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Abstract

Structured argumentation involves drawing inferences from
knowledge in order to construct arguments and counterar-
guments. Since knowledge can be uncertain, we can use a
probabilistic approach to representing and reasoning with the
knowledge. Individual arguments can be constructed from
the knowledge, with the belief in each argument determined
just from the belief in the formulae appearing in the argu-
ment. However, if the original knowledgebase is inconsis-
tent, this does not take into account the counterarguments that
can be constructed. We therefore need a wider perspective
that revises the belief in individual arguments in order to take
into account the counterarguments. To address this need, we
present a framework for probabilistic argumentation that uses
relaxation methods to give a coherent view on the knowledge,
and thereby revises the belief in the arguments that are gener-
ated from the knowledge.

1 Introduction

Argumentation is an important human ability for handling
incomplete and inconsistent information (Atkinson and et
al. 2017). Computational models of argument aim to for-
malize aspects of this ability. In abstract argumentation, a
set of arguments and counterarguments is represented by an
argument graph. This is a graph where each node denotes an
argument and each arc denotes an attack by one argument on
another. Acceptable arguments can then be identified using a
dialectical approach (such as grounded or preferred seman-
tics) that identifies coalitions of arguments that can defend
themselves from attack (Dung 1995).

An alternative to the dialectical approach is the epistemic
approach which assumes a probability assignment to each
argument. For a probability function P, and argument A,
P(A) is the degree of belief that A is acceptable. When
P(A) > 0.5, then the argument is believed to be accept-
able, whereas when P(A) < 0.5, then the argument is not
believed to be acceptable. For the set of arguments Args(G)
appearing in argument graph G, and probability function P,
an epistemic extension is the set {A € Args(G) | P(A) >
0.5}. So the extension is determined from the probability
function rather the structure of the graph.

Example 1. For the argument graph G in Figure 1, if
P(A;) = 0.1, P(A3) = 0.9, P(A3) = 0.1, P(44) = 0.4,
and P(As) = 0.8, then the epistemic extension is { A3, As }.

| | Ay [ Ay [ A3 [ A4 [ As | Rational | Coherence |

P 106]09]04]06|0.7| No No
P, 1 03]09]03]0.1]|0.8] Yes No
P; 1 09]01]0.1]08]|0.2] Yes Yes

Table 1: Examples of belief in arguments in Figure 1.
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Figure 1: Example of an argument graph.

The epistemic approach provides a finer grained assess-
ment of an argument graph than given by Dung’s defini-
tion of extensions. By adopting constraints on the func-
tion, the epistemic approach subsumes Dung’s approach
(Thimm 2012; Hunter and Thimm 2017). However, there
is also a need for a non-standard view where we adopt al-
ternative constraints on the function. For instance, we may
wish to represent disbelief in arguments even when they are
unattacked (Polberg and Hunter 2018). Nonetheless, for
the non-standard view we may want the probabilities to re-
spect the structure of the graph in some sense (Hunter 2013;
Hunter and Thimm 2017; Polberg and Hunter 2018). For ex-
ample, when argument A attacks argument B, the rational
constraint ensures that if A is believed (i.e. P(A) > 0.5),
then B is not believed (i.e. P(B) < 0.5), and the coherence
constraint ensures that the belief in A and B sum to less than
orequal to 1 (i.e. P(A) + P(B) < 1). So with constraints,
we can manage how the structure of the graph is reflected in
the probability function (and vice versa), and thereby com-
bine the belief in the composition of an argument, and the
belief in acceptability of its counterarguments.

The literature on the epistemic approach has assumed
that the argument graph is given. In this paper, we inves-
tigate how we can construct argument graphs from uncer-
tain knowledge. Essentially, the problems that we address in
this paper are: (1) how to generate individual arguments and
counterarguments from uncertain knowledge, and (2) how
to revise each argument so that the belief in each argument
takes into the account the belief in the counterarguments.



We will tackle these problems by assuming a language
based on belief statements. Each belief statement expresses
belief in a propositional formula, and each belief formula is
a Boolean combination of belief statements. For example,
for the proposition b, denoting bird, a couple of belief state-
ments are p(b) = 0.75, which represents the belief in the
proposition b is 0.75, and p(b) > 0.5, which represents the
belief in the proposition b is greater than or equal to 0.5. A
probability distribution is over the models of the propo-
sitional formulae, and we will use these probability distri-
butions as models of the belief formulae. From belief for-
mulae, we will construct deductive arguments where the
premises are consistent and minimal for entailing the claim
(where we use a probabilistic logic for entailment). For ex-
ample, we will see that the following is an argument where
the first item is a set of premises (composed from atoms b
denoting bird and f denoting flies) and the second item is a
claim that follows from the premises.

{({p(b) = 0.75,p(b — f) = 0.75},p(f) = 0.5)

We we will use the belief in the claim as the belief in the ar-
gument, since this is a function of the belief in the premises
and the inference process. So for the above, the belief in the
argument is greater than or equal to 0.5.

