
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

SPATIO-TEMPORAL GRAPH-RNN FOR POINT CLOUD PREDICTION

Pedro Gomes, Silvia Rossi, and Laura Toni

Department of Electronic & Electrical Engineering
University College of London, UK

email:{pedro.gomes.19, s.rossi, l.toni}@ucl.ac.uk

ABSTRACT

In this paper, we propose an end-to-end learning network to
predict future frames in a point cloud sequence. As main nov-
elty, an initial layer learns topological information of point
clouds as geometric features, to form representative spatio-
temporal neighborhoods. This module is followed by multi-
ple Graph-RNN cells. Each cell learns points dynamics (i.e.,
RNN states) by processing each point jointly with the spatio-
temporal neighbouring points. We tested the network perfor-
mance with a MINST dataset of moving digits, a synthetic
human bodies motions and JPEG dynamic bodies datasets.
Simulation results demonstrate that our method outperforms
baseline ones that neglect geometry features information.

Index Terms— Point Cloud, Graph-based representation
learning, Point-based models.

1. INTRODUCTION

Point clouds (PCs) sequences provide a flexible and rich ge-
ometric representation of volumetric content, quickly becom-
ing an attractive representation for applications such as au-
tonomous driving [1], mixed reality application services [2],
cultural heritage [3]. This has motivated intense research to-
ward PC processing, with strong focus on static PCs, leaving
the dynamic PC processing (DPC) usually overlooked. In this
work, we focus on DPC processing and specifically on the
prediction of point cloud dynamics. Namely, given PC frames
P1, P2, . . . , Pt we are interested in predicting P̂t+1, with no
prior knowledge on the ground truth Pt+1.

In the current literature, DPCs processing has been ap-
proached from two overlapping directions: (1) motion estima-
tion (ME) and motion compensation (MC) for PC compres-
sion; (2) 3D motion flow prediction (usually deep-learning
based) for high-level tasks (e.g., gesture recognition). Both
approaches share a common challenge: extraction of temporal
correlations between sequential PC frames, challenged by the
irregular structure and by the lack of explicit point-to-point
correspondence. At the same time, these two directions have
fundamentally different goals and setups: the former aimed
at extracting the motion vector from two known consecutive
frames, the latter focused on a much more challenging task

of prediction of future unknown PC frames. This requires
learning both the short- and long-term PC trajectory. Another
key difference lies in the developed solutions: ME mainly ad-
dresses the lack of correspondence either by projecting the
3D PC into the 2D domain and adopting mature algorithms
from 2D video compression [4] or by developing 3D ME
methodologies, preserving the volumetric information of the
PCs [5, 6, 7].

Motion flow prediction involves deep learning process-
ing instead, the irregular and unordered structure of PC pre-
vents the immediate adoption of convolution neural networks.
Within this framework, PointNet [8] has become a pillar work
for static PC processing, capable of learning directly from
raw PC data with no pre-processing: each point in the PC is
processed independently and all point features are aggregated
subsequently. Modeling points independently achieves per-
mutation invariance, but at the price of losing the geometric
relationship between points, a key piece of information in PCs
that we aim at retaining. To learn the dynamic behavior of se-
quential data, recent works [9, 10, 11] has extended PointNET
architecture to recurrent neural networks (RNNs), predicting
the 3D motion flow of PCs. In the PointRNN model [11], for
example, each point is processed individually by RNN cells
with the output being the point state (i.e., the motion of the
point). Each point state is extracted by aggregating state infor-
mation from neighboring points. The neighborhood of a point
of interest is defined as the k nearest neighbor (k-nn) points
in the previous frame, where the proximity is measured based
on the point coordinates. This methodology inherits the abil-
ity to capture the dynamic behavior of sequential data from
RNN models, as well as permutation invariance from Point-
Net architecture. However, it suffers from the same short-
coming of PointNet: lack of geometric relationship between
points which may lead to i) loss of structure during PC recon-
struction; ii) poor k-nn neighborhood as grouping points only
based on coordinates might connect two points close in space
but not belonging to the same segment, hence not sharing the
same motion.

In this paper, we seek to bridge the gap between graph-
based representations of PC [12, 13, 14] and deep learning
motion flow prediction. We propose an end-to-end archi-
tecture, where an initial pre-processing step learns topolog-

ar
X

iv
:2

10
2.

