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Abstract 

A few genes have previously been identified in which very rare variants can have major effects on 
lipid levels. Weighted burden analysis of rare variants was applied to exome sequenced UK Biobank 
subjects with hyperlipidaemia as the phenotype, of whom 44,050 were designated cases and 
156,578 controls, with the strength of association characterised by the signed log 10 p value (SLP). 
With principal components included as covariates there was a tendency for genes on the X 
chromosome to produce strongly negative SLPs, and this was found to be due to the fact that rare X 
chromosome variants were identified less frequently in males than females. The test performed well 
when both principal components and sex were included as covariates and strongly implicated LDLR 
(SLP = 50.08) and PCSK9 (SLP = -10.42) while also highlighting other genes previously found to be 
associated with lipid levels. Variants classified by SIFT as deleterious have on average a two-fold 
effect and their cumulative frequency is such that they are present in approximately 1.5% of the 
population. These analyses shed further light on the way that genetic variation contributes to risk of 
hyperlipidaemia and in particular that there are very many protein-altering variants which have on 
average moderate effects and whose effects can be detected when large samples of exome-
sequenced subjects are available. This research has been conducted using the UK Biobank Resource. 
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Introduction 

We recently reported the results of analysis of 50,000 exome-sequenced UK Biobank subjects aiming 
to identify rare variant effects in genes influencing susceptibility  to hyperlipidaemia and also briefly 
reviewed what was known to date about the genetic contributors to this phenotype [1]. The 
potential advantage of studying rare variants is that they have more profound, readily interpretable 
impacts on biology than common variants, whose effect sizes tend to be constrained by selection 
pressures. Rare variants with a large dominant effect in LDLR, APOB and PCSK9 cause 40% of cases of 
familial hyperlipidaemia and there are also common variants which exert small effects on 
hyperlipidaemia risk [2–5]. Although for most genes impaired function increases risk, the PCSK9 
variants which cause familial hyperlipidaemia produce a gain of function whereas loss of function 
variants cause hypobetalipoproteinemia and PCSK9 inhibitors are used as treatments to lower 
cholesterol levels [6].  
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The previous analysis of 50,000 UK Biobank identified one gene, HUWE1, which met criteria for 
statistical significance after correction for multiple testing and in which there was an excess of rare 
and/or damaging variants in controls, suggesting that impaired functioning of this gene was 
protective against hyperlipidaemia. A number of other genes which were individually significant with 
uncorrected p<0.001, were arguably of potential interest, including LDLR, and, in an analysis of sets 
of genes, the GO gene set GENERATION OF PRECURSOR METABOLITES AND ENERGY was statistically 
significant. The whole UK Biobank sample consists of 500,000 subjects and a new release of data 
means that there is now exome sequence data available for 200,000 of them [7]. We report here the 
results of analysis of this larger dataset, which includes the original 50,000, with the expectation that 
it would provide greater power to detect genes with a real biological effect. The larger sample size 
would also allow more sophisticated analyses which could throw light on the differential effects of 
different types of variant and could produce more refined estimates of the contributions to risk in 
the general population. 

Large samples of exome sequenced subjects have only become available relatively recently and 
controversy remains about the optimal methods of analysis. Sequencing reveals very large numbers 
of genetic variants, many of which will have no biological effect and/or will be extremely rare, 
occurring in only a handful of subjects or just as singletons. The rarity of individual variants means 
that they need to be grouped together in a burden analysis and it is common practice to combine all 
variants which are predicted to completely disrupt the working of a gene, comprising: variants which 
introduce a stop codon; small insertions and deletions which are not a multiple of three bases and 
hence disrupt the amino acid code, termed frameshift variants; variants changing essential splice site 
sequences at intron-exon boundaries, disrupting normal splicing of exons. These three types of 
variant are predicted to all have a broadly similar effect no matter where they occur in the gene, 
consisting of a complete failure of the gene to produce normal product, and they may be referred to 
as loss of function (LOF) variants. It may then become possible to implicate a gene in the 
pathogenesis of phenotype by observing a general excess of LOF variants in that gene among cases 
relative to controls [8]. However it is certainly the case that other kinds of variant can also cause 
disease. A variant which changes a codon so that it codes for a different amino acid, termed a non-
synonymous variant, may alter the structure or function of the protein product in a way which 
dramatically affects risk but alternatively a protein altering variant may have no effect at all. The 
impact of a non-synonymous variant will depend crucially on the nature of the amino acid change 
and its position in the protein and it remains a challenging task to predict the biological effect 
although commonly used software such as PolyPhen and SIFT attempt this [9, 10]. PolyPhen 
designates some variants as “possibly damaging” or “probably damaging” and SIFT designates some 
variants as “deleterious” but different prediction programs do not always agree with each other. 
Nonsynonymous variants are much more frequent than LOF variants and so it would be desirable to 
incorporate them into burden analyses but there is a risk that doing so may simply introduce 
additional noise. Identifying which specific variants are most likely to have biological effects could 
increase power to implicate risk genes but remains a challenging task. Even variants which do not 
change amino acid sequence, including synonymous and intronic variants, can through various 
mechanisms occasionally have effects on risk and so could potentially be included.  

