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Abstract 

 

Variants in APOE are associated with risk of late onset Alzheimer's disease (LOAD) but the 

magnitude of the effect has been reported to vary across ancestries. Also, other variants in 

the region have been reported to show association though it has been unclear whether this 

was secondary to their linkage disequilibrium with the APOE variants rs429358 and rs7412. 

Previous analyses of exome-sequenced samples have identified other genes in which rare 

variants impact risk of disease. In this study 2000 whole genome sequenced cases and 

controls with different ancestries were subjected to gene-based weighted burden analysis 

to identify risk genes. Additionally, individual variants in the APOE region were tested for 

association with LOAD. When using the APOE variants as covariates no individual genes 

showed statistically significant evidence for association after Bonferroni correction for 

multiple testing, which may well be a consequence of the modest sample size. Likewise, for 

those variants initially showing evidence of association with LOAD incorporating the APOE 

variants as covariates dramatically reduced the strength of association. These results 

demonstrate that the differential association of APOE across ancestries does not appear to 

be driven by another variant in the region. It seems likely that no other genes in the region 

have a direct effect on LOAD risk. 
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The first report of association between APOE alleles and late onset Alzheimer’s disease 

(LOAD) noted that there were three isoforms of the ApoE protein, referred to as ApoE-E2, 

ApoE-E3 and ApoE-E4, and that restriction-based isotyping showed that the frequency of 

the APOE ε4 allele in 30 unrelated late onset familial cases was significantly different from 

that in 91 controls (0.50 v. 0.16, p=0.014) (Strittmatter et al., 1993). A table in the same 

paper showed the allele frequency of the APOE ε2 allele to be 0.04 in cases versus 0.08 in 

controls although this was not commented on at the time but a protective effect for the 

APOE ε2 allele was reported the following year (Corder et al., 1994). Apo-E4 contains an 

arginine at residue 112 whereas E3 has a cysteine and the variant encoding this substitution 

is now named rs429358:T>C. Apo-E2 contains a cysteine at residue 158 while E3 has an 

arginine and this is coded for by rs7412:C>T. The two variants are in strong LD with each 

other and it is thought that the ε3 allele derived from the ancestral ε4 allele and that the ε2 

allele subsequently derived from the ε3 allele, with the ε4 allele possibly being under 

negative selection owing to its association with a less favourable lipid profile and increased 

risk of cardiovascular disease (Fullerton et al., 2000). 

The association of these APOE variants with LOAD was confirmed and functional studies in 

mice have shown that the human APOE isoforms are associated with differences in amyloid 

plaque deposition (E4 > E3 > E2) and differences in clearance of amyloid-β (Aβ) peptide (E2 > 

E3 > E4) (Bales et al., 2009; Castellano et al., 2011). A very rare allele of APOE is referred to 

as the APOE3 Christchurch (R136S) variant, GRCh38:g.19-44908756C>A (Wardell et al., 

1987). There is a recent case report of an elderly subject with the pathogenic PSEN1 E280A 

variant, an autosomal dominant cause of presenile Alzheimer’s disease, who was also 

homozygous for the APOE3 Christchurch variant and who had high brain amyloid levels with 

only mild cognitive impairment (Arboleda-Velasquez et al., 2019). Investigations revealed 

she had high amyloid-β plaque burden but limited neurodegeneration or tau accumulation. 

In vitro experiments showed that the APOE3ch isoform triggered less Aβ42 aggregation than 

APOE3, suggesting a possible mechanism underlying a protective effect. They also showed 

that APOE3ch has the lowest heparin binding ability of all APOE isoforms, whereas APOE4 

had been shown to have a higher heparin affinity than APOE3 (Yamauchi et al., 2008). 

