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Abstract 

Weighted burden analysis has been used in exome-sequenced case-control studies to identify genes 
in which there is an excess of rare and/or functional variants associated with phenotype. 
Implementation in a ridge regression framework allows simultaneous analysis of all variants along 
with relevant covariates such as population principal components. In order to apply the approach to 
a quantitative phenotype, a weighted burden score is derived for each subject and included in a 
linear regression analysis. The weighting scheme is adjusted in order to apply differential weights to 
rare and very rare variants and a score is derived based on both the frequency and predicted effect 
of each variant. When applied to an ethnically heterogeneous dataset consisting of 49,790 exome-
sequenced UK Biobank subjects and using BMI as the phenotype the method produces a very 
inflated test statistic. However this is almost completely corrected by including 20 population 
principal components as covariates. When this is done the top 30 genes include a few which are 
quite plausibly associated with the phenotype, including LYPLAL1 and NSDHL. This approach offers a 
way to carry out gene-based analyses of rare variants identified by exome sequencing in 
heterogeneous datasets without requiring that data from ethnic minority subjects be discarded. This 
research has been conducted using the UK Biobank Resource. 
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Introduction 

We have previously developed a method of weighted burden analysis which allows all variants 
within a gene to be included in a case-control analysis to test whether there is on average an excess 
of highly weighted variants among cases. In the original conception, implemented in the 
SCOREASSOC program, both common and rare variants were included but a parabolic function based 
on minor allele frequency (MAF)was applied such that rare variants would be assigned a higher 
weight than common ones [1]. This approach was subsequently extended in a number of ways. 
Functional weights were assigned based on the predicted effect of each variant on the function of 
the gene, so that for example variants predicted to produce a truncated protein product would be 
weighted more highly than synonymous variants, and an overall weight for each variant was derived 
as the product of the frequency and functional weights [2]. Unlike other approaches applied to 
exome sequence data, this means that all variants can be included in a single combined analysis 
without having to dichotomise according to allele frequency or predicted impact [3,4]. Sets of genes 
within a metabolic pathway could be jointly analysed by testing whether the overall burden of rare, 
functional variants varied between cases and controls across the set of genes rather than within an 
individual gene [2]. The comparison of variant burden was then implemented in a ridge logistic 
regression framework and this allowed the inclusion of covariates such as population principal 
components as well as additional risk factors such as pathogenic copy number variants and 
polygenic risk scores [5]. These approaches were applied to large samples of exome sequenced cases 
and controls and implicated genes affecting functioning of the glutamatergic NMDA receptor in 
schizophrenia and genes coding for tyrosine phosphatases in late onset Alzheimer’s disease [6,7]. 

Additional exome sequenced datasets are becoming available and some of these, such as the UK 
Biobank, have been phenotyped for a number of quantitative traits [8]. It is plausible that variants 
disrupting the functioning of particular genes might be associated with changes in the mean value of 
some of these traits and an obvious approach would be to carry out linear regression rather than 
logistic regression in order to test for this. However there are some important considerations which 
need to be addressed. 



In contrast to a targeted case-control study, biobank samples may not be ethnically well-matched 
and this is expected to impact testing for an excess of rare, functional variants in exome-sequenced 
sample. Even in studies which seek to match cases and controls there may be residual stratifications 
which affect the results and this occurred in the Swedish schizophrenia study [9]. Here, a higher 
proportion of cases than controls had a substantial Finnish component to ancestry and at the same 
time there was a lower frequency of rare, damaging variants in those with Finnish ancestry 
generally, across both cases and controls. In fact, there was an excess of rare damaging variants 
among the schizophrenia cases but this only became apparent when ancestry was included as a 
covariate or when the analysis was restricted to subjects without Finnish ancestry [6,9]. This 
provides a practical example of how unrecognised population stratification may distort the results of 
rare variant burden analyses. Of particular relevance to biobanks is that there is an expectation that 
such stratification will produce artefactual results even if there is in fact no difference in the general 
distribution of variant allele frequencies between subjects with different ancestries. If the bulk of 
subjects share similar ancestry but there is a minority cohort with different ancestry then we can 
expect by chance that some variants will have different frequencies between the main and minority 
cohorts. However, a variant which is relatively common in the minority cohort will have a lower 
frequency in the sample overall. This results in the expectation that there will appear to be an excess 
of apparently rarer variants in minority cohorts. If the phenotype in question has a different mean 
value in the minority cohort then there will be an artefactual association between the phenotype 
and rare variants, whether rarity is defined using a threshold or is used in a weighting scheme. 