The above gives belief in individual arguments. But we
assume that our knowledgebase can be inconsistent, and if
so, we will generate counterarguments. And if the knowl-
edge is inconsistent, and the knowledge is in the form of be-
lief statements, there is not a probability distribution that sat-
isfies all the knowledge, and hence, we are not able to obtain
a probability function for all the arguments. For example,
we may have the knowledge {p(a) > 0.75,p(a) < 0.25},
and so arguments including ({p(a) > 0.75}, p(a) > 0.75)
and ({p(a) < 0.25},p(a) < 0.25), but there is no prob-
ability distribution that satisfies the knowledgebase (or the
arguments from it taken together).

Our solution to this problem is to use a form of belief re-
laxation. This means that we change the belief statements
until we get consistency. We introduce some methods for
this that ensure that the process is measured (in the sense
that we do not unnecessarily lose information) and fair to
the sources (in the sense that the loss is spread fairly over
the items of knowledge). The result of the relaxation pro-
cess is that there is a probability distribution that satisfies all
the revised knowledge, and thereby provides a consistent be-
lief assignment to all the arguments. So we use this relaxed
probability distribution to get the probability of acceptabil-
ity for each argument, and hence the epistemic extension
of the argument graph. Hence, in this paper, we regard the
probability distribution as primary, and the knowledge, and
arguments constructed from the knowledge, as secondary.

The language of belief statements being based on propo-
sitional logic with probabilistic qualification of uncertainty
offers an expressive but practical representation for diverse
applications such as intelligence analysis, medicine, and sci-
ence. For instance, belief statements can be used to repre-
sent uncertainty in propositional formulae that capture log-
ical relationships between symptoms, diseases, and treat-
ments. Since this scientific or clinical knowledge can come

from empirical studies, the belief can be quantified, but since
the knowledge may come from different studies and sources,
there may be inconsistencies. So the ability to construct ar-
guments, and then relax the beliefs until there is a consistent
probability distribution, provides a potentially valuable tool
for analyzing the inconsistent knowledge.

We proceed as follows: (1) We review a language for be-
lief formulae; (2) We use the principle of maximum entropy
for reasoning with belief formulae; (3) We propose an ap-
proach to generating argument graphs instantiated with de-
ductive arguments obtained using maximum entropy reason-
ing with belief formulae; (4) We propose relaxation of belief
formulae in order to find a coherent set of belief statements;
(5) We propose the use of confidence in belief statements to
provide a context-dependent relaxation of belief statements;
(6) We discuss the related literature; and (7) We summarize
and discuss our proposal.

2 Language
We assume classical propositional logic for describing as-
pects of the world. We then assume that we model uncer-
tainty about the formulae using a probability distribution
over models of the propositional logic. For this, we will
draw on an established proposal for capturing probabilistic
belief in propositional formulae (Paris 1994).

2.1 Probabilistic Belief in Propositional Formulae

We assume that the propositional language L is finite. Given
a language L, the set of models (i.e. interpretations) of the
language is denoted M. Each model in £ is an assignment
of true or false to the formulae of the language defined in
the usual way for classical logic. We assume the usual ma-
chinery of classical propositional logic including the conse-
quence relation - and the satisfaction/entailment relation |=.
For ¢ € L, Models(¢) denotes the set of models of ¢ (i.e.
Models(¢) = {m € M | m |= ¢}). Fora,8 € L,a =8
denotes Models(a) = Models(/3).

Definition 1. Let M be the models of the language L. A
probability distribution P on M is a function P : M —
[0,1] such that ), P(m) = 1. Let P denote the set of
all probability distributions on M.

We use a probability distribution to quantify uncertainty
in a propositional formula as follows.

Definition 2. Let M be the models of the language L, and
let P be a probability distribution on M. The belief in a
formula ¢ € Lwrt. Pis P(¢) = ., cmodels(s) £ (M)-

Example 2. Let L be the usual propositional formulae that
can be formed from {a,b}. Now suppose P({a,b}) = 0.8
and P({a}) = 0.2. Hence, P(a) = 1, P(a Ab) = 0.8,
Pbv-b)=1 PlaN-b)=0.2 etc.

Example 3. Let L be the usual propositional formulae that
can be formed from {a,b}. For the probability assignments
P(a) = 0.8, P(—a V —b) = 0.8, and P(b) = 0.8, there is
no probability distribution P such that these hold together.

As shown in (Paris 1994), P is a probability distribution
on M iff (1) if = «, then P(«) = 1; and (2) if = =(a A B),
then P(a Vv 8) = P(a) + P(B).



2.2 Belief Formulae

We bring the use of probability into the language so that we
can have formulae expressing uncertainty.

Definition 3. A belief statement is of the form p(a)#x
where oo € L is a propositional formula, # € {=, >, <,
>, <}, and x € [0,1]. A belief formula is a Boolean com-
bination of belief statements (i.e. if ¢ is a belief statement,
then it is a belief formula, and if ¢ and 1) are belief formu-
lae, then each of ¢ N\ 1, ¢ V Y and —¢ is a belief formula).
Let B be the set of belief formulae.