07
48

2v
3

 [
cs

.C
V

]
 2

2
Fe

b
20

21

ical information of PC as geometric features, and leverage
on those learned features to form more representative local
neighborhoods of points than PointRNN models. From the
learned features, a Graph-RNN constructs spatio-temporal
k-nn graphs. This results in spatio-temporal aggregation
of points that share common local features instead of only
points coordinates. The temporal correlations from the
spatio-temporal graph are aggregated to learn point states.
The Graph-RNN learns points states, which retain the model
dynamic information over time and allow to model long-term
point trajectory. The proposed solution has been validated
on moving MNIST point cloud dataset used in the litera-
ture [11] as well as on a synthetic human b odies motions and
JPEG dynamic bodies datasets [15, 16]. Simulation results
demonstrate that our method can make correct PC predic-
tions showing its ability to accurately group points and model
long-term relationships while preserving the spatial structure.

2. PROPOSED METHOD

We denote a point cloud frame consisting of n points by
Pt = {p1,t, p2,t, . . . pn,t} with pi,t ∈ R3 being the euclidean
coordinates of point i in Pt. Each PC has additional at-
tributes (i.e., point color) denoted by Ct = {c1,t, c2,t, . . . cn,t,
with ci,t ∈ R3 the associated color component. Given a
point cloud sequence P = (P1, P2, ..., PT) composed by
T frames and additional attributes C = (C1, C2, ..., CT),
our goal is to predict the coordinates of future point clouds
P̂T+1, . . . , P̂T+Q, with Q being the prediction horizon.

To reach this goal, we proposed an interactive frame-
work (Fig. 1), which allows us to predict future trajectories
of points via RNN cells. At each iteration, the network
processes one input frame Pt and its color attribute Ct giv-
ing as output the prediction of the successor frame P̂t+1.
The architecture is composed of two phases: i) a dynamics
extraction (DE) phase where the PC dynamic behaviour is
captured in the form of point states, ii) a PC reconstruction
phase where the states are concatenated and used to output
the PC prediction. In the DE phase, as key novelty, we pre-
process the point cloud to extract point features that carries
local geometry information. Specifically, a initial graph neu-
ral network (GNN) module transforms the 3D space into an
higher dimensional feature space and sends the output to a
Graph-RNN cell. In each cell, each point is processed inde-
pendently to preserve permutation invariance. Specifically,
each point state is extracted by aggregating information from
its k-nn neighborhood. After the Graph-RNN cells, the PC
reconstruction phase begins. The states are propagated and
processed by a fully connected layer (FC) to estimate motion
vectors, used to predict the next frame P̂t+1. Before each
Graph-RNN cell, the point cloud is down-sampled. It is then
up-sampled to its original size before the final FC layer. The
down-sampling and up-sampling blocks are implemented as
in [17] and we refer the readers to Section A of the Appendix.

for further information. The intuition for the design hierar-
chical architecture is to learn states at multiples scales: the
first Graph-RNN cell handles a dense PC and learns states
in local regions (corresponding to local motions), while the
last Graph-RNN cell learns states in a sparser PC with more
distant points included in the neighborhood (corresponding
to more global motions).

We now provide more details on the key modules that
are part of our contributions: GNN-based pre-processing and
Graph-RNN cells.

2.1. GNN for Feature Learning

Given Pt and Ct as input, we construct a directed k-nn coor-
dinate graph GCt = (Pt, ECt) with vertices Pt and edges ECt .
Each edge connects a point to its k-nearest neighbors based
on euclidean distance. The graph includes self-loop, meaning
each point is also connected to itself. Given the coordinate
graph as input, the GNN module learns the geometric fea-
tures Ft ∈ Rn×df . The GNN is composed of L layers, and
in each layer features are learned by aggregating information
along the edges.

Inspired by [12], we learn the features by taking into
account the relationship (similarity) between neighboring
points. At the l-th layer of the GNN, the edge features eli,j
are learned for each point i and for each neighboring node
j. This is done by concatenating the input point feature f l−1i,t

and the point coordinates pi,t, with the geometry and color
displacement/difference between the points i and j (∆pij ,
∆cij , respectively). We then apply a symmetric aggregation
operation on the edge features associated with all the edges
emanating from each point. More formally, the edge fea-
tures (eli,j) and the output point features (f li) are obtained as
follows:

eli,j = hlF (f l−1i,t ; pi,t ; ∆pij ; ∆cij) (1)

f li = MAX
j:(i,j)∈EC

{
eli,j
}

(2)

where hF is a nonlinear learnable function that can be im-
plemented with a multi layer perceptron (MLP), ’;’ identifies
the concatenation operation and MAX represents the element-
wise max pooling function. Note that for the first layer l = 1,
we set f0i,t as a null entry and the output of the L-th layer is
the geometric feature Ft = [fL1,t, f

L
2,t, . . . , f

L
n,t].