Although the association of APOE variants with LOAD was repeatedly replicated, differences 

related to ancestry were soon reported. For purposes of clarity, the original nomenclature is 

retained here even though it might differ from the language we would use to describe 

ancestry effects in today's literature. An early meta-analysis reported that the APOE ε4 AD 

association was weaker among African Americans and Hispanics than for Caucasians (Farrer 

et al., 1997) and a recent study confirmed that rs429358 was more strongly associated with 

LOAD in whites than in Hispanics, with the effect in African-Americans being intermediate 

(Kulminski et al., 2019). This study analysed variants from the region including BCAM, 

NECTIN2, TOMM40, APOE, and APOC1 and observed that rs429358 and rs7412 were in LD 

with nearby SNPs and that the patterns of LD varied between ethnicities. If nearby SNPs 

independently influenced LOAD risk then such differences could theoretically account for 



different strengths of association between rs429358, the APOE ε4 variant, and LOAD in 

different ancestries. For example, there have been inconsistent claims that rs449647 and 

rs405509 are independently associated with LOAD, with one study reporting that the 

haplotype of rs405509-T with rs429358-C increased risk whereas the rs405509-G with 

rs429358-C did not, although this effect was restricted to subjects aged over 75 (Lescai et 

al., 2011). A study in 525 whole genome sequenced Chinese subjects and large samples of 

Chinese and non-Asian subjects identified haplotypes in the region exerting independent 

effects on risk, apparently exerted via modulating gene expression, but this study did not 

explicitly address the question of whether these haplotypes might explain the differential 

effects of APOE ε4 in different ancestries (Zhou et al., 2019). The haplotypes reported were 

made up of multiple non-coding variants, none of which individually had a substantial effect. 

Two additional recent studies have demonstrated that local ancestry around APOE 

moderates the risk associated with the APOE alleles, again suggesting that other nearby 

variants might have an effect (Blue et al., 2019; Rajabli et al., 2018). 

One way to explain the observation that rs429358-C is more strongly associated with LOAD 

risk in Caucasians than Hispanics would be to postulate another locus influencing risk in 

linkage disequilibrium (LD) with it. LD describes the situation where there are two 

polymorphic loci which are close together on the same chromosome for which particular 

pairs of alleles occur together in the same haplotype more often than would be expected by 

random segregation. Envisioning this scenario, the high risk allele at the second locus might 

tend to occur in the same haplotype as rs429358-C in Caucasians and in the same haplotype 

as rs429358-T in Hispanics. Thus it would amplify the effect of rs429358-C in Caucasians and 

counteract it in Hispanics. If the LD between the loci was strong within each group then in a 

homogeneous sample of either Caucasians or Hispanics it might not be possible to detect an 

independent effect of the second variant. However if one analysed a sample consisting of a 

mixture of Caucasian and Hispanic cases and controls then in a multivariate analysis the 

separate contributions of both loci should become apparent. The present report describes 

such analyses in a mixed sample. The purpose of these analyses was firstly to determine 

whether it was possible to identify genes apart from APOE affecting LOAD risk and secondly 

to determine whether variants close to APOE exerted independent effects on LOAD risk, 

especially in a way that could explain differences in APOE associations between different 

ancestries.  

Methods 

Data used in the preparation of this article was obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging, positron emission 

tomography, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment and early 



Alzheimer’s disease. The investigators within the ADNI contributed to the design and 

implementation of ADNI and/or provided data but did not participate in analysis or writing 

of this report (Hurko et al., 2012). A complete listing of ADNI investigators can be found at: 

http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 

Phenotype information and variant calls based on whole genome sequencing using the 

GRCh38 assembly for case-control subjects of the extension phase of the Alzheimer's 

Disease Sequencing Project (ADSP) were downloaded from the NIAGADS website 

(https://www.niagads.org/adsp/content/study-design). Ethical approval and informed 

consent had been obtained by the researchers who generated this dataset. As described 

previously, participants were at least 60 years old and although different diagnostic 

procedures were used by different contributing studies all cases met NINCDS-ADRDA criteria 

for possible, probable or definite AD based on clinical assessment, or had presence of AD 

(moderate or high likelihood) upon neuropathology examination (Beecham et al., 2017). The 

subjects are described as being of Non-Hispanic White (NHW), Caribbean Hispanic (CH), and 

African American (AA) descent. Whole genome sequencing was carried out using standard 

methods as described previously (Naj et al., 2019; Vardarajan et al., 2018) and on the ADSP 

website: https://www.niagads.org/adsp/content/sequencing-pipelines. The PrevAD 

(prevalent Alzheimer's disease) field was used to define phenotype and subjects who had 

been included in the earlier exome-sequenced datasets were excluded, yielding 985 cases 

and 2,101 controls.  