Example 4. Fora,b € L, (p(aAb) > 0.9)V (p(-aA-b) <
0.5) is an example of a belief formula.

We assume equivalences, denoted =, between belief for-

mulae: (1) p(a) > @ = (p(a) — 2) V (p(a) > @), )
pla) < z = (pla) = 2) V (p(a) < 2), 3) ple) #
z = =(pla) = z), @ pla) # v = —(p(a) > z), and
) p(e) £z =~(p(a) < ).
Definition 4. The satisfying distributions for a belief state-
ment p(«)#x is Sat(p(a)#z) = {P' € P | P'(«)#x},
where # € {=,>,<,>,<}. For belief formulae ¢ and
¥, (1) Sat(é A ) = Sat(6) N Sat(w); (2) Sat(é V ) =
Sat(¢)USat(y); and (3) Sat(—¢) = Sat(T)\ Sat(¢). Also,
for a set of belief formulae A, let Sat(A) = NgeaSat(e)

(9).
Example 5. For L composed from {a, b}, if P,({a,b}) =1
and Py({}) = 1, then P1, P, € Sat(p(aAb) = 1)V p(—-a A
—-b) = 1). For L composed from {c}, if P3({c}) = 0.5
and Py({c}) = 0.6, then P3 ¢ Sat(p(c) > 0.5) and P, €
Sat(p(c) > 0.5).

Proposition 1. (1) For z € (0,1], Sat(p(L) = z) = 0.
(2) Sat(p(T) = 1) = P. (3) For any proposition «,
Sat(p(a) < 1) = P and Sat(p(a)) > 0) = P. (4) When
x # y, Sat(p(a) = z Ap(a) = y) = 0. (5) When o = 3,
Sat(p(e) = x) = Sat(p(f) = ).

So belief formulae are a simple way of talking about be-
lief in propositional formulae in the object language.

2.3 Restricted Value Sets

For certain applications a restricted set of probability distri-
butions can be used where the probability values come from
a finite set of values (Hunter, Polberg, and Thimm 2020).
This may be appropriate if we want to represent probability
values as in a Likert scale (Likert 1931). It also has the bene-
fit of always producing a finite set of distributions. However,
for the approach to be coherent, this set should be closed un-
der addition and subtraction (assuming the resulting value is
in the [0, 1] interval) and it should contain 1.

Definition 5. A finite set of rational numbers from the unit
interval 11 is a reasonable restricted value set iff 1 € Il and
forany x,y € Il it holds that if v +y < 1, then x +y € 1],
andifx —y >0, thenx —y € IL

Since, we will only consider reasonable restricted value
sets, we will refer to them as value sets. Examples include
{0,1},{0,0.5,1}, and {0,0.25,0.5,0.75, 1}.

A probability distribution P for a value set II is a prob-
ability distribution such that for each model m € M,

P(m) e II. We will assume that all our probability distribu-
tions are with respect to a given value set. Also let Sat(¢, IT)
(respectively Sat(A,II)) be the set of probability distribu-
tions w.r.t. II that satisfy the belief formula ¢ (respectively
the set of belief formulae A).

3 Maximum Entropy Reasoning

For a set of belief formulae, there is potentially a wide range
of probability distributions that satisfy the set. This creates
problems if we want to draw commonsense inferences from
the set. One established approach is to use maximum en-
tropy reasoning which involves selecting a subset of the dis-
tributions that have maximum entropy. A distribution that
satisfies a set of constraints with maximum entropy is a dis-
tribution that makes the least extra commitment beyond sat-
isfying the constraints (Jaynes 1982).

Definition 6. For a set of models M, the entropy
of probability distribution P € P is Entropy(P) =
- Zme/\/l P(m) X logZ(P(m))

In the following, we focus on probability distributions for

a value set, and out of those that satisfy a set of belief for-
mulae, we pick those that are maximal for entropy.

Definition 7. For a value set 1, the set of maxi-
mum entropy distributions for belief formulae A C
B is Me(A,TI) = {P € Sat(AII) | forall P' €
Sat(A, II), Entropy(P) < Entropy(P’)}.

The maximum entropy distribution have some valuable
commonsense properties including indifference to the intro-
duction of irrelevant information, indifference to renaming,
and independence in the absence of explicit information to
the contrary (Paris 1994).

There are various ways that maximum entropy distribu-
tions can be used to create an inference relation depend-
ing the logic language and the assumptions about the un-
certainty, see for example (Cheeseman 1983; Nilsson 1995;
Goldszmidt, Morris, and Pearl 1993; Paskin 2002). We use
the following notion of maximum entropy entailment (which
is a form of defeasible reasoning).

Definition 8. For belief formulae A C B, and a value set 11,
A entails by maximum entropy the belief formula v € B,
denoted A |=1L, 1, iff Me(A,TI) C Sat(¢, I1).

