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Abstract

Aircraft performance models play a key role in airline operations, especially in planning a fuel-efficient flight. In
practice, manufacturers provide guidelineswhich are slightlymodified throughout the aircraft life cycle via the tuning
of a single factor, enabling better fuel predictions. However, this has limitations, in particular, they do not reflect the
evolution of each feature impacting the aircraft performance. Our goal here is to overcome this limitation. The key
contribution of the present article is to foster the use of machine learning to leverage the massive amounts of data
continuously recorded during flights performed by an aircraft and provide models reflecting its actual and individual
performance. We illustrate our approach by focusing on the estimation of the drag and lift coefficients from recorded
flight data. As these coefficients are not directly recorded, we resort to aerodynamics approximations. As a safety
check, we provide bounds to assess the accuracy of both the aerodynamics approximation and the statistical
performance of our approach. We provide numerical results on a collection of machine learning algorithms. We
report excellent accuracy on real-life data and exhibit empirical evidence to support our modeling, in coherence with
aerodynamics principles.

Impact Statement

Current airline operations in both flight preparation (on-ground) and flight management (in-air) are mainly based
on the performance of an aircraft. For instance, a trajectory is set before the flight andmanaged in-air by the Flight
Management System using the manufacturer’s performance model. This numerical model is calibrated during
in-service period usingmonitoring systems developed bymanufacturers. However, the calibration is based on the
tuning of a single parameter, and this overly simplified modeling leads to a lack of precision in optimizing fuel
consumption. In this paper, we propose performance models that take into account real flight conditions and
switch from industry-wide to aircraft-centric calibration of relevant parameters. To do this, we use massive
collections of in-air data recorded by the Quick Access Recorder, which reflect the actual behavior of the aircraft.
We then resort to machine learning algorithms to learn sufficiently accurate models from this data to infer the
actual performance of the aircraft. The present paper describes our overall approach and its application to
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predicting the lift and drag coefficients. Bounds for the prediction errors are provided to assess the accuracy of the
models. We aim at a twofold impact: (a) improve on the inference of in-flight parameters to optimize trajectories
(e.g., regarding fuel consumption) and (b) provide a principled data-centric modeling approach which could be
replicated in other intensive data-generating industries.

1. Introduction

Efficient aircraft operations require the knowledge of current performance of the aircraft. The performance
depends on many aerodynamic and engines features which evolve throughout the life cycle of the aircraft.
For instance, the degradation of the engines maymodify the aircraft specific range up to 1.3% per year if no
engine replacement is carried out (Airbus, 2002). Further aircraft physical featuresmay changeovertimedue
to accumulations of impurities on the surface (leading to an increase of the drag), rough or deformed
surfaces, damaged seals, and so on (see for instance Airbus, 2001). In particular, performance may differ
from an aircraft to another one of the same type due to different cycles, flight hours, or maintenance.

Given this deterioration, monitoring systems have been developed by the manufacturers (Krajček
et al., 2015). Those systems measure the difference between expected behavior obtained through heavy
numerical simulations and wind tunnel tests, and data recorded during very specific in-flight conditions.
Given this difference, most manufacturers propose tomodify a performance index to adjust the theoretical
fuel consumption to the current one. This leads to more accurate fuel predictions when planning the flight
operations. However, according to Krajček et al. (2015), such monitoring systems have limitations, for
example, the incapacity of dissociating the influence of aerodynamic or engines features on the evolution
of performance, since it is only described by the performance index.

In view of this, a flexible methodology designed to build models for features which reflect the current
performance of an aircraft would be relevant to improve flight planning operations in the end. Such a
methodology is proposed in the present paper.

The underlying idea of our approach is that the real performance of an aircraft should be reflected by its
data recorded in recent flights. Here, we consider data from the Quick Access Recorder (QAR) which
contain features of different types such as the altitude, the true airspeed or the engine power, sampled
every second. To exploit these data, we propose to model statistically features of interest and to fit these
models on the recorded data with off-the-shelf machine learning algorithms. The resulting estimators are
then expected to take into account the actual performance of the aircraft, thus leading to a far more precise
description of its performance.

To illustrate our method, we propose to model the drag and lift coefficients. It is common in the aeronautic
literature tomodel the drag and lift forces through these coefficients,whichquantify drag and lift independently
from the wing size, airspeed, and air density (McCormick, 1995, chapter 2). In particular, the coefficients are
used to somewhat capture very complex phenomena such as friction and permit to deduce the lift-to-drag ratio
(Loftin, 1985, chapter 7), which plays a key role in assessing the performance of the aircraft.

