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Abstract— Producing manual, pixel-accurate, image seg-
mentation labels is tedious and time-consuming. This is
often a rate-limiting factor when large amounts of labeled
images are required, such as for training deep convolu-
tional networks for instrument-background segmentationin
surgical scenes. No large datasets comparable to industry
standards in the computer vision community are available
for this task. To circumvent this problem, we propose to
automate the creation of a realistic training dataset by
exploiting techniques stemming from special effects and
harnessing them to target training performance rather than
visual appeal. Foreground data is captured by placing sam-
ple surgical instruments over a chroma key (a.k.a. green
screen) in a controlled environment, thereby making extrac-
tion of the relevant image segment straightforward. Multiple
lighting conditions and viewpoints can be captured and
introduced in the simulation by moving the instruments
and camera and modulating the light source. Background
data is captured by collecting videos that do not contain
instruments. In the absence of pre-existing instrument-free
background videos, minimal labeling effort is required, just
to select frames that do not contain surgical instruments
from videos of surgical interventions freely available online.
We compare different methods to blend instruments over
tissue and propose a novel data augmentation approach
that takes advantage of the plurality of options. We show that
by training a vanilla U-Net on semi-synthetic data only and
applying a simple post-processing, we are able to match the
results of the same network trained on a publicly available
manually labeled real dataset.
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Fig. 1. Blending process (top row). Blended image sample (bottom
picture). Inspired by chroma key compositing in the movie industry,
we show that segmentation models can be trained exclusively on a semi-
synthetic dataset based on superimposition and data augmentation (as
shown in the blended image above), achieving a comparable accuracy to
those trained on manually annotated images. We demonstrate that the
difficulty to synthesize a realistic border represents less of a problem for
learning purposes when our stochastic mix of known blending methods
(called mix-blend) is employed to superimpose objects, allowing for state-
of-the-art segmentation performance.

Index Terms—Image compositing, chroma key, tool
segmentation.

|. INTRODUCTION

URGICAL instrument labeling is a generic problem in

Computer-Assisted Interventions (CAI) [1]-[6]. Locating
an instrument’s contour within a surgical scene has a wealth
of potential applications. It is already, or in some cases is
bound to become, an essential building block of many key
clinical applications in Surgical Data Science [7]. To name
a few: placing informative overlays on the screen or per-
forming augmented reality without occluding instruments,
subtracting surgical tools from the scene when building a
tissue panorama, surgical workflow analysis, skills analysis
and error detection, automatic endoscope camera calibration,
visual servoing, surgical task automation, feature matching for
3D reconstruction, and in general any approach that takes

For more information, see https://creativecommons.org/licenses/by/4.0/
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advantage of real-time segmentation as a way of tracking a
target across frames.

Early approaches for tool recognition either used positioning
sensors (robotic surgery) [8] or embedded additional sen-
sors [9] within the instruments. However, attempts to do so
have shown many drawbacks besides a limited accuracy [10],
[11]. In addition to the difficulties created by the added
complexity due to the workflow alteration, additional sen-
sors or tool modifications have to be able to overcome the
harsh conditions of the instrument sterilization process [12].

Recent machine learning advances have shown extraordi-
nary progress in visual recognition. Yet, in the medical context
in general, and for our task in particular, progress is typically
restrained by the scarcity of available fine-grained annotations
required for training purposes, and by the limited practicality
and cost of creating such annotations at scale. In this paper,
we explore the feasibility of using a chroma key (see fig. 1
and supplementary material fig. 2 and 3) to automatically
generate large quantities of semi-synthetic yet realistic “ground
truth” images and labels. As opposed to synthetic data, our
generated images come from compositing real images. Hence,
we refer to them as semi-synthetic. We use them to train a
deep neural network for surgical tool segmentation. Given the
proposed setup in fig. 1, the key methodological challenge
is the blending of instruments recorded over the chroma key
onto tissue frames in such a way that the segmentation learned
based on this semi-synthetic images generalizes to real clinical
data. Stemming from this methodological challenge, it is a
research question whether it is necessary to blend realistic
images for learning the segmentation, or in contrast, it can be
learned without the need for deploying sophisticated domain-
specific blending mechanisms.

The paper is structured as follows. First, we comment on
recent related articles that target different forms of image
compositing to learn different tasks. We continue to explain
our formalization of the learning problem and how this leads
to the generation of the semi-synthetic training instances used
to learn the segmentation. Then, we introduce a training
strategy that adapts to our modelling of the images and
way of blending. The material’s section contains a detailed
description of the data used for the experiments and how we
record it. In the implementation section, we develop on data
augmentation, specific blending modes employed, and network
training protocol. Finally, we explain the different experiments
carried out to evaluate the performance of our methods, and
discuss the results obtained.

Contributions. We propose a novel technique and theoretical
framework to synthesize ground truth images and labels for
image segmentation problems. We focus on instrument seg-
mentation in endoscopic scenes. Our method relies on two
sources of data: Sample instruments recorded over a chroma
key; and images that only contain background tissue. In order
to merge these two pieces of information we rely on existing
blending methods and propose mix-blend. This novel blending
approach relies on the probabilistic combination of a set of
simple blending functions that act as a basis for blending.
Furthermore, we introduce a Monte Carlo method to generate
the blended training samples on the fly (during training),

which fits well with Stochastic Gradient Descent (SGD)
optimization solvers. This approach allows us to learn the
segmentation without the need for advanced domain adaptation
techniques. We also make public all our newly created datasets
including: our semi-synthetic tool segmentation dataset con-
taining 100K labeled images, our chroma key foreground
dataset (14K labeled images), our background tissue dataset
(6K images from 50 surgical procedures), and our real clinical
testing set (514 manually labeled images from 20 surgical
procedures).

