infidelity of trunca-
tion IðtÞ < 10−9.

IV. DISCUSSION

We have developed a new TN algorithm capable of
accurately simulating dynamics of dissipative quantum
lattice models on a two-dimensional square lattice directly
in the thermodynamic limit. The method adapts the FET
and WTG fixing techniques of Ref. [72] to the iPEPO TN
ansatz for mixed states. Comparisons with exact numerical
results demonstrate an excellent accuracy of the method
and its performance across different dissipative regimes.
Contrasting with the more efficient, but much less accurate,
simple update truncation scheme, we have proven that it is
necessary to optimally truncate enlarged bonds to obtain
accurate results. We have shown the applicability of the
technique for calculating steady-state properties of driven-
dissipative systems by comparison with results in the
literature. The method performs well in regimes where
mean-field approximation fails, proving able to capture
substantial correlations in the presence of dissipation.
Finally, we have shown that a staggered-XY phase of the
dissipative anisotropic XY model predicted by mean-field
theory is not stable if correlations are included; while a
remnant of the staggered structure remains in the correlation
function, its decay is well approximated by an exponential
function, and no long-range order remains.
As with similar algorithms for iPEPS, the principal

contribution to the computational complexity of the algo-
rithm comes from the calculation of the effective environ-
ment, which is updated at each time step (here using
CTMRG). The leading cost of the version of CTMRG we
use arises from a singular value decomposition of order
Oðχ3HSD6Þ; improvements in performance can therefore be
achieved by optimizing this step—for instance, using a
fixed-point method such as the FPCM [80] or approximat-
ing the effective environment by using a boundary matrix
product state to represent the boundary of the system.
Numerous algorithms have been developed to calculate the
fixed point, including a TEBD [87,88] or variational MPS-
tangent space methods (VUMPS) [80,89–92], and they can
lead to significant speedup for TNs that are close to being
critical [80].
In addition to accurately determining steady-state prop-

erties such as long-range, equal-time, correlation functions,
this work facilitates the calculation of more complex
dynamical properties, e.g., dynamical correlation functions
and fluorescence spectra of strongly correlated, driven-
dissipative quantum lattice models. A significant advantage
of both the FET method of truncating enlarged bonds and
the WTG method of fixing the TN gauge is that they can be
used in tensor networks of arbitrary geometries, provided
the bond environment can be calculated efficiently. In this

STABLE IPEPO TENSOR-NETWORK ALGORITHM FOR … PHYS. REV. X 11, 021035 (2021)

021035-11



regard, straightforward adaptations of the method we have
presented in this work could be used to treat driven-
dissipative models with longer-range interactions or those
defined on more complicated network structures such as
hyperbolic lattices [5], as well as problems related to
functional quantum biology [93,94].
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APPENDIX A: CALCULATING THE EFFECTIVE
ENVIRONMENTS

Given tensors representing the unit cell of the 2D lattice,
we calculate the effective environments Etr and EHS using a
variant of the corner transfer matrix renormalization group
(CTMRG) algorithm [74–80]. To improve stability and
convergence properties of the CTMRG algorithm, as
well as the conditioning of the bond environment ϒjl,
we find it helpful to use the variant of CTMRG presented in
Ref. [80], which makes use of an intermediate singular
value decomposition. Following Ref. [80], we refer to
Fig. 8 in describing the basic steps involved in the left-
move component of the CTMRG algorithm used for
calculating EHS for an iPEPO with a two-site unit cell.
This algorithm goes as follow: Consider the unvectorized
sixth-rank iPEPO tensors Aj and Al.

(i) To calculate the trace effective environment Etr, trace
over the physical dimensions of the iPEPO unit-cell
tensors, giving the fourth-rank tensors a → trdðAjÞ
and b → trdðAlÞ, where we have split the bond
matrix in two [Figs. 3(a) and 3(b)] and contracted
each half with a and b appropriately.

(ii) Alternatively, to calculate the Hilbert-Schmidt effec-
tive environment Ehs, first find the Hilbert-Schmidt
inner product over the physical indices of the vec-
torized Aj and Al, giving the eighth-rank tensors
a → trdðAjA

†
jÞ and b → trdðAlA

†
l Þ [Fig. 3(c)].

(iii) The left-move CTMRG step then proceeds as
follows, where the tensor diagrams of Fig. 8 show
the eighth-rank versions of a and b and therefore
represent steps in the calculation of EHS.

(iv) (a) Construct the upper- and lower-half system
transfer matrices and take a SVD to find
the upper and lower decompositions UuaSuabVu

†
b

and UdaSdabVd
†
b.