The choice of these two aerodynamic coefficients is also motivated by the fact that neither of those
coefficients is recorded by the aircraft (as a matter of fact, the drag and lift forces are also not recorded),
highlighting the flexibility of this statistical approach. Indeed, this issue is bypassed by leveraging
physical relationships to obtain approximated but explicit and deterministic formulas for the drag and
lift coefficients. The statistical models are then fitted to approximated train data and their learning errors
are computed on test sets. It is noteworthy that the models have to depend on features set by the user since
they are aimed at being exploited by aeronautic softwares, such as those embedded in the Flight
Management System of the aircraft. This explains in particular why physical models which may depend
on other features, may not be used in such a setting.

This approach induces an additional error which we refer to as a physical approximation error, coming
from the approximated data. To assess the prediction accuracy of the fitted models, this approximation
error has to be taken into consideration. In a general setting within which we introduce our approach, we
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propose bounds for the mean absolute error and relative error between the true value of the output and the
predicted value from the model. These bounds depend explicitly on the physical approximation and the
learning errors and are then applied in the present aeronautic setting. Note that in a slightly different
setting, the problem can be interpreted as with errors on the response variable (Buonaccorsi, 1996), which
is a particular case of the general framework of errors-in-variables models (Schennach, 2016; Fuller,
2009). For such problems, a statistical model is assumed on the distribution of the observed surrogate
response variable given the unobserved response variable, for instance, the additive measurement error
model (Carroll and Ruppert, 1988).

A similar approach tomodel unobserved aerodynamic variables has been proposed in Sun et al. (2018).
In this paper, the authors aim at estimating the drag polar (i.e., a specific quadratic model for the drag
coefficient depending on the lift one) by using a stochastic total energy model. Their approach is based on
a Markov Chain Monte Carlo (MCMC) sampler to estimate posterior probability distributions of their
parameters of interest. Similarly to our methodology, they exploit physical formulas to obtain approx-
imate values for unobserved variables. Nevertheless, neither the associated error nor its impact on the
prediction accuracy are taken into account in their analysis.

At this stage, let us stress that our aim is to propose a flexible methodologywhich is sufficiently generic
to be used in any data-intensive engineering discipline. We show that this methodology can be
straightforwardly applied to an aeronautic setting and that it leads to accurate predictions for two
aerodynamic features, verifying in particular expected tendencies. This is illustrated with extensive
numerical tests on recorded flight data. However, let us note that comparing the performance resulting
from our estimated models to those provided by the manufacturers is unfortunately out of reach: in
general, the manufacturers performance models are not publicly available (for commercial reasons) and
therefore cannot be used for academic research.

The paper is organized as follows: in Section 2, we first propose an abstract formulation of the problem
ofmodeling a variable for which only approximated data are available. Lemmas 1 and 2 provide the above
mentioned bounds for the prediction error. Section 3 aims at specifying the aeronautic setting of interest.
Let us mention that we restrict our study to the cruise phase for which physical approximation errors
values are available, however, ourmethod is actually not limited to this particular phase. Numerical results
based on real flight data are presented and discussed in Section 4, and the paper closes on avenues for
future work in Section 5.

2. Statistical Modeling

In this section, we consider a general setting where one aims at explaining a real-valued random variable
Y� ∈Y⊆ ℝ through a function f � depending on the vector X∈X⊆ℝdX . We formulate this as the following
regression problem:

Y� ¼ f � Xð Þþ ε, (1)

where ε denotes a noise variable standing for unexplained determinants of Y�. Nevertheless, in our setting,
Y� is a latent variable: no direct observation for Y� is available, turning the direct estimation of f �

impossible. Our idea here is to propose an estimator for a surrogate of Y� for which data can be obtained.
To do so, suppose that there exists a relationship between Y� and observed variables contained in a vector
Z∈Z⊆ℝdZ , which can be observed together with X. More precisely, we suppose that there exists a known
and explicit function φ :Z!ℝ such that

EY�,Z jY� �φ Zð Þj½ �⩽r,
where r> 0 is known, and we letEA denote the expectation with respect to a random variable A. Thus, the
variable Y≔φ Zð Þ can be considered as an approximation of Y�, coming from a physical formula for
instance. The error η :Y� �Z!ℝ of this approximation is defined as follows

∀ y�,zð Þ∈Y�Z, η y�,zð Þ≔y� �φ zð Þ,
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and will be named the physical approximation error. We consider then the following regression problem

Y ¼ f Xð Þþ ϵ: (2)

Note that φ Zð Þ is actually a model for the latent variable Y�, but our aim is to model this variable via the
input X and not Z, motivating the problem (2). For instance, such a requirement arises in industrial
contexts where inputs of some specialist softwares may differ from the variables involved in physical
equations. If we assume that we have access to n random observations xi,zið Þ (realizations from X and Z),
we can derive observations for Y as follows

∀i¼ 1,…,n, yi≔φ zið Þ,
leading to a training set D≔ xi,yið Þni¼1. Contrary to the original problem (1) for which no training set is
available, an estimator f̂ for the model f can be derived by solving the following minimization problem:

f̂∈arg ming∈H
Xn
i¼1

ℓ yi,g xið Þð Þ,

where the hypothesis classH and the loss function ℓ :ℝ2 !ℝ are generic at this stage. For instance, one
may consider the class of polynomials and the squared error loss.