The approach we have taken to address these issues is to carry out weighted burden analyses, in 
which variants judged a priori to be most likely to have important effects are accorded higher 
weights. Since selection pressures mean that common variants are unlikely to have large effects, 
variants are also weighted according to rarity and the detailed scheme for doing this is described in 
the Methods section. However a weakness of this approach to date has been that there has been 
little empirical evidence to inform the exact weighting scheme which would be optimal. An 
advantage of the large UK Biobank dataset is that it allows some exploration of the relative average 
effect sizes of different categories of variant and this was carried out using multivariate analyses of 



variant categories in addition to standard weighted burden analyses of genes and gene sets. These 
investigations were applied to the previously used hyperlipidaemia phenotype, defined as subjects 
with a diagnosis of hyperlipidaemia and/or taking cholesterol-lowering medication. 

Methods 

The UK Biobank dataset was downloaded along with the variant call files for 200,632 subjects who 
had undergone exome-sequencing and genotyping by the UK Biobank Exome Sequencing 
Consortium using the GRCh38 assembly with coverage 20X at 95.6% of sites on average [7]. UK 
Biobank had obtained ethics approval from the North West Multi-centre Research Ethics Committee 
which covers the UK (approval number: 11/NW/0382) and had obtained informed consent from all 
participants. The UK Biobank approved an application for use of the data (ID 51119) and ethics 
approval for the analyses was obtained from the UCL Research Ethics Committee (11527/001). All 
variants were annotated using the standard software packages VEP, PolyPhen and SIFT [9–11].  To 
obtain population principal components reflecting ancestry, version 2.0 of plink (https://www.cog-
genomics.org/plink/2.0/) was run with the options --maf 0.1 --pca 20 approx  [12, 13]. 

The hyperlipidaemia phenotype was determined in the same way as previously from four sources in 
the dataset: self-reported high cholesterol; reporting taking cholesterol lowering medication; 
reporting taking a named statin; having an ICD10 diagnosis for hyperlipidaemia in hospital records or 
as a cause of death [1]. Subjects in any of these categories were deemed to be cases with 
hyperlipidaemia while all other subjects were taken to be controls. 

The method of analysis was the same as used previously on the smaller sample. The SCOREASSOC 
program was used to carry out a weighted burden analysis to test whether, in each gene, sequence 
variants which were rarer and/or predicted to have more severe functional effects occurred more 
commonly in cases than controls. Attention was restricted to rare variants with minor allele 
frequency (MAF) <= 0.01 in both cases and controls. As previously described, variants were weighted 
by overall MAF so that variants with MAF=0.01 were given a weight of 1 while very rare variants with 
MAF close to zero were given a weight of 10 [14]. Variants were also weighted according to their 
functional annotation using the GENEVARASSOC program, which was used to generate input files for 
weighted burden analysis by SCOREASSOC [15, 16]. A maximum weight of 40 was assigned to 
variants predicted to cause complete LOF of the gene, namely stop-gained, frameshift and essential 
splice site variants. Other types of variant were assigned intermediate weights intended to provide 
an approximate measure of their likely importance, for example, a weight of 5 was assigned for a 
synonymous variant, 10 for a non-synonymous variant and 15 for inframe insertions and deletions. 
Additionally, 10 was added to the weight if the PolyPhen annotation was possibly or probably 
damaging and also if the SIFT annotation was deleterious, meaning that a non-synonymous variant 
annotated as both damaging and deleterious would be assigned an overall weight of 30. In order to 
allow exploration of the effects of different types of variant on disease risk the variants were also 
grouped into broader categories to be used in multivariate analyses as described below. The full set 
of weights and categories is displayed in Table 1. 

As described previously, the weight due to MAF and the weight due to functional annotation were 
multiplied together to provide an overall weight for each variant. Variants were excluded if there 
were more than 10% of genotypes missing in the controls or if the heterozygote count was smaller 
than both homozygote counts in the controls. If a subject was not genotyped for a variant then they 
were assigned the subject-wise average score for that variant. For each subject a gene-wise 
weighted burden score was derived as the sum of the variant-wise weights, each multiplied by the 
number of alleles of the variant which the given subject possessed. For variants on the X 
chromosome, hemizygous males were treated as homozygotes.  



For each gene, a ridge regression analysis was carried out with lamda=1 to test whether the gene-
wise variant burden score was associated with the hyperlipidaemia phenotype. To do this, 
SCOREASSOC first calculates the likelihood for the phenotypes as predicted by the first 20 population 
principal components and then calculates the likelihood using a model which additionally 
incorporates the gene-wise burden scores. It then carries out a likelihood ratio test assuming that 
twice the natural log of the likelihood ratio follows a chi-squared distribution with one degree of 
freedom to produce a p value. The statistical significance is summarised as a signed log p value (SLP) 
which is the log base 10 of the p value given a positive sign if the score is higher in cases and 
negative if it is higher in controls. In previous analyses it appeared that incorporating population 
principal components in this way satisfactorily controlled for test statistic inflation when applied to 
the ancestrally heterogeneous UK Biobank dataset [14]. However preliminary analyses of this new, 
larger dataset revealed that there was a slight tendency for more rare variants in X chromosome 
genes to be identified in females rather than males. Hence, sex was also included as a covariate 
along with the principal components and this produced a well-behaved test statistic, as detailed in 
the Results section. 