To obtain population principal components, version 1.90beta of plink (https://www.cog-

genomics.org/plink2) was run on the chromosome 22 genotypes with the options --maf 0.1 -

-pca header tabs --make-rel (Chang et al., 2015; Purcell et al., 2007, 2009). This is a standard 

approach whereby the genotypes of a large number of loci are entered into a principal 

components analysis. The main principal components obtained are taken to reflect any 

geographical and ancestry-related sub-stratification within the samples and incorporating 

them into association analyses as covariates can mitigate problems caused by inadequate 

matching of cases and controls.  

The analyses were carried out in two stages. Initially a weighted burden analysis of each 

gene was carried out using GENEVARASSOC and SCOREASSOC in the same way as had 

previously been applied to the ADSP exome-sequenced case-control samples (Curtis et al., 

2019). For each gene, variants in the exomes and splice regions were extracted and 

annotated using VEP, PolyPhen and SIFT (Adzhubei et al., 2013; Kumar et al., 2009; McLaren 

et al., 2016). These programs assess the likely impact of DNA changes on the protein coded 

for by the gene and in particular whether the changes produced are likely to disrupt the 

normal functioning of the protein. SCOREASSOC was then used to carry out a weighted 

burden analysis to test whether, in a particular gene, variants which were rarer and/or 

predicted to have more severe functional effects occurred more commonly in cases than 
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controls. Variants were weighted according to their functional annotation using the default 

weights provided with the GENEVARASSOC program, which was used to generate input files 

for weighted burden analysis by SCOREASSOC (Curtis, 2016, 2012). For example, a weight of 

5 was assigned for a synonymous variant, 10 for a non-synonymous variant and 20 for a stop 

gained variant. Additionally, 10 was added to the weight if the PolyPhen annotation was 

possibly or probably damaging and also if the SIFT annotation was deleterious, meaning that 

a non-synonymous variant annotated as both damaging and deleterious would be assigned 

an overall weight of 30. The full set of weights is shown in Supplementary Table 1, copied 

from the previous report (Curtis et al., 2018). Variants were excluded if they did not have a 

PASS in the information field or if there were more than 10% of genotypes missing in either 

cases or controls or if the heterozygote count was smaller than both homozygote counts in 

both cohorts. For each subject a gene-wise weighted burden score was derived as the sum 

of the variant-wise weights, each multiplied by the number of alleles of the variant which 

the given subject possessed. If a subject was not genotyped for a variant then they were 

assigned the subject-wise average score for that variant.   

As described previously, ridge regression analysis with lamda=1 was used to test whether 

the gene-wise score was associated with caseness (Curtis et al., 2018). To do this, 

SCOREASSOC first calculates the likelihood for the phenotypes as predicted by the first 20 

principal components and then calculates the likelihood using a model which additionally 

incorporates the gene-wise scores. It then carries out a likelihood ratio test assuming that 

twice the natural log of the likelihood ratio follows a chi-squared distribution with one 

degree of freedom to produce a p value. Results are expressed as signed log p (SLP) which is 

the logarithm base 10 of this p value and is positive if the scores are higher in cases and 

negative if they are higher in controls. This analysis was carried out for every autosomal 

gene listed in the RefSeq GRCh38. All the analyses were then repeated using rs429358 and 

rs7412 genotypes as covariates as well as the principal components. 

Data handling and generic statistical analyses were carried out using R (R Core Team, 2014). 