2.2. Graph-RNN

Each Graph-RNN cell c receives the feature F c−1t and
P c−1t = [pc−11,t , p

c−1
2,t , . . . , p

c−1
n,t] as input, with F 0

t being
the output of the previous GNN module. Given it iterative
nature, the Graph-RNN cell takes into account the input and
also its own output (P ct−1, F

c
t−1, S

c
t−1) calculated at the pre-

vious interaction (t − 1). The cell extracts the inner state
Sct = [sc1,t, s

c
2,t, . . . , s

c
n,t] ∈ Rn×ds , with sci,t being the state

Fig. 1. Scheme of the complete hierarchical architecture, composed of four main components: Sampling and Grouping (SG);
GNN for Features Learning ; Graph-RNN (diagram of it’s operation included in dashed area) ; States propagation (SP).

of point pci,t, representative of the point dynamic behavior.
The new state is added to the unchanged coordinates P c−1t

and features F c−1t and outputted as (P ct , F
c
t , S

c
t). Similarly

to [11], we consider three sequential Graph-RNN cells.
The Graph-RNN operation is the depicted in Fig. 1

(dashed box). As first step, we compute a spatio-temporal
feature graph GFt , in which each point is connected to k near-
est neighbors based on the feature distance. Specifically, for
each input point pc−1i,t , we compute the pairwise distance be-
tween f c−1i,t and features of other points f c−1j,t (features input)
and f cj,t−1 (features from points in the past PC). We force our
implementation to take the equal number of points k from
P c−1t as from P ct−1 to avoid a one-side selection. In details,
this is a spatio-temporal graph since each point is connected
to points in the same PC (spatial relationship) and points in
the past PC (temporal relationship). Once the features graph
is constructed, we learn edge features similarly to the GNN
module. For the edge (i, j), we concatenate the state of point
i (si), the state of point j (sj), and the coordinate, the feature
and the time displacement (∆pi,j ,∆fi,j∆ti,j) between the
two points. The concatenation is then processed by a shared
MLP (hS). All edge features are then max pooled to a single
representation into the update state si,t. Formally,

eci,j = hcS(sc−1i,t ; sc
′

j,t′ ; ∆pij ; ∆fij ; ∆tij) (3)

sci,t = MAX
j:(i,j)∈EF

{
eci,j
}

(4)

When learning output states Sct , the Graph-RNN cell consid-
ers the states in the previous frame Sct−1. This means that
the network learns point movements taking into consideration
the previous movements of points, allowing the cell to retain
temporal information. The states act as a memory retaining
the history of movements and enabling for network to model
long-term relationships over time.

2.3. Training

The architecture in Fig. 1 has multiple learnable parameters
(in GNN, Graph-RNN, FC), which are end-to-end trained.
We consider a supervised learning settings in which the loss
function relates to the prediction error between ground truth
point cloud Pt and the predicted one P̂t. To evaluate the pre-
diction error, we adopt the Chamfer Distance (CD) and Earth
Moving Distance (EMD) between Pt and P̂t evaluated as fol-
lows [18]:

dCD(P, P̂) =
∑
p∈P

min
p̂∈P̂
||p− p̂||2 +

∑
p∈P̂

min
p∈P
||p̂− p||2

(5)

dEMD(P, P̂) = min
θ:P−→P̂

∑
p∈P
||p− θ(p)||2 (6)

where θ : P −→ P̂ is a bijection. The loss function used to
train the network then is given by the sum of CD and EMD
distances, namely L(P, P̂) = dCD(P, P̂) + dEMD(P, P̂).