Example 6. Let 11 = {0,0.25,0.5,0.75, 1}, and let b denote
bird and f denote fly. The inference {p(b) = 1,p(b —
f) > 0.75} EL p(f) > 0.5 holds because Me({p(b) =
1,p(b — f) > 0.75}) = {P1}, where P ({b}) = 0.25 and
Pu({b, 1) = 0.75.

The consequence relation is not monotonic as shown by
the following example.

Example 7. For proposition o € L, and value set 11, we
obtain () =1, p(a) = 0.5. Now assume the belief statement

p(a) = 1, then {p(a) = 1} 1L, p(a) = 0.5
Next, we give some properties of the entailment relation.
Proposition 2. For belief formulae A C B, ¢, € B, and

value set 11, the |=11, entailment relation satisfies reflexiv-
ity (REF), left logical equivalence (LEQ), right weakening



(RW), and (AND), and cautious monotonicity (CM).

AU {¢} Epe ¢ (REF)
AU{¢} e Y IFAU{¢} Fhe b and ¢ = ¢ (LEQ)
A= ¢ if A =L b and Sat(1), 1) C Sat(¢, IT) (RW)
AR NP IfAEL pand AL, ¥ (AND)
AU{¢} ER v if AL ¢dand AR ¥ (CM)

Proof. We show each property as follows. (REF) Me(A U
{¢},II) C Sat(A U {¢},II) and Sat(A U {¢},II) C
Sat({o}, 1), imply Me(AU {0}, 1) C Sat({0}, 11). (LEQ)
¢ = ¢ implies Me(A U {¢},II) = Me(A U {¢'},II).
So Me(A U {¢'},II) C Sat(¢/,II) implies Me(A U
{¢},II) C Sat(¢,II). (RW) Follows from the fact that
when Sat(¢),II) C Sat(¢,II) holds, then Me(A,II) C
Sat(¢, IT) implies Me(A, II) C Sat(¢, IT). (AND) Assume
A EI ¢and A E . So Me(A,II) C Sat(g, IT)
and Me(A,II) C Sat(vy,II). So Me(A,II) C Sat(¢,II) N
Sat(w, IT). So Me(A, IT) C Sat(¢pA, ). So A L pAp.
(CM) Since Me(A,II) C Sat(A,II) and Me(A,II) C
Sat(¢,II), then Me(A,II) C Sat(A) N Sat({¢},II), and
so Me(A,II) C Sat(A U {¢},II). Therefore, Me(A,II) =
(P € Sat(A U {¢},10) | forall P’ € Sat(A U {¢},II),
Entropy(P) < Entropy(P’)}. Also, Me(A U {¢},1I) =
{P € Sat(A U {¢},II) | forall P’ € Sat(A U {¢},1I),
Entropy(P) < Entropy(P')}. So Me(A,II) = Me(A U
{¢},II). So, Me(A,II) C Sat(¢,II), implies Me(A U
{6}.11) C Sat(v, 1), O

The entailment relation is trivializable (i.e. if the premises
are inconsistent, then any formula follows). This is a prop-
erty in common with classical propositional logic. As we
will use the entailment relation to construct arguments with
consistent premises, this is not a problem for our purposes.

Proposition 3. For belief formulae A C B, and value set
I1, if Sat(A, 1) = 0, then for all ¢ € B, A =L, 6.

Proof. Assume Sat(A,II) = (). So Me(A,II) = (. So for
all ¢, Me(A,II) C Sat({¢},II). So A ElL &. O

There are algorithmic approaches to finding maximum
entropy distributions that can be used for logical reason-
ing (e.g. (Nilsson 1995; Paskin 2002; Kern-Isberner and
Lukasiewicz 2004)). Using restricted values has the ad-
vantage that all probability distributions can be enumerated
in order to identify those with maximum entropy (though
uniqueness is not guaranteed), and thereby is a simple route
to implementation for smaller examples, and potentially
could be scaled by harnessing SAT technology.

4 Generating Argument Graphs

In this section, we adapt definitions from deductive argu-
mentation for constructing arguments and counterarguments
based on belief formulae and maximum entropy reasoning.
We assume our knowledge can be represented by a tuple.
So each item comes from some source. The ordering in this
sequence has no significance.

Definition 9. A knowledge tuple is a ruple ® =
[01, ..., ¢n] where each ¢; € B is a belief formula.

In a knowledge tuple, we can have multiple occurrences
of the same formula (i.e. it is possible for ¢, 5 € {1,...,n}
such that ¢ # j and ¢; = ¢;). When we want to con-
sider the formulae in the knowledge tuple as a set, we use
Set(®), which ensures that there are no duplicate occur-
rences of a formula. A knowledge tuple ® is consistent
iff Sat(Set(®),II) # 0. For a knowledge tuple & =
[@1, ..., dn)], the length of ® is Len(P) = n.

Definition 10. For a set of belief formulae I' C B, and a
belief statement ¢ € B, (I, ¢) is a argument iff T' =1L, ¢
and T is consistent (i.e. Sat(I',I1) # 0) and there is no
proper subset T’ of ® such that ' |=11, ¢. The set of argu-
ments from a knowledge tuple ® is Args(®,1I) = {(T', ¢) |
(T, ¢) is an argument and T’ C Set(P)}.

