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Abstract 

Misophonia is a common disorder characterized by the experience of strong negative 

emotions of anger and anxiety in response to certain everyday sounds, such as those 

generated by other people eating, drinking and breathing. The commonplace nature of 

these ‘trigger’ sounds makes misophonia a devastating disorder for sufferers and their 

families. How such innocuous sounds trigger this response is unknown. Since most trigger 

sounds are generated by orofacial movements (e.g. chewing) in others, we hypothesized 

that the mirror neuron system related to orofacial movements could underlie misophonia. 

We analysed resting state fMRI (rs-fMRI) connectivity (N=33, 16 females) and sound-evoked 

fMRI responses (N=42, 29 females) in misophonia sufferers and controls. We demonstrate 

that, compared to controls, the misophonia group show no difference in auditory cortex 

responses to trigger sounds, but do show: (i) stronger rs-fMRI connectivity between both 

auditory and visual cortex and the ventral pre-motor cortex responsible for orofacial 

movements; (ii) stronger functional connectivity between the auditory cortex and orofacial 

motor area during sound perception in general; (iii) stronger activation of the orofacial 

motor area, specifically, in response to trigger sounds. Our results support a model of 

misophonia based on ‘hyper-mirroring’ of the orofacial actions of others with sounds being 

the ‘medium’ via which action of others is excessively mirrored. Misophonia is therefore not 

an abreaction to sounds, per se, but a manifestation of activity in parts of the motor system 

involved in producing those sounds. This new framework to understand misophonia can 

explain behavioural and emotional responses and has important consequences for devising 

effective therapies. 
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Significance Statement 

Conventionally, misophonia, literally ‘hatred of sounds’ has been considered as a disorder of 

sound emotion processing, in which ‘simple’ eating and chewing sounds produced by others 

cause negative emotional responses. Our data provide an alternative but complementary 

perspective on misophonia that emphasizes the action of the trigger-person rather than the 

sounds which are a by-product of that action. Sounds, in this new perspective, are only a 

‘medium’ via which action of the triggering-person is mirrored onto the listener. This change 

in perspective has important consequences for devising therapies and treatment methods 

for misophonia. It suggests that instead of focussing on sounds, which many existing 

therapies do, effective therapies should target the brain representation of movement. 
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Introduction 

Misophonia is a disorder of emotion processing in which ordinary day-to-day sounds, at 

normal volume, cause distress to the point that it has debilitating effects on the 

occupational, social and domestic life of the sufferer. Typically, these sounds (termed 

‘trigger’ sounds) include eating, chewing, drinking and breathing sounds made by people 

other than the sufferer. Reactions of a misophonia sufferer to trigger sounds include anger, 

irritation, disgust, anxiety and, in some cases, violent rage accompanied by a strong urge to 

escape from the situation. Since trigger sounds are common, and almost inescapable in the 

company of others, misophonia can lead to social isolation, and cases of suicide and suicide 

attempts have been reported in the media (Nauman, 2017). Although comprehensive 

epidemiological data on misophonia are lacking, three studies (Wu et al., 2014; Zhou et al., 

2017; Naylor et al., 2020) in undergraduate student samples found 6 to 20% had moderate 

to severe symptoms of misophonia.  

A considerable effort has been made in the last few years to understand the brain 

mechanisms of misophonia. Kumar and colleagues (Kumar et al., 2017) showed 

hyperactivity of anterior insula, specifically in response to trigger sounds in the misophonia 

group compared to normal healthy controls. Moreover, the functional connectivity of 

anterior insula, in response to trigger sounds, was stronger to a number of brain regions 

including core nodes of the default mode network (vmPFC and PCC). Using a similar 

paradigm with video clips as stimuli, Schroder and colleagues (Schroder et al., 2019) 

replicated the findings of hyperactivity in anterior insula to trigger stimuli in subjects with 

misophonia. Although the neuroimaging studies have identified a brain network underlying 
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misophonia, the question of why such innocuous sounds cause distress and hyperactivity of 

brain regions remains unanswered. 

Interestingly, most of the triggers in misophonia happen to be human generated sounds of 

eating and chewing (Kumar et al., 2014; Jager et al., 2020) which involve orofacial actions. 

Although sounds are most distressing, images and silent videos of eating and chewing can 

also cause distress. Trigger sounds in misophonia ‘automatically’ elicit the emotional 

response (Dozier, 2015) without having any self-control, despite preserved insight into the 

disproportionate nature of the feelings and reactions evoked (Cavanna and Seri, 2015). 

Additionally, trigger sounds/actions can induce spontaneous mimicry of the triggering 

orofacial action in many misophonia sufferers (Edelstein et al., 2013). Since the mirror 

neuron system (Rizzolatti and Craighero, 2004) responds to the action of others and is 

known to underlie spontaneous mimicry (Prochazkova and Kret, 2017) and emotional 

responses (Bastiaansen et al., 2009), we speculated that a process of ‘mirroring’ the action 

represented by trigger sounds might be a fundamental part of the mechanism underlying 

misophonia. That is, in misophonia sufferers, trigger stimuli activate the same part of motor 

cortex that is active during generation of trigger stimuli.  