3. EXPERIMENTS

We implemented the end-to-end network described in Sec.2
in the case of L = 3 layers within the GNN module and
C = 3 RNN cells1. We consider both short-term and long-
term prediction, with the former predicting only one future
frame Q = 1 (ground truth frame Pt is used to predict the
next frame P̂t+1) while the latter predicting Q = T/2 future
frames with P̂t being used to predict the next frame P̂t+1.
As baseline models we consider: (1) Copy Last input model
which simply copies the past PC frame instead of predicting

1The code has been made available at https://github.com/pedro-dm-
gomes/Graph-RNN.

https://github.com/pedro-dm-gomes/Graph-RNN
https://github.com/pedro-dm-gomes/Graph-RNN

it; (2) PointRNN (k-nn) model [11], which neglects geometry
information. In our experiments, we considered the following
datasets: 2 Moving MNIST Point Cloud, created by con-
verting the MNIST dataset of handwritten digits into moving
point clouds, as in [11], each sequence contains 20 (T) frames
with either 128 (1 digit) or 256 points (2 digits) .
Synthetic Human Bodies Activities, synthetically generated
by us following [15] using the online service Mixamo [19]3

in combination with the 3D animation software Blender [20].
JPEG Pleno 8i Voxelized Full Bodies, four benchmark se-
quences: longdress, loot, redandblack, and soldier [16].
In the two last datasets, each PC sequence contains 12 (T)
frames and is downsampled to 4, 000 points. The network is
trained with the Synthetic Human Bodies Activities dataset,
which provides different levels of movements (walking,
jumping, dancing, etc) and tested on both datasets.

To better understand our system, we visualized the
learned features for one PC from the Synthetic Human Bod-
ies dataset. Fig. 2 depicts in sequence: the point cloud, the
learned features Ft, the output state St, the reconstructed mo-
tion vector Mt, and the predicted PC. Principal Component
Analysis (PCA) is used for the features visualization. It is
worth noting that features can segment the PC into regions
sharing similar topology (leading to meaningful neighbor-
hood in the features graph) and states are able to capture the
movement of moving parts –e.g., leg and foot taking a step
forward. The states are directly translated into motion vec-
tors, used to make accurate prediction of the future frame. A
more complete comparison can be deduced from Fig. 3, de-
picting resultant and ground truth PCs for the MINST dataset.
Interestingly, the predicted digits are sharper and clearer in
the Graph-RNN prediction than the PointRNN. This demon-
strates that while both models capture the correct motion, the
Graph-RNN is better at preserving the spatial structure over
time. This is a direct effect from learning geometric features.

We now provide more quantitative results for both the
MNIST dataset (Table 1), and the Synthetic Human Bodies
and JPEG datasets (Table 2). For all datasets, the proposed
Graph-RNN outperforms the PointRNN solution as well as
the baseline solutions. From Table 1, it is worth noting that
the hierarchical implementation (in which PC is sampled be-
tween RNN-cells) leads to a better prediction compared to the
“Basic” (not down-sampled) counterpart. This is expected as
the hierarchical structure learns states at different resolution.
Finally, the model “Graph-RNN (color)” considers the color
attributes when learning features, resulting in a more mean-
ingful spatio-temporal neighborhood [21] and therefore in a
better prediction.

2We provide detailed information in the supplementary information in
(sec B) of the Appendix.

3Due to copyright restriction imposed by Mixamo, we cannot provide the
dataset publicly available.

Fig. 2. Multiple representation steps of short-term prediction
Graph-RNN on Bodies dataset

Fig. 3. Visualization of moving MNIST point cloud predic-
tion with two moving digits (Hierarchical architecture)

MINST
Long-term Prediction

One Digit Two digitMethod
CD EMD CD EMD

Copy last input 262.46 15.94 140.14 15.8
PointRNN 5.86 3.76 22.12 7.79Basic GraphRNN 2.43 2.40 13.66 6.13
PointRNN 2.25 2.53 14.54 6.42Hierarchical Graph-RNN 1.22 1.86 4.62 3.97

Table 1. Prediction error of PointRNN and Graph-RNN with
k-nn on the moving MNIST point cloud dataset.