Let us now upper bound themean of the absolute value of the total error, defined by Y� � f̂ Xð Þ. In other
words, the total error is the error between the unobserved variable Y� and the predicted value f̂ Xð Þ given
the training set D. Note that the total error can be decomposed as follows:

Y� � f̂ Xð Þ¼ η Y�,Zð Þþ Y� f̂ Xð Þ� �
: (3)

This is actually given by the sum of the physical approximation error η Y�,Zð Þ and another error
term Y� f̂ Xð Þwhich will be named the learning error. Indeed it comes from the statistical approximation
of Y by f̂ Xð Þ and depends specifically on the training set D, on the chosen model f and the algorithm to
compute the estimator.

Lemma 1. We have EX,Y� jY⋆� f̂ Xð Þj� �
⩽rþEX,Z jY� f̂ Xð Þj� �

: (4)

Proof. By conditioning on Z, we have

EX,Y� jY� � f̂ Xð Þj� �¼EZ EX,Y�∣Z jY� � f̂ Xð Þj Zj� �� �
⩽EZ EX,Y�∣Z jη Y�,Zð Þj Zj½ �� �þEZ EX,Y�∣Z jY� f̂ Xð Þj Zj� �� �
¼EY�,Z jη Y�,Zð Þj½ �þEX,Z jY� f̂ Xð Þj� �
⩽rþEX,Z jY� f̂ Xð Þj� �

;

(5)

note that we have used the triangle inequality applied to (3) to obtain (5).

In the case where the order of magnitude of the learning error is smaller than the one of r, Lemma 1
shows in particular that trying to compute a more precise estimator will have little consequence on the
above bound of the total error.

We end this section by comparing the total error with the mean value of Y� in the following lemma.
More precisely, we upper bound the ratio between the means of the absolute value of the total error and of
Y� by an explicit and calculable quantity. This ratio, which can be reported as a percentage bymultiplying
it by 100, provides a relative measure of accuracy for the estimator f̂ . We also mention that it agrees with
the Weighted Absolute Percentage Error (WAPE) in the classical case where f̂ is an estimator for Y�.
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Lemma 2. Suppose that EZ φ Zð Þ½ �> r. Then E Y�½ � is positive and we have

EX,Y� jY� � f̂ Xð Þj� �
E Y�½ � ⩽

rþEX,Z jY� f̂ Xð Þj� �
EZ φ Zð Þ½ �� r

: (6)

Proof. We have

EY�,Z φ Zð Þ�Y�½ �⩽ EY�,Z Y� �φ Zð Þ½ �j j⩽EY�,Z jY� �φ Zð Þj½ �,
where we have applied Jensen’s inequality to the absolute value function to obtain the second inequality.
Moreover the linearity of the expected value and the assumption

EY�,Z jY� �φ Zð Þj½ �⩽r
lead to

EZ φ Zð Þ½ �� r⩽E Y�½ �: (7)

SinceEZ φ Zð Þ½ � is supposed to be larger than r, we deduce thatE Y�½ �> 0. Then we can take the inverse
of inequality (7) and combine the result with inequality (4) to obtain (6). □

In the following sections, we apply this abstract approach to model aerodynamic variables together
with total error bounds. However it is noteworthy that this data-centric approach is sufficiently generic to
be exploited in other disciplines.

3. Application to Aircraft Performance

We nowmove to modeling, the drag coefficient C�
D and the lift coefficient C�

L for a given narrow-body
aircraft type for cruise conditions by exploiting recorded flight data1. The predicted values of
these coefficients are then expected to reflect real flights conditions. For instance, the coefficients
C�
D and C�

L are used to establish the drag polar, which contains the aerodynamics of the aircraft
(Anderson, 1999, section 2.9). As it is classically assumed in the aeronautics literature (see for instance
Sun et al., 2018), our models for these coefficients will depend on the angle of attack α and on theMach
number M.

Nevertheless, the coefficients C�
D and C�

L are neither observed nor measured by the sensors of the
aircraft during the flight. We therefore leverage the approach developed in Section 2. Following this
approach, the main task is to determine approximated yet accurate formulas for the coefficients together
with bounds for the physical approximation errors. With these approximations, we will be able to build
data sets for approximated C�

D and C�
L which are expected to reflect on the actual aerodynamics of the

aircraft. Models for C�
D and C�

L (depending on the angle of attack and Mach number) will then be trained
on these datasets and their total errors will be bounded by using Lemma 1.

