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A deep convolutional neural network for real-time full profile
analysis of big powder diffraction data
Hongyang Dong 1, Keith T. Butler 2, Dorota Matras3,7,8, Stephen W. T. Price3, Yaroslav Odarchenko3, Rahul Khatry4,
Andrew Thompson4, Vesna Middelkoop5, Simon D. M. Jacques 3✉, Andrew M. Beale 1,3,6✉ and Antonis Vamvakeros 1,3✉

We present Parameter Quantification Network (PQ-Net), a regression deep convolutional neural network providing quantitative
analysis of powder X-ray diffraction patterns from multi-phase systems. The network is tested against simulated and experimental
datasets of increasing complexity with the last one being an X-ray diffraction computed tomography dataset of a multi-phase Ni-
Pd/CeO2-ZrO2/Al2O3 catalytic material system consisting of ca. 20,000 diffraction patterns. It is shown that the network predicts
accurate scale factor, lattice parameter and crystallite size maps for all phases, which are comparable to those obtained through full
profile analysis using the Rietveld method, also providing a reliable uncertainty measure on the results. The main advantage of PQ-
Net is its ability to yield these results orders of magnitude faster showing its potential as a tool for real-time diffraction data analysis
during in situ/operando experiments.
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INTRODUCTION
Over the past decade, advancements in X-ray sources, optics and
detector technologies have led to a dramatic increase in the
volume and data quality of experimental powder diffraction
patterns1–7. These technical advances are beginning to make
high-throughput powder diffraction measurements a reality not
just at synchrotron facilities but also at the laboratory8,9. It is now
not uncommon to acquire diffraction patterns with sufficient
signal-to-noise ratio in matters of minutes with laboratory
diffractometers and in milliseconds at X-ray diffraction (XRD)
dedicated beamlines at synchrotron facilities. In situ and operando
ultra-fast and/or spatially-resolved multi-dimensional XRD experi-
ments of functional materials and devices previously considered
technically infeasible have already been demonstrated10,11. For
example, we have previously demonstrated the first 5D operando
tomographic diffraction imaging experiment (three spatial, one
scattering and one dimension to denote time/imposed state) to
study a multi-component catalytic reactor for the partial oxidation
of methane12. However, these advances come at a cost and this is
related to the handling of the big data collected during these
experiments.
It is now possible to acquire many Terabytes (TBs) of XRD data

per dynamic experiment and this is expected to increase
significantly with the advent of the fourth generation synchrotron
facilities all around the world, such as the Extremely Brilliant
Source (EBS) of the European Synchrotron Radiation Facilities
(ESRF) and MAX IV (Sweden) and the scheduled upgrades for
Diamond-II (United Kingdom), Petra IV (Germany) and Advanced
Photon Source-Upgrade (USA)13. It is currently well-accepted that
it is the data analysis that is emerging as the bottleneck for
measurement science and not the data acquisition and/or the
experiment itself. Conventional data analysis methods, such as

least-squares minimisation approaches, are not able to keep up
with the data collections rates and there is a need for alternative
methods which can provide both fast and accurate results14. As an
example, the Rietveld method, often employed in XRD data when
performing full profile analysis, can yield invaluable physicochem-
ical information regarding the material system under investigation
(e.g., lattice parameters, crystallite sizes/strain, atom/site occupan-
cies and weight percentages for mixed phase systems) but does
not scale well with big data. Equally important is the data
crunching/visualization capabilities which are not developed in
tandem with the data acquisition capabilities and as a result
dynamic beamtime experiments are largely driven ‘blind’.
In recent years, deep learning methods involving convolutional

neural networks (CNNs) have gained popularity and attracted a lot
of attention due to the aforementioned properties and also due to
their unique scalability (i.e., ability to handle big data)15–17.
Although primarily explored for applications in medical imaging
and tomography18,19, their potential for materials science and
especially for spectroscopic/scattering techniques is gaining
momentum20–28. Regarding XRD, previous studies have mainly
focused on developing CNNs for crystal structure prediction, space
group classification and phase identification19,29–34. For example,
Park et al. demonstrated a classification CNN model that can
extract crystal-system and space-group information from an XRD
pattern29. Lee et al. proposed a CNN structure used for XRD
pattern identification, which also has potential to predict phase
fractions19. Wang et al. demonstrated a phase identification CNN
which was trained with simulated patterns with noise extracted
from experimental data34. Tatlier used an Artificial Neural Network
(ANN) to predict the structures of crystalline materials and zeolites
from XRD patterns and it was claimed that the ANN performed
better than manual regression35. There are also some algorithms
that can achieve phase identification without neural networks, but
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they are generally less efficient and/or less accurate than neural
network models36–41. It should be pointed out though that most
studies focus on developing classification models for phase
identification; predicting whether a phase is present or not in an
XRD pattern.
In this work, we demonstrate a neural network for parameter