In the initial weighted burden analyses without including rs429358 and rs7412 as covariates 

only two genes showed evidence for association which was statistically significant after 

Bonferroni correction for the number of genes tested, APOE and the neighbouring gene 

TOMM40. Therefore a second set of analyses was carried out in order to explore whether 

the result obtained for TOMM40 was likely to be due to direct functional effects of variants 

in this gene or whether it was more likely a consequence of LD relationships with APOE 

variants. Because previous reports have also claimed that variants in the neighbouring genes 

APOC1, BCAN and NECTIN2 might influence LOAD risk, all variants in the region including 

these five genes plus a margin of 10 kb at either end were extracted, between genomic 

coordinates 44799059 and 44929344. For each of the 718 variants with a minor allele 

frequency of at least 0.01 in cases and/or controls in the combined sample an individual 

ridge regression analysis was carried out including population principal components and 



testing the effect of the variant with and without also including as covariates the genotypes 

for rs429358 and rs7412. In order to assess ancestry effects, analyses were carried out 

without including population principal components and raw odds ratio (OR) for association 

with LOAD was obtained for each variant. All variants with OR>2 or OR<0.6 were selected 

for further analysis. For these variants showing association with LOAD, the count of the 

number of alternate alleles was obtained and this allele count was then treated as a 

quantitative variable in joint ridge regression analyses with PrevAD as the outcome. In an 

attempt to identify those variants which might be exerting an independent effect on risk, a 

subset of 14 variants was selected using an arbitrary threshold of |beta/SE(beta)| > 1.3, 

with beta being the coefficient for the variant in the fitted multivariate model.  

In order to explore whether any of these variants was exerting a direct effect on LOAD risk, 

likelihood ratio tests were carried out for each associated variant by comparing the 

likelihoods of models which did or did not include the variant in question, and which 

included the following as covariates: 

1. None. 

2. Each of the 14 variants identified above as possibly having an independent effect. 

3. Rs429358 and rs7412 together.  

These analyses were then repeated for each of the three ancestry groups separately. The 

results of these analyses are expressed as minus log p (MLP), which is the minus logarithm 

base 10 of the p value for the likelihood ratio test. 

In order to explore the possible independent contributions of individual variants further, the 

subjects were subdivided according to the rs429358 genotype. Based on allele counts in 

cases and controls an odds ratio and Pearson chi-squared statistic were calculated for each 

variant in each group. Again, this process was then repeated with the subjects additionally 

divided by ancestry groups. 

Results 

Table 1 presents the age and sex distribution of the samples used. The weighted burden 

tests evaluated 1,662,028 variants in 28,862 autosomal genes. TOMM40 produced an SLP of 

20.43 and APOE produced an SLP of 13.1. No other gene produced results which would be 

considered statistically significant after correction for the number of genes tested but it may 

be worth noting that APOC1 had the fourth highest SLP, of 4.2, and that TREM2 had the 

eighth highest SLP, of 3.5. When these analyses were repeated using rs429358 and rs7412 

as covariates no gene produced significant results. The SLP for APOE was 0.93 and for 

TOMM40 was 0.86, suggesting no evidence for an independent effect of any other variants. 

The SLP of APOC1 reduced to 1.94 while the SLP for TREM2 fell only slightly to 3.3, ninth 

highest of all genes. No subject carried an APOE3 Christchurch variant. 



There were 718 genotyped common variants in the region between 10kb proximal of BCAM 

and 10kb distal of APOC1. In the analysis including principal components, 91 produced an 

MLP greater than 4.15, the critical value to be considered significant at p<0.05 after 

correction for multiple testing, when the APOE alleles were not included as covariates. For 

all of these the MLP reduced, sometimes dramatically, when APOE alleles were included in 

the model, indicating that initial result had been driven via LD. The highest MLP obtained 

after inclusion of the APOE alleles was 3.72 for rs59007384 and Table 2 shows the results for 

all the variants which produce an MLP of greater than 2.5 in the analyses including APOE. 

Important, none of the 718 variants produced a markedly increased MLP when the APOE 

alleles were included. The largest increase was for rs145449661, from 0.59 to 2.24. 