Prior to this, we emphasize that themethod proposed in this paper is not limited to the present setting. It
can be extended to other variables, aircraft types or phases, subject to available physical formulas
and data.

For the sake of readability, Table 1 provides the names, the symbols and the SI units of the main
physical variables used in the rest of this paper. In addition, the correspondence between the abstract
variables and maps defined in Section 2 and the aeronautic ones is presented in Table 2.

1 To be consistent with the notations introduced in Section 2, we let Y � denote an exact but unobserved variable and we define the
observed variable Y≔Y � þη, where η denotes an error term.
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Let us stress that the approximations we exploit here are actually derived from flight dynamics
equations, whose accuracy depends on still existing physical models. In particular, we will use substan-
tially the following approximated formula for the specific fuel consumption, noted here C�

SR, from Roux
(2005, p. 41):

CSR≔ a1 hð Þλþa2 hð Þð ÞMþ b1 hð Þλþb2 hð Þð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffi
SAT

SAT0

r
þ 7:4e�13 εc�30ð Þhþcð Þ εc�30ð Þ , (8)

where

• SAT0 is the temperature at sea level. Following the International Standard Atmosphere, it is set to
288.15K;

• λ is the bypass ratio which depends on the turbofan engines; here this value is fixed because we
consider a single airliner type;

• εc is the engine pressure ratio, which is also fixed here; and
• a1,a2,b1,b2 are linear piecewise functions (depending on the altitude) and c a constant which are
given in Roux (2005, table 2.8).

As pointed out by Roux (2002), this model improves the classical one of Torenbeek (1982) and its mean
relative error and its standard deviation for cruise conditions are given in Roux (2002, p. 66): they are
equal respectively to 3.68% and 4.48%. Thus the coefficient C�

SR satisfies the following equation

C�
SR ¼CSR SAT,h,Mð Þþη C�

SR,SAT,h,M
� �

(9)

Table 1. Names, symbols and units of variables.

Variable name Symbol Unit (SI)

Angle of attack α rad

Path angle γ rad

True airspeed V ms�1

Mach number M 1

Altitude h m

Mass m kg

Fuel flow FF kg s�1

Static air temperature SAT K

Air density ρ kg.m�3

Thrust force T N

Drag force D N

Lift force L N

Table 2. Correspondence between abstract variables defined in Section 2 and the physical variables.

Abstract setting Aeronautic setting

Y CD orCL

X α,Mð Þ

Z ρ,V ,α,FF,SAT,h,M ,m,γð Þ
φ See (14) and (16)
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where

EC�
SR,SAT,h,M

∣η C�
SR,SAT,h,M

� �
∣

C�
SR

� �
¼ 3:68�10�2 , (10)

over the cruise domain.
We establish now physical approximations for C�

D and C�
L in the case of a flight in a vertical plane and

under the approximation that the Earth is locally flat. By applying Newton’s second law to a body
(modeling the aircraft) of mass m moving in an air mass with no wind variations and by projecting the
resulting equation onto the body frame, one obtains the following differential equations:

m _V ¼ T cosα�D�mg sinγ

mV _γ¼ T sinαþL�mg cosγ

(
, (11)

where g is the value of gravitational acceleration on Earth (here rounded to 9.81m s�2) and _x denotes the
time-derivative of any physical variable x. We refer for instance to Rommel (2018) for a detailed
derivation of the above relations. Moreover, we have the following relations:

FF¼C�
SRT

D¼ 1
2
ρV2SC�

D

L¼ 1
2
ρV2SC�

L

8>>>><>>>>: , (12)

with S denoting thewing-surface of the aircraft; note that this value is fixed in our setting. From the system
(12), we clearly have

T ¼ FF

C�
SR

C�
D ¼ 2

ρV2S
D

C�
L ¼

2

ρV2S
L

8>>>>>>><>>>>>>>:
:

Combining the system (11) with the preceding relations gives

C�
D ¼ 2

ρV2S
cosα

FF

C�
SR

�m _V�mg sinγ

	 

C�
L ¼

2

ρV2S
�sinα

FF

C�
SR

þmV _γþmgcosγ

	 

8>>><>>>: : (13)

Apart from the specific fuel consumption C�
SR, all the variables appearing in the right-hand sides of the

system (13) are either recorded by the aircraft or easily calculable from other recorded variables via well-
known physical relations.