quantification (PQ) that we term PQ-Net; a regression CNN model
applied in 1D powder diffraction data for extracting physico-
chemical information. Specifically, PQ-Net is trained with simu-
lated 1D XRD patterns and it is shown that it can yield accurate
predictions for scale factors, crystallite sizes and lattice parameters
for both simulated and experimental XRD data. For the latter, a
very challenging X-ray diffraction computed tomography (XRD-CT)
dataset was chosen in order to test the performance of the
network and its feasibility for deployment for real world
applications. We focus on the scale factors, lattice parameters
and crystallite sizes, because they are most often sufficient to
describe and understand materials and process performance
under operating conditions12,42–48. This exemplar dataset was
acquired using a multi-component Ni-Pd/CeO2-ZrO2/Al2O3 catalyst
and consists of ca. 20,000 diffraction patterns. The results from the
analysis of this five-phase system are also compared with results
obtained using the Rietveld method with the TOPAS software49.

RESULTS
Single-phase PQ-Net architecture and simulated XRD-CT
dataset
The architecture of the PQ-Net for a single-phase of cubic
symmetry is presented in Fig. 1. The PQ-Net architecture can be
divided into three main parts. The first part (pattern-block), which
decreases the size of the XRD pattern and extracts local features,
involves three convolutional layers (128 filters, kernel size of 35
and stride equal to one) followed by a max-pooling layer (stride
equal to two). The second part, which is replicated for each
crystalline phase used in the model, includes a sequence of five
convolutional and max-pooling layers ending with a flatten layer;
this extracts features from the XRD pattern related to the specific
phase (phase-block). The third and final part (parameter-block)
contains two fully connected (dense) layers ending with one
single output per phase parameter. A glossary explaining the
various layers in more depth is available in the Supporting
Information (see also Supplementary Fig. 1 and Supplementary
Tables 1–2).
The parameter-block part of the architecture contained the

majority of the trained weights so our initial work focused on
minimizing both the depth and width of the dense layers. It was
found that the width of the second dense layer has to be doubled
for the crystallite size and lattice parameters as these are more
challenging parameters to quantify compared to scale factors. A
dropout layer has been used after each fully connected layer
(apart from the final layers) to prevent overfitting. Regarding the
training process, it was seen that using mean absolute error (MAE)
as the loss function instead of mean squared error (MSE) yielded a
more accurate model; this is not surprising as MAE is known to
better handle outliers present in the training data. This feature is
crucial as there are diffraction patterns in the training data that
contain low intensity peaks and the network has to adapt and
learn to ignore them. It should be noted that the various
parameters were normalised prior to the training of the network
since their magnitude varied significantly (i.e., between scale
factors, lattice parameters and crystallite sizes). Adam was used as
the optimisation algorithm and the learning rate, after initial
tuning, was set to 0.0005 for all case studies presented in this
work50. In material science aspect
As a proof-of-concept study, the PQ-Net was first trained with

noiseless and zero-background XRD patterns of a Ni fcc structure

(ICSD: 64989) simulated with the TOPAS software v749. These
diffraction patterns were used as the training data with a 10 %
validation split. The impact of the diffraction library size (i.e. size of
the training data) was investigated and the results are summarised
in Supplementary Table 3; there was no apparent change in
performance with libraries containing more than 100 K patterns.
There is also a sudden drop in MAE above 10 K patterns which
implies that accurate results could be obtained with libraries as
small as 20 K. It should also be pointed out that the MAE values
provide an indication of accuracy regarding the predictions of the
network but a PQ-Net model trained with relatively high MAE can
potentially still yield accurate predictions.
To evaluate the performance of the PQ-Net we simulated a