Mirror neurons are a set of neurons discovered in the motor cortex of monkeys that fire not 

only when the monkey performs a particular action but also when the monkey sees another 

individual performing the same action (Pellegrino et al., 1992; Rizzolatti and Craighero, 

2004). For example, there are mouth mirror neurons related to ingestive functions such as 

chewing or sucking of food and lip-smacking (Ferrari et al., 2003). Moreover, the mirror 

neurons can be activated not only by the sight of action but also by the sounds of the action 

(Kohler et al., 2002). In humans, mirroring of actions takes place in a network of brain areas 

including the ventral pre-motor cortex referred to as the Mirror Neuron System (MNS) 
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(Iacoboni and Dapretto, 2006). The MNS has been shown to mirror mouth (e.g. biting and 

chewing an apple), hand and foot actions (Buccino et al., 2001) and many others (Rizzolatti 

and Sinigaglia, 2010). 

A defining feature of the mirror neuron system is that it associates a pattern of auditory or 

visual input (such as seeing or hearing somebody chewing) to a part of the motor cortex 

(orofacial motor cortex) involved in producing the motor movement associated with the 

input (such as the mouth or orofacial movements) in others. This requires connectivity 

between sensory and motor regions. We, therefore, first estimated connectivity of auditory 

and visual cortex to the rest of the brain in misophonia and control groups using analyses 

based on resting state fMRI (rsfMRI), when there was no specific stimulus or task 

performed. We next analyzed the change in functional connectivity of two groups in 

response to three categories of sounds (Trigger sounds, which evoked misophonic reaction 

in a misophonia group; Unpleasant sounds, which are perceived to be aversive by both  

groups and; Neutral sounds). Lastly, activation of auditory cortex and orofacial motor cortex 

to the three sound categories was estimated. Put together, our data support a model of 

misophonia based on ‘hyper-mirroring’ of actions of others in which there is an excessive 

engagement of the orofacial motor cortex by the auditory and visual sensory input 

associated with those actions. These results provide a new framework to understand 

misophonia, which has important consequences for the type of therapy and treatment 

options to be considered for misophonia.      

 

Materials and Methods  
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We present data from two experiments: (i) resting state fMRI and (ii) sound-evoked fMRI. 

The resting state fMRI data are new. The data for the sound-evoked fMRI experiment have 

been published previously (Kumar et al., 2017) and are re-analysed here.  

Subjects 

Seventeen subjects with misophonia and 20 control subjects were recruited for 

participation in the resting state fMRI study after providing written informed consent to 

procedures approved by the local ethics committee. The misophonia subjects were 

recruited via an advertisement on a misophonia support website 

(https://www.allergictosound.com/). Misophonia participants were first required to 

complete three questionnaires: (i) a misophonia  questionnaire designed in our lab and used 

previously in our studies (Kumar et al., 2014; Kumar et al., 2017), (ii) the Misophonia 

Amsterdam questionnaire (Schroder et al., 2013), and (iii) the Misophonia Questionnaire 

(Wu et al., 2014). A misophonia participant was recruited for the study if all of the following 

applied: (i) they identified sounds of eating, breathing or chewing as trigger sounds, (ii) 

sounds alone could trigger the misophonic reaction (that is, no picture or video of the 

person producing trigger sounds was needed along with sounds), (iii) the person producing 

trigger sounds did not have to be a specific person such as a close family member, and (iv) 

they scored 10 or higher (moderate to extreme misophonia) on the Amsterdam 

questionnaire. All subjects were screened by telephone by the first and third author to 

confirm their symptoms and questionnaire responses, and to rule out MRI 

contraindications. 

Controls were recruited via an advertisement on a local university website. In the 

advertisement, the exact purpose of the study was not mentioned. Instead, it was stated 

that the objective of the study was to determine brain responses to our day-to-day 
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environmental sounds. Once participants signed up for the study, they were asked by 

telephone how they respond to environmental sounds including sounds of eating and 

breathing. They were then asked to complete the Misophonia Questionnaire (Wu et al., 

2014). If typical symptoms of misophonia were absent (e.g. responding angrily, leaving the 

situation in response to typical trigger sounds in misophonia) the subject was recruited. No 

subject who signed up for the study was incidentally identified to have misophonia. The 

misophonia and control groups were matched in age and sex. All participants were paid 

£10/hour plus travel expenses. 

In the sound evoked fMRI study, 20 misophonia sufferers and 22 age- and sex- matched 

controls were recruited following a procedure similar to that described above. For details, 

please see (Kumar et al., 2017).  

Experimental Procedure: Resting State fMRI 

Ten minutes of resting state fMRI data were acquired while participants kept their eyes 

open. An eye-tracker was used to check if participants conformed to the instruction. 

Physiological parameters, heart rate and respiration, were measured continuously using a 

pulse oximeter and respiration belt.  