(v) (b) Define Flua ≡UuaSu
1=2
ab , Frua ≡ Su1=2ab Vu†a,

Flda ≡ UdaSd
1=2
ab , and Frda ≡ Sd1=2ab Vd

†
a, where

singular values of magnitudes (relative to the largest

singular value) less than some small tolerance are
truncated to improve stability.

(vi) (c) Use the so-called biorthogonalization procedure
(see Ref. [80] for further details) to calculate Pl and
Pl−, the first step of which is to contract Flua with
Flda and perform a SVD to find Wla, Qla, and the
diagonal matrix Σl2a.

(vii) (d,f) Calculate the projectors Pla ¼ FluaQlaΣlþa
and Pl−a ¼FldaWl†aΣlþa , with Σlþ being the Moore-
Penrose pseudoinverse of Σl.

(viii) (e,h) Repeat steps (a)–(f) to calculate Plb and Pl−b
by replacing a ↔ b in the upper- and lower-half
system transfer matrices. Using these projectors,
the updated environment tensors Tl0b, Tl

0
a, Clu0a,

Clu0b, Cld
0
a, and Cld0b are calculated and normalized

as shown in Figs. 8(h), 8(j), and 8(k). This is one
iteration of the left-move component of this
CTMRG algorithm.

FIG. 8. Tensor diagrams representing some of the steps
involved in performing the left-move component of the CTMRG
algorithm used to calculate the effective environment EHS.
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Steps (iv) through to (viii) describe one interaction of the
left-move subroutine of the CTMRG algorithm.
A similar sequence of steps is used to perform the right-

move, up-move, anddown-move steps inCTMRG.The set of
directional moves is repeated in series until the vectors of
singular values of the corner transfer matrices converge. It is
possible to perform the right-move step at the same time as the
left-move one by following the biorthogonalization routine
starting withFrub andFrdb calculated in step (b) above, and
similarly for the up-move and down-move steps.

APPENDIX B: FULL ENVIRONMENT
TRUNCATION

An adapted FETalgorithm [72] is used to truncate enlarge
bonds of the iPEPO as follows. Let the state of the full system
at time t be ρt and calculate the Hilbert-Schmidt environment
EHS
j;l of the iPEPO representing ρt as discussed inAppendixA.

Find A0
j and A0

l by applying the Trotterized dynamical map

and decompose the result via SVD, retaining theD0 singular
valueswith amagnitude (relative to the largest singular value)
greater than ϵD0 . Contract A0

j and A0
l with the effective

environment EHS
j;l , leaving only the enlarged bonds uncon-

tracted, as illustrated in Fig. 9(d). This procedure leaves us
with the fourth-rank bond environment tensorϒjl. Using the
bond environment ϒij, the tensors involved in the Rayleigh
quotient proportional to F 2 are calculated. Figures 9(e)–9(g)
illustrate the tensor contractions required to construct trðρϕÞ,
trðϕϕÞ, and trðρρÞ, allowingus to representF 2ðρ;ϕÞtrðρρÞ in
terms of the isometries u and v, the bond matrix σ, and the
bond environmentϒij, where we note that the term trðρρÞ is
independent of u, σ, and v.
The alternating optimization of u, v, and σ proceeds as

follows and is illustrated in Fig. 10. Defining R≡ σv
[Fig. 10(c)], the Rm that maximizes F 2ðρ;ϕÞtrðρ2Þ
[Fig. 10(a)] is found by keeping v fixed and solving a
generalized eigenvalue problem in R (see Appendix C for
further details). The updated tensors σ0 and u0 are then
calculated using a SVD as illustrated in Fig. 10(e). Similarly,
by definingL≡ v0σ0, the optimalLm is found, giving u00, σ00,
and v00. The alternating process is repeated until the con-
vergence of ũ, σ̃, and ṽ isometries is reached.

FIG. 9. (a) Effective environment EHS
j;l of the tensors at

neighboring sites j and l. (b) Bond environment ϒj;l, which is
the contraction of EHS

j;l and the updated tensors A0
j and A0

l with
enlarged bonds fD0

jg ≥ D. In panels (c)–(e), usingϒj;l, the terms
in the fidelity between the truncated (ϕ) and untruncated (ρ)
density matrices are calculated by contracting with the isometries
u, v and the bond matrix σ.