Il. RELATED WORK

A number of classical surgical tool segmentation methods
have been proposed with promising results, see e.g. [1],
[2]. Recently, data-driven approaches based on Convolutional
Neural Networks [3]-[5] have shown to be the leading
technique to estimate an instrument-background segmenta-
tion of surgical scenes [13]. Despite the availability of such
powerful methods, the tool segmentation task still repre-
sents a challenge due to a lack of large-scale fine-grained
annotated datasets. As pointed out in the conclusions of
the 2017 Robotic Instrument Segmentation Challenge [13],
current instrument segmentation datasets, such as the one
used in the challenge (only around 3K annotated images),
are severely limited by the amount of data. In contrast,
general-purpose computer vision datasets possess hundreds of
thousands or millions of images (e.g. COCO, 330K manually
segmented images). In order to circumvent the need for
similar quantities of manual annotations, recent works have
explored ways of reducing human effort. This has been of
interest in both the computer vision industry [14]-[18] and
the CAI community [6], [19]-[22]. There are two fundamental
approaches to alleviate the manual effort. Either reducing the
number of annotations needed or allowing for faster manual
labeling. In the following paragraphs, we give an overview of
both.

In [20], Maier-Hein et al. explored crowd-sourcing as a
means of correcting weak labels generated from a small
amount of annotated images (MICCAI Endoscopic Vision
Challenge 2015). In their proposal, workers were provided
with endoscopic images and corresponding estimated segmen-
tations, which they had to correct with an interactive tool.
The estimated segmentations were generated by an atlas forest
(AF) method [23]. The authors trained an uncertainty estimator
based on the predictions of the forest to regress confidence
maps, providing the workers with only those areas of low
confidence for correction. Although the results are encour-
aging, this method still requires an interactive segmentation
setup and manual pixel-wise annotations. In another attempt
to reduce the labeling effort, Nwoye er al. [6] have recently
suggested to use per-frame instrument presence classification
labels as weak supervision for segmentation. Although they
have shown promising performance for localization, it is still
very challenging for these methods to provide a pixel-wise
accurate segmentation of the instruments, which is crucial for
applications such as visual servoing for surgical task automa-
tion. Besides, a labeled dataset for tool presence is mandatory.
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Fig. 2. Overview of the semi-synthetic generation method. We illustrate both the concept of source image and the process to generate semi-synthetic
images. For an image to be considered as source image, it must fulfill two conditions. First, its labeling must be available or easier than a manual
annotation of the tool in a real endoscopic image. Second, it must be a close approximation of a real clinical image so that when complementary
source images are blended, the result is close to a real endoscopic image. The automatic segmentation of source images is hue-based for x
(detailed in section IV-C) and trivial for x;. We assume that the correct way to blend complementary source images to form a real clinical image is
unknown. In this figure, three possible ways to do it are illustrated. A green arrow is shown to highlight a part of the semi-synthetically generated
image, the border of the tool, and the tooltip itself, whose appearance differs depending on the choice of blending function (best viewed in the
electronic version of the manuscript).
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Fig. 3. Multi-blend training iteration: in every training iteration a pair foreground-background is chosen and blended with one of the M blending
functions we decide to employ. To comply with (8), all M blending functions have to be chosen at least once during the training for each combination
of (x ¢, xp) present in the dataset. After a training instance (image plus label) has been generated, it is passed to fy (see eq. 1). Mix-blend training
iteration: following (11), the forward and background images randomly chosen from the training set are blended M times, one per blending function
approximator (M = 3 in our implementation). Then, a weighted sum of all the blended images is performed with random weights A = (X1, Ao, A3)

sampled from a Dirichlet distribution (see fig. 1 in the supplementary material). As we model fy as a neural network, this figure illustrates the way of
adding a training instance into each iteration’s mini-batch.
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Another approach to alleviating the manual labeling effort
is to employ unlabeled data to learn the endoscopic image
domain representation. Ross et al. [22] proposed to learn re-
colorization as a pre-training task. They convert endoscopic
images to CIELab and train a convolutional network in a
fake/real adversarial scheme to regress the colour channels a
and b, giving L as an input. This auxiliary task allows them
to reduce the amount of manually annotated data consider-
ably. While showing promising results, pixel-wise annotations
are still required. Alternatively to pre-training on a different

auxiliary task, Yu et al. [24] proposed to reduce the amount of
labeling by exploiting temporal consistency present in surgical
videos. In their work, a teacher network uses past and future
video frames to produce a classification estimation for the
current video frame. The teacher network is then employed
to generate a larger dataset of weak labels based on unlabeled
data, from which the student network learns, using the same
information as input that is employed at testing time.
Recently, generative methods [12], [25] have shown poten-
tial to address the data scarcity problem in endoscopic vision.
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Alternatively to just reducing the number of labels or time
required for dataset curation, dataset synthesis has emerged
as an inexpensive approach to generate annotated images
automatically. The work of Heimann et al. [19] proposed
to synthetically embed an ultrasound (US) transducer into
fluoroscopy images to generate a training set. The aim was
to detect the in-plane probe’s position, orientation, and scale.
To do so, the authors performed a computer tomography (CT)
of a US probe and embedded it into real CT patient volumes,
automatically generating radiographs and ground truth by a
forward projection of the CT that contains the synthetically
embedded US probe. A similar approach has been recently
presented in [26], where authors show different aspects of the
simulation that are key to bridge the gap between synthetic
and real data.