Gene set analyses were carried out as before using the 1454 "all GO gene sets, gene symbols" 
pathways as listed in the file c5.all.v5.0.symbols.gmt downloaded from the Molecular Signatures 
Database at http://www.broadinstitute.org/gsea/msigdb/collections.jsp [17]. For each set of genes, 
the natural logs of the gene-wise p values were summed according to Fisher’s method to produce a 
chi-squared statistic with degrees of freedom equal to twice the number of genes in the set. The p 
value associated with this chi-squared statistic was expressed as a minus log10 p (MLP) as a test of 
association of the set with the hyperlipidaemia phenotype. 

For selected genes, additional analyses were carried out to clarify the contribution of different 
categories of variant. To do this, each category as listed in Table 1 was assigned a weight consisting 
of a different power of 10 and then GENEVARASSOC and SCOREASSOC were used to obtain scores 
for each subject as the sum of these weights. This allowed the overall number of variants of each 
category possessed by a subject to be coded as a decimal number so that, for example, a score of 
1000302 would indicate that the subject possessed one of one category of variant, three of another 
category and two of a third category. Code was written in R to read in these scores and parse them 
to obtain the subject-wise counts for each category of variant [18]. These were then entered into a 
logistic regression analysis of case-control status along with principal components and sex in order 
to estimate the relative contributions of different variant categories to the phenotype. The odds 
ratios associated with the category were estimated along with their standard errors and the Wald 
statistic was used to obtain a p value, except for categories in which variants occurred fewer than 50 
times in which case Fisher’s exact test was applied to the raw variant counts without including 
covariates. The associated p value was converted to an SLP, again with the sign being positive if the 
mean count was higher in cases than controls. 

 

The weighted burden approach assumes that on average the effect of variants is to reduce the 
functioning of a gene but the variants in PCSK9 reported to be associated with hyperlipidaemia act 
by causing gain of function. Therefore a list of known pathogenic and likely pathogenic variants in 
PCSK9 was obtained from ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) in order to allow them to 
be analysed separately. 

Results  

Results of gene-wise weighted burden tests 
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There were 44,054 cases with a diagnosis of hyperlipidaemia and/or taking cholesterol-lowering 
medication and 156,578 controls. There were 22,642 genes for which there were qualifying variants 
and preliminary analyses showed that there was a bias towards producing strongly negative SLPs, 
which was confined to genes on the X chromosome. The analyses were repeated using sex as a 
phenotype and this confirmed that the frequency of rare, damaging variants was higher in females 
for genes on the X chromosome. This would occur if the genotype calling algorithm were slightly 
more likely to call a female as heterozygous than a male as hemizygous. Since the frequency of cases 
is lower in females, the overall effect is to observe an excess of rare, damaging variants in controls 
rather than cases for genes on the X chromosome. Therefore the analyses were repeated for 
hyperlipidaemia using sex as a covariate as well as the principal components. When this was done 
only two genes produced strongly positive or negative SLPs, LDLR (SLP = 50.08) and PCSK9 (SLP = -
10.42). The quantile-quantile (QQ) plot for the SLPs obtained for each of the remaining genes is 
shown in Figure 1. This shows that the test appears to be well-behaved and conforms fairly well with 
the expected distribution. Omitting the genes with the 100 highest and 100 lowest SLPs, which might 
be capturing a real biological effect, the gradient for positive SLPs is 1.08 with intercept at -0.019 and 
the gradient for negative SLPs is 1.04 with intercept at -0.013, indicating only modest inflation of the 
test statistic. 

The role of very rare variants in both LDLR and PCSK9 in the pathogenesis of familial hyperlipidaemia 
is already well established. However the results from the current analysis implicate a larger number 
of variants in these genes having a range of effects on risk of hyperlipidaemia in the population more 
generally. These are presented in detail below in the description of the results of the analysis of 
effects of different variant categories.  