By inserting Equation (9) into Equation (13), we obtain the following formulas for C�
D and C�

L:

T ¼ FF

CSR
� FF

CSR

ηC�
SR

C�
SR

C�
D ¼ 2

ρV2S
cosα

FF

CSR
�m _V�mg sinγ� cosα

FF

CSR

ηC�
SR

C�
SR

	 

C�
L ¼

2

ρV2S
�sinα

FF

CSR
þmV _γþmgcosγþ sinα

FF

CSR

ηC�
SR

C�
SR

	 


8>>>>>>><>>>>>>>:
,
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where ηC�
SR
≔η C�

SR, SAT,h,Mð Þ� �
for the sake of simplicity. By defining

• Z≔ ρ,V ,α,FF,SAT,h,M,m,γð Þ;
• φC�

D
Zð Þ≔ 2

ρV2S
cosα

FF

CSR SAT,h,Mð Þ�m _V�mg sinγ

	 

;

• ηC�
D
C�
D,Z

� �
≔�2 cosα

ρV2S

FF

CSR SAT,h,Mð Þ
ηC�

SR

C�
SR

,

(14)

we can write

C�
D ¼ φC�

D
Zð ÞþηC�

D
C�
D,Z

� �
,

the variable CD≔φC�
D
Zð Þ being the desired approximation for C�

D. Similarly we obtain

C�
L ¼ φC�

L
Zð ÞþηC�

L
C�
L,Z

� �
, (15)

with

• φC�
L
Zð Þ≔ 2

ρV2S
�sinα

FF

CSR
þmV _γþmg cosγ

	 

;

• ηC�
L
C�
L,Z

� �
≔
2 sinα

ρV2S

FF

CSR SAT,h,Mð Þ
ηC�

SR

C�
SR

:

(16)

Here the variable C�
L is approximated by CL≔φC�

L
Zð Þ.

For the sake of readability, we sum up in Figure 1 the relationships between the variables involved in
the computations of CD and CL.

We now provide bounds for the means over the cruise phase of the absolute values of the physical
approximation errors ηC�

D
and ηC�

L
. Noting that these two variables are defined by a product in our setting,

we can apply Hölder’s inequality (with a choice of exponents 1 and þ∞) to obtain

Figure 1. Relations between involved variables—black arrows correspond to deterministic relations,
differentiation with respect to time is represented by blue dashed arrows and the orange dotted ones refer
to physical approximations; variables in diamond-shaped boxes are the targets we aim at modeling.
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EC�
D,Z ηC�

D
C⋆
D,Z

� ���� ���h i
⩽KC�

D
EC�

SR,SAT,h,M
∣η C�

SR,SAT,h,M
� �

∣
C�
SR

� �
EC�

L,Z ηC�
D
C�
D,Z

� ���� ���h i
⩽KC�

L
EC�

SR,SAT,h,M
∣η C�

SR,SAT,h,M
� �

∣
C�
SR

� �
8>>><>>>: , (17)

where

KC�
D
≔ sup

ρ,V ,α,FF,SAT,h,M,mð Þ
�2 cosα

ρV2S

FF

CSR SAT,h,Mð Þ
���� ���� ; (18)

KC�
L
≔ sup

ρ,V ,α,FF,SAT,h,M,mð Þ

2 sinα

ρV2S

FF

CSR SAT,h,Mð Þ
���� ���� : (19)

The supremum is over the cruise domain here and the mean absolute relative error for C�
SR is equal to

3:68e�2 according to (10).We refer to Section 4 for values ofKC�
D
andKC�

L
computed from the available

data.

Table 2 Similarly to Sun et al. (2018), it is possible to obtain simpler approximated formulas for C�
D

and C�
L by assuming the following steady flight conditions with constant speed:

1.the altitude h is constant and so the path angle γ is equal to 0;
2.the angle of attack α is neglected: it is supposed to be equal to 0; and
3.the true airspeed V is constant and so its time-derivative _V is equal to 0.
In this case, we have:

T ¼ FF

CSR
� FF

CSR

ηC�
SR

C�
SR

C�
D ¼ 2

ρV2S

FF

CSR
� FF

CSR

ηC�
SR

C�
SR

	 

C�
L ¼

2mg

ρV2S

8>>>>>>><>>>>>>>:
:

In the present paper, we consider the complete formulas (13) which are likely to best preserve accuracy of
the approximations and to catch real flight conditions.

4. Experiments

In this section, we present numerical results based on real flight data for the method introduced in
Section 2 and applied to the aeronautic setting described in Section 3. We first detail the data and the
preprocessing steps we carried out, before reporting experiments design and results.

4.1. Data description and preprocessing

We have access to 423 recorded short and medium-haul flights performed by the same narrow-body
airliner, the data being recorded by the QAR. These flight data are provided by a partner airline and cannot
be publicly released for commercial reasons. From this dataset, we extract all the observations for the
variables contained in the vector Z defined in Section 3. The heading and thewind speed are also extracted
to remove heading changes and high wind variations. All these variables are then smoothed by means of
smoothing splines to remove the noise coming from measuring instruments and converted into the
international system of units. The time-derivatives are computed on the basis of the smoothing splines. As
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explained in Section 3, we consider cruise phases in a vertical plane with nowind variations, so we require
the following conditions to be satisfied:

• we keep observations from the top of climb to the top of descent without those corresponding to
climb steps; from a numerical point of view, we keep time-intervals such that the standard deviations
of the altitude over these intervals is smaller than an arbitrary small threshold;

• the heading angle of the aircraft has to be constant; from a numerical point of view, we keep intervals
such that the standard deviations of the heading over these intervals is smaller than an arbitrary small
threshold;

• the wind speed variations have to be equal to 0; from a numerical point of view, we keep intervals
such that the means and the standard deviations of the time-derivative of the wind over these
intervals are smaller than an arbitrary small threshold; and

• the lengths of the resulting intervals have to be larger than 10 s.