In a non-medical context, there is an established research
direction that aims to overcome the lack of annotated data
using the so-called virtual setups or synthetically rendered
scenes [27]. This approach is extremely challenging [28],
[29]. As suggested by [30], many aspects have to be taken
into account to synthesize high-quality scenes, often requiring
advanced domain adaptation techniques to bridge the gap
between synthetic and real data. To address the generaliza-
tion difficulty addressed by virtually rendered setups, a new
research stream focuses on compositing as opposed to render-
ing [15]-[18], [31]. In this line of research, training images
are composed by a combination of visual elements coming
from different sources. Augmentation techniques related to
compositing, such as mixup where pairs of images are alpha-
blended [32], have also been developed to improve generaliza-
tion. In [31], authors proposed a method to embed synthetic
objects of known geometry into real pictures. Although they
manage to generate photo-realistic semi-synthetic images, their
approach relies on a fine-grained model of the 3D scene
geometry and the lighting conditions, which is not available
in endoscopic videos.

Orthogonal to those techniques that aim to maximize the
realism of training data, domain randomization [33] has
emerged as a powerful technique to bridge the gap between
simulation and target domain by doing exactly the opposite.
The aim is to alter the synthetic data in a stochastic manner
such that the deep networks concentrate on the essential
features to solve the task. Reality is modelled as yet another
variation of the source domain. In medical imaging, domain
randomization has recently also shown promising results [34].
Toth et al. have successfully used this technique for 3D/2D
cardiac model-to-X-ray registration, showing that unrealistic
perturbations of the training data are useful to train a model
for the task just based on synthetic training data.

In computer vision, image compositing is one of the pos-
sible approaches to perform domain randomization. This has
been recently shown by several authors [15], [35]. In [15],
Dwibedi et al. proposed to use automatic compositing to build
a dataset for training a deep learning object detector. Even
though image compositing approaches seem promising, they
suffer from a recurrent issue, the unintended embedding of
artificial features derived from the blending process into the
synthetic images. This creates a bias in the dataset. That is,

if all the objects that we are trying to detect are blended using
the same method, let us say, a crude cut-and-paste, they are all
subject to have a particular boundary derived from the cut-and-
paste process. As objects in real images do not present these
features, generalization is highly affected [15]. To alleviate
this, Dwibedi et al. [15] propose to synthesize every training
image several times, using the same objects and background,
but a different method to superimpose the objects. This way of
modelling the blending, and the learning problem it leads to,
represent a particular case of the formulation we introduce
in section IIl for the problem. We compare this method
to ours and propose an alternative approach to model the
combination of blending algorithms. Although the approach
in [15] shows an improvement of accuracy over a trivial cut-
and-paste, it is still limited by the N. | deterministic blending
methods chosen, whose features can also be learned by a deep
network. Tripathi et al. [18] propose an alternative approach to
prevent the network from exploiting blending artifacts to detect
foreground objects. They blend all the objects with a single
method, the standard alpha-blending, but introduce artifacts
in the background. These artifacts (called flying distractors)
consist of parts of other backgrounds, cut with the shape of a
foreground object, and blended into the scene. This approach
also fits well within our theoretical framework in section III,
as we are not limited to use a foreground-background image
pair to create our semi-synthetic images, but can also use
two backgrounds with one of them having the segmentation
annotation of another foreground image, leading to the solution
proposed by [18]. Hence, flying distractors are also included
in our semi-synthetic dataset, blending them with our Monte
Carlo method to generate training samples.

I1l. METHODS
A. Semi-Synthetic Learning

As it is customary in data-driven segmentation, we aim to
solve for a mapping f such that fp(x) &~ y, where x is an
input image, y the segmentation mask corresponding to x,
and € a vector of parameters. The parameters 6 are sought
as an approximate solution of the following Expected Risk
Minimization problem:

0 = argminE p, , [€(fo(X), V)] (1)
6

where fp is a parametric function (the segmentation network
in our implementation), £(-, -) represents our real-valued loss
function, and X, Y are modelled as two random variables of
unknown joint probability distribution Py y. For the sake of
simplicity, as we focus on how our modelling of X changes the
optimization problem, regularization terms are omitted across
this section.