Given that there were 22,642 informative genes, the critical threshold for the absolute value of the 
SLP to declare a result as formally statistically significant is -log10(0.05/22642) = 5.66 and this was 
achieved by three other genes, ANGPTL3 (SLP = -5.67), LOC102723729 (SLP = -5.77) and IFITM5 (SLP 
= -5.86). Loss of function variants in ANGPTL3 have previously been shown to cause combined 
hypolipidaemia and it is the target of evinacumab, a human monoclonal antibody designed to treat 
hypercholesterolaemia [19, 20]. However IFITM5 and LOC102723729 do not seem to be biologically 
plausible candidates. IFITM5 is involved in bone mineralisation and variants in it are a known cause 
of osteogenesis imperfecta [21]. LOC102723729 is a poorly characterised lncRNA which may act as a 
tumour suppressor in non-small cell lung cancer [22]. A total of 55 genes had SLP with absolute value 
greater than 3 (equivalent to uncorrected p < 0.001), whereas one would only expect around 
22642/1000 = 23 by chance so a number of these may in fact be exerting some effect on risk. These 
are listed in Table 2 and some appear to be of particular interest and are discussed briefly as below. 
The results for all genes are presented in Supplementary Table S1. 

G6PC (SLP = 5.55) is of interest because mutations acting recessively cause glycogen storage disease 
type I (GSD1, von Gierke disease, incidence ~1/100,000), which includes hyperlipidaemia as part of 
the phenotype [23]. Rare homozygous variants in ABCG5 (SLP = 3.31) can produce sitosterolaemia 
and are a known cause of homozygous familial hypercholesterolaemia [24]. Mutations in ABCD1 (SLP 
= 3.26) cause X-linked adrenoleukodystrophy, which results in elevated levels of very long chain fatty 
acids in plasma and tissues [25]. Variants in GCK (SLP = 3.04) are known to cause maturity-onset 
diabetes of the young (MODY) with mild hyperglycaemia and lower triglyceride levels than other 
forms of type 2 diabetes [26]. For genes with negative SLPs there is a higher frequency of rare, 
functional variants in controls than cases.  Variants in APOC3 (SLP = -4.89) have previously shown to 
be protective against hyperlipidaemia risk [6]. Homozygous knockout of PPP1R3G (SLP = -4.25) 
mitigates high-fat diet induced obesity in mice [27]. The product of NPC1L1 (SLP = -3.70) is essential 
for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol 
absorption inhibitor that lowers blood cholesterol [28]. Like ANGPTL3, ANGPTL4 (SLP = -3.66) 



modulates the activity of lipoprotein lipase (LPL) and inactivating variants in it have previously been 
shown to be associated with hypolipidaemia [6]. 

While two ATP binding cassette transporter genes, ABCG5 and ABCD1, produced SLPs above 3, a 
third, ABCA1 (SLP = -2.91), was only marginally less significant. The product of ABCA1 is responsible 
for transporting cholesterol out of cells and homozygous or compound heterozygous variants in it 
cause Tangier disease, a familial HDL deficiency syndrome, while heterozygous variants are 
associated with reduced HDL levels [29, 30]. It has an established role in the regulation of HDL and 
there are reports that common variants in it are associated with plasma lipid levels [31, 32]. 

Results of gene set analyses 

An initial run of the gene set analyses tended to highlight sets containing hundreds of genes which 

included one or more of the genes with absolute SLPs over 3 as listed in Table 2 so the analyses were 

repeated with these genes and ABCA1 omitted to see if any additional genes of interest could be 

identified. Given that 1,454 sets were tested a critical MLP to achieve to declare results significant 

after correction for multiple testing would be log10(1454*20) = 4.46 and this was not achieved by 

any set. Inspection of the results for the highest scoring sets did not reveal any additional genes 

which might obviously be involved in hyperlipidaemia risk. The results for all sets are provided in 

Supplementary Table S2. 

Results of variant category analyses 

For the two genes showing the most definite evidence of association, LDLR and PCSK9, a logistic 

regression analysis of different categories of variant was carried out to elucidate their relative 

contributions. The results for LDLR are shown in Table 3A. It can be seen that disruptive variants, 

comprising stop variants and frameshift variants, are significantly associated with caseness (SLP = 

16.95) with a large effect on risk (OR = 40.02 (11.83 - 135.33)). There were 34 of these variants, of 

which only 3 were seen in controls. Essential splice site variants also exerted a large effect on risk 

(OR = 10.4 (1.9 - 56.7)), SLP = 5.55, with 11 out of 13 being seen in cases. Stop variants, frameshift 

variants and essential splice variants are expected to cause LOF but the results show that other 

variants which do not severely disrupt the gene but which produce changes in amino acid sequence 

also have moderate effects on risk. There were 6,747 nonsynonymous variants and this category was 

associated with OR = 1.15 (1.05 - 1.25). However of these 1,175 were annotated by SIFT as 

“deleterious” and this category has OR = 1.74 (1.41 - 2.14) while the risk associated with an 

annotation by PolyPhen of “probably damaging” was smaller, 1.30 (1.03 - 1.65), and there was no 

significant risk associated with an annotation of “possibly damaging”. Inframe insertion/deletion 

variants were observed on 10 occasions and detailed inspection of the results revealed that these 

consisted of deletions at 4 different positions, one of which occurred in 7 different subjects. All 10 of 

the subjects with one of these deletions was a case (SLP=6.58). By contrast, genetic variants which 

did not affect protein sequence in general did not have significant effects on risk. The exception was 

that the “Splice Region” category seemed to exert a protective effect, with OR = 0.86 (0.81 - 0.92), 

SLP = -5.21. This was driven by rs72658867, which had frequency 0.012 in controls and  0.0097 in 

cases and which has been previously reported to be associated with lower cholesterol and lower risk 

of coronary artery disease [33]. When the analysis was repeated with this variant removed, there 

was no general tendency for splice region variants to be associated with risk (OR = 1.13 (0.99 - 1.29), 

SLP = 1.20). 