One approach to dealing with heterogenous ancestry within biobank samples is to restrict attention 

only to those of a particular ethnicity. The UK Biobank sample contains 503,317 subjects of whom 
94.6% are of white ethnicity, somewhat higher than for the population as a whole [10]. Regrettably, 
it seems to have become standard practice to simply ignore the non-white subjects. To give two 
recent examples, a genome-wide meta-analysis of problematic alcohol use only considered 435,563 
European-ancestry individuals and a genome-wide association study of susceptibility to keratitis only 
considered 337,199 subjects of European ancestry [11,12]. Likewise, a recent analysis of the 49,960 
exome-sequenced UK Biobank subjects only used information from 45,596 European subjects [3]. 
This latter study applied six different methods of burden analysis and although it incorporated 
population principal components as covariates it still restricted itself to ancestry-matched case-
controls. Restricting attention to subjects with white European ancestry within UK Biobank discards 
information from thousands of citizens who have volunteered personal information, donated 
biological samples and undergone uncomfortable investigations with the aim of contributing to 
knowledge about disease. We believe that simply ignoring data from ethnic minority subjects is 
ethically indefensible [13]. 

A second issue to be addressed in weighted burden testing is the nature of the weighting which is to 
be applied according to MAF. In its original conception, the method was intended to incorporate 
variants of all allele frequencies and an example application used Crohn’s diseases as the phenotype, 
since susceptibility is influenced by both common and rare variants [1]. However over the course of 
countless genome wide association studies it has become apparent that it is in fact very unusual for 
common variants to exert substantial effects on risk and when dealing with next generation 
sequence data it does not make sense to include common variants since they will essentially 
produce noise which may swamp any real signal. However with the weighting scheme originally 
proposed, described by a parabola with value of 1 at MAF = 0.5 increasing to 10 at MAF ~= 0, the 
allocated weight is almost the same for a variant with MAF = 0.01 as it is for ultra-rare variants. Since 
selection pressures mean that very rare variants can have larger effect sizes than less rare ones, it 
would be desirable to have a revised weighting scheme which would distinguish rare from ultra-rare 
variants [14].  



A third issue to address when dealing with quantitative traits is how information from different 
genes within a set should be combined. The original assumptions were that rare variants with a 
functional impact were more likely to impair normal function of a gene than enhance it and hence 
that such variants were more likely to be associated with a disease phenotype across different 
genes. This would mean that variant scores could simply be added across genes within a set [2]. With 
a quantitative trait we may still expect that rare, functionally impactful variants may impair gene 
functioning but we need to recognise that impairing the function of some genes may tend to reduce 
the value of a trait whereas impairing the function of other genes in the same pathway may increase 
the value. Since the effects may be in opposite directions, we will not wish to simply add up variant 
scores across related genes unless we can be very confident of the direction of the effect we are 
expecting. Since we are intending to use this approach for gene discovery we will not generally be in 
a position to predict the likely direction of effect and so we require a method which is agnostic 
regarding this. 

Here we develop the weighted burden approach previously applied to case-control data in three 
different ways. We produce a modified scheme for weighting by allele frequency to give additional 
weight to extremely rare variants. We implement linear regression rather than logistic regression 
and incorporate population principal components as covariates. We combine evidence across 
different genes within a set using p values rather than variant scores. We apply the revised method 
to analyse a quantitative trait, BMI, in an ethnically heterogeneous dataset, the UK Biobank. 

Methods 

Variant weight according to allele frequency 

The original formula we proposed for assigning a weight according to allele frequency was  

Wi=(4f-4)qi
2-(4f-4)qi+f 

where qi is the allele frequency of the ith variant and f is a weighting factor equal to or greater than 
1. The formula describes a parabola with a minimum value of 1 at q=0.5 and rising to f at q=0 and 
q=1. In typical applications a value of 10 would be chosen for f. 

In order to provide a scheme which more strongly distinguishes rare from very rare variants, we will 
choose q’ to mean the frequency of the rarer allele and we will set a threshold of t for the MAF. We 
will either discard variants with q’>t or else we will assign them a weight equal to 1. For those with 
q’<=t we will assign a weight as: 

Wi=(4f-4)(0.5*q’i/t)2-(4f-4)(0.5*q’i/t)+f 

This simply produces weights which increase parabolically from a value of 1 at q=t or q=1-t towards a 
value of f at q=0 and q=1.  