phantom XRD-CT dataset using a scale factor map derived from
the Rietveld analysis of an experimental XRD-CT dataset from a
catalyst sample51. One advantage of this dataset is the realistic
nature of this intensity map compared to idealised ones, such as
the Shepp-Logan phantom. More important though is that one
can easily segment the various particles, assign different proper-
ties to them and generate multiple XRD-CT datasets with varying
chemistry in an efficient manner. More details regarding the
phantom simulation can be found in our previous work52. These
120 × 120 (14,400) diffraction patterns were used as test data for
the single-phase PQ-Net. The results from a single-phase PQ-Net
trained with 100 K patterns applied to this test set are presented in
panel in Fig. 2. The ground truth (GT) maps for the various
parameters are presented in the first row, the results from the PQ-
Net in the second row and the difference between the two maps
in the third row. The scale factor is the easiest parameter to train
the PQ-Net for, so it is not surprising that it yields very accurate
maps with a relative error less than 5 % (Supplementary Fig. 2).
Impressively though it can be seen that the error for the crystallite
size is below 1 nm for all catalyst particles and similarly the error
for the lattice parameter is below 10−3 Å. The Rwp also is below
5% for the majority of particles (Supplementary Fig. 2). To illustrate
this further, the mean diffraction pattern from three catalyst
particles exhibiting different properties were extracted and
analysed with the PQ-Net. The results are presented in panel b
of Fig. 2 and it can be clearly seen that the network is able to
accurately predict the three patterns (Rwp of 3.144, 1.191 and
1.835% respectively). The corresponding Ni parameters are
summarised in Supplementary Table 4.

Multi-phase deep ensemble PQ-Net and simulated XRD-CT
dataset
The next logical step was to test the PQ-Net against simulated
multi-phase XRD patterns which is a closer approximation to most
experimental data and closer to real world applications. Here, we
chose a five-phase system that corresponds to the chemistry
encountered in the experimental XRD-CT dataset presented in the
next section. The choice of this material system was based on the
complexity and its challenging nature; it is a multi-component
system with the various phases exhibiting different symmetries
and their physico-chemical properties vary spatially as it will be
shown in the next section.
The multi-phase PQ-Net architecture used here is presented in

Supplementary Fig. 3 and it can be seen that it is an extension of
the one presented in Fig. 1. The five crystalline phases modelled
here are NiO (ICSD: 9866), PdO (ICSD: 24692), CeO2 (ICSD: 72155),
ZrO2 (ICSD: 66781) and theta-Al2O3

53. The parameters refined here
are the scale factors, lattice parameters and crystallite size for each
phase. Poisson noise and a varying linear background (2nd degree
Chebyshev polynomial) were also introduced in the diffraction
libraries used to train the multi-phase PQ-Net (Supplementary
Table 5). To improve the performance and robustness of our
model, necessary for complex tasks such as this, we implemented
and evaluated deep ensembles of the PQ-Net54–56. Deep
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ensembles are based on the assumption that different initial
weights of a CNN will lead to different local minima which may
not necessarily be a minimum on the validation data, but these
local minima are evenly distributed in parameter space and
therefore sample different possible solutions efficiently57. There-
fore, simply retraining a CNN model several times and taking the
average of the outputs can usually have better results than using
only one model.
Supplementary Fig. 4 shows the influence of deep ensemble

acting on the results’ mean absolute error (MAE). It can be seen
that the more individual models in a deep ensemble model, the
more accurate results it can generate (Supplementary Table 6).
Another benefit of deep ensembles is that the method can give a
referable uncertainty of the results. By taking the standard
deviation among all individual models’ predictions on a para-
meter, one can easily estimate the precision of a deep ensemble
result. However, because the time taken by training and merging
individual models can rise proportionally as the number of models
in deep ensemble increases and the curve tends to flatten out,
using a deep ensemble of size between five to ten is the most
realistic option for real world applications. It is worth mentioning
that the MAEs for the validation dataset have a lower limit which
can not be surpassed by increasing the size of the training dataset
or the deep ensemble, because the crystallite sizes and lattice
parameters are very hard to predict when scale factors are
approaching zero.