ClinVar lists 19 variants in PCSK9 classified as pathogenic or likely pathogenic but none of these was 
present in any of the cases or controls. Table 3B shows the results of the variant category analysis 



for PCSK9. It can be seen that these are broadly similar to those obtained for LDLR, albeit in the 
opposite direction because impaired function of PCSK9 reduces risk of hyperlipidaemia. Disruptive, 
essential splice site and missense variants annotated as “deleterious” by SIFT are all significantly 
more common in controls and have an overall OR of around 0.5. It is interesting to note that these 
categories of variant occur more frequently in PCSK9 than in LDLR. In LDLR there are only 34 
disruptive variants whereas in PCSK9 there are 291 and in LDLR there are only 13 essential splice site 
variants while in PCSK9 there are 193. 

These results allow us to gain some insight into the overall impact of variants in these genes on the 
risk of hyperlipidaemia in the general population. For variants in LDLR which are nonsynonymous 
and annotated as “deleterious” by SIFT, the overall estimated OR is 1.15*1.74 = 2. It should be 
emphasised that this estimate is for the average effect of such variants and that there is likely to be 
considerable variation, with some of these variants exerting marked effects on risk while others may 
have trivial effects or may even be protective. There are 889 of these variants and, since they are 
rare, few people have more than one of them so that we can say that around 850 out of the 200,000 
subjects, or slightly less than 0.5%, have a deleterious variant in LDLR which, on average, about 
doubles the odds of hyperlipidaemia. This compares with the 47 LOF variants which confer high risk 
but which occur in only 0.02% of subjects. Deleterious variants in PCSK9 on average have OR of 
about 0.5 and occur in 0.8% of subjects while LOF variants have a similar OR and occur in 0.2% of 
subjects. Broadly speaking, it seems that about 1.5% of people will have a rare coding variant in one 
of these two genes which either doubles or halves the odds of developing hyperlipidaemia. 

Results for selected genes 

It is relevant also to report certain genes which produced negative results. With the exception of 

LDLR, none of the genes highlighted by the previous analysis of 50,000 UK Biobank exomes showed 

any evidence for association in this enlarged sample once sex was included as a covariate. These 

genes consist of HUWE1, CXorf56, RBP2, STAT5B, NPFFR1, ACOT9, GK, ADIPOQ, SURF1, ADRB3, 

GYG2, PHKA1 and PHKA2 [1]. HUWE1 and a number of others are located on the X chromosome and 

with hindsight it appears that they may have produced strongly negative SLPs as a consequence of 

the reduced frequency of variants called on the X chromosome in males, while other results may 

have simply been due to chance. Other genes for which notably negative results are obtained are 

APOB (SLP = 0.00) a known cause of familial hypercholesterolaemia, and HMGCR (SLP = -0.07), which 

codes for the rate-limiting enzyme in cholesterol synthesis which is the target of statins [34]. Also 

negative was STAP1 (SLP = -1.02), for which there were initial claims of an association with familial 

hypercholesterolaemia although more recent work has thrown doubt on this [35]. These three genes 

were also subjected to the variant category analysis and this revealed that disruptive variants in 

APOB were more frequent in controls (OR = 0.71 (0.60 - 0.85), SLP = -3.74) but that there were much 

large numbers of nonsynonymous variants which overall did not show association with 

hyperlipidaemia, accounting for the negative result of weighted burden analysis.  No other category 

of variant within these genes showed significant association with hyperlipidaemia after correction 

for the number of genes and categories tested. The full results of variant category analysis for these 

three genes are presented in Supplementary Table S3, along with those for all genes significant at p 

< 0.001 as listed in Table 2. 

Discussion 

These analyses provide a broad overview of contributions of rare coding genetic variants to the risk 
of hyperlipidaemia. There are a number of issues worthy of further comment. 



The observation that in this dataset rare X chromosome variants are called more frequently in 
females than in males is important to recognise. Unless this effect is allowed for, for example by 
incorporating sex as a covariate, artefactual results may be produced for any phenotype whose 
prevalence varies with sex. With hindsight, this occurred in the earlier analysis of the 50,000 exomes 
and led to the identification as some genes on the X chromosome as being potentially relevant. 
Going forward, researchers need to be aware of this phenomenon and deal with it appropriately. 