In practice, limited by a training set, we typically approxi-
mate the true joint probability distribution Py y of our training
set by the following empirical probability measure IA’xjy:

A 1
Py (x,y) = = 205, (¥)dy, () 2)

where n € {1,..., N}, N represents the number of training
samples, and Jy, and 5%1 stand for Dirac measures centered at
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x, and y, respectively. Based on (2), the learning problem (1)
becomes:

6= argminIEﬁxy[{’(fo(X), Y)]
o .

arg;nin% > t(falxn). y,) 3)
n
However, generating pairs (x, y) by recording real clinical
images and manually labeling is exceedingly time-consuming,
leads to inaccurate labels and amounts of data that are far from
computer vision industry standards. Nonetheless, we observe
that in our problem of instrument-background segmentation,
the foreground of an image could be overlaid onto the back-
ground of another, and still form a plausible image. This
gives us the intuition that an image could be segmented into
several components (including but not limited to foreground
and background) that could be blended to form new images.
As such, we consider an image x as a realization of a random
variable X modelled as X = ¢*(Hy, ..., Hy) where {Hk}f:1
are K random variables capturing the different components of
information (e.g. background, foreground instrument). Obser-
vations (called source images throughout the text) of these
random variables represent the sources of any given x, and ¢*
is an ideal blending function that renders the final image with
all its components. This model is particularly advantageous if:

1) Labeling samples of {Hk},f:1 is easier than labeling
samples of X.

2) We are able to blend segmented complementary source
images and their labels to form new valid training pairs
(x,y).

The idea of seeing an endoscopic image as made of K source
images that are easier to segment than real clinical images
themselves is illustrated in fig. 2. In our case, we assume
that we are able to segment any given x into K source
images, where K is the number of classes. In the case of
binary tool segmentation, we focus on K = 2, foreground
(surgical instruments) and background (tissue). Furthermore,
we hypothesize that any combination of complementary source
images is equally likely to form a plausible endoscopic image.
This proposal corresponds to modelling X as:

X = ¢*(XF, Xp)
Xr Al Xp 4)

where Xr := H; and Xp := H> are assumed to be indepen-
dent random variables whose observations are foregrounds x ¢
and backgrounds xp.

The way of modelling X in (4) requires us to know the
ideal blending function ¢*. As this is not the case, we opt
to model blending in a probabilistic manner. The composited
labels Y are trivially obtained by keeping the foreground labels
YF irrespective of the blending function (see fig. 2). Therefore,
we define X and Y as:

X = ®(XF, Xp)
Y=Y 5

where @ is now a random variable whose observations ¢ are
blending functions. Such modelling leads to the following joint

probability measure:
P xpv.o(Xf X5, V1, Y5, B)
1
= VN ;% (x1)dx,; (xp)dy;, (V) Pa(¢)  (6)

where i € {1,..., Ny}, j € {1,..., Ny}, Ny and N, are the
number of foregrounds and backgrounds, and Pg represents
the probability measure for @.

Given the framework presented in (5) and (6), we can now
define Pg in a number of ways. A possible approach is to
arbitrarily choose a pool of blending methods to create our
training images (as informally proposed in [15] for object
detection), which is equivalent to defining Pg by:

1
Po(¢) =~ > 0,,(9) (7)

where m € {1, ..., M}, M is the number of blending functions
that we arbitrarily decide to define, and 5¢m stands for Dirac
measures centered at ¢,,. This initial definition of Pg allows
for either deterministic (M = 1) or probabilistic (M > 1)
blending, and turns our learning problem (1) into:

6 = arg;ninE Py gy [{’(fo (CD(XF, XB)), Y)]

= argmin > ¢(fo (¢ (xs0%07)). vy7) ®)
O ijm
The training scheme in (8), which we denote as multi-blend,
is illustrated in fig. 3, and formalizes the heuristic proposed
experimentally by [15].

In the case of M = 1, all images in the training set
are blended using the same method. If not chosen carefully,
features of the blending could be erroneously learned during
training, leading to poor generalization to real images.

Using several blending functions (M > 1) is a way to
introduce robustness. Every pair (x f, xp) added to the training
set is blended M times, and M images are added to the
training set. The intuition is that by having images whose only
difference is the blending approach (as they have the same
xy and xp) we could potentially induce fp to be blending
invariant.

Departing from the approach in [15] formalised above,
rather than minimizing the risk functional defined only by a
fixed set of M blending functions, we now propose to delve
into blending invariance by modelling X as:

X = Jmpw(Xr,Xp) ©)

where A, is the m'" component of a vector of positive reals
A= iy dm) st G € 10,1, 0 dm = 1,
and {qﬁm},ﬁ,’lzl is a basis of blending functions in our model.
We model A as an observation of a random variable A ~
Dir(a), parameterized by a vector of strictly positive reals
a=(ar,...,apy) s.t

/’{amfl

1
PA(M) = B@

where B(e) is the multivariate beta function. This modelling of
X is a fundamental difference to [15]. It allows us to generate

(10)
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an infinite amount of images for a given pair foreground-
background. In contrast, in [15], a particular combination
of objects, which would be equivalent to our foreground-
background pairs, can lead only to M blended images (as
many as blending functions employed). That is, we explore
a wider space of blending functions.