Given the time-intervals during which the above conditions are satisfied, we sample every 10 s in each
interval. This is motivated by the fact that the errors of the resulting models trained on the dataset sampled
every 10 s and on the dataset without sampling are very close. Hence, sampling allows to reduce the
learning time without impacting strongly the accuracy. Afterwards, the values for the approximated
variablesCD andCL are computed bymeans of the functions φC�

D
and φC�

L
defined in Section 3. Finally, we

have 164,054 observations which are randomly split into training, validation, and test sets (70% of the
dataset is used for the training, 20% for the validation, and 10% for the test).

Table 3 presents an example of a preprocessed data set (with simulated values to avoid divulgating the
dataset).

4.2. Experiments design

Here, we aim at estimating the following models for the approximated drag CD and lift CL coefficients

CD ¼ f CD
α,Mð Þ and CL ¼ f CL

α,Mð Þ ,
by exploiting the preprocessed data described above. To do so, we consider different classical models
which are introduced in Table 4. This table also gives the considered hyper-parameters and their range.
The hyper-parameters are tuned by using threefold cross-validation, the loss function being the mean
squared error. Furthermore, we use an early stopping rule when fitting the gradient tree boosting model to
limit the number of iterations, the validation set being used to stop iterating. The maximum number of
iterations has been set to 5,000 in this case. In the end, we are interested in the three following classical
error metrics: the root-square of the mean squared error, the mean absolute error and the mean absolute
percent error. We use the software package LightGBM (Ke et al., 2017) as an implementation of the
gradient tree boosting algorithm andwe compute the othermodels usingscikit-learn Python library
(Pedregosa et al., 2011).

Table 3. Example of a preprocessed dataset.

Observation ρ V α FF … m γ

1 0.3224 234.5 0.0324 0.6716 … 62,519 0.0139

2 0.3704 236.8 0.0224 0.6503 … 64,960 0.0198

3 0.3224 234.8 0.0305 0.6637 … 66,974 0.0159

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

164,054 0.3433 232.9 0.0332 0.6642 … 66,673 0.0150
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4.3. Results

We performed 100 times the learning process: at each time, the preprocessed data is randomly split into
training, validation and test sets and the models are estimated and tested using these sets. The means and
the standard deviations of the errors computed on the test sets are given in Tables 5 and 6. We report
numbers up to a precision of three decimal digits.

Figures 2–4 allow to visualize the tendencies of estimators f̂ CD
and f̂ CL

with respect to the Mach
number for different fixed values of the angle of attack. Figures 2–4 show respectively a polynomial, a
decision tree and a gradient tree boosting models.

First of all, we observe that the decision tree and gradient tree boosting models lead to raw predicted
curves which may be hard to interpret from an aeronautic point of view. This is especially true for the
decision tree model even though its learning error is similar to those of the two other models. Since we aim
here at checkingwhether some expected aeronautic tendencies are caught by our approach, we smooth the
predicted curves by means of smoothing splines to interpret the results in an easier way. These smoothed
curves are given by the dotted curves in Figures 3 and 4. Note that the use of smoothing splines is to
highlight the underlying tendency, but is certainly not used as a predictive method because of well-known
artefacts due to the smoothing technique.

Now we mention that 90% of Mach number data are between 0.77% and 0.80% and 90% of angle of
attack data are between 1.9∘ and 2.9∘. Then we observe that both predicted CD and CL globally increase

Table 4. Hyper-parameters and their range for the considered models.

Model Hyper-parameters Range

Constant None ø

Linear None ø

Polynomial Degree 2,3,4,5f g
SVM Kernel {linear, polynomial, Gaussian, sigmoid}

k-NN Neighbors number, weights 1,21,41,…,701f g�{uniform, distance}

Decision tree Trees depth 1,2,…,10f g
Random forest Trees depth, trees number 1,2,…,6f g� 100,200,…,700f g
Gradient tree boosting Trees depth 1,2,…,6f g

Table 5. Means and standard deviations of error metrics for different CD models computed over 100 independent repetitions.