Working with biobank datasets can pose particular challenges compared to traditional case-control 
studies. In a case-control study one can control recruitment and assess subjects against pre-specified 
criteria. With the UK Biobank one has a self-selected sample of volunteers along with information 
about a broad range of phenotypes but some measures are only available for a subset of the sample. 
The phenotype studied here is intended to broadly capture clinically significant hyperlipidaemia, 
using as it does a combination of the diagnosis and the most commonly used treatments. However 
this phenotype clearly differs from what one might use in a more systematically assessed sample. No 
attempt was made to incorporate actual measures of blood lipids, in part because these might be 
distorted by treatment effects. Some subjects will have been prescribed statins purely on the basis 
of raised lipids found during routine clinical assessment whereas other subjects with somewhat 
lower levels might be receiving them because they had cardiovascular disease. Likewise, some 
subjects classified as controls might in fact have hyperlipidaemia which has not been diagnosed. 
Thus, the phenotype is understood to be a quite noisy and a distant consequence of the immediate 
biological effects of any functional genetic variants. Another issue is that the participants represent a 
relatively healthy group of subjects. People with severe hyperlipidaemia which had resulted in early 
death would not be included, meaning that the effect sizes observed in this sample may tend to be 
underestimates. One approach to following up the results reported here would be to investigate the 
relationships between the genes of interest and more detailed aspects of the phenotype. This might 
include looking for associations between particular categories of variant in each gene and aspects of 
the phenotype such as quantitative measures of individual components of the lipid profile or clinical 
outcomes such as coronary artery disease. 

The current analysis highlights a number of genes for which very rare variants with large effect size 
have previously been shown to impact lipid levels and now demonstrates that large numbers of 
additional nonsynonymous variants with more moderate effect also make a broader contribution to 
risk in the general population, which was not previously recognised. This is most clearly the case for 
LDLR and PCSK9 but there are a few of other genes which probably also show this effect, especially 
ANGPTL3 and ANGPTL4. Conversely, other genes which are implicated as monogenic causes of 
severe familial hyperlipidaemias, such as APOB and STAP1, are not identified by this approach as 
making broader contributions to hyperlipidaemia although it does seem that disruptive variants in 
APOB may be associated with somewhat reduced risk. The protective effects of such variants has not 
previously been reported but antisense inhibition of APOB expression is used to treat familial 
hyperlipidaemia [36, 37]. The analyses highlight three additional genes which are already the targets 
of lipid-lowering therapies, PCSK9, ANGPTL3 and NPC1L1, but completely failed to detect an effect 
for HMGCR, which encodes the target of statins. PPP1R3G has not previously been shown to 
influence hyperlipidaemia risk in humans but the findings reported here are consistent with those 
from animal studies, suggesting that it might also be a potential target.  

The approach used is intended to detect the additive effects of variants which are individually very 
rare but which cumulatively have an effect on the function of a gene. Hence it is not expected to be 
successful if the effect of some variants impairing gene function may be counterbalanced by others 
which produce a gain of function. It is necessary to group variants because when a variant is only 
observed in a handful of subjects it is not possible to draw firm conclusions about its effect. There 
might be scope to gain power by devising more sophisticated approaches to variant classification, 
for example related to the more specific predictions about effect on the protein product, and this 
issue will be addressed in future work. 



Estimating the effect on risk of different categories of variant within LDLR and PCSK9 broadly 
confirms what we might have expected. LOF variants, comprising stop, frameshift and splice site 
variants, have large effects. Variants categorised as “deleterious” by SIFT have moderate effects on 
risk, whereas the categorisation as “probably damaging” by PolyPhen is associated with a somewhat 
smaller effect. The annotation of “possibly damaging” does not seem to have much utility in this 
context. The analyses show that even nonsynonymous variants in LDLR which do not have any of 
these annotations are still, on average, associated with a slightly increased risk, with OR = 1.15. 
Synonymous variants, intronic variant and other variants which do not cause changes in amino acid 
sequence do not in general seem to exert an appreciable effect on risk. These findings will be of use 
in constructing weighting schemes for future analyses of this nature. The variants are mostly all 
individually extremely rare but in total there are far more nonsynonymous variants than LOF 
variants. The contribution of different types of variant to risk and how best to model this will be the 
subject of further investigation. 

The general picture which emerges is that there is a relatively small number of genes in which 
variants which are individually extremely rare make an appreciable contribution to the overall risk of 
developing hyperlipidaemia. Few variants cause LOF but those which do have a large effect, whereas 
far larger numbers of nonsynonymous variants tend to exert more moderate effects. Nevertheless, 
the cumulative frequency of these variants remains low. If we confine attention to the results about 
which we can feel most confident, it seems that fewer than 2% of people carry a variant which might 
halve or double risk. It will be possible to refine estimates such as this as more data becomes 
available, for example from the remaining 300,000 UK Biobank subjects for whom exome sequence 
data is yet to be provided. With a larger dataset it will become possible to draw more definitive 
conclusions about individual genes and to make more accurate estimates of effect sizes. 
Nevertheless, given the small number of carriers it does not seem likely that identifying rare variants 
with moderate effects will be clinically useful for routine risk assessment or to guide treatment.  