Following our choice of probability measure for P, and
hence for Py, x,.v.a, our learning problem (1) turns into:

[oznn) ]

arg;nin%/xf |:f0 (;im¢m(xf,-,xbj)),yljj|

x PA(A)dA

0

rgminlE 4
a go Pxp.xp.v.A

Y

where A = [Aq,..., Ay]. The training strategy presented
in (11) requires the computation of the loss over all the
combinations of foreground-background (Zi, ;) for all the
possible weighted sums ( fx) of blended images. Although
this is unfeasible, in practice, foregrounds, backgrounds, and
weights (A1) can be (and are) randomly sampled during the
training of the network with SGD. In that case the network
training process is therefore solving the following optimization
problem:

6 =argmin ¢ |:f0 (Zim,u%(xf,-,xbj)),yij} (12)
O ijw m
where v € {l,...,Y}, Y is the number of samples of A
drawn according Pa (A) during training for each combination
foreground-background, and ¢ represents the pixel-wise cross-
entropy loss employed by our segmentation network during
training. Y is proportional to the number of optimization
steps or training iterations selected. We refer to the learning
strategy in (12) as mix-blend learning (see fig. 3 and supple-
mentary material fig. 1).

B. Post-Processing

In our method, the foreground images xy are recorded
in a loosely controlled and somewhat artefactual setup. The
illumination conditions (LED light source), recording devices
(mobile phone and DSLR), and camera viewpoints to record
the instruments are different from those seen in real clinical
videos. In addition, we just recorded a small sample of
instruments (see supplementary material fig. 4). One could
argue that mimicking the clinical setup by recording with
different endoscopes, a laparoscopic phantom, and a large
number of surgical instruments could lead to more realistic
blended images and better performance. However, there is
no guarantee, that after creating such setup, a domain gap
would not still exist between semi-synthetic data and real
clinical videos. What is guaranteed is that the method would be
less flexible. Hence, we opt to mitigate the expected domain
gap between our trivial setup and real clinical videos with
post-processing.

GrabCut [36] is a well-known semi-automatic segmentation
technique that may be employed for post-processing (without

Fig. 4. Exemplary segmentations of the RoboTool dataset (two top rows)
and EndoVis2017 dataset (two bottom rows) segmented with our mix-
blend method. The best/median/worst cases for each testing dataset are
shown in figures 8-10 of the supplementary material. Confusion images
are displayed on the right column. True positive (white), true negative
(black), false positive (magenta), and false negative (green).

needing to provide manual scribbles). The probability map
generated by our neural network may replace the usual manual
scribble that is employed to initialize the Gaussian mixture
models of GrabCut. We assume that network estimated prob-
abilities < 0.2 represent sure background, and > 0.8 sure
foreground. The segmentation of pixels for which the network
prediction is considered certain is not modified by GrabCut.
Provided the seeding process proves reliable, by expanding the
segmentation from these certainty zones according to colour
contrast present in the specific image, GrabCut enables to
bridge relatively minor domain gaps.

IV. MATERIALS

In order to implement the training schemes in (8) and (11),
we need to devise:

1) A way to obtain source images, where source images
denotes images that are easy to segment into x 5 and xp.
2) A set of blending methods {(/5,,,}%:1 that allows us to
combine x s and x; to form new images.



1456

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 5, MAY 2021

In this work, we propose to obtain two types of source images,
foregrounds and backgrounds.

A. Background Dataset Collection

Although recording videos containing just tissue may be
possible prospectively, for this work and without loss of
generality, we have obtained all backgrounds from freely
available surgical procedures on the Internet, as done in other
computer vision datasets [37]. We manually select frames
that only contain human tissue from video sequences of
different surgical procedures. Segmenting these background
source images into components is trivial. There is no fore-
ground component in them, just background tissue. Hence,
they represent our x;. We have collected 6130 images from
50 laparoscopic interventions (exemplar images illustrated in
fig. 5 of the supplementary material). The background images
included in this dataset contain some degree of tool-tissue
interaction. They display direct interactions, such as tissue
being pulled (with the tools out of the camera view), and also
indirect artefacts, such as those inflicted by the instruments
on the background tissue. Examples of the latter are shadows,
blood, debris, and smoke. Nonetheless, it should be noted that
there may be a certain type of interaction between instruments
and tissue that we may not be able to reproduce via image
compositing. This may impact the generalization ability of
the model. However, as our clinical testing set (RoboTool)
contains these interactions, the results shown in section VII
already account for the impact of this limitation. A possible
workaround is to add a small amount of manually annotated
images displaying special tool-tissue interactions that cannot
be observed otherwise. Once we have the tools segmented out
from those images, we can refill the tool pixels with other
background images as we do for our flying distractors. Then,
these backgrounds become fully functional as those that do
not contain any tools. The background images used to build
the semi-synthetic training dataset are not present in any of
the testing sets employed.

B. Foreground Dataset Collection

To extract foreground components, we collect a pool of
instruments and place them over a chroma key (see fig. 2
and 3 in the supplementary material). These images represent
our second type of source images. In this scenario, we can
reproduce many different lighting conditions and viewpoints.
As the chroma key is monochromatic (green), we can automat-
ically segment x ¢ (tools), and discard the green background
component. We have recorded two subsets, each one with
a different camera. To facilitate segmentation, the chroma
key has to be properly illuminated. This way, the amount of
shadows on the chroma fabric is minimized. The number of
instruments per image varies from one to three (out of a
total of 17 instruments recorded). The two recording devices
employed are a mobile phone camera, whose subset contains
13613 frames of size 4032 x 3024 pixels that display a single
instrument over the chroma key, and a DSLR camera, whose
subset contains 567 frames of size 3360 x 2240 pixels.