Implementation of linear regression 

As described previously, testing for an effect of gene variants on a case-control phenotype involved 
constructing a weighted burden score for each subject and then carrying out a likelihood ratio test 
using ridge regression comparing the likelihoods for models which did and did not include the 
burden scores [5]. Here, we simply calculate the likelihoods using linear regression rather than 
logistic regression. Each variant is assigned a weight based on its predicted likely effect on gene 
function and then this functional weight is multiplied by the weight based on the variant frequency 



as described above. For each subject a gene-wise weighted burden score is derived as the sum of the 
variant-wise weights, each multiplied by the number of alleles of the variant which the given subject 
possesses. If a subject is not genotyped for a variant then they are assigned the subject-wise average 
score for that variant. A number of covariates can be included for each subject, typically consisting of 
population principal components though if desired factors such as age, polygenic risk score and 
presence or absence of other known risk factors can also be used. The score and covariates are 
entered into a standard linear regression model with quantitative phenotype as the outcome 
variable and after variable normalisation the likelihood of the model is maximised using the L-BFGS 
quasi-newton method, implemented using the dlib library (King, 2009). The contribution of different 
variables to risk is assessed using standard likelihood ratio tests by comparing twice the difference in 
maximised log likelihoods between models with and without the variables of interest. This likelihood 
ratio statistic is then taken as a chi-squared statistic with degrees of freedom equal to the difference 
between models in number of variables fitted. The coefficients for each variable can be varied to 
maximise the likelihood or can be fixed, for example if the effect size of a particular risk factor is 
known from epidemiological studies. This approach was implemented in a modified version of 
SCOREASSOC, which outputs the coefficients for the fitted models along with their estimated 
standard errors and the results of the likelihood ratio test. When association with the gene-wise 
weighted burden score alone is tested, i.e. when the two models differ only in whether or not the 
score is included, then the statistical significance is summarised as a signed log p value (SLP) which is 
the log base 10 of the p value given a positive sign if the score correlates positively with the 
quantitative phenotype and negative if it correlates negatively. For other analyses the minus log 
base 10 of the p value (MLP) is output. The support program for SCOREASSOC, called 
GENEVARASSOC, was also modified to deal with quantitative phenotypes and the linear regression 
tests.  

Gene set analysis 

In case-control analyses the assumption was made that rare, functional variants tended to impair 
gene function and that impaired gene function increased disease risk, meaning that weighted 
burden scores could simply be added across genes. For a quantitative trait, impaired function of a 
gene within a metabolic pathway might either increase or decrease the value of the trait and since 
genes might have opposite effects it is not appropriate to simply sum the scores of genes within a 
set. Instead, Fisher’s method for combining p values can be applied. This assumes that, under the 
null hypothesis that no genes within a set influence the value of the trait, the sum of the natural logs 
of their p values multiplied by -2 will follow a chi-squared distribution with degrees of freedom equal 
to the twice number of genes. This can conveniently be tested by summing the absolute values of 
the SLPs and multiplying by -2ln(10) to use as the chi-squared statistic. The statistical significance of 
the test that one or more genes in the set influence phenotype can then be expressed as minus log 
base 10 of the p value (MLP) of the chi-squared test.  

Practical application to an example dataset 

The UK Biobank dataset was downloaded along with the variant call files for 49,953 subjects who 
had undergone exome-sequencing and genotyped using the GRCh38 assembly with coverage 20X at 
94.6% of sites on average [8]. UK Biobank had obtained ethics approval from the Research Ethics 
Committee (REC; approval number: 11/NW/0382) and written informed consent from all 
participants. Analysis of the data was approved by the UCL Research Ethics Committee (approval 
number 11527/001). All variants were annotated using VEP, PolyPhen and SIFT [15–17].  To obtain 
population principal components reflecting ancestry, version 1.90beta of plink (https://www.cog-
genomics.org/plink2) was run on these variants with the options --maf 0.1 --pca header tabs --make-
rel [18–20]. 

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2


The example quantitative phenotype chosen was BMI, which is known to be moderately heritable 
and which was available for 49,790 subjects. In order to better understand the structure of the data 
a number of other variables were studied including self-declared ethnicity, birth coordinates within 
the UK, year of birth and Townsend index of deprivation. The relationships between these variables 
and the principal components were investigated using multivariate analyses implemented in R and 
visualised using ggplot2 and ggpubr (https://cran.r-project.org/web/packages/ggpubr/index.html)  
[21,22]. 