The availability of sequence data from a large number of subjects has allowed insights into the 
contribution which rare coding genetic variants can make to hyperlipidaemia, an important 
phenotype which is also associated with a variety of socioeconomic and environmental risk factors. 
More detailed analyses may focus on specific genes and/or variants, may investigate signals of 
selection pressures and may look at interactions between different genetic and environmental 
variables. This may lead to better understanding of the biological processes involved and improved 
treatment strategies. Hyperlipidaemia provides a useful paradigm of a common complex trait and 
similar approaches can be applied to other phenotypes. 
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Table 1 

The table shows the weight which was assigned to each type of variant as annotated by VEP, 
Polyphen and SIFT as well as the broad categories which were used for multivariate analyses of 
variant effects [9–11]. 

VEP / SIFT / Polyphen annotation Weight Category 

intergenic_variant 1 Unused 

feature_truncation 3 Intronic, etc. 

regulatory_region_variant 3 Intronic, etc. 

feature_elongation 3 Intronic, etc. 

regulatory_region_amplification 3 Intronic, etc. 

regulatory_region_ablation 3 Intronic, etc. 

TF_binding_site_variant 3 Intronic, etc. 

TFBS_amplification 3 Intronic, etc. 

TFBS_ablation 3 Intronic, etc. 

downstream_gene_variant 3 Intronic, etc. 

upstream_gene_variant 3 Intronic, etc. 

non_coding_transcript_variant 3 Intronic, etc. 

NMD_transcript_variant 3 Intronic, etc. 

intron_variant 3 Intronic, etc. 

non_coding_transcript_exon_variant 3 Intronic, etc. 

3_prime_UTR_variant 10 3 prime UTR 

5_prime_UTR_variant 5 5 prime UTR 

mature_miRNA_variant 5 Unused 

coding_sequence_variant 5 Unused 

synonymous_variant 5 Synonymous 

stop_retained_variant 5 Unused 

incomplete_terminal_codon_variant 5 Unused 

splice_region_variant 5 Splice region 

protein_altering_variant 10 Protein altering 

missense_variant 10 Protein altering 

inframe_deletion 15 InDel, etc 

inframe_insertion 15 InDel, etc 

transcript_amplification 15 InDel, etc 

start_lost 30 Unused 

stop_lost 30 Unused 

frameshift_variant 40 Disruptive 

stop_gained 40 Disruptive 

splice_donor_variant 40 Splice site variant 

splice_acceptor_variant 40 Splice site variant 

transcript_ablation 20 Disruptive 

SIFT deleterious 10 Deleterious 

PolyPhen possibly damaging 10 Possibly damaging 

PolyPhen probably damaging 10 Probably damaging 

  



Table 2  

Genes with absolute value of SLP exceeding 3 or more (equivalent to p<0.001) for test of association 
of weighted burden score with hyperlipidaemia. 

Table 2A 

Genes with SLP greater than 3. 

Symbol SLP Name 

LDLR 50.08 Low Density Lipoprotein Receptor 

G6PC 5.55 Glucose-6-Phosphatase Catalytic Subunit 

SULT1E1 4.63 Sulfotransferase Family 1E Member 1 

LOC101928415 4.50 Uncharacterized LOC101928415 

SLC35G1 4.38 Solute Carrier Family 35 Member G1 

PLA2G5 4.15 Phospholipase A2 Group V 

CMTM7 3.99 CKLF Like MARVEL Transmembrane Domain Containing 7 

MIR6716 3.95 MicroRNA 6716 

COL4A2-AS2 3.85 COL4A2 Antisense 2 

DEFB131A 3.66 Defensin Beta 131A 

OTULIN 3.62 OTU Deubiquitinase With Linear Linkage Specificity 

FAM122C 3.51 Family With Sequence Similarity 122C 

CMIP 3.48 C-Maf Inducing Protein 

EIF4B 3.45 Eukaryotic Translation Initiation Factor 4B 

PPP2R3B 3.41 Protein Phosphatase 2 Regulatory Subunit B''Beta 

HNRNPAB 3.38 Heterogeneous Nuclear Ribonucleoprotein A/B 

PREB 3.37 Prolactin Regulatory Element Binding 

PEX12 3.36 Peroxisomal Biogenesis Factor 12 

FAM167A 3.35 Family With Sequence Similarity 167 Member A 

ABCG5 3.31 ATP Binding Cassette Subfamily G Member 5 

ABCD1 3.26 ATP Binding Cassette Subfamily D Member 1 

PRAF2 3.21 PRA1 Domain Family Member 2 

CTHRC1 3.16 Collagen Triple Helix Repeat Containing 1 

SLC25A37 3.14 Solute Carrier Family 25 Member 37 

CT62 3.11 Cancer/Testis Associated 62 

L1TD1 3.09 LINE1 Type Transposase Domain Containing 1 

PIK3R6 3.09 Phosphoinositide-3-Kinase Regulatory Subunit 6 

FOXO3B 3.08 Forkhead Box O3B 

FAM47A 3.06 Family With Sequence Similarity 47 Member A 

MIR6806 3.06 MicroRNA 6806 

GCK 3.04 Glucokinase 

MAPKAPK2 3.02 MAPK Activated Protein Kinase 2 

 

  



Table 2B 

Genes with SLP less than -3. 