In the analyses not including principal components, the OR was over 2 for 58 variants and 

under 0.6 for 10. When all 68 of these variants were entered into a ridge regression analysis 

there were 14 for which |beta/SE(beta)| exceeded 1.3, consisting of rs140824606, 

rs149626525, rs7258166, rs147711004, rs116094317, rs41289512, rs142778802, 

rs79701229, rs6857, rs34404554, rs11556505, rs429358, rs7412 and rs1081105. However in 

preliminary analyses rs66626994 provided some evidence of being independently 

associated with LOAD so it was added to the list of variants to be used as covariates in the 

likelihood ratio tests for each of the 68 individually associated variants. The results of these 

likelihood ratio tests are in Supplementary Table S3. The main finding of note is that for 

every variant initially showing strong evidence of association with LOAD the MLP 

dramatically decreased when rs429358 was included as a covariate. In the adjusted analyses 

the strongest evidence for independent association was for rs66626994, which produced 

MLP=3.93 when rs429358 was included and MLP=3.58 when both rs429358 and rs7412 

were included. By contrast, the MLP for rs429358 itself remained over 20 no matter which 

other variants were included as covariates. The MLP for rs7412 was 6.70 on its own and fell 

to 2.56 when rs429358 was included. The MLPs obtained when both rs429358 and rs7412 

were included as covariates were not markedly different from those obtained when 

including only rs429358.  

In terms of effect size, the estimate for the OR for rs429358 on its own was 3.05 with 95% 

confidence interval 2.65-3.51. Including other variants as covariates had very little impact on 

this estimate, the lowest value of OR = 2.55 (2.15-3.02) being obtained when including 

rs6857. Thus there is no suggestion that any other variants in the region have a modifying 

effect on rs429358. By contrast, there were striking differences in the effect sizes for 

rs429358 between different ancestry groups, with OR = 5.36 (4.18-6.87) in NHW subjects, 

OR = 1.72 (1.35-2.20) in CH subjects and OR = 3.15 (2.41-4.11) in AA subjects. Within 

ancestry groups, these estimates were not impacted by including other variants as 

covariates.  

For rs7412, the unadjusted estimate was OR = 0.53 (0.42-0.68). With rs429358 also included 

this changed to 0 .68 (0.53-0.88) but including other variants had little effect. Including 



rs429358 produced OR = 0.62 (0.37-1.05) in NHW subjects, OR = 0.83 (0.55-1.26) in CH 

subjects and 0.65 (0.42-0.98) for AA subjects. Again, within ancestry groups variants apart 

from rs429358 had little effect on the estimates. 

For rs66626994, the estimate on its own was OR = 2.13 (1.84-2.48). With rs429358 and 

rs7412 included this fell to OR = 1.37 (1.15-1.62) in the whole cohort and was OR = 1.34 

(.95-1.89) in NHW subjects, OR = 1.00 (0.73-1.38) in CH subjects and OR = 1.51 (1.09-2.08) in 

AA subjects. 

Analyses of variants subdivided by rs429358 genotype did not reveal any which showed 

independent evidence for association with LOAD risk, either in the sample as a whole or in 

individual ancestry groups. 

The results from the various analyses detailed above show that, after correction for multiple 

testing, none of the common variants tested had a statistically significant independent 

association with LOAD risk apart from rs429358. Further examination of results broken 

down by ancestry and by rs429358 genotype did not reveal evidence that other variants 

were independently exerting an effect within ancestry cohorts. 

Discussion 

Given the sample size, the results from the weighted burden analyses are consistent with 

expectations, in that no gene produces statistically significant results once the effect of 

rs429358 is incorporated. This suggests that the initially significant result obtained for 

TOMM40 simply results from LD between variants in it and rs429358. The fact that other 

genes with prior convincing evidence for involvement in LOAD do not produce significant 

results is unsurprising. When similar methods were applied to a sample approximately five 

times larger significant results were obtained for TREM2, ABCA7 and SORL1 (Curtis et al., 

2019). Of these, the most significant was TREM2, which produced a likelihood ratio statistic 

of 57.9. Since this is distributed as a chi-squared statistic with one degree of freedom, the 

expectation for the likelihood ratio statistic to be produced from the current sample is 

approximately 1+(57.9-1)/5=12.4. In fact, the actual likelihood ratio statistic produced was 

only slightly lower than this, 12.0, indicating that the current results are entirely consistent 

with those obtained previously but that the sample size is too small to expect to obtain 

significant results. 