CD model RMSE MAE MAPE [%]

Constant 8:778�0:285ð Þ�10�3 5:932�0:102ð Þ�10�3 53:58�56:58

Linear 1:992�0:021ð Þ�10�3 1:424�0:006ð Þ�10�3 4:53�0:05

Polynomial 1:926�0:029ð Þ�10�3 1:361�0:008ð Þ�10�3 4:31�0:06

SVM 1:392�0:259ð Þ�10�2 1:360�0:269ð Þ�10�2 43:25�8:86

k-NN 1:936�0:025ð Þ�10�3 1:362�0:006ð Þ�10�3 4:31�0:05

Decision tree 1:961�0:038ð Þ�10�3 1:364�0:009ð Þ�10�3 4:32�0:05

Random forest 1:929�0:026ð Þ�10�3 1:357�0:007ð Þ�10�3 4:29�0:05

Gradient tree boosting 1:928�0:047ð Þ�10�3 1:356�0:012ð Þ�10�3 4:29�0:08

The smallest values are indicated by bolded numbers.
Abbreviations: MAE, mean absolute error; MAPE, mean absolute percent error; RMSE, mean squared error.
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when the Mach number or the angle of attack increases. This global tendency is actually expected in this
small range of values according to Anderson (1999, part 1, chapter 2): the larger the angle of attack or the
Mach number, the larger the drag and lift coefficients.

Nevertheless, this natural tendency for the lift coefficient is not verified by the estimators when α is too
large, namely α¼ 2:75∘ or α¼ 3∘. This unexpected behavior can be explained by the approximated nature

Table 6. Means and standard deviations of error metrics for different CL models computed over 100 independent repetitions.

CL model RMSE MAE MAPE [%]

Constant 7:358�0:116ð Þ�10�2 5:999�0:060ð Þ�10�2 14:24�0:14

Linear 1:436�0:007ð Þ�10�2 1:102�0:004ð Þ�10�2 2:17�0:01

Polynomial 1:205�0:005ð Þ�10�2 9:203�0:036ð Þ�10�3 1:78�0:01

SVM 6:272�0:029ð Þ�10�2 5:982�0:030ð Þ�10�2 11:16�0:05

k-NN 1:181�0:006ð Þ�10�2 8:976�0:039ð Þ�10�3 1:73�0:01

Decision tree 1:185�0:008ð Þ�10�2 8:886�0:045ð Þ�10�3 1:71�0:01

Random forest 1:209�0:006ð Þ�10�2 9:211�0:041ð Þ�10�3 1:78�0:01

Gradient tree boosting 1:192�0:011ð Þ�10�2 9:025�0:072ð Þ�10�3 1:75�0:02

The smallest values are indicated by bolded numbers.
Abbreviations: MAE, mean absolute error; MAPE, mean absolute percent error; RMSE, mean squared error.

Figure 3. Predictions of CD and CL from decision trees models. Solid lines are the raw prediction curves
and dotted lines are smoothed versions (using splines).

Figure 2. Predictions of CD and CL from polynomial models.
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of the variable CL. Indeed it may behave in a way that is different from C�
L in certain regions of the cruise

domain. In this case, any estimator for CL is likely to inherit this unexpected behavior and we believe
refined aeronautics-supported approximations would bring a solution.

We now focus on the physical approximation errors for the drag and lift coefficients, that is to say ηC�
D

and ηC�
L
. According to (17), the mean of the absolute value of these errors is bounded by the product

between the constants KC�
D
or KC�

L
with the mean absolute relative error of C�

SR, the latter being equal to
3:68�10�2. We estimate the value of these constants by using our recorded observations: the maximal
values of KC�

D
or KC�

L
(defined in Equations 18 and 19) are respectively equal to 4:38�10�2 and

2:94�10�3. Using these two values as estimators for KC�
D
and KC�

L
gives the following bounds for the

physical approximation errors:

EC�
D,Z jηC�

D
C�
D,Z

� �jh i
⩽1:61�10�3

EC�
L ,Z jηC�

L
C�
L,Z

� �jh i
⩽1:08�10�4

8><>: :

According to the generic inequality given in Lemma1, a bound for themean of the absolute total error (defined
in Section 2) of a given variable can be obtained by adding up the bounds for the physical approximation and
learning errors. The latter is here approximated by theMAEof the estimatedmodel. To provide an example of
numerical bounds for the total errors of the drag and lift coefficients, we choose estimators f̂ CD

and f̂ CL
whose

MAEvalues are equal to theMAEmeans given in Tables 5 and 6.Note that this choice ismotivated by the fact
that the standard deviations of the MAE for the different models are much smaller than the means. Following
this choice, examples of bounds for the total errors are then given in Table 7.