Synthetic Human Bodies JPEG Dynamic Bodies
Short-Term Long-Term Short-Term Long-TermMethod

Hierarchical CD EMD CD EMD CD EMD CD EMD
Copy Last Input 0.161 0.153 0.247 0.408 0.0004 0.029 0.0020 0.058

PointRNN 0.007 0.104 0.066 0.257 0.0005 0.034 0.0024 0.082
Graph-RNN 0.005 0.078 0.077 0.248 0.0003 0.026 0.0018 0.074
Graph-RNN

(color) 0.004 0.071 0.063 0.219 0.0003 0.025 0.0014 0.053

Table 2. Prediction error of PointRNN and Graph-RNN on
the Synthetic Human Bodies and JPEG datasets

4. CONCLUSION

This paper proposes end-to-end learning network to process
dynamic PCs and make accurate predictions of future frames.
We design a Graph-RNN cell that can leverage learned fea-
tures, describing the local topology, to form spatio-temporal
graphs, from where temporal correlations can be extracted.
Experimental results demonstrate the network’s ability to
model short and long-term motions while preserving the
spatial structure.

5. REFERENCES

[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong,
Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom,

“nuSscenes: A multimodal dataset for autonomous driv-
ing,” in Proc. IEEE/CVF Conf. on Computer Vision and
Pattern Recogn., 2020.

[2] “The BossHoss Augmented Reality,” [Online] Avali-
able: https://volucap.de/portfolio-items/the-bosshoss-
augmented-reality.

[3] “Culture 3D Cloud,” [Online] Avaliable: http://c3dc.fr.

[4] “MPEG 3DG, V-PCC test model v8,” in ISO/IEC
JTC1/SC29/WG11N18884, 2019.

[5] R. Mekuria, K. Blom, and P. Cesar, “Design, imple-
mentation, and evaluation of a point cloud codec for
tele-immersive Video,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 4, pp. 828–842, 2016.

[6] R. L. de Queiroz and P. A. Chou, “Motion-compensated
compression of point cloud video,” in Proc. IEEE Int.
Conf. on Image Processing, 2017.

[7] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based
compression of dynamic 3D point cloud sequences,”
IEEE Trans. Image Processing, vol. 25, no. 4, pp. 1765–
1778, 2016.

[8] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and
segmentation,” in Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recogn., 2017.

[9] G. Zhang, M. Fiore, I. Murray, and P. Patras, “CloudL-
STM: A recurrent neural model for spatiotempo-
ral point-cloud stream forecasting,” arXiv preprint
arXiv:1907.12410, 2019.

[10] Y. Min, Y. Zhang, X. Chai, and X. Chen, “An efficient
PointLSTM for point clouds based gesture recognition,”
in Proc. IEEE/CVF Conf. on Computer Vision and Pat-
tern Recogn., 2020, pp. 5760–5769.

[11] H. Fan and Y. Yang, “PointRNN: Point recurrent
neural network for moving point cloud processing,”
arXiv:1910.08287, 2019.

[12] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein,
and J. M. Solomon, “Dynamic graph CNN for learning
on point clouds,” ACM Trans. On Graphics, vol. 38, no.
5, pp. 1–12, 2019.

[13] F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli,
“Learning robust graph-convolutional representations
for point cloud denoising,” IEEE J. Select. Topics in
Signal Processing, pp. 1–1, 2020.

[14] Y. Zhang and M. Rabbat, “A graph-CNN for 3D point
cloud classification,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing, 2018.

[15] I. Viola, J. Mulder, F. De Simone, and P. Cesar, “Tempo-
ral interpolation of dynamic digital humans using con-
volutional neural networks,” in Proc. IEEE Int. Conf. on
Artificial Intelligence and Virtual Reality, 2019.

[16] E. d’Eon, B. Harrison, T. Myers, and P. A.
Chou, “8i Voxelized Full Bodies A Voxelized
Point Cloud Dataset,” ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, Geneva, January 2017.

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++:
Deep hierarchical feature learning on point sets in a met-
ric space,” in Proc. Conf. and Workshop on Neural In-
formation Processing Systems, 2017.

[18] D.Urbach, Y. Ben-Shabat, and M. Lindenbaum,
“DPDist: Comparing point clouds using deep point
cloud distance,” arXiv:2004.11784, 2020.

[19] “Mixamo,” [Online] Avaliable: http://mixamo.com.