Experimental Procedure: Sound-Evoked fMRI 

fMRI data were continually acquired during the presentation of three categories of sounds: 

(i) trigger sounds, which evoke a misophonic reaction in subjects with misophonia e.g. 

eating/chewing sounds, (ii) aversive sounds, which are perceived to be unpleasant by both 

groups but do not evoke a misophonic response (e.g. a baby cry), and (iii) neutral sounds.  

List of sounds is given in Table 1. After every sound presentation for 15s, subjects gave two 

ratings (i) how annoying the sound was (both groups) (ii) how effectively the sound 

triggered misophonic distress (misophonia subjects) or how anti-social the sound was, 
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based on whether subject would move away from the source of sound (control subjects). A 

total of 126 trials (42 for each sound category) were presented across 5 sessions each 

lasting ~11 minutes.  Further details of the procedure can be found from our previous 

publication (Kumar et al., 2017). 

 

 

Functional Imaging Data Acquisition: Resting State fMRI 

Resting state MRI data were collected on a Siemens 3 Tesla Trio whole-body MRI scanner 

(Siemens Healthcare, Erlangen Germany) with a 32-channel head coil at the Wellcome 

Centre for Human Neuroimaging, University College London. The subject movement was 

discouraged by instruction and by use of soft padding within the headcoil. The acquisition 

parameters used were (TR=3.36s; in-plane resolution=3mm isotropic; TE=30ms; 48 slices 

(covering the whole brain); matrix size=64x64; echo spacing=0.5ms; orientation=transverse; 

slice tilt=-30° relative to the AC-PC line).  A total of 180 volumes were acquired for the 

resting state.  

Functional Imaging Data acquisition: Sound evoked fMRI 

All imaging data were collected on a Siemens 3 Tesla whole-body MRI scanner (Siemens 

Healthcare, Erlangen Germany) at the Wellcome  Centre for Human Neuroimaging, 

University College London. Functional MRI data were acquired continuously with a 12-

channel coil using a sequence that was optimized for acquisition from the amygdala and 

orbitofrontal cortex (Weiskopf et al., 2006).The fMRI acquisition parameters were the same 

as in the resting state acquisition. A total of 1005 volumes were acquired across 5 sessions. 

Fieldmaps were acquired (parameters: short TE=10ms; Long TE=12.46ms; polarity of phase-

encoding blips=-1; EPI readout time=37ms) for every subject after the third session.  



10 
 

 10 

Structural data acquisition for use with resting state fMRI  

A structural scan for each participant was acquired using a whole-brain quantitative multi-

parameter maps (MPM) protocol (Weiskopf et al., 2013), with 32-channel head coil, which 

consisted of a total of 5 sequences: three FLASH sequences and two calibration sequences 

for correcting field inhomogeneities (Lutti et al., 2010; Lutti et al., 2012). The three FLASH 

sequences were respectively proton density (PD), magnetization transfer (MT) and T1 

weighted (T1w) by choosing appropriate values of repetition time (TR) and flip angle (α) for 

each of them. The repetition times and flip angles for the three FLASH sequences were (PD: 

TR=23.7ms, α=6°; MT: TR=23.7ms, α=6°; T1: TR=18.7ms, α=20°). For the MT-weighted 

acquisition, a Gaussian RF pulse of 4ms duration and 220° nominal flip angle was applied 2 

kHz off-resonance before non-selective excitation. Gradient echoes were acquired with 

alternating readout gradient polarity at 6 equidistant times between 2.2ms and 14.7ms. For 

PD-weighted acquisition, two additional echoes at 17.2ms and 19.7ms were acquired. A high 

readout bandwidth of 425Hz/pixel was used to reduce off-resonance artefacts. During 

acquisition subjects were encouraged to be as still as possible with eyes open or closed.  

Structural data acquisition for use with sound evoked fMRI  

The procedure and parameters for the structural MRI in the sound evoked fMRI experiment 

were the same as for the resting state fMRI experiment. 

Analysis: Resting State Functional Connectivity 

Functional connectivity analysis was performed using CONN toolbox (Whitfield-Gabrieli and 

Nieto-Castanon, 2012)(v 19.b). The first five volumes were discarded from the analysis to 

allow magnetic strength of the scanner to reach steady state. The data were pre-processed 

using the default preprocessing pipeline (realignment, slice time correction, outlier 

detection, segmentation and normalization and smoothing with an 8mm kernel). A T1 
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weighted (T1w) scan acquired as a part of the MPM protocol was used as a structural scan 

for each subject. The regions of interest (ROIs) for auditory cortex (Heschl’s gyrus (HG), 

planum temporale (PT)) were anatomically defined using the brain atlas accompanying 

CONN toolbox. The ROIs for visual cortex (primary visual cortex V1, secondary visual cortex 