The empirical means of CD ¼φC�
D
Zð Þ and CL ¼ φC�

L
Zð Þ over our data are respectively equal tocEZ φC�

D
Zð Þ

h i
¼ 3:23�10�2 , cEZ φC�

L
Zð Þ

h i
¼ 5:32�10�1 ,

showing in particular that cEZ ½φC�
D
Zð Þ�> 1:61�10�3 and cEZ ½φC�

L
Zð Þ�> 1:08�10�4 (we used the slight

notation abuse bE to denote the empirical mean). The hypotheses of Lemma 2 are then satisfied and we are
in position to upper bound the ratios between the mean of the absolute value of the total errors and the
mean values of C�

D and C�
L. Numerical values expressed as a percentage for these bounds are given in

Table 7.
These results capture how classical, off-the-shelf regression methods perform and somewhat surpris-

ingly, mostmethods compete on similar grounds (to the notable exception of the SVM). This suggests that
most of these methods achieve a good enough complexity to capture the underlying phenomenon.

To finish, we mention that our approach is sufficiently generic to be applied to other settings, such as other
flight phases. For the sakeof illustration,weconsider thedrag coefficient during the climbphase. In this case,we
exploit the climbdata fromour 423 available recorded flights, that is to saydata forwhich the altitude is between

Figure 4. Predictions of CD and CL from decision gradient tree boosting models. Solid lines are the raw
prediction curves and dotted lines are smoothed versions (using splines).
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3,000 ft and the top of climb, and we apply the same preprocessing and learning steps as those described in this
section. The results for the means and standard deviations of the learning errors computed over a test set are
given in Table 8.We remark that these errors are much larger than those for the cruise phase. This accuracy loss
can be explained by the fact that each variable during the climb phase has a larger range. For instance, theMach
number varies from0.3 at thebeginningof the climb to 0.81 at the topof climbwhile it varies only from0.76 and
0.81 during the cruise. In addition, we are not in position to compute a numerical value for a bound of the
physical approximation errors means for C�

D. This is due to the fact that Roux (2002) does not estimate the
physical approximation errormean coming from itsmodel for the variableC�

SR for the climbphase.Once such a
quantity is available, numerical bounds for the total errors for C�

D can be derived in this case.

5. Conclusion

Our contributions are twofold: (a) we have proposed individual models trained on in-air data to improve the
current aeronautic performance of individual aircrafts, rather than industry-wide calibrated parameters. This

Table 8. Means and standard deviations of error metrics for different CD models for climb phase computed over 100 independent
repetitions.

CD model RMSE MAE MAPE [%]

Constant 8:912�0:373ð Þ�10�3 5:919�0:102ð Þ�10�3 48:21�40:71

Linear 6:061�0:208ð Þ�10�3 3:618�0:041ð Þ�10�3 29:08�14:16

Polynomial 5:611�0:215ð Þ�10�3 3:399�0:037ð Þ�10�3 27:94�14:33

SVM 2:274�0:708ð Þ�10�2 1:937�0:659ð Þ�10�2 82:99�24:74

k-NN 5:639�0:215ð Þ�10�3 3:420�0:035ð Þ�10�3 26:90�14:93

Decision tree 5:840�0:315ð Þ�10�3 3:494�0:050ð Þ�10�3 26:74�14:26

Random forest 5:598�0:189ð Þ�10�3 3:428�0:035ð Þ�10�3 27:02�16:70

Gradient tree boosting 5:678�0:425ð Þ�10�3 3:405�0:073ð Þ�10�3 33:27�32:07

The smallest values are indicated by bolded numbers.
Abbreviations: MAE, mean absolute error; MAPE, mean absolute percent error; RMSE, mean squared error.

Table 7. Bounds for the mean absolute and mean relative total errors of the drag and lift coefficients using estimators f̂ CD
and f̂ CL

whose mean absolute error (MAE) values are equal to the MAE means given in Tables 5 and 6—Absolute and Relative refer
respectively to the bounds given in Lemmas 1 and 2.

Models

Drag coefficient Lift coefficient

Absolute Relative [%] Absolute Relative [%]

Constant 7:542�10�3 24.57 6:010�10�2 11.30

Linear 3:034�10�3 9.89 1:113�10�2 2.09

Polynomial 2:971�10�3 9.68 9:311�10�3 1.75

SVM 1:521�10�2 49.56 5:993�10�2 11.27

k-NN 2:972�10�3 9.68 9:084�10�3 1.71

Decision tree 2:974�10�3 9.69 8:994�10�3 1.69

Random forest 2:967�10�3 9.67 9:319�10�3 1.75

Gradient tree boosting 2:966�10�3 9.67 9:133�10�3 1.72
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allows in particular for the search of more efficient (e.g., flight duration, speed, fuel consumption, etc.)
trajectories for aircrafts and (b) we have designed a generic framework combining off-the-shelf machine
learning with domain-specific approximations, which can be used in any data-intensive engineering discipline.
Wecertainlyhope that this approach canbe replicated inother fieldsof study.Wealso intend touse this approach
as a building block to optimizing end-to-end pipelines, for example for in-air real-time fuel optimization.
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