[20] Blender Online Community, Blender - a 3D modelling
and rendering package, Blender Foundation, Blender
Institute, Amsterdam,

[21] M. A. Irfan and E. Magli, “3D point cloud denoising
using a joint geometry and color k-NN graph,” in Proc.
IEEE European Signal Processing Conf., 2021.

https://volucap.de/portfolio-items/the-bosshoss-augmented-reality
https://volucap.de/portfolio-items/the-bosshoss-augmented-reality
http://c3dc.fr
http://mixamo.com

SPATIO-TEMPORAL GRAPH-RNN FOR
POINT CLOUD PREDICTION

SUPPLEMENTARY MATERIAL

This supplementary material provides additional details of
the proposed framework.

In Sec A we provide details on hierarchical structure. Sec
B includes additional information of the datasets used in the
experiments. Sec C provides implementation details of the
architecture. Lastly Sec D provides visualization and analysis
of additional experiments.

A. HIERARCHICAL STRUCTURE DETAILS

In this paper, we proposed a hierarchical architecture, where
before each Graph-RNN cell the point cloud and the asso-
ciated components are down-sampled by a Sampling and
Grouping (SG) module. In a second phase, the point cloud is
up-sampled to the original number of points State Propaga-
tion (SP) module. The SG and SP modules were developed
in the PointNET++ [17] work. This section includes a de-
scription of the modules operations for the method proposed
in this paper, for a more complete description we refer the
reader to the original [17] work.

A.1. Sampling and Grouping

The Sampling and Grouping module takes a point cloud with
n points and uses the farthest point sampling (FPS) algorithm
to sample n′ points. The sampled points are defined as cen-
troids of local regions. Each region is composed of the k
closest neighborhood points to the centroid point. The fea-
tures and states of the points in a region are max pooled into
a single feature and state representation. This representation
becomes the feature and the state of the centroid point. The
SG module outputs the n′ sampled points and their updated
feature and state.

A.2. State Propagation

In the SG modules, the original point set is down-sampled.
However, in our prediction task, we want to obtain the point
states for all the original points. The chosen solution is to
propagate states from subsampled points n′ × ds to the origi-
nal points n × ds. To this end, for every down-sampling SG
module, there is a corresponding up-sampling SP module,
with a skip link connection between them as shown in Figure
1. The SP module receives the target points we want to prop-
agate the states into using skip connections, and interpolates
the state’s values S of n′ points at coordinates of the n points,
using inverse distance weighted average based on k-nearest
neighbors. The interpolated states on n points are then con-
catenated with states from the SG module. The concatenation
of both states is passed through an MLP to update every point
state. The process is repeated until we have propagated states

to the original set of points.

An additional advantage of the hierarchical architecture
provided by the SG and SP modules is a reduction of com-
putational power [11]. This is a result of the reduced number
of points processed in the layer after the down-sampling op-
erations. Not only does the hierarchical architecture allow
us to achieve better performance (more accurate predictions),
informal evaluation during our experiments also confirmed a
reduction of computation required.

B. DATASET DETAILS

This section provides details on point cloud datasets used in
experiments.

B.1. Moving MNIST Point Cloud

The Moving MNIST Point Cloud dataset is a small, simple,
easily trained dataset that can provide a basic understanding
of the behavior of the network.

The dataset is created by converting the MNIST dataset of
handwritten digits into moving point clouds. The sequences
are generated using the process described in [11]. Each se-
quence consists of 20 consecutive point clouds. Each point
cloud contains one or two potentially overlapping handwrit-
ten digits moving inside a 64× 64 area. Pixels whose bright-
ness values (ranged from 0 to 255) are less than 16 are re-
moved, and 128 points are randomly sampled for one digit
and 256 points for two digits. Locations of the pixels are
transformed to (x, y) coordinates with the z-coordinate set to
0 for all points.

B.2. Synthetic Human Bodies

Open datasets for dynamic point clouds are limited, espe-
cially if interested in complex dynamic movements and not
only body translation. Hence, we created synthetic data set
of animated human bodies, similarly to [15]. We use the on-
line service Mixamo [19] to create multiple models of ani-
mated characters. Next, we used the 3D animation software
Blender [20] to render the animations and to extract one mesh
per frame. The mesh is converted to a high-resolution point
cloud by randomly sampling 8000, 0000 points from the faces
of the mesh. The point cloud is further downsampled to 4, 000
points using FPS to reduce memory and processing cost dur-
ing experiments

The Human Bodies training dataset consists of 15 char-
acter models each performing 20 animations, for a total of
300 sequences, we were careful to select a diverse group of
activities. Each sequence contains 50 frames, 12 consecu-
tive frames are randomly selected at each training step. The
dataset is further augmented by using multiple sampling rates.