V2) were extracted from Anatomy toolbox (Eickhoff et al., 2005). The ROIs for dorsal (dPMC) 

and ventral (vPMC) pre-motor areas were based on the Human Motor Area Template 

developed by Mayka et al. (2006). The anterior insula seed regions were based on a sphere 

of 6mm radius around the maxima of activation observed in Kumar et al., (2017). The time 

series was extracted from each voxel of the ROI and then averaged across voxels to define a 

single time series for the ROI. The effect of movement on the BOLD signal was reduced by 

regressing out motion parameters, along with their first-order temporal derivative, by 

running whole-brain voxel-wise regression. The effect of physiological noise (cardiac and 

respiratory) was removed by generating 14 regressors (6 for cardiac phase, 6 for respiratory 

phase, 1 for heart rate, 1 for change in respiratory volume) using the Physio Toolbox (Hutton 

et al., 2011) and their first-order temporal derivative and using these regressors of no 

interest at the first level of analysis. Additionally, five covariates were generated using the 

aCompCor method (Behzadi et al., 2007), which uses principal component analysis on the 

measurements made in the white matter and CSF of each individual subject’s segmented 

white matter and CSF masks. The data were bandpass filtered in the range [0.008 0.09] Hz 

and first-level functional connectivity for each group was computed using bivariate 

correlation coefficient between the seed time series and time series from all other voxels in 

the brain (seed-to-voxel analysis). Comparison of connectivity between the two groups at 

the second level was undertaken using two-sample t-tests with ‘age’ and ‘sex’ as regressors 
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of no interest. All results shown are cluster corrected with (one-sided) cluster defining 

threshold of p = 0.001. 

Analysis: Sound-Evoked fMRI Activations 

The analysis was performed using a standard general linear model (GLM) as implemented in 

SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The three categories 

of sounds were separately modelled as events of 15s duration and then convolved with the 

haemodynamic response function to generate three regressors. Button presses and motion 

regressors were used as regressors of no interest. Further details of the analysis can be 

found in Kumar et al. (2017). Interaction between group and sound type in the orofacial 

motor area was computed using a 2x3 ANOVA with group (Misophonia and Control) and 

sound type (trigger, unpleasant and neutral) as factors, and subject effects modelled. The 

ROI for orofacial motor cortex was defined based on the resting state connectivity. 

Specifically, the part of vPMC which showed stronger connectivity to planum temporale in 

resting state was chosen as a ROI.  Beta values from within a ROI were extracted using in-

house Matlab scripts.  Variation of beta values in the orofacial motor cortex with rating was 

estimated using regression analysis and then comparing the regression coefficients between 

two groups using two-sample t-test.  

Analysis: Sound-Evoked Functional Connectivity 

The ROI for the orofacial motor area was chosen as above.  Three regressors for the sound 

categories were defined as in the GLM analysis. Other regressors (cardiac, breathing and 

motion) and procedure for analysis were similar to the one used for resting state functional 

connectivity except the data were high pass filtered with a cut-off frequency of 1/125 Hz. All 

results shown are cluster corrected with (one-sided) cluster defining the threshold of p = 

0.001. 
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Results 

One misophonia subject was excluded from the resting state analysis because the 

physiological measurements could not be accessed. Three control subjects were excluded 

due to excessive movements in the MRI scanner. The final sample for analysis of resting 

state data consisted of 16 misophonia and 17 control subjects.   

 

Demographics and Questionnaire Scores 

There was no significant difference between age (p =0.38) and sex (p =0.86) of the two 

groups. The misophonia group scored higher (p < 0.001) on the Misophonia Questionnaire 

(Wu et al., 2014) compared to controls. Misophonia subjects scored an average of 42.6 on 

the Misophonia Questionnaire compared to 17.6 in controls. Additionally, misophonia 

subjects scored an average of 15.5 out of a maximum of 24 on the Amsterdam Misophonia 

Questionnaire (Schroder et al., 2013) which corresponds to ‘severe’ misophonia. The 

demography and questionnaire scores are summarized in Table 2. 

Resting state Functional Connectivity  

Since the misophonic reaction begins with audio/visual input, connectivity  of auditory and 

visual cortex was estimated and compared between the two groups. Anatomically defined 

HG (which contains primary auditory cortex) and PT (secondary auditory cortex) were 

separately chosen as seed regions and their connectivity to every other voxel in the brain 

(seed-to-voxel analysis) was estimated. Relative to controls, the misophonia group showed a 

significant increase in functional connectivity of right PT to ventral pre-motor cortex (vPMC) 

[Figure 1A; peak at: 60, 12, 24; t(29) = 4.62; p < 0.001, q[FDR] < 0.05; cluster size =283]. No 

other cluster in the brain showed significant increased connectivity to PT. There was no 
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significant difference in HG connectivity between the two groups.  As in the case of auditory 

cortex, we chose both primary (V1) and secondary (V2) visual cortex as seed regions. 