More detailed analysis of variants in the region did not produce any convincing evidence for 

any other variant to exert a causative effect on LOAD risk. (Here, we use the term causative 

to mean that a variant itself makes a direct contribution to risk rather than showing 

association for some other reason.) Of course it is not possible to completely exclude the 

possibility that one or more of them might exert some small effect which might be detected 

in a larger sample, either on their own or through epistatic effects on the APOE variants. 

However for all variants showing initially strong evidence of association with LOAD, the 



evidence dramatically diminishes when rs429358 is included as a covariate. This implies that 

their association is at least primarily driven by LD relationships with rs429358. Conversely, 

the evidence supporting rs429358 remains very strong no matter which other variants are 

included as covariates, consistent with the notion that it exerts a  direct causative effect. We 

might note that the current study does not provide support for a protective role for rs7412-

T, since the initial MLP was only 6.70 and this fell to 2.56 when rs429358 was included. 

Using the standard allelic notation, th is is equivalent to initially comparing the effects of 

APOE ε2 against ε3 and ε4 combined and then subsequently comparing ε2 against ε3 alone. 

The lower risk associated with ε2 against ε3 is a consistent finding of other studies and the 

relatively weak signal in the current study is expected given the low allele frequency of 

rs7412-T and should not be taken to undermine support for it having a real protective 

effect. The very low risk of LOAD in rs7412-T homozygotes has recently been confirmed in a 

large study (Reiman et al., 2020). 

In order to asses whether the current sample would have the power to detect a variant 

modifying the effect of rs429358 in such a way at to explain the differential effect across 

ancestries, we should begin by noting that in this heterogenous sample the effect of such a 

variant should emerge more strongly when the APOE variants are included as covariates. In 

fact, there is no variant for which the MLP increases substantially. Instead, we tend to 

observe the opposite effect, explained by variants simply being in LD but having no direct 

causative effect themselves. To quantify this further, we can consider the situation in which 

there is a second variant affecting risk which has different LD relationships with rs429358 in 

different ancestry groups. The effect on differential risk will be maximal if it is in complete 

LD with rs429358 with reciprocal relationships such that in the NHW subjects the higher risk 

allele always occurs in phase with the C allele of rs429358 (which confers increased risk) 

while in CH subjects it is the lower risk allele of the second variant which always occurs in 

phase with the C allele of rs429358. In this scenario, we observe that the two variants 

together, tagged by rs429358, have an OR of 5.36 in NHW subjects and 1.72 in CH subjects, 

equivalent to logistic regression coefficients of the natural logs of these ORs, 1.68 and 0.53. 

We could then break this down as a contribution from the two loci separately, with 

rs429358 having a coefficient of 1.105 and the putative second variant having a coefficient 

of 0.575  to fit the observed values (since 1.105+0.575=1.68 and 1.105-0.575=0.53). This is 

the minimum effect size which a single variant explaining the differential risk between 

ancestries could have. If the LD relationships were weaker the effect size of the variant 

would need to be larger. In an analysis which included rs429358 genotype as a covariate the 

effect of this variant would emerge and the OR associated with this coefficient of 0.575  

would be exp(0.575)=1.8.  Using a standard sample size calculator 

(https://www.stat.ubc.ca/~rollin/stats/ssize/caco.html), we find that in these samples a 

common variant with OR of 1.8 has over 90% power to produce an MLP of 6 whereas the 

highest MLP we observe when rs429358 genotype is included as a covariate is only 3.93 (as 

shown in Supplementary Table 3).  From these considerations, we conclude that there is 

https://www.stat.ubc.ca/~rollin/stats/ssize/caco.html


good power to detect a variant in the region which would explain the differential effect of 

rs429358 across ancestries and that it is unlikely that such a variant is in fact present. 