The performance of the trained multi-phase PQ-Net was
evaluated with a simulated XRD-CT dataset using the same
intensity image as for the single-phase dataset. Here, the same
strategy was followed creating five single-phase XRD-CT datasets,
one for each component which were then added together to form
the multi-phase simulated XRD-CT dataset consisting of 14,400
diffraction patterns (test data). This dataset was then passed to the
PQ-Net for analysis and quantification of the various parameters.
The scale factor results from the deep ensemble PQ-Net consisting
of 10 models and trained with 100 K patterns (training data) are
presented in Fig. 3. It can be clearly seen that the PQ-Net is able to
create accurate phase distribution maps for all components and
retain the local features and relative intensities. Importantly, it is
able to also create accurate crystallite size and lattice parameter
maps for all phases (Supplementary Figs. 5–9) while the Rwp
remains <10 % for all particles (Supplementary Fig. 10).
To further illustrate the ability of the PQ-Net to handle multi-

phase systems, we also extracted three diffraction patterns from
the XRD-CT which correspond to the mean diffraction patterns
from three particles. The results from the analysis of these three
patterns are presented in Fig. 4 where it is clearly shown that the
PQ-Net is able to model them accurately (Rwp of 5.024, 5.419 and
4.798 % respectively; see also Supplementary Tables 7–11).

Experimental XRD-CT dataset
The final and most challenging dataset is an experimental XRD-CT
dataset acquired using the Ni-Pd/CeO2-ZrO2/Al2O3 catalyst. Details

Fig. 1 Regression CNN architecture for Ni phantom experimental system featuring a single phase. CONV represents 1-D convolutional
layers, Pool represents max-pooling layers, FC represents fully connected layers, and Dropout represents dropout layers with 10% dropout
rate. The network consists of eight convolutional layers, six max-pooling layers, one flatten layer, nine fully connected layers and six dropout
layers in total. There are three routes connected to the flatten layer which give predictions for scale factor, crystallite size and lattice parameter
a, respectively. Each route has three fully connected layers whose scales are shown in the figure. The number of filters, kernel sizes and the
stride of convolutional layers are also given in the figure. All max-pooling layers have stride equal to 2.
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regarding its preparation and phase identification are provided in
our previous work12. Here we use the previous deep ensemble PQ-
Net consisting of 10 models and trained with 100 K patterns
(training data) to analyse the 22,801 XRD patterns (test data)
present in the XRD-CT dataset (XRD-CT images of 151 × 151
pixels). We also perform conventional Rietveld analysis which
serves as an approximation to the ground truth and the
benchmark to assess the performance of the PQ-Net.
The results for the scale factors for all phases using the Rietveld

method and the PQ-Net are presented in Fig. 5. It can be seen that
the PQ-Net is able to accurately predict the scale factors of both
the main phases, such as Al2O3, NiO and ZrO2, and also minor
components such as the PdO. It should be noted here that the
PdO should not have been detectable at this resolution due to its
low content (<1 wt.%) and it is only possible due to areas of high
concentration near the surface of some particles. Importantly, the
PQ-Net results are consistent with the ones obtained with the
Rietveld method showing for example that the ZrO2 (or Zr-rich

CexZr1-xO2 phase, where x ≤ 1) is located only at the periphery of
the catalyst particles while the CeO2 (or Ce-rich CexZr1-xO2 phase)
is present also at the interior of the catalyst particles. The Al2O3

distribution is correctly shown to be homogeneous in all catalyst
particles while NiO, the primary catalyst active component, is also
present in all particles. The uncertainty maps shown in the last row
of Fig. 5 correspond to the standard deviation of the calculated
values from the 10 models of the deep ensemble PQ-Net
(Supplementary Fig. 11).
Importantly, apart from the scale factors, the PQ-Net is able to

capture the chemical gradients present in this challenging XRD-CT
dataset. As shown in Fig. 6, it is able to resolve the heterogeneities
in the crystallite size and lattice parameter of the CeO2-ZrO2

phases. As we have previously reported, the CeO2 crystallite size
and lattice parameter follow an egg-shell distribution in this
catalyst with lower values for lattice parameter and crystallite size
at the shell compared to the core of the particles. As expected, this
result is reproducible with the Rietveld method but it can also be