Although being able to record foregrounds with a commer-
cial phone or a DSLR adds flexibility to the method, a possible

approach to reduce the domain gap between synthetic and
real data could be to record the foregrounds with the target
imaging system. This requires having access to the exact
imaging device used in practice, and generalization to other
make and models (and their evolution in time) may still be
limited. Nonetheless, it would be interesting for future work to
examine the generalization performance when recording with
different endoscopes.

C. Foreground Dataset Segmentation

Images are converted to HSV and thresholded to capture
the green pixels that belong to the background. The mask
generated by the HSV threshold is provided as a unitary term
prior to GrabCut [36]. These automatic segmentations are
quality controlled by means of visual inspection. Those few
with obvious inaccuracies due to a GrabCut failure (e.g. green
area captured as tool or instrument missing parts) are excluded.

As thresholding is such a simple technique, different levels
of lighting affect the quality of the results significantly. It is
convenient to tune the HSV threshold right before recording
so that it can be adjusted to the lighting conditions of the
scene and avoid tedious postprocessing. To reduce noise
in the automatically-generated tool segmentation masks, our
interface allows specifying the number of instruments being
recorded so only those HSV-thresholded pixels that lie inside
the largest N; connected components are kept, where N; is the
number of instruments.

D. Semi-Synthetic Dataset: Training and Validation

Although our image synthesis method may be performed
on-the-fly, we precompute 100K images blended with all
our basis (see section V-B) to speed up our semi-synthetic
training. Only the Dirichlet random weighted sum (eq. 9) is
performed on-the-fly. For validation, we precompute a small
semi-synthetic dataset of 500 images that use 392 foregrounds
recorded over a red chroma key, and 428 backgrounds that
were kept aside from the background dataset. This small semi-
synthetic dataset is just used as a baseline for early stopping.
That is, as stopping criteria for the training on semi-synthetic
data.

E. EndoVis2017 (Existing Real Pre-Clinical Dataset):
Testing Set

For evaluation, we use the images coming from the train-
ing set given at the 2017 Robotic Instrument Segmentation
Challenge [13]. As these images come from recordings made
with the da Vinci Surgical System (dVSS) and have been
manually labeled, we refer to them as real data (as opposed
to semi-synthetic data, which is the one we generate with our
method). We use the training set of the challenge for evaluation
(annotations are widely available). This dataset comes with
eight video sequences. In order to generate baseline results
for comparison with our method, we use the same protocol of
the challenge. We perform cross-validation with eight folds.
In each fold, the testing set contains only one video. The
remaining seven videos are used for training and validation
(10% of the video frames in these seven videos are left for
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early stopping, 90% for training). The only cross-validation
performed during our experiments is that mentioned in this
section, aimed at evaluating the baseline performance on the
EndosVis2017 dataset.

F. RoboTool (New Real Clinical Dataset): Testing Set

We make public our newly created real clinical testing set
called RoboTool (see fig. 6 of the supplementary material),
containing 514 manually annotated images extracted from the
videos of 20 freely available surgical procedures. For those
baseline experiments where a network is trained on RoboTool,
the validation set used for early stopping consists of 51 images
that have not been seen in training and come from other
surgical procedures different from the 20 employed to build
this dataset.

V. IMPLEMENTATION OF THE METHODS

All semi-synthetic data and code corresponding to the
implementation of the methods is made available in open

access.l

A. Data Augmentation and Standardization

After obtaining images for the foreground (based on chroma
key) and background (from the Internet), and prior to their
superimposition, we augment and standardize them as detailed
in the following paragraphs. This step is not detailed in our
mathematical model in section III for the sake of conciseness,
although the extension of the model to account for it is
trivial.

We perform different augmentations on foreground, back-
ground, and blended images. Foreground tools are randomly
zoomed, rotated, and vertically and horizontally flipped and
shifted. All these operations are performed while keeping
the tools connected to the border of the image. In addition,
foregrounds have synthetic blood droplets and tissue debris
blended onto the tools (see fig. 7 of the supplementary
material). Their brightness is also randomly altered. Back-
ground augmentations comprise horizontal and vertical flips,
brightness changes, and random rotations of 90 degrees.
Blended images are augmented with a set of techniques from
Albumentations [38]. Namely, cutouts, synthetic smoke and
shadows, JPEG compression, RGB and HSV shifts, noise
(multiplicative, Gaussian, ISO), and blur (Gaussian, motion,
median). In addition to these, backgrounds are also augmented
with flying distractors and endoscopic padding. Flying distrac-
tors are cutouts of other backgrounds blended with the shape
of a random foreground tool. For any given training image,
the blending function used to superimpose the foreground tools
is also used to blend the flying distractors. Endoscopic padding
consists of simulating the black border occasionally present
in endoscopic images. We randomly pad the images enclosing
the frame with a rectangular or circular shape. Gaussian noise
is randomly added to the black padding. A set of exemplary
semi-synthetic images is shown in fig. 7 of the supplementary
material.

1 https://synapse.org/synthetic

Prior to the blending, the augmented pairs (xf, xp) are
resized to our standardized width, 640-pixel (i.e. original
aspect ratio is kept). A random crop is performed on the
element of the pair of larger height so that both display the
same height. After this step, both xs and x; have the same
resolution. This facilitates the blending of tools onto tissue
(x y over xp), described below.