Relative to controls, the misophonia group showed significantly increased connectivity of 

right V2 to vPMC [Figure 1B; peak at: 58, 0, 24; t(29) = 4.34; p < 0.001, q[FDR] < 0.05; cluster 

size = 221; Table 3(i)], which is very close to the part of vPMC that showed increased 

connectivity to right PT. This area of the motor cortex, when electrically stimulated, 

produces mouth and lip movements (Kern et al., 2019), and is active when either mouth or 

lip movements are made (Henrik Ehrsson et al., 2003; Grabski et al., 2012; Kern et al., 2019) 

or when these actions (e.g., someone biting an apple) made by others are passively 

observed (Buccino et al., 2001; Kern et al., 2019).  Moreover, the vPMC is a part of the 

human mirror neuron system (Rizzolatti and Craighero, 2004). Other areas to which 

connectivity of V2 was stronger in misophonia included right anterior insula and right 

parietal operculum/PT (Table 3(i)). There was no significant difference between the 

connectivity of V1 to vPMC in the two groups, but stronger connectivity of left V1 to right 

anterior insula and planum polare (Table 3(ii)) in the misophonia group was observed. 

To investigate if ‘mirroring’ could underlie the misophonic distress, we used rsfMRI data to 

estimate the connectivity of vPMC which contains orofacial motor cortex that showed 

stronger connectivity to planum temporale (boundary marked in black in top-panel of Figure 

1C) and the part of anterior insula whose responses most strongly correlated with 

misophonic distress in our previous work (Kumar et al., 2017). To further test the specificity 

of connectivity of vPMC, we also chose dPMC as a ROI and estimated its connectivity. 

Increased connectivity of the right vPMC to anterior insula was observed in the misophonia 

group [Figure 1C; peak at: 42, 6, -6, t(29) = 4.64; p < 0.001, q[FDR] < 0.05; cluster size = 165]. 

Other regions included occipital cortex, fusiform gyrus and middle temporal gyrus (Table 
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3(iii)). No significant difference in the connectivity of left or right dPMC or left vPMC 

between the two groups was observed indicating the specificity of hyper-connectivity of 

right vPMC to insula in misophonia. 

Finally, the misophonia group also showed a significant increase in connectivity between left 

anterior insula and left motor and somatosensory (M1/S1) cortex [Figure 1D; peak at:-18, -

16, 78; t(29) = 4.82; p < 0.001, q[FDR] < 0.05; cluster size = 383] and cerebellum (Table 3(iv)). 

This part of the cerebellum (lobule 6) is known to be involved in mirroring and observation 

of bodily actions of others (Van Overwalle et al., 2014; Abdelgabar et al., 2019). Stronger 

coupling of vPMC containing orofacial motor cortex and cerebellum to anterior insula 

supports ‘mirroring’ as a likely mechanism for the autonomic and emotional reaction in 

misophonia mediated by the anterior insula. 

Functional connectivity of orofacial motor area in response to sounds 

We next examined sound-driven changes in functional connectivity. This was done using 

fMRI data acquired on a separate misophonia and control cohort during the presentation 

with three categories of sounds: trigger sounds (which evoke misophonic reaction in the 

misophonia group), unpleasant sounds (which are perceived as aversive by both the groups 

but do not evoke misophonic reaction in the misophonia group), and neutral sounds (see 

Figure 1 in Kumar et al. (2017) for rating data). We first defined a ROI in the orofacial area 

showing stronger connectivity to PT in the resting state and then analyzed its connectivity to 

the rest of the brain in response to sounds. A significant main effect of group (Misophonia 

Group > Controls) was observed in the auditory cortex covering right PT and right lateral HG 

[Figure 2, top panel; peak at: 46, -26, 16; p < 0.001, q[FDR] < 0.05; cluster size =137], but no 

significant group x sound interaction was seen in the auditory cortex. Plots of connectivity 

values (Figure 2, bottom panel) in the auditory cortex confirm the main effect.  
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Activation of the orofacial motor area to sounds 

The increased connectivity between audio-visual sensory and orofacial motor cortical areas 

in misophonia in the resting state and in presence of auditory stimulation, made us consider 

whether the orofacial motor area would show increased activation to trigger sounds in the 

misophonia group. With the ROI of the orofacial motor area as defined above, a significant 

group by sound category interaction was observed [Figure 3A (i); p = 0.002 after small 

volume correction]. Plot of beta values (Figure 3A(ii)) for individual sound categories show 

that the interaction is driven by greater activity in misophonia subjects compared to 

controls for trigger sounds but not for unpleasant or neutral sounds. Importantly, this 

specific increase in activity for trigger sounds was not shown in auditory cortex (Figure 3B) 

suggesting that a trigger sounds-specific increase in activity first arises in the orofacial motor 

cortex, rather than being carried forward from earlier auditory system hyperactivity.  

To further confirm relation between behavioural data and BOLD activity in the orofacial 

motor cortex, we measured activity (beta values) for each sound individually (without 

reference to the group it belongs to) and determined how the activity of orofacial motor 

cortex relates to the rating given to the sound by the subjects. Figure 3A(iii) plots the 

variation of beta values with misophonic distress rating for misophonia sufferers and 

annoyance ratings for control subjects. As can be seen, the activity of orofacial motor area 

increases in proportion to the rating. However, this increase is stronger (t(40) = 6.8, p < 

0.001) for misophonia sufferers compared to controls.  