Analysis was restricted to variants have MAF<=0.01 and weighting based on frequency was applied 
as described above with a weighting factor, f, of 10 and a threshold, t, of 0.01. Previous association 
studies have demonstrated that there are no common variants with a substantial effect on BMI. 
Additionally, the weighted burden approach explicitly assumes that variants disrupting the gene 
have a similar direction of effect whereas the minor allele of a common variant might be associated 
with either increased or reduced gene function and hence including common variants could add 
unwanted noise to the analysis. Variants were also weighted according to their functional 
annotation using the default weights provided with the GENEVARASSOC program, which was used to 
generate input files for weighted burden analysis by SCOREASSOC. This weighting scheme is 
intended to allocate a higher weight to variants which are expected to have a major effect on gene 
function than those which are expected to have little effect. For example, a weight of 5 was assigned 
for a synonymous variant, 10 for a non-synonymous variant and 20 for a stop gained variant or 
frameshift variant, which would be expected to completely prevent one copy of the gene from being 
expressed. Additionally, 10 was added to the weight of a variant if the PolyPhen annotation was 
“possibly” or “probably” damaging and also if the SIFT annotation was “deleterious”, meaning that a 
non-synonymous variant annotated as both damaging and deleterious would be assigned a weight 
of 30. The full set of weights is shown in Supplementary Table 1, copied from the previous reports 
which used this method [6,7]. Variants were excluded if there were more than 10% of genotypes 
missing in the controls or if the heterozygote count was smaller than both homozygote counts. Each 
variant was then assigned an overall rate consisting of the product of the frequency weight and the 
functional weight. For each subject a gene-wise weighted burden score was derived as the sum of 
the variant-wise weights, each multiplied by the number of alleles of the variant which the given 
subject possessed.  

Gene-wise weighted burden tests for association with BMI were carried out for every autosomal and 
X chromosome gene listed in the RefSeq GRCh38 release. For each gene, three analyses were carried 
out. In the first, weighted burden score was used to predict BMI in a simple linear regression model 
and in the second analysis the first 20 principal components were additionally included as 
covariates, with likelihood ratio tests used to assess statistical significance as described above. To 
assess the effects of introducing the new scheme for weighting by allele frequency, a third analysis 
was carried out also including the principal components but using the original scheme for weighting 
by frequency, meaning that the frequency weights for all variants would be very similar since all had 
MAF<=0.01. The third analysis was performed simply for the purposes of making this comparison 
and the definitive results are intended to be those obtained from using the new weighting scheme, 
as well as incorporating the principal components. 

Gene set analyses were carried out using the 1454 "all GO gene sets, gene symbols" pathways as 
listed in the file c5.all.v5.0.symbols.gmt downloaded from the Molecular Signatures Database at 
http://www.broadinstitute.org/gsea/msigdb/collections.jsp [23]. For each set of genes the SLPs from 
the analyses incorporating principal components and new weighting scheme were combined using 
Fisher’s method as described above, yielding an MLP as a test of association of the set with the BMI. 

Results  

https://cran.r-project.org/web/packages/ggpubr/index.html
http://www.broadinstitute.org/gsea/msigdb/collections.jsp


Some principal components were associated with self-declared ethnicity, with the first principal 
component distinguishing African from European ancestry, the second Asian from European and the 
fourth South Asian from East Asian (Supplementary Figures 1 and 2). Principal components also 
varied with place of birth, year of birth and Townsend deprivation index (Supplementary Figures 3 to 
6). Likewise, BMI also varied with self-declared ethnicity as shown in Figure 1 and Table 1, as well as 
with demographic variables (Supplementary Figure 7). Finally, BMI varied with the principal 
components (Supplementary Figure 8). Thus BMI is a phenotype which can vary between subjects 
with different ancestries and could be liable to produce artefactual results according to mechanisms 
such as those outlined above. 