FIG. 10. Tensor diagrams representing some of the steps
involved in finding the isometries ũ and ṽ and the bond matrix
σ̃, which maximize the fidelity between the truncated and
untruncated bonds. In panel (a), the Rayleigh quotient in R is
proportional to F 2. Panel (b) shows that P is the contraction of
the bond environment ϵj;l and the isometry v. In panel (c), we
show that R is the contraction of the bond matrix σ and the
isometry u. Panel (d) shows that B is the contraction of ϒjl with
the isometry v. In panel (e), the new (primed) isometries are found
by singular value decomposition of the contraction of the
maximal eigenvector Rm and v.
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APPENDIX C: OPTIMIZING RAYLEIGH
QUOTIENT

A Rayleigh quotient of the form FðRÞ ¼ ðR⃗†AR⃗=R⃗†BR⃗Þ
is maximized by the eigenvector R⃗m, which corresponds to
the largest eigenvalue λm of the generalized eigenvalue
problem AR⃗i ¼ λiBR⃗i. Since the matrix A is constructed as
an outer product A ¼ P⃗†P⃗, the R⃗m that maximizes the
Rayleigh quotient is given by R⃗m ¼ P⃗B−1. In practice, it is
possible to calculate R⃗m directly by inverting B or by
solving the system of linear equations R⃗mB ¼ P⃗ using, for
example, a linear regression algorithm. Care must be taken
at this stage to maintain the stability of the algorithm. If
solving by direct inversion, we find it advantageous to
either use a Moore-Penrose pseudoinverse [95] with some
tolerance or solve via linear regression with an intermediate
truncated singular value decomposition. In our simulations,
we maximize the Rayleigh quotient by instead solving the
generalized eigenvalue problem AR⃗ ¼ λBR⃗ either by full
diagonalization or by iterative methods to calculate only the
maximal eigenvector R⃗m (Lanczos or Arnoldi).

APPENDIX D: EXACT SOLUTION OF
DISSIPATIVE ISING MODEL

In order to provide a benchmark for our new TNmethod,
we solve the dissipative transverse Ising model in Sec. III A
using the method of Ref. [83], which we briefly describe.
As shown in Ref. [83], if a Liouvillian is structured such
that coherences are not mapped to populations (and vice
versa), then correlations in a system remain localized. This
structure allows for an efficient exact determination of the
time evolution of the local observables, which initially only
have support on a suitably small sublattice. In particular, an
observable OðtÞ, which initially has support on a set of
lattice sites A, can be calculated at all times by solving, in
the Schrodinger picture,

OðtÞ ¼ trA∪B½Ô exp ðtLABÞρ̂AB�; ðD1Þ

where B is the set of lattice sites that are nearest neighbors
of A and for which the Hamiltonian has simultaneous
support on A and B.
We choose to calculate up to next-nearest-neighbor

(in a lattice row or column) correlations Sxxjl ðtÞ in
time and therefore choose as A the set of three contiguous
lattice sites in a row (in either the x or y lattice dimension)
of the infinite two-dimensional lattice. For a two-local
Liouvillian, B is identified as the eight nearest-neighbor
lattice sites of A. Observables OðtÞ can then be calculated
efficiently by solving Eq. (D1) using standard techniques
from quantum optics (we used the Julia package
QuantumOptics.jl [96] to calculate the exact results).

APPENDIX E: CYCLE ENTROPY

For closed systems, Scycle is defined as the von Neumann
entropy of the normalized spectrum of a bond environment
left contracted with the bond matrix ðσ ⊗ σÞϒ, and it is
constructed as an inner product of pure states (see Ref. [72]
for details). Here, we instead use the bond environment left
contracted with the bond matrix ðσ ⊗ σÞϒ, which is
constructed using EHS and which is defined in terms of
mixed rather than pure states to calculate Scycle,

Scycle ¼ −
X
α

ðλ̃α log2ðλ̃αÞÞ; ðE1Þ

where λ̃α ≡ jλαj=ð
P

α jλαjÞ are the absolute values of the
eigenvalues of ðσ ⊗ σÞϒ. A cycle entropy Scycle ≈ 0

indicates that there are no (or negligible) internal correla-
tions associated with the bond environment, and in this
case, an optimal or near-optimal truncation can be achieved
by transforming to WTG and discarding small WTG
coefficients. However, if Scycle is larger ðScycle⪆10−3Þ
(see Ref. [72]), such a straightforward truncation scheme
will not give an optimal truncation, and internal correla-
tions may accumulate as the algorithm progresses. We find
that in most cases, when starting with a product state, Scycle
quickly increases, and the FET scheme is required.
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