B. Blending

In equations (8) and (11), we defined two ways of learning 6
for our instrument-background segmentation function fy. Both
approaches rely on the existence of a set of blending functions
{qﬁm}ﬁ,’lzl that we can evaluate to obtain a training image from
a pair of xy and xp. In our implementation, we evaluate
these functions using M = 3 blending or superimposition
algorithms:

o Trivial blending. The pixels activated in the tool mask are
copied from x s onto xp to form the final blend Iy.

o Gaussian feathering. The foreground segmentation mask
m is eroded (k = 3) and blurred (k = 5). The final image
is generated as I = m - x5 + (1 — m) - xp, where m
represents the mask after erosion and blurring.

o Laplacian pyramid blending [39]. A Laplacian pyramid is
constructed for both images. A Gaussian pyramid is built
for the region occupied by m. Then, Laplacian pyramids
are combined using the nodes of the Gaussian pyramid
as weights and collapsed to form the blended image Ij,.

Given these blending basis, our implementation of multi-blend
learning (8) consists of populating our training set with three
images (one per blending method) for each pair (xf, x3).

For our implementation of mix-blend (11) we choose the

same (to be able to compare results) combinations of (x , xp)
selected for the experiments of (8). However, in contrast
to (8), when the optimization problem (11) is solved with
SGD, the training samples included in each mini-batch are
generated on the fly. To generate each sample we select a pair
of (xf,xp), blend it M = 3 times, draw a random sample
A (vector of three weights, one per blending method) from
Dir(a) with « = (1.0, 1.0, 1.0), and perform a weighted sum
of the M = 3 blended images.

C. Network Architecture and Training Protocol

As the leading approach of the 2017 Robotic Instrument
Segmentation Challenge [13] was a U-Net [40], this encoder-
decoder architecture was chosen to model our instrument
segmentation function fp.

We train all the networks using the same protocol. A fixed
learning rate (LR) of 0.001. A batch size of 32 because it is
the maximum our GPU can fit. Early stopping (ES) is used to
bound the duration of our training. The ES baseline is always
the validation set of each experiment. The minimum delta is
set to 0.01 of absolute average mloU and the patience to
20 epochs.  All our networks are trained with SGD with
momentum 0.9 and the widely used pixel-wise cross-entropy
as loss function:

Np K
LG, y) == D viklog i

i=1 k=1

13)
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TABLE |
BASELINE RESULTS. TRAINING AND EVALUATING ON MANUALLY LABELED REAL DATA. NO SEMI-SYNTHETIC DATA NOR BLENDING TECHNIQUE
HAS BEEN USED TO GENERATE THE RESULTS ON THIS TABLE. IN THE FIRST LINE OF THE RESULTS, WHEN TRAINING AND TESTING ON
ENDOV1s2017, LEAVE ONE OUT IS USED, FOLLOWING THE PROTOCOL OF THE ENDOV1S2017 CHALLENGE (SEE SECTION IV-E)

Training dataset  Post-processing

Testing dataset  IoU [5%, 95%]

EndoVis2017 None
RoboTool None
RoboTool GrabCut
EndoVis2017 None
EndoVis2017 GrabCut

where ¥ is the predicted segmentation label, y is the ground
truth label, i € {1, ..., Np} where N, is the number of pixels,
and k € {1,..., K} where K = 2 is the number of classes.

VI. EVALUATION

Although metrics such as the Frechet Inception Distance
(FID) [41] could be useful to evaluate the similarity between
the generated and real data, in this work, we are not aiming to
create photo-realistic images, but rather to train a network that
generalizes well to real data for the tool segmentation task.
In fact, the generated semi-synthetic images contain flying
distractors (see section V-A), which are cutouts blended with
the shape of a tool and the texture of a background. These
artefacts are not present in real images, but they help to learn
the segmentation by encouraging the network to not learn the
blending as a feature to detect tools. Therefore, evaluating
the realism of the semi-synthetic images would not lead to
a meaningful result. Our evaluation focuses on assessing the
quality of the tool segmentation. For such purpose, we employ
the widely used intersection over union (IoU), also called
Jaccard index. For a single video frame, we compute the
IoU J between the binarized (threshold > 0.5, background =
0, tool = 1) probability prediction b(y) and the ground truth
y (which is already a binary image). That is:

Np .

TG y) = ek ik €

Dl Vik + 20 vik + €
where b denotes the binarization function, N, is the number
of pixels in the image, € is the machine epsilon, and 7 bounds
our scores to the interval [0, 1]. To report the IoU for a video
sequence, we average the metric J across all the frames.
All the results are given in percentage.

(14)

VII. RESULTS AND DISCUSSION

In our first experiment, we train eight networks. Each
one is trained on seven videos of the EndoVis2017 dataset,
and tested on the remaining video (see results per video in
table I of the supplementary material). This experiment leads
to an average mloU across experiments of 81.6 [69.7, 8§9.6]
(confidence interval [5%, 95%]). At first sight, it could seem
as if the binary segmentation of surgical tools is a solved
problem. However, when we test a network trained on all
the EndoVis2017 videos on RoboTool (our real clinical
dataset presented in section IV-F), the performance drops to
66.6 [43.0, 87.2], suggesting some overfitting to the recording
conditions of the challenge dataset. For a fair comparison with

EndoVis2017 81.6 [69.7,89.6
EndoVis2017 73.8 [56.3, 86.6
EndoVis2017 80.5 [55.8,94.1
RoboTool 66.6 [43.0,87.2
RoboTool 69.4 [37.7,91.8

the proposed method, we apply post-processing to the output
of the network trained on EndoVis2017 (table I), pushing
the average mloU on RoboTool to 69.4 [37.7, 91.8]. We also
performed the inverse experiment, training on RoboTool and
testing on EndoVis2017. This led to an average mloU of
73.8 [56.3, 86.6]. These results suggest that networks trained
on these small manually labeled datasets (coming from a small
number of recorded interventions) do not generalize as well
as it could be expected. All the results for training and testing
on real data are presented in table I.