So an argument satisfies both minimality (in order to
avoid irrelevant premises) and consistency (in order to avoid
the useless inferences that come with trivialization).

Example 8. Ler IT = {0,0.25,0.5,0.75,1}. For the set of
belief formulae {p(b) = 0.75,p(b — f) = 0.75,p(p) =
0.75,p(p — —f) = 1}, where b denotes bird, f denotes
fly and p denotes penguin, the following are examples of
arguments from these belief statements.

o ({p(b) =1,p(b— f) =0.75},p(f) > 0.75)
o ({p(p) =0.75,p(p — ~f) = 1}, p(—f) > 0.75)

Given the richness of this logic (in terms of language and
inferences), there is a number of natural ways that we can
define counterarguments. We give some options in Def-
inition 11 after some subsidiary definitions: For a belief
statement p(a)#z, let Prop(p(a)#x) = «; For a set of
belief statements I' = {¢1,...,¢,}, where we assume
some arbitrary ordering over the formulae, let Prop(I") =
Prop(¢1)A. . .AProp(¢,,); And for an argument A = (T, ¢),
let Support(A4) =T, and Claim(A) = ¢
Definition 11. Let A and B be two arguments. We de-
fine the following types of attack. A is an undercut
of B if 3¥ C Support(B) s.t. Prop(Claim(4)) =
—Prop(¥). A is a direct undercut of B if ¢ €
Support(B) s.t. Prop(Claim(A)) = —Prop(¢). A is a re-
buttal of B if Prop(Claim(A)) = —Prop(Claim(B)).
Example 9. In Example 8, the arguments rebut each other,
since f = —(—f) holds. In Figure 2, the root argument is
undercut by the other argument, since -n = —n holds.

So a rebuttal occurs when the propositions in the claims
of the two arguments cannot be satisfied together, and an
undercut occurs when the proposition in the claim of the at-
tacker cannot be satisfied together with some propositions in
the premises of an attackee.

From the belief in the formulae in the premise, the en-
tailment relation gives the belief in the claim. So the belief
in the claim reflects the belief in the premises. We there-
fore use the belief in the claim as the belief in the argument.
So we extend the use of probability distributions over M as
probability functions over arguments.

Definition 12. For an argument A = (', p(a)#v), where
# e {<,<,=,>,>}andv € [0,1], the belief in argument
A is denoted P(A)#tv, where P is a probability distribution
such that P(a)#v holds.



[ {{p(s) > 0.9, p(n) > 0.9,p(s An — ) > 0.9}, p(c) > 08) |

t

| {{p(e) < 04,p(e — ) = 0.7}, p(-n) < 0.5) |

Figure 2: An argument graph constructed from the knowledge tuple
in Example 11. The atoms are s = symptoms of cold, c = has cold,
n = no evidence of a serious virus, and e = there is a flu epidemic,
and IT = {0,0.01,0.02,0.03,...,0.98,0.99,1}. Note, the root
argument A; is a strong argument for the patient having a cold
(P(A1) > 0.8), and this is undercut by a weaker argument Ao
against there being no evidence of serious virus (P(A42) < 0.5). In
other words, the second argument raises a doubt about there being
no evidence of a serious virus, and it may be useful to be aware of
this doubt, even though only A; is in the epistemic extension.

Example 10. Continuing Example 8 let A = ({p(b)
Lp(b — f) = 0.75},p(f) > 0.75) and B = ({p(p)
0.75,p(p — =f) = 1}, p(=f) > 0.75). So P(A) > 0.75
and P(B) > 0.75.

Using Definitions 10 and 11, we can instantiate an argu-
ment graph. Since we are not using the argument graph to
determine which arguments are acceptable, (because we use
a probability distribution to determine the epistemic exten-
sion), we can be selective in the arguments we present, as
proposed in (Hunter 2020). So the role of the argument
graph is to provide a presentation of the conflicts in the
knowledge. For the purposes of this paper, we will restrict
graphs to involve just an argument with an undercut. How-
ever, the framework in this paper supports any selection cri-
teria, such as those in (Hunter 2020), including exhaustive
presentation of arguments.

A local view on a knowledge tuple @ is an argument ob-
tained from ® (i.e. each argument of the form (T, p(a)#v)
where ' C Set(®), and # € {<,<,=,>,>} and v €
[0, 1]) and so each argument in an argument graph is a local
view. Furthermore, each local view is a global view when ®
is consistent (as illustrated in Example 11).

We now return to the epistemic constraints on probabil-
ity distributions. If a knowledge tuple ® is consistent (i.e.
Sat(Set(®),II) # @) then each probability distribution that
satisfies the tuple is rational with respect to the arguments
that can be constructed from the knowledge tuple.

Proposition 4. For a consistent knowledge tuple ®, a value
set II, and P € Sat(®,1I). If A,B € Args(®,1I), and
A is a counterargument to B, then P satisfies the rational
constraint (i.e. P(A) > 0.5 implies P(B) < 0.5).