Fig. 2 PQ-Net results for the single-phase simulated data. a Ni scale factors, crystallite sizes (nm) and lattice parameter (Å) ground truth
maps, results obtained with the PQ-Net and their absolute difference. b Comparison between the average diffraction patterns extracted from
three particles of interest and the TOPAS generated patterns using the parameters predicted by the PQ-Net.
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seen that the PQ-Net yields the same results. Moreover, the
difference between the CeO2-ZrO2 lattice parameter maps
obtained with the Rietveld method and the PQ-Net is below 2 ×
10−2 Å for the majority of the particles while for the crystallite size
maps the difference is in the order of 1–2 nm. The uncertainty
maps presented in the last row of Fig. 6 indicate that the error for
the crystallite size for both phases is in the order of 1 nm.
Diffraction patterns from two representative regions-of-interest

were extracted from the XRD-CT for further analysis. As shown in
Fig. 7, one pattern is derived from the periphery of three particles
(light blue region) while the second is derived from the whole area
of two other particles (magenta region). The first region
corresponds to an area where the ZrO2 phase is present while
the second where it is absent. Both patterns are the mean XRD
patterns from the respective regions in the sample. These two

patterns were then analysed with the PQ-Net and the results are
presented in Fig. 7. It can be clearly seen that the PQ-Net is able to
model accurately the data (Rwp of 8.353 and 7.749 %
respectively).

DISCUSSION
The results presented in this work demonstrate that the PQ-Net
model is able to extract accurate physico-chemical information
from XRD patterns. Its performance was evaluated with different
datasets of increasing complexity, varying from simulated noise-
less single-phase to experimental five-phase systems. In all cases,
PQ-Net was able to quantify the scale factors, lattice parameters
and crystallite sizes of the various phases providing predictions
with errors within acceptable ranges (i.e. compared to ground
truth and Rietveld results for the simulated and experimental data
respectively). The work presented here therefore serves also as an
exemplar study demonstrating PQ-Net’s flexibility and scalability
as the method applied to datasets of different complexity and it
can be scaled up or down depending on the data requirements.
The robustness of the PQ-Net was further improved through the
implementation of deep ensembles that allow for uncertainty
quantification.
The deep ensemble PQ-Net model was able to provide results

with less than 2% difference in Rwp compared to the one
obtained from the analysis of the same data using the Rietveld
method. These results were obtained (i.e. analysis of ca. 20 K XRD
patterns) in ca. 10 s while the state-of-the-art Rietveld for 9 K XRD
patterns required ca. 4.4 h. A comparison table and corresponding
figures demonstrating how the performance of PQ-Net and
Rietveld scale with increasing data size are provided in the
Supporting Information (Supplementary Tables 12–14 and Sup-
plementary Figs. 12–14). It should be noted though that the PQ-
Net was not designed to replace the Rietveld method but to assist
and provide very fast and accurate predictions for the various
physico-chemical parameters; conventional least-square minimi-
sation techniques, such as the Rietveld method, can be used for
fine parameter tuning using the PQ-Net results as the starting
point. The PQ-Net in its current form, similar to the Rietveld
method, requires some a priori knowledge of the sample and its
chemistry. However, in case there is evolving/unpredictable
chemistry or unknown phases form/are present in the system, it
can be easily spotted through the Rwp, the difference between

Fig. 3 PQ-Net scale factor results for the multi-phase simulated data. Scale factor ground truth maps, results obtained with the PQ-Net and
their absolute difference for the simulated multi-phase NiO-PdO-CeO2-ZrO2-Al2O3 system.

Fig. 4 Examples of fitted simulated diffraction patterns from
regions of interest. Comparison between the average diffraction
patterns extracted from three particles of interest and the TOPAS
generated patterns using the parameters predicted by the PQ-Net.
The main reflections for NiO (blue ticks), PdO (green ticks), CeO2 (red
ticks) and ZrO2 (cyan ticks) are also presented.
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the experimental and predicted patterns and the uncertainty
maps provided by the deep ensemble.
The key advantage of the PQ-Net is that the diffraction libraries

can be generated prior to an experiment and used to pretrain the

model. This approach can allow for real-time assessment of
diffraction data acquired during a dynamic experiment and enable
the user to better guide the experiment (e.g., through the applied
operating conditions) and intervene when necessary. In future, we

Fig. 5 PQ-Net scale factor results for the multi-phase experimental data. Scale factor maps obtained with the Rietveld method, results
obtained with the PQ-Net, their absolute difference for the experimental multi-phase NiO-PdO-CeO2-ZrO2-Al2O3 system and the uncertainty
maps of the deep ensemble PQ-Net (last row).