In the context of generating a dataset that can allow for
the learning of the tool segmentation, crisp borders induced
by simple copy-pasting represent a spurious feature that the
network would exploit as a mean to solve for the segmentation
of the tools in semi-synthetic data. To address this challenge,
we analyze the performance of each blending method individ-
ually, and compare the different approaches to combine them.
For doing this, we train on semi-synthetic data, and test on the
two real datasets, EndoVis2017 and RoboTool. We carry out
this comparison by training networks with identical x¢ and xy,
while changing the blending method. Our results indicate that
Laplacian blending is superior to both trivial and Gaussian
blending. Surprisingly, it also outperforms multi-blend by
four percentage points, suggesting that the inclusion of either
trivial, Gaussian, or both blending modes is counterproductive.
In contrast, mix-blend outperforms Laplacian by 4 percentage
points and multi-blend by 8 percentage points. This result sup-
ports our theoretical claim that multi-blend is just a particular
corner case of mix-blend with a = (0.001, 0.001, 0.001). The
top performing results of our proposed mix-blend learning (see
table II) also suggest that varying the blending method helps
to boost segmentation accuracy when jumping from semi-
synthetic to real data. This effect has also been observed by
Dwibedi et al. in [15]. We believe the reason why mix-blend
learning — eq. 12 — achieves higher IoU than multi-blend —
eq. 8 — is because it explores a larger (infinite) variety of
possible blendings (not just the M basis), delving deep into
the invariance to the blending mechanism.

The last part of our study is on bridging the gap between
synthetic and real data. We show that by using simple post-
processing, we are able to push the performance of our semi-
synthetic mix-blend method to reach the same accuracy as a
network trained on real data. Training on EndoVis2017 and
testing on RoboTool (our real clinical dataset with 20 surgi-
cal procedures) we achieve 66.6 [43.0, 87.2]. With GrabCut
post-processing this increases to 69.4 [37.7,91.8]. Train-
ing on semi-synthetic data with mix-blend, we achieve
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TABLE Il
ABLATION STUDY OF BLENDING METHODS. TRAINING ON SEMI-SYNTHETIC DATA AND TESTING ON UNSEEN REAL DATA

Training dataset (blending)

Testing dataset

ToU [5%, 95%]

Semi-synthetic (Trivial) 53.7 [44.3,66.6
Semi-synthetic (Gaussian) 55.2 [44.8,70.4
Semi-synthetic (Laplacian) EndoVis2017 68.3 [52.4,83.1
Semi-synthetic (Multi-blend) [15] 64.3 [49.2,79.8
Semi-synthetic (Mix-blend) 72.8 [56.5, 87.8]
Semi-synthetic (Trivial) 48.4 [38.2,65.5
Semi-synthetic (Gaussian) 48.7 [38.2,65.7
Semi-synthetic (Laplacian) RoboTool 54.3 [40.4,75.6
Semi-synthetic (Multi-blend) [15] 51.7 [39.5,74.5
Semi-synthetic (Mix-blend) 56.1 [40.2, 77.5]
TABLE Il

RESULTS OF OUR PROPOSED BLENDING METHOD IN COMBINATION WITH POST-PROCESSING

Training dataset

Post-processing

Testing dataset  IoU [5%, 95%]

Semi-synthetic (Mix-blend) GrabCut

EndoVis2017 83.3 [62.7,93.9

Semi-synthetic (Mix-blend) GrabCut

56.1 [40.2, 77.5] on RoboTool. With GrabCut post-processing
we reach 68.1 [42.6,92.5] (see exemplary segmentations in
fig. 4). All the results of our complete pipeline trained on semi-
synthetic data and evaluated on real data are shown in table III.
Figures 8, 9, and 10 of the supplementary material facilitate
the visual comparison of results at several percentile levels for
the different methods (best/median/worst cases). In fig. 8 of the
supplementary material, we show the baseline results (training
on a real dataset, and testing on a different real dataset).
In fig. 9 and 10 of the supplementary material, we show the
best/median/worst cases when training on semi-synthetic data
and testing on real datasets RoboTool and EndoVis2017.

VIII. CONCLUSION

We have shown a new method to automatically generate
labels for surgical tool segmentation. Synthetically generating
the whole surgical scene is a very challenging problem. How-
ever, just performing a simple semi-synthetic blending that
explores the mix of a set of blending basis, and applying post-
processing, we are able to train a convolutional neural network
that achieves an analogous performance to that of a net-
work trained on currently available manually labeled datasets
such as EndoVis2017. Future work includes the exploration
of domain adaptation techniques that could potentially push
further the results obtained by the semi-synthetic blending.
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