In this study we do observe that the effect of rs429358 differs between the ancestry groups. 

However the low magnitude of the effect noted in the CH sample could be a simple 

consequence of the lower age of controls relative to cases in this sample, since it would be 

expected that in this situation any signal from any genetic effect on risk would be reduced. 

There is no obvious explanation for the intermediate effect size observed in the AA subjects 

and this might represent some real biological phenomenon or might be due to other, 

unknown mechanisms such as ascertainment procedures or differential cardiovascular 

mortality. From other studies, the difference in rs429358 effects between ancestries seems 

to be a fairly consistent finding which, from the current study, cannot be explained by the 

presence of another causal variant in LD with it. It is difficult to exclude the possibility that a 

number of variants might cumulatively have some effect, although the present study does 

not detect any evidence for this. This would be consistent with the previous findings that 

local ancestry is associated with rs429358 effect size. If the previously reported haplotypes 

associated with LOAD risk via effects on gene expression of APOE were in different LD 

relationships with rs429358 in different ancestry groups then this might potentially account 

for the differential association (Zhou et al., 2019). This could be investigated using large 

multi-ethnic samples genotyped for the relevant markers. 

Theoretically it remains a possibility that there could be an unknown variant which was 

driving this effect. An example would be the poly-T polymorphism in intron 6 of TOMM40, 

rs10524523, which is in LD with rs429358 and which has been inconsistently reported to be 

associated with risk of LOAD and also a large number of other related phenotypes as 

reviewed recently (Chiba-Falek et al., 2018). This variant was not provided in the data 

release, presumably because of problems calling a single nucleotide repeat accurately from 

next generation sequencing pipelines.  

When looked at in their entirety, reports of involvement of individual genes and variants in 

this region resemble the findings which were reported in the candidate gene era. Because of 

LD relationships with rs429358 they do show a primary association with LOAD. But when 

studies try to examine whether they exert independent effects one runs into problems with 

small sample size, subgroup analyses, application to different phenotypes and, presumably, 

publication bias. We should start from the position that it is inherently unlikely that by 

chance there will be a gene close to rs429358 which happens to be causative. It could also 

be argued that it is a priori quite unlikely that variants such as intronic single nucleotide 

repeats and intergenic variants would have important functional effects. Taking this 

consideration into account and incorporating the results from the current study it seems 

reasonable to conclude that, aside from rs429358 and rs7412, other variants in this region 

do not individually have a substantial effect on risk of LOAD. 
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Table 1 

Breakdown of samples by ethnicity, age and sex. AA = African American; NHW = Non-

Hispanic White; CH = Caribbean Hispanic. 

Cohort Status Male:Female Age mean (SD) 

AA Controls 41:160 76.4 (6.5) 

 Cases 83:165 72.7 (6.9) 

NHW Controls 250:394 80.1 (6.4) 

 Cases 185:154 73.4 (7.6) 

CH Controls 133:268 69.3 (6.4) 

 Cases 93:177 74.7 (6.8) 

All Controls 424:822 76.0 (8.0) 

 Cases 361:496 73.6 (7.2) 

  



Table 2 

The table shows the MLP for the likelihood ratio test for each variant as a predictor of LOAD 

including 20 principal components as covariates, with and without also including rs429358 

and rs7412. All variants for which the second MLP was greater than 2.5 are shown. 

, with different covariates included in the model, for all variants which initially produced and 

MLP > 20.  

SNP rs429358 
and 
rs7412 
not 
included 

rs429358 
and 
rs7412 
included 

rs59007384 18.97 3.72 
rs66626994 21.78 3.66 
rs11556505 23.57 3.2 
rs2075650 21.88 3.11 
rs6857 36.45 2.97 
rs12721046 30.47 2.96 
rs186113697 1.93 2.95 
rs205909 5.71 2.9 
rs34954997 20 2.87 
rs111789331 30.45 2.86 
rs149626525 3.59 2.82 
rs434132 9.17 2.6 
rs157587 3.43 2.6 
rs5117 20.05 2.58 

 