 

Discussion 
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In this study, we have demonstrated that misophonia is characterised by (i) increased 

resting-state functional connectivity between the orofacial motor area and both auditory 

and visual cortex (ii) increased functional connectivity between auditory cortex and orofacial 

motor areas in response to all types of sound (iii) increased activation of orofacial motor 

area in response to trigger sounds specifically (iv) activation of orofacial motor area 

increases in proportion to the misophonic distress (v) no difference from the control group 

in the activation of auditory cortex to trigger and other sounds (vi) Increased resting-state 

functional connectivity between vPMC containing orofacial motor area and insula in the 

resting state. 

Conventionally, misophonia is considered as a disorder of sound emotion processing, in 

which ‘simple’ sounds of eating/chewing produced by others cause abnormally high 

negative emotional responses.  However, sounds generated by others can represent the 

actions which produce them (Aglioti and Pazzaglia, 2010) and can also modulate the actions 

of listeners (Ferrari et al., 2005; Aglioti and Pazzaglia, 2010). We consider here whether 

sounds in misophonia may be only a ‘medium’ via which action of the trigger-person is 

mirrored onto the listeners. In that case, the primary abnormality might be excessive 

engagement by the auditory system, and/or intrinsic hyper-responsiveness of, the orofacial 

motor system. The present findings of normal auditory cortex responses to trigger sounds, 

yet increased connectivity between auditory and orofacial motor areas and orofacial motor 

hyper-responsiveness specifically to trigger sounds, support this notion.  

Resting state connectivity measures spontaneous fluctuations of brain activity, which are 

correlated between two regions. It is known to be predictive of task/stimulus activations of 

brain regions (Tavor et al., 2016; Parker Jones et al., 2017) and behaviour (Spisak et al., 

2020).  Our results show that spontaneous fluctuations in auditory/visual cortex and 
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orofacial motor cortex are synchronized to a greater extent in a misophonia group 

compared to the control group. This stronger spontaneous coupling between auditory or 

visual and orofacial motor cortex in the absence of any systematic external stimulation 

implies that the orofacial motor cortex in misophonia sufferers is primed to respond to 

sensory stimulation related to the production of trigger sounds.  

Further evidence that input sounds in misophonia are transformed into motor 

representations comes from stronger coupling of orofacial motor areas to auditory cortex in 

response to auditory stimulation. However, this increased connectivity is in response to 

sounds in general and not specific to trigger sounds. Note that increased resting state 

connectivity between the auditory and motor cortex in misophonia is in the absence of any 

sound stimulation and, therefore, also not specific to trigger sounds. Since functional 

connectivity, particularly in the resting state, is known to be constrained and explained by 

structural connectivity (Greicius et al., 2009; Honey et al., 2009), it is likely that in 

misophonia there is a stronger structural connectivity between the auditory and orofacial 

motor cortices.  This needs to be investigated in future studies.   

 Does stronger coupling to auditory cortex in the resting state translate to stronger 

activation of orofacial motor cortex? Our findings suggest that, in misophonia, trigger 

sounds cause hyperactivation of the orofacial motor cortex implying possible excessive 

‘mirroring’ of the orofacial actions via trigger sounds. Although this mirroring of action via 

sensory stimuli occurs in normal and healthy subjects (Buccino et al., 2001), the mirroring is 

stronger (hyper-mirroring) and specific to trigger sounds in misophonia. Importantly, such 

specificity of hyperactivation to trigger sounds is absent in the auditory cortex which further 

demonstrates that misophonia is a not a disorder of sound processing per se but relates to 

the (orofacial) actions that the sounds represent. Putting together results of resting state 
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connectivity, sound evoked functional connectivity and activation, our data strongly support 

the hypothesis that misophonia is characterized by aberrant functioning of the mirror 

neuron system which ‘mirrors’ the action of the trigger-person represented by sounds. 

A consequence of mirroring of action is that it leads to ‘automatic imitation’ (Iacoboni et al., 

1999; Heyes, 2011) in which subjects mimic the action of the producer. This imitation, which 

is unconscious and unintentional, facilitates actions and responses that are congruent with 

the actions of the producer (e.g., mouth movement in response to eating sounds of the 

trigger-person). What exactly makes excessive mirroring trigger the extreme negative 

characteristic reaction in misophonia is presently uncertain, but possibilities include a sense 

of loss of control, invasion of personal space, or interference with current goals and actions.  