The test dataset consists of 5 models denoted: An-
dromeda, James, Josh, Pete and Shae. All performing the
same 9 activities: ’Big Jump’, ’Climbing Up Wall’, ’Entering
Code’,’Jazz Dancing’, ’Turn and Kick’, ’Running’, ’Stab-
bing’, ’Walking Backwards’, ’ Walk with Rifle’. We again
use different sampling rates to expand the dataset to a total of
152 sequences.

(a) (b)

(c) (d)

(e) (f)

Fig. S1. Test characters: (a) Andromeda (b) Bryce (c) James
(d) Pete (f) Shae

B.3. JPEG Pleno 8i Voxelized Full Bodies

The dynamic voxelized point cloud sequences in this dataset
are known as the 8i Voxelized Full Bodies (8iVFB). There
are four sequences in the dataset, known as longdress, loot,
redandblack, and soldier, pictured below. In each sequence,
the full body of a human subject is captured by 42 RGB
cameras configured in 14 clusters. The point clouds are orig-
inally high resolution with over 700, 000 points. The dataset
is scaled by a factor of 0.0018 and subsequently translated
(−0.37426165;−0.03379993;−0.29201281) to match the
Human Bodies training data scale and general position. The
data is then downsampled to 4,000 points using FPS.

FPS was chosen for the last downsample operations be-
cause it better coverage of the entire point cloud, compared
with random sampling. This dataset is only used for evalua-
tion, of the models trained with the Synthetic Human Bodies
dataset.

(a) (b)

(c) (d)

Fig. S2. JPEG Test characters: (a) longdress (b) loot (c)
redandblack (d) soldier

C. IMPLEMENTATION DETAILS

This section describes the parameters and specifications of the
proposed framework.

C.1. Training details

The models are trained using the Adam optimizer, with a
learning rate of 10−5 for all datasets. The models trained with
the MNIST dataset are trained for 200, 000 interactions with
a batch size of 32. For the Synthetic Human Bodies dataset,
the PointRNN and Graph-RNN models a batch size of 4 is
set and trained for 200, 000 interaction in long-term predic-
tion task and for 150, 000 interaction in short-term predic-
tion task. The Graph-RNN (color) model that considers point
clouds with color is trained for 200, 000 interaction for both
tasks with a batch size of 2. For all models, the gradients are
clipped in range [5, 5].

C.2. Architecture Specifications

This section provides the specification for each of the main
components: Sampling and Grouping (SG); The Graph neu-
ral network (GNN) for features learning; Graph-RNN cells;
States propagation (SP); Final Fully connected layer (FC);

The Graph-RNN model is implemented the same way for
the MNIST dataset and the Synthetic Human Bodies. For
the MNIST dataset, we compare Graph-RNN results with the
original PointRNN results (k-nn Model). However, since the
original PointRNN paper [11] did not perform experiments
on the Synthetic Human Bodies dataset, we choose the k-
values and dimensions to adapt the PointRNN framework to
the dataset. To have a fair comparison between our proposed
Graph-RNN and Point-RNN, we tried to keep the frameworks
as similar as possible while preserving the design choices of
each one.

The architecture specifications of both Graph-RNN and
PointRNN are displayed in Table S1.

Specifications
number of

output points Graph-RNN model Point-RNN model

hierarchical basic Components k ouput channels Components k ouput channels
n/2 - SG 4 - SG 4 -
n/2 n GNN layer 1 16 64 - - -
n/2 n GNN layer 2 16 128 - - -
n/2 n GNN layer 3 8 128 - - -
n/2 n Graph-RNN cell 1 8 256 PointRNN cell 1 24 256
n/4 - SG 4 - SG 4 -
n/4 n Graph-RNN cell 2 8 256 PointRNN cell 2 16 256
n/8 - SG 4 - SG 4 -
n/8 n Graph-RNN cell 3 8 256 PointRNN cell 3 8 256
n/4 - SP 1 - 256 SP 1 - 256
n/2 - SP 2 - 256 SP 2 - 256
n - SP 3 - 256 SP 3 - 256
n n FC 1 - 126 FC1 - 128
n n FC 2 - 3 FC 2 - 3
- - Graph-RNN (color) model - - -
n n FC color 1 - 126 - - -
n n FC color 2 - 3 - - -

Table S1. Architecture specifications. Each component is de-
scribed by tree attributes, i.e number of output points, number
of neighborhoods (k) and number of output channel.