Fig. 6 PQ-Net CeO2-ZrO2 crystallite size and lattice parameter a results for the multi-phase experimental data. Crystallite size (colorbar
axis corresponding to nm) and lattice parameter a (colorbar axis corresponding to Å) maps for CeO2 and ZrO2 obtained with the Rietveld
method, results obtained with the PQ-Net, their absolute difference for the experimental multi-phase NiO-PdO-CeO2-ZrO2-Al2O3 system and
the uncertainty maps of the deep ensemble PQ-Net.
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plan to increase the complexity of the PQ-Net and explore its
ability to model other parameters such as complex backgrounds,
to quantify amorphous/crystalline components and to perform
simultaneous calculation of weight percentages and strain
analysis. It should be pointed out that the PQ-Net could in
principle also be used to benefit X-ray Free Electron Laser (XFELs)
facilities, like the European XFEL (Germany), for fast analysis of
powder diffraction data. We will also try to apply the PQ-Net on
other analytical scattering/spectroscopic techniques such as X-ray
absorption fine structure spectroscopy (XAFS) data which is a
technique suitable for large volume data analysis (e.g., XAFS-CT).
Last but not least, we expect that the PQ-Net has the potential to
become an essential tool for diffraction applications beyond
synchrotron experiments such as real-time quality inspection in
manufacturing/synthesis.

METHODS
XRD-CT measurements
A Ni-Pd/CeO2-ZrO2/Al2O3 catalyst was measured with XRD-CT at beamline
station ID31 of the ESRF using a 70 keV monochromatic X-ray beam
focused to have a spot size of 20 × 20 μm. Information regarding the
sample preparation can be found in our previous work12. The Pilatus3 X
CdTe 2 M hybrid photon counting area detector was used for the
acquisition of the 2D powder diffraction patterns. The total acquisition
time per point was 20ms. 225 translation steps (translation step size of
20 μm) covering 0–180° angular range, in steps of 1.125° (i.e., 160 line
scans) were used for the tomographic measurements. A CeO2 NIST
standard was used for the detector calibration. Every 2D powder diffraction
pattern was transformed to a 1D powder diffraction pattern after applying
a 1% trimmed mean filter to remove outliers; this was done using in-house
developed MATLAB scripts58. The tomographic images were reconstructed
using the filtered back projection algorithm and were cropped to a 151 ×
151 × 2048 reconstructed data volume (22801 diffraction patterns).

Rietveld analysis
Full profile analysis of the spatially-resolved diffraction patterns present in
the XRD-CT data was performed using the Rietveld method. Inhouse
developed MATLAB scripts were used in combination with the TOPAS
software v7 to perform the analysis in a sequential manner, processing one
line at a time (i.e., corresponding to 225 diffraction patterns). A mask was
applied so that only the pixels in the images corresponding to sample

regions would be processed (decreasing significantly the number of
patterns to be analysed in each line) decreasing the number of patterns to
9027. Full profile analysis was initially performed using the mean
diffraction pattern of the XRD-CT dataset before performing the batch
fitting (i.e., in order to have a good starting model for the Rietveld analysis).
The background was fairly linear and a 2nd degree Chebyshev polynomial
was used to model it. For each phase, the scale factor, lattice parameters
and crystallite size were refined in the model.

Diffraction libraries
All diffraction libraries were created using inhouse developed MATLAB
scripts and the TOPAS software v7 using CPU. The neural networks were
trained using GPU and a CPU/GPU comparison Table is provided in the
Supporting Information (Supplementary Table 1). A 10% validation split
was applied to the training data for each diffraction library used in this
work to train the PQ-Net. The scale factors, lattice parameters and
crystallite size values for each pattern were created using random
sampling from a fixed range. Details for each parameter are presented in
the Supporting Information. Each parameter corresponds to a 1D array
with length equal to the library size. For each parameter, the minimum
value was subtracted from the corresponding array and then it was
normalised. This step proved very important for the stability of the network
as it allowed all parameters to have values at the same range (0–100). The
minimum and maximum values are recorded in a text file, then the
models’ predictions on the experimental dataset can be easily converted
to the real values before normalisation. A 3XS Data Science Workstation
C264X2 with 2x Intel Xeon Silver 4216, 350 GB RAM and 2x Quadro RTX
8000 was used for the development and training of the neural networks
used in this work and the Rietveld analysis of the diffraction patterns.
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