A recent study, using a Stroop task, did show that misophonia sufferers are impaired in 

maintaining goals of the task, specifically in the presence of trigger sounds (Daniels et al., 

2020). Since anger can be described as perceived goal interference (Hufendiek, 2016), the 

drive to imitate others would make anger (or aggression) the dominating emotional 

response. This is consistent with the phenomenological reports of emotional responses to 

trigger sounds in misophonia (Jager et al., 2020). Mimicry of the action producing the trigger 

sound may be a direct consequence of mirror system activation (i.e., overt as opposed to 

covert), or a coping strategy (Edelstein et al., 2013; Taylor, 2017) to dampen sensory activity 

much  like attenuation of sensory input following a self-generated action (Blakemore et al., 

2000).  

Interestingly, outside of the context of misophonia, automatic mimicry of eating actions is 

common among family members (Hermans et al., 2012; Bell et al., 2019), which may explain 

why a family member most commonly acts as a source of triggers in the initial phase of 

misophonia. Although we have confined our discussions to sounds of eating/chewing as 
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trigger, our model of hyper-mirroring in misophonia can be used to explain less-common 

visual triggers such as foot/leg shaking because mimicking of these actions occurs in normal 

subjects (Chartrand and Bargh, 1999). 

Our previous work (Kumar et al., 2017) showed that misophonic distress correlates with the 

activity of anterior insula. The current results on resting state connectivity indicate stronger 

connectivity of orofacial motor cortex to insular cortex in misophonia, providing a link 

between mirroring of action, insular activity and misophonic distress.  Moreover, anterior 

insula has stronger resting state connectivity to cerebellum (lobule 6) which is known to be 

involved in social cognition in general and mirroring of actions of others in particular (Van 

Overwalle et al., 2014).  Interestingly, neuroimaging of automatic imitation in normal 

subjects shows that countering of mirrored actions (e.g. closing one’s hand when viewing a 

hand opening and vice versa), either intentionally or incidentally, engages anterior insula 

(Campbell et al., 2018). In summary, our data supports that mirroring of action underlies the 

previously observed anterior insula based network in misophonia.  

Misophonia as an aversive ‘reflex’ has been argued previously by Dozier and his colleagues 

(Dozier, 2015). In this model, sound triggers a reflex like bodily (physical) response which is 

then followed by emotional response. While our data is in agreement with the larger point 

of the model emphasizing role of motor system in misophonia, the fact  that higher order 

motor cortex is involved suggests a complex role of the motor system not consistent with 

the reflex like response in Dozier’s model. It is, however, likely that the mirroring response is 

automatically triggered from the vPMC and subsequently expands to other part of motor 

cortex including primary motor cortex which can explain sensations and muscle activity in 

other parts of the body in response to trigger sounds.   
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Our data provide an alternative but complementary perspective on misophonia that 

emphasizes the action of the trigger-person rather than the sounds which are a by-product 

of that action. In doing so, misophonia can be understood within a wider framework of 

social cognition which concerns with how people perceive auditory/visual cues from other 

people.  This change in perspective has important consequences for devising therapies and 

treatment methods for misophonia.  For instance, associative learning has been shown to 

configure the MNS (Catmur et al., 2007); if this process could be harnessed to associate 

misophonic trigger sounds with sound sources other than orofacial actions then they might 

no longer evoke the misophonic reaction. Evidence for association having effects on 

perceived aversiveness of sounds comes from Samermit et al. (2019) in which aversive 

sounds were either associated with a positive or negative source. The same sound when 

associated with a positive source was rated as less unpleasant and also produced fewer 

bodily sensations compare to when association was with its original negative source. How 

this association is mediated by the MNS needs to be investigated further.  

Finally, we outline some limitations of our work and the future direction to overcome these 

limitations. First, demonstration of mirror neurons requires invasive single neuron recording 

which is not normally possible in humans. Measurements using fMRI are too coarse at 

spatial and temporal resolution to reveal the working of single neurons. Our evidence of 

involvement of mirror neurons in misophonia, therefore, like most of the human 

neuroimaging studies implicating mirror neurons, is indirect. There have been a few studies 

of single cell recording demonstrating mirror neurons in human epileptic patients 

undergoing neurosurgery (Mukamel et al., 2010). Future studies may use such rare 

opportunities to provide direct evidence for the role of mirror neurons in misophonia. 

Second, although the distinctness of misophonia as a disorder on its own has been argued 
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(Schroder et al., 2013; Erfanian et al., 2019; Swedo et al., 2021), there is still debate (Taylor, 

2017) of how much of it can be explained by other disorders. In order to test its distinctness 

or overlap with respect to functioning of the mirror neuron system, future studies could 

include a clinical control group in addition to the normal healthy control group. Third, 

although less common compared to typical triggers, some misophonia sufferers also report 

non-human (e.g. animal sounds) and environmental sounds as their triggers (Jager et al., 

2020). How does our hyper-mirroring model of misophonia explain distress to these 

triggers? It should be noted that non-human and environmental sounds as triggers in 

misophonia do not occur in isolation. That is, these non-typical triggers occur along with the 

typical triggers (e.g. eating/chewing sounds) in misophonia sufferers (Muller et al., 2018; 