For all the models, the final fully connected (FC) layer is
implemented in fact by two fully connected layers FC1 and
FC2. The FC1 and FC2 layers process the states to predict
the geometry displacement.

The Graph-RNN (color) model that takes color as input
has two additional fully connected layers (FC1 color and FC2
color). Similar to the FC for points, the FC (color) will take
the states as input and predict the color displacement. The as-
sumption that the color of the points does not change during
the movement, while mostly correct in the case of synthet-
ically generated data, can not be applied in real-world data.
The point’s color can change due to lighting conditions, or in
extremes cases, scene objects can transform, or be replaced by
new ones. The color prediction was not a priority in this work.
The FC (color) does not affect the loss function and has no im-
pact on the overall method. Nevertheless, in long-term predic-
tion evaluation, we disregard the prediction of color displace-
ment and consider instead a null color displacement, meaning
all the points keep the same color from frame to frame. In the
future, we intend to explore color prediction, by including a
color evaluation metric in the loss function.

D. EXTRA RESULTS VISUALIZATION

This section presents visualization examples of prediction on
Synthetic Human Bodies and JPEG datasets. Long-term pre-
diction examples are depicted on the right side of the next
page and short-term prediction examples on left.

Long-term prediction is a very challenging task. In the
MNIST dataset, the moving digits perform simple translation
movements. The Graph-RNN can effectively model these
simple motions over a long period, and make a long-term
prediction (10 frames). On the other hand, Synthetic Human

Bodies perform more complex activities (e.g dancing, climb-
ing, running). Since these activities are composed of irregular
movements, with sudden motion changes, they are incredibly
difficult to predict in the long-term.

Figure S3 and Figure S4, show the difficulty in long-
term prediction in human activities. Both the PointRNN and
Graph-RNN have trouble at preserving the spatial structure
over time. This was expected since in long-term prediction
the error in each predicted frame is propagated and amplified
for each subsequent prediction. While from Figures S3 and
S4, it would appear the PointRNN is better at preserving
the spatial structure, this is because the PointRNN failed to
capture the correct motion. The Graph-RNN, on the other
hand, correctly captured the general motion, losing however
some of the point cloud shape as a result. We can conclude
that a better prediction comes with the risk of higher defor-
mation. The Point-RNN achieved a smaller prediction error
in the long-term prediction of the Human Bodies dataset, by
making more conservative predictions (low movement pre-
diction). In contrast, the Graph-RNN makes more accurate
predictions, however in the cases the predicted motion is
wrong, the error is amplified, resulting in a worse average
performance.

Figure S6 and S7 display short-term prediction examples.
All the models show very similar visual results and can make
accurate predictions. The Graph-RNN superior performance
can be observed in the small details like in the knee and foot
of the model.

Figures S5 and S8 show examples on the JPEG Human
Bodies dataset. The point clouds sequence from the JPEG
dataset has very little movement, confirmed by the good
performance of the Copy Last Input model in both short
and long-term prediction. While the Graph-RNN achieved
a smaller prediction error in the chosen evaluation metrics,
it is difficult to see the performance gains by looking at the
prediction visualizations.

Fig. S3. Short-term prediction on ’Pete Running’ sequence

Fig. S4. Short-term prediction on ’Shae Jazz Dancing’ se-
quence

Fig. S5. Short-term prediction on ’JPEG Soldier’ sequence

Fig. S6. Short-term prediction on ’James Running’ sequence

Fig. S7. Short-term prediction on ’Josh Jazz Dancing’ se-
quence

Fig. S8. Short-term prediction on ’JPEG Redandblackdress”
sequence

	1 Introduction
	2 Proposed Method
	2.1 GNN for Feature Learning
	2.2 Graph-RNN
	2.3 Training

	3 Experiments
	4 Conclusion
	5 References
	A Hierarchical structure details
	A.1 Sampling and Grouping
	A.2 State Propagation

	B Dataset details
	B.1 Moving MNIST Point Cloud
	B.2 Synthetic Human Bodies
	B.3 JPEG Pleno 8i Voxelized Full Bodies

	C Implementation details
	C.1 Training details
	C.2 Architecture Specifications

	D Extra Results visualization