Symbol SLP Name 

PCSK9 -10.42 Proprotein Convertase Subtilisin/Kexin Type 9 

IFITM5 -5.86 Interferon Induced Transmembrane Protein 5 

LOC102723729 -5.77 Uncharacterized LOC102723729 

ANGPTL3 -5.67 Angiopoietin Like 3 

APOC3 -4.89 Apolipoprotein C3 

PPP1R3G -4.25 Protein Phosphatase 1 Regulatory Subunit 3G 

LOC107985474 -3.95 Uncharacterized LOC107985474 

TBC1D8 -3.93 TBC1 Domain Family Member 8 

CTXN2 -3.91 Cortexin 2 

NPC1L1 -3.70 NPC1 Like Intracellular Cholesterol Transporter 1 

ANGPTL4 -3.66 Angiopoietin Like 4 

SNX17 -3.62 Sorting Nexin 17 

LOC105377994 -3.40 Uncharacterized LOC105377994 

LOC101929609 -3.30 Uncharacterized LOC101929609 

SV2B -3.29 Synaptic Vesicle Glycoprotein 2B 

ITM2B -3.23 Integral Membrane Protein 2B 

UBR4 -3.23 Ubiquitin Protein Ligase E3 Component N-Recognin 4 

TXNL4A -3.22 Thioredoxin Like 4A 

TTR -3.16 Transthyretin 

GFPT1 -3.10 Glutamine--Fructose-6-Phosphate Transaminase 1 

APPBP2 -3.08 Amyloid Beta Precursor Protein Binding Protein 2 

CRYZL1 -3.06 Crystallin Zeta Like 1 

HLA-A 3.01 Major Histocompatibility Complex, Class I, A 

 

  



Table 3 

Results from logistic regression analysis showing the contribution different categories of variant 
within a gene make to risk of hyperlipidaemia. Odds ratios for each category are estimated including 
principal components and sex as covariates.  

Table 3A 

Results for LDLR. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR (95% CI) SLP 

Intronic, etc 27207 0.173760 7854 0.178281 1.01 (0.99 - 1.04) 0.47 

5 prime UTR 55 0.000351 21 0.000477 1.43 (0.85 - 2.41) 0.78 

Synonymous 2582 0.016490 682 0.015481 0.92 (0.84 - 1.00) -1.31 

Splice region 6649 0.042464 1735 0.039383 0.86 (0.81 - 0.92) -5.21 

3 prime UTR 506 0.003232 139 0.003155 0.98 (0.81 - 1.19) -0.06 

Protein altering 4947 0.031594 1800 0.040859 1.15 (1.05 - 1.25) 2.87 

InDel, etc 0 0.000000 10 0.000227  6.58 

Disruptive 3 0.000019 31 0.000704 40.02 (11.83 - 135.33) 16.95 

Splice site variant 2 0.000013 11 0.000250 23.31 (4.96 - 109.42) 5.55 

Deleterious 702 0.004483 473 0.010737 1.74 (1.41 - 2.14) 6.87 

Possibly damaging 400 0.002555 200 0.004540 1.20 (0.96 - 1.49) 1.02 

Probably damaging 539 0.003442 350 0.007945 1.30 (1.03 - 1.65) 1.66 

 

  



Table 3B 

Results for PCSK9. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR (95% CI) SLP 

Intronic, etc 5317 0.033958 1540 0.034957 1.02 (0.96 - 1.08) 0.31 

5 prime UTR 269 0.001718 78 0.001771 1.03 (0.80 - 1.34) 0.10 

Synonymous 7230 0.046175 2145 0.048690 1.02 (0.97 - 1.07) 0.40 

Splice region 291 0.001858 90 0.002043 1.04 (0.81 - 1.33) 0.12 

3 prime UTR 2418 0.015443 707 0.016048 1.02 (0.94 - 1.12) 0.24 

Protein altering 3388 0.021638 831 0.018863 0.96 (0.86 - 1.06) -0.44 

InDel, etc 4 0.000026 3 0.000068 1.81 (0.39 - 8.48) 0.74 

Disruptive 202 0.001290 29 0.000658 0.51 (0.34 - 0.77) -3.05 

Splice site variant 179 0.001143 14 0.000318 0.29 (0.17 - 0.51) -5.08 

Deleterious 1404 0.008967 279 0.006333 0.59 (0.45 - 0.77) -4.00 

Possibly damaging 249 0.001590 68 0.001544 1.19 (0.88 - 1.61) -0.60 

Probably damaging 1050 0.006706 227 0.005153 1.29 (0.96 - 1.74) -1.10 

 

 

  



Figure 1 

QQ plot of SLPs obtained for weighted burden analysis of association with hyperlipidaemia 
showing observed against expected SLP for each gene, omitting results for LDLR and PCSK9.  

 

 

 

 