Proof. Since @ is consistent, there is a P € Sat(®,II).
Let A be of the form p(a)#.v, and B be of the form
p(B)#vp. Suppose A rebuts B. So « = —5. So P(a) +
P(B) < 1. So if p(a)#4v, satisfies P(A) > 0.5 (i.e.
Sat(p(a)#4v4, 1) C Sat(p(e) > 0.5,1I), then p(B)#puvp
satisfies P(B) < 0.5 (i.e. Sat(p(8)#wsvs, II) C Sat(p(B) <
0.5,1I). Hence, P satisfies the rational constraint. The case
is similar for undercut. O

Example 11. The consistent knowledge tuple [p(s) >
0.9,p(n) > 0.9,p(sAn — ¢) > 0.9,p(e) < 0.4,ple —

[{p(®) = Lp(n) = 0.75,p(b A — f) = 075} p(f) > 0.5)
i

’ {p(p) = 0.75,p(p — —n) = 1}, p(-n) > 0.75) ‘

Figure 3: Argument graph constructed from an inconsistent knowl-
edge tuple (i.e. there is no probability distribution that satisfies the
union of the premises from the two arguments) where b denotes
bird, f denotes fly, n denotes normal bird, and p denotes penguin.
The knowledge tuple is composed of the five formulae appearing
in the support of the arguments. Each argument is a local view. For
global views, see Figures 4 and 5.

-n) = 0.6} is used for Figure 2 which satisfies the rational
constraint. Each argument is a local and global view.

When a knowledge tuple is not consistent, then there is
not a probability distribution that satisfies all the arguments
from the knowledge tuple (e.g. Figure 3). And so, if we
want to have a coherent perspective on the uncertainty (i.e.
the same probability distribution for all the arguments), and
to be normative (e.g. satisfying the rational constraint), we
need to relax belief in some of the premises. In other words,
we need to relax belief in some of the formulae in the knowl-
edge tuple.

5 Belief Relaxation

The aim of relaxation is to change the formulae in the
knowledge tuple so that it becomes consistent. We will
focus on belief statements for reasons of space in this pa-
per. We assume that we do not relax the propositions (e.g.
p(aAb) = 0.9 is not relaxed to p(a) = 0.9). So we keep the
propositions as they are but not the beliefs in them. Rather,
we introduce a method for relaxation that is based on chang-
ing the values and/or the comparators in the belief formulae
until the tuple is consistent.

Example 12. Consider [p(a) > 0.75,p(a) = 0.75] with

II = {0,0.25,0.5,0.75,1}.

o Valued-based relaxation results in the [P(a) >
0.5, P(a) = 0.75] and [p(a) > 0.75,p(a) = 1] relaxed
knowledge tuples.

e Comparator-based relaxation results in the [p(a) >

0.75,p(a) = 0.75] and [p(a) > 0.75,p(a) > 0.75] re-
laxed knowledge tuples.

We will proceed by identifying good relaxations which
are the knowledge tuples obtained by minimal change.

Definition 13. For a knowledge tuple @ =

[p(ar)#1v1, ..., p(an)F#nvn], a value tuple is a tu-
ple [v1,...,v,], and a comparator tuple is a ruple
[#1, .-, #nl-

We change the values and/or comparators that appear in

the formulae in the knowledge tuple using the following no-
tion of an update function.
Definition 14. Let & = [p(a1)#1v1, - .., p(an)#nvn] be a
knowledge tuple, let V = [v],...,v}] be a value tuple, and
let C = [#],...,#),] be a comparator tuple. The update
function, denoted Update(®, V, C), is as follows.

Update(®,V,C) = [p(aq)# 101, - ., plag) 0,00



Proposition 5. Let ® = [p(aq)#1v1,. .., p(n)#nvn] be
a knowledge tuple. If V is the value tuple for ®, and C' is
the comparator tuple for ®, then Update(®,V,C) = @

Proof. Follows directly from Definitions 13 and 14. O

The update function allows for semantically unacceptable

formulae to be obtained. For example for the knowledge
tuple ® = [p(a) < 0.25, p(b) > 0.75], and the tuples [<, >]
and [0,1], we get [p(a) < 0,p(b) > 1] as the update. To
obviate this problem, we use a valid update.
Definition 15. Let II be a value set. A valid update for 11
and nis a pair (V,C) such that V = [v1, ... ,v,] € II" and
C = [#1,...,#a] € {<,<,=,>,>}" and for each i, if
i is >, then v; # 1, and if #; is <, then v; # 0. The set of
valid updates for I1 and n is ValidTuples(IT, n).

We will chose the relaxed version of the knowledge tuple
from the following set of candidates.