There were 21,644 genes for which there were qualifying variants and the QQ plots for the SLPs are 
displayed in Figure 2. It can be seen that when principal components are not included there is a very 
marked inflation of the positive SLPs and that this is almost entirely corrected when the principal 
components are used as covariates. With the principal components included in the analysis, if the 
highest and lowest 100 SLPs are excluded (since they might capture a true biological effect) then the 
negative SLPs have an intercept of -0.022 and a gradient of  0.996 while the positive SLPs have an 
intercept of -0.006 and a gradient of 1.08, indicating only a fairly modest amount of inflation of the 
positive SLPs. If the original scheme for weighting by allele frequency was used instead then the 
results obtained were overall fairly similar, as seen by comparing Figure 2B and 2C. The correlation 
between the two sets of SLPs was 0.91 and there were only 182 genes for which the difference 
between the two SLPs was greater than 1. The largest change was for TXNDC16, which produced an 
SLP of 3.89 with the new weighting scheme compared to only 0.51 with the original one, whereas 
the second largest change was for ABCA13, which had an SLP of 1.43 with the new scheme and 3.96 
with the original one. 

Applying a Bonferroni correction for the number of genes tested would mean that the absolute 
value of the SLP would need to exceed log10(21,644*20)=5.6 or, allowing for the inflation referred 
to above, log10(21,644*20)*1.08=6.08, in order to be regarded as statistically significant. This was 

only achieved by one gene, CCDC140, which codes for a small effector of CDC42 and does not seem 

a particularly plausible candidate to have a direct biological influence on BMI. If the test were well 

behaved then under the null hypothesis one would expect 11 genes to have SLP of 3 or more and 11 

to have SLP of -3 or less. The observed numbers are 22 and 7, possibly reflecting the modest inflation 

of the positive SLPs. Genes with absolute value of SLP of 3 or more, equivalent to p<=0.001, are listed 

in Table 2. Although these do not meet formal standards of statistical significance after correction for 

multiple testing, there are a few for which disruption of functioning might plausibly affect BMI.  

The result for ACAD11 may be of some interest because its product is involved in mitochondrial 
beta-oxidation of lipids and energy production. Additionally, two common variants in ACAD10, which 
has a similar function, are associated with obesity and type 2 diabetes in Pima Indians and Acad10 
knockout mice have excess weight gain which increases with age [24,25]. However in the present 
study the SLP for ACAD10 itself is only -0.51.  

There is good evidence from previous GWASs that common variants in or near LYPLAL1 are 
associated with a variety of metabolic traits including central obesity, fatty liver and waist-to-hip 
ratio, although ablation of Lyplal1 in mice does not lead to any significant abnormality in phenotype 
or metabolic physiology [26]. LYPLAL1 is also one of the top 10 genes implicated in insulin resistance 
from two GWASs [27,28]. Knock out of LYPLAL1 has recently been shown to cause reduced insulin-
induced AKT2 phosphorylation and glucose uptake in human adipocytes [29]. 



The product of BRSK2, SAD-A kinase, is involved in the regulation of pancreatic islet β-cell size and 
mass and insulin secretion in response to glucose levels [30]. However there does not seem to be 
any other evidence that it might have an influence on BMI. 

NT5C1A codes for a 5′-nucleotidase which catalyses the hydrolysis of AMP and silencing it in mouse 
tibialis anterior muscle results in reduced protein content and increased glucose uptake [31]. 

The product of NSDHL is involved in cholesterol biosynthesis and different allelic variants in it are 
known to cause the X-linked disorders CK syndrome, characterised by intellectual disability and an 
asthenic build, and CHILD syndrome, characterised by hemidysplasia, erythroderma and limb 
defects, which is typically lethal in males [32,33]. A non-synonymous polymorphism in Nsdhl has 
been reported to be associated with reduced HDL cholesterol levels in mice [34].  

Among other functions, RAB35 may regulate the insulin-stimulated translocation of glucose 
transporter SLC2A4/GLUT4 in adipocytes and SNPs near RAB35 are associated with backfat thickness 
at 100 kg in pigs [35,36]. 

The results from the gene set analyses, are summarised in Figure 3A. After the top 20 scoring sets 
are removed the MLPs have a gradient of 1.26 with an intercept at 0.02, indicating quite marked 
inflation. It seemed possible that this might represent the cumulative effect of the modest inflation 
noted in the individual SLPs and so the procedure of combining them according to Fisher’s method 
was repeated after first dividing them by the inflation factor of 1.08. This produced the results 
displayed in Figure 3B. Here the gradient is 0.70 with an intercept at -0.03, indicating some deflation 
of the statistic. Applying a Bonferroni correction for the number of sets tested would mean that the 
value of the MLP would need to exceed log10(1,454*20)=4.5 and this was achieved by only one set, 
PHOSPHOINOSITIDE_BINDING with MLP=4.71. This set includes 19 genes and the result is driven by 
the fact that it contains both PIGK (SLP=4.81) and RAB35 (SLP=-4.92). Only two other genes in the set 
are individually significant at p<0.05, CYTH3 (SLP=-1.55) and ZFYVE16 (SLP=-1.38). Although all these 
genes fall into the category of phosphoinositide binding they do not seem to be involved in any 
shared metabolic processes and, apart from RAB35, their functions are not such that one would 
expect them to have a direct effect on BMI. There were 8 gene sets with MLP>2 (equivalent to 
p<0.01) and these are listed in Table 3. None look particularly plausible as candidates to be involved 
in directly influencing BMI. 