Jager et al., 2020; Wiese et al., 2021). A plausible  explanation, therefore, is that after the 

typical triggers are learned via the mirror system, the non-typical stimuli becomes triggers 

via associative learning. This is also consistent with the observation that the set of trigger 

stimuli for misophonia sufferers expand over time. Further work, however, is needed to 

empirically validate this hypothesis. 
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Figure Legends 

Figure 1: Resting-state functional connectivity of (A) right PT (B) right V2 (C) right vPMC (the 

black curve in the top panel marks the boundary of part of vPMC which shows stronger 

connectivity to PT) (D) left anterior insula. Connectivity of each of these seed regions was 

analysed with the rest of the brain (seed-to-voxel analysis). The results shown are cluster 

corrected with a cluster defining threshold of p=0.001. The top row shows the seed regions; 

the middle two rows show the connectivity pattern overlaid on the sagittal and coronal 

sections of the structural image; the bottom row shows bar plots of connectivity strength in 

the two groups. Data in the bar plots show mean (± SEM). 
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Figure 2: Sound evoked functional connectivity of right orofacial motor cortex. The orofacial 

motor ROI (top panel) is selected from the resting state connectivity analysis.  The two 

middle rows show brain regions with increased connectivity in the misophonia group in 

response to all sounds. The bar plot in the bottom row plots connectivity strengths in the 

two groups in response to sounds. The results shown are cluster corrected with a cluster 

defining threshold of p=0.001. Data in the bar plots show mean (± SEM). 

Figure 3:  Activation of orofacial motor cortex and auditory cortex in response to three 

categories of sounds.  The orofacial motor area in panel A(i) shows a statistically significant 

(p = 0.002) group x sound category interaction. The bar plots in panel A(ii) show beta values 

for the orofacial motor cortex for the two groups in response to three sound categories. The 

panel A(iii) plots variation of beta values with the rating of misophonic distress in 

misophonia sufferers and  of annoyance in control subjects.  No group x sound category 

interaction is seen in the auditory cortex (B; middle column) which is confirmed by the bar 

plots of activation (B; first and third column) in response to sounds for the two groups. HG is 

marked in white and PT is marked in black in the middle column of (B). Data in the bar plots 

show mean (± SEM). 
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Table 1: List of sounds used in the sound evoked experiment, Kumar et al, 2017 

Trigger sounds Unpleasant sounds Neutral sounds 

Apple crunching Baby crying Busy cafe 

Coughing and sniffing Belch sound Fan sound 

Crisps eating Buzzer sound Faucet sound 

Breathing sound Buzzing bees Hair dryer sound 

Cutlery sounds Dentist drill Helicopter sound 

Eating Food sound-1 Female crying Kettle boiling 

Eating Food sound-2 Male crying Toilet flush 

Eating salad and cutlery Multiple dogs barking Traffic sound 

Gulping water Vomit sound Vacuum cleaner 

Slurping Multiple babies crying Washing machine 
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Eating with slurping Alarm sound Rain sound 

Sniffing Toddler crying Shower sound 

Chewing Jack hammer Phone ringing 

Packet opening and eating Female scream Brushing teeth 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Demographics and questionnaire scores (mean ± SD) for the two groups 

 Misophonia  Control  

Number of subjects (N) 16 17 

Sex (female) 8 8 

Age (mean ± SD) 38.7 ± 10.3 35.6 ± 9.6 

Misophonia Questionnaire (Wu et al., 

2014) 

(symptoms + behavioural) 

42.6 ± 10.7 17.6 ± 8.8 

Amsterdam Questionnaire (mean ± SD) 

(Schroder et al, 2013) 

15.5 ± 3.4 - 
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Table 3: List of brain areas that show significant change in resting state connectivity in 

misophonia compared to controls 

 

Region Name MNI coordinates (mm) 

of the maxima  

Number 

of voxels 

t-value at the maxima 

(i) Stronger connectivity to right V2 in misophonia compared to controls. 
 

Right ventral pre-motor 

cortex (vPMC) 

58, 0, 24 221 4.34 

Right anterior insula  34, 2,10 180 4.88 

Right parietal operculum  

planum temporale/ 

30, -34, 20 136 4.94 

(ii) Stronger connectivity to left V1 in misophonia compared to controls. 
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Right anterior insula 42, 8, -10 169 4.51 

Left planum polare/STG   -60, 6, -4 118 4.84 

Lateral occipital cortex, 

occipital pole 

22, -84, 14 978 5.57 

(iii) Stronger connectivity to right vPMC in misophonia compared to controls. 

Occipital cortex, Middle 

Temporal gyrus 

40, -64, 2 342 5.78 

Brain Stem -2, -10, -34 230 6.91 

Fusiform gyrus 24, -72, -12 204 5.03 

Anterior Insula, Planum 

Polare, STG 

42, 6, -6 165 4.64 

(iv) Stronger connectivity to the left anterior insula in misophonia compared to 
conrols 

Motor/Somatosensory 

cortex (M1/S1) 

-18, -16, 78 383 4.82 

Cerebellum (lobule 6)  28, -54, -22 150 5.24 
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