Definition 16. Let II be a value set, and let ® be a
knowledge tuple, where Len(®) = n. The set of candi-
dates, denoted Candidates(®,II), is Candidates(®,II) =
{Update(®,V,C) | (V,C) € ValidTuples(II, n)}.
Example 13. Consider [p(«) > 0.75,p(«) = 0.75]. The
set of candidates includes the following

[p(a) > 0.75, p(a) = 0.75] [p(er) > 0.75, p(a) > 0.75]
[p(a) < 0.75,p(a) = 0.75] [p(a) > 0.75, p(cx) < 0.75]
[p(c) > 05,p(2) < 1] [p(0) = 0.5, p(a) = 0.75
Proposition 6. If II is a value set, where |II| = m,

and ® is a knowledge tuple, where Len(®) = n, then
|Candidates(®,IT)| = (5m — 2)™.

Proof. There are five comparators and m restricted values
for each belief statement (i.e. 5m possibilities). But two of
these are not semantically valid (viz. < 0 and > 1). So for
each formula, we have 5m — 2 options in the update. So with
n statement, there are (5m — 2)™ knowledge tuples. O

A belief statement specifies the values in the value set for
which it holds. We get these values with the next function.

Definition 17. Ler IT be a value set, and let p(a)#v

be a belief statement. The interval function, denoted
Interval(p(«)#v, 1), is defined as follows

Interval(p(a)#v,II) = {x € I | x#v}
Example 14. Ler 11 = {0,0.25,0.5,0.75,1}.
Interval(p(a) > 0.5,II) = {0.75,1}.

Proposition 7. Let II be a value set, and let p(a)#v be a

belief statement. If v’ € Intervals(p(a)#v, H) then there is
a P € Sat(p(«)#v,IT) such that P(«

) =
Proof By definition Sat(p(a)#v,II) = {P’
P'(a)#v}. So for each P’ GSat( (a)#v,H) ( )
and P'(«) €

Intervals(p(a)#v, II). D

Next, we consider the possible belief that could be as-
signed to a proposition given the satisfying distributions of
a candidate for the knowledge tuple. In other words, for an
item p(«a)#v in the original knowledge tuple, we get the
possible probability assignment for « if the original knowl-
edge tuple is replaced by the candidate knowledge tuple.

Definition 18. For a knowledge tuple U, and value set 11,
the set of qualified values is Qualified(p(a)#v, ¥, 1) =
{v" €Il | P"(a)) =v" and P" € Sat(Set(¥),1I)}.
Example 15. Consider the formula ¢ = p(a) > 0 and
I = {0,0.25,0.5,0.75,1}. If the candidate is ¥ =
[p(c) > 0.5, p(a) < 1], then Qualified(p, ¥, II) is {0.75}.

If the candidate is inconsistent, then there are no values
for which the formula holds, and if it is satisfied by all the
probability distributions, then the interval for the formula is
contained in the set of qualified values.

Proposition 8. Let U be a knowledge tuple, and let
Il be a value set. (1) If Sat(Set(V),II) = @, then
Qualified(p(a)#v, U,I1) = 0. (2) If Sat(Set(¥),II) = P,
then Interval (p(a)#v, II) C Qualified(p(«a)#v, ¥, II).

Proof. (1) Assume Sat(Set(¥),II) =
p(a)#v, there is no v” € I s.t. P’(a) = v”. (2) Assume
Sat(Set(V),II) = P. So Qualified(p(« )#v U.II) = P.
So Interval(p(a)#v,IT) C Qualified(p(«)#v, ¥, II). O

)
. So for any

Now we define a difference measure between a formula
and a set of formula as the nearest point in the two intervals.
‘We start with the Hausdorff distance which is a metric, i.e.
satisfies symmetry, positivity, and triangle inequality, (see
(Conci and Kubrusly 2017) for a review).

Definition 19. Let X and Y be two sets subsets of a value
set I1. The Hausdorff distance, denoted H(X,Y), is

H(X,Y) = max{max min [z —yl, max min |z —yl}

The following definition gives the Hausdorff distance be-
tween the values that the original belief statement can take
(given by the interval function) and the values that the re-
vised belief statement can take (given by the qualified func-
tion). The revised belief statement is taken from the candi-
date knowledge tuple.

Definition 20. Let II be a value set, let ¥ be a knowl-
edge tuple, and let ¢ = p(a)#;v be a belief state-
ment.  The diff function is defined as follows: If
Sat(Set(¥),II) = (, then Diff(¢,¥) = oo, otherwise
Diff(¢, ¥) = H(Interval(¢,II), Qualified (¢, ¥, II)).

Example 16. Let II = {0,0.25,0.5,0.75,1}, let ¢ =
p(a)<0.5,andlet\11—[(a/\b) 05p() 0.5].
So Interval(¢,II) = {0,0.25}, and Qualified(¢, ¥,II) =
{0.5}. So Diff(¢, ) = 0.5.

We explain the properties in Proposition 9 as follows: (1)
A form of reflexivity (i.e. a formula that is updated to itself
has zero difference); (2) A form of positivity (i.e. there is
a set of values that satisfy the formula, and there is a set
of values that satisfy its updated form, and the difference is
then calculated as the Hausdorff distance between these two
sets); and (3) A form of monotonicity (i.e. expanding the
knowledge tuple reduces the set of satisfying distributions,
and hence the Hausdorff distance is the same or greater).