Discussion 

The results demonstrate that weighted burden tests are very sensitive to artefactual false positive 
results arising from population stratification even when, as here, only a small proportion of subjects 
report a minority ethnicity. Perhaps surprisingly, this problem is almost completely resolved by 
inclusion of population principle components as covariates. In fact, population stratification is 
intrinsically less challenging for weighted burden approaches than for variant-wise association 
analyses because artefacts arise from differences in the distribution of allele frequencies rather than 
from the differences in frequencies of individual alleles. Hence, inclusion of the principal 
components as covariates seems to be quite effective. By contrast, principal components are well-
recognised not to fully capture population structure in the context of variant-wise tests of 
association and polygenic risk scores [37]. It may be worth noting that in the current dataset some 
categories of self-reported ethnicity included very small numbers, meaning that it would not be 
possible to use these categories as covariates. Rather, the principal components seem to adequately 
capture ethnicity and other sources of stratification.  



In terms of the findings from the example analysis, only one gene (just) reaches conventional criteria 
for genome-wide significance and from what is known of its function it does not seem likely that this 
represents a real biological effect. On the other hand, there are a few highly ranked, though not 
formally statistically significant, genes where it is quite plausible that rare, functional variants might 
be exerting an influence on BMI. Perhaps the two most notable examples would be LYPLAL1, for 
which it is well established that common variants are associated with obesity and related traits, and 
NSDHL, for which it is known that some rare allelic variants can produce a syndrome with asthenia as 
part of the phenotype. These findings could be explored in other datasets and it is reasonable to 
expect that as sequence data becomes available for additional UK Biobank subjects it will be possible 
to distinguish true positive results. The analysis of gene sets has on this occasion failed to yield any 
further insights or even any suggestive findings. It is possible that such analyses might be more 
successful when applied to other phenotypes or with gene classifications which better captured 
biological function. 

The weighting schemes for variant annotation and for allele frequency are chosen a priori according 
to some reasonable working assumptions. However, given that we do not know which genes and 
variants are actually influencing the phenotype in this sample, it is impossible to say how 
appropriate are these schemes and one might hope that they could be improved upon as more data 
becomes available. We note that the introduction of the new weighting scheme based on allele 
frequency has only minor effects on the results obtained for most genes but it does at least allow 
researchers to accord more weight to extremely rare variants if they feel that this is a model which 
they wish to implement. 

To conclude, the approach presented here seems to show promise as being statistically fairly well-
behaved and, importantly, as allowing heterogeneous datasets to be analysed without having to 
discard data from ethnic minority subjects. 

Software availability 

SCOREASSOC and GENEVARASSOC along with related scripts and documentation can be downloaded 
from https://github.com/davenomiddlenamecurtis?tab=repositories. 

Data availability 

The raw data is available on application to UK Biobank. The summary gene-wise results for all 
analyses are included in the supplementary file UKBB.BMI.allSLPs.20200611.xlsx. Detailed results 
with variant counts cannot be made available because they might be used for subject identification. 
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Figure 1 

Plot of mean and SE(mean) of BMI against self-declared ethnicity in exome-sequenced UK Biobank 
subjects. 

Figure 2  

QQ plots of SLPs obtained for weighted burden analysis of 21,644 genes for association with 

BMI. 2A shows the results for regression of the weighted burden score against BMI alone 

and 2B shows the results when the population principal components are included as 

covariates. 2C shows the results with principal components included but using the old 

scheme for weighting variants by frequency, which does not strongly distinguish rare from 

very rare variants. 

Figure 3 QQ plots of MLPs for 1,454 gene set analyses performed by combining SLPs 

obtained from the gene-wise analyses incorporating population principal components. 3A 

shows the results obtained for the uncorrected analyses and 3B shows the results obtained 

after first dividing the SLPs by an inflation factor of 1.08. 