Proposition 9. The Diff measure satisfies the following
properties where ® and ® + VU (i.e. the concatenation of
® and V) are consistent knowledge tuples:



1. Diff(p(ca)#v, ®) = 0 when @ = [p(a)#v]
2. Diff(p(a)#v,®) >0
3. Diff(p(«)#v, ®) < Diff(p(a)#v, ® + )

Proof. (1) If ® is [p(«)#v], then Interval(p(a)# v/, II) =
Qualified(p(«)#v, ®,1I). So Diff(p(a)#v,®) = 0. (2)
Follows from Definition 20 and the fact that the Haus-
dorff measure is a metric function. (3) First observe that
Qualified(p(a)#v, ® + ¥, 1) C Qualified(p(a)#v, @, II)
holds in general. Furthermore, observe that if Y C Y7,
then H(X,Y) < H(X,Y’). Hence, Diff(p(a)#v, ®) <
Diff(p(ca)#v, ® + U) holds.

We will access a knowledge tuple by an index in order to
retrieve the formula at that index position. So for a knowl-
edge tuple ® = [p(a1)#1v1,...,p(an)#nvs], we have

In general, for knowledge tuples ®, ¥ and ¥’, we have
various options for defining W is more (respectively equally)
relaxed than U’ w.r.t. ®, which we denote ¥ <% WU’ (respec-
tively ¥ ~® '), Also, we let U <® U’ hold iff ¥ <% ¥’
or ¥ ~® W', We consider two options for this.

Definition 21. Let ® be a knowledge tuple, where Len(®) =
n, and let ¥V, ¥’ € Candidates(®,II). The max ranking,

denoted <max, and the sum ranking, denoted <2 are de-
fined as follows.
U =<2, U iff maxeqq,... ) Diff (P[], ¥)

< max;e{1,

.....

) Diff(@[1, 9)
< 216{1 ..... n} Dlﬂ:(q)[l]ﬂ \II/)

Proposition 10. For knowledge tuple tuples @, \Il and V', if

v <$m \Iﬂ lff Zze{l

U is conszstent and V' is inconsistent, then ¥ <2 U’ and
U< v

Proof. In Definition 20, Sat(Set(¥’),II) = (), when
the difference is oo. Therefore, for all ¥ s.t.
Sat(Set(¥),II) # 0, max;c(1,... »y Diff(®[d], ) < oo and
2ieqt,...ny Diff (2[i], ¥) < oo. Therefore, ¥ <% ¥ and
U< O

sum

Proposition 11. The max ranking and the sum ranking are
pre-ordering relations.

Proof. We show this for max ranking. (Reflexivity)
We can assume that max;e(y,. ny Diff(®[i], ) <
max;eq1,.. .} Diff(®[i], ). Hence, ¥ =<2 ¥ holds.
(Transitivity) Assume ¥ <%~ ¥/ and ¥ =<2~ 0"
The first above (respectively the second above) implies

max;eq,...n} DIff(®[i], ¥) < max;eqy,... ny Diff (@[], ')
(respectively maX;e(i,... n) Diff (®[i ] ') <
max;eqq,... n} Diff(®[i], ¥")). From these, we ob-

tain the following max;cqy, ... ny Diff(P[i], ¥) <

max;eqq,... ) DIff(®[i], ¥”).  Since this is equivalent
to W <2 W” we have shown transitivity. We can show
these properties in the same way for sum ranking. O

Based on the definition for ranking, we use the following
definitions for good relaxations.

Definition 22. Let I1 be a value set. For knowledge tu-
ple &, U € Candidates(®,II) is a good max relaxation
(resp. a good sum relaxatlon) of ® iff there isno VU €
Candidates(®, I1) s.t. U/ <2_ W (resp. ¥/ <2 ),

Example 17. Consider ® = [p(«) > 0.75,p(a) = 0.75]
with TT = {0,0.25,0.5,0.75,1}. The good sum (resp. max)
relaxations are the first two (resp. all three) below.

Candidate knowledge tuple ~ Max  Sum
[p(a) > 0.75,p(a) = 1] 0.25 0.25
p(a) > 0.75,p(a) = 0.75]  0.25 0.25
p(a) > 0.75,p(a) > 0.75] 0.25 0.5

Example 18. Consider ® = [p(a) = 0.5,p(a A ) = 1]
with II = {0,0.25,0.5,0.75, 1}. The good sum (resp. max)
relaxations are the first three (resp. first) below.

Candidate knowledge tuple Max  Sum
p(a) =0.75,p(a A B) =0.75] 0.25 0.5
[p(a) =1, p(a A B) =1] 05 05
p(a) = 0.5, p(a A B) =0.5] 0.5 05
p(a) = 0.75,p(a A B) = 0.5] 0.5 0.75
[p(a) = 1, p(a A B) = 0.75] 0.5 0.75

We can always get a good relaxation of a knowledge tuple
by flipping the comparators and/or values.

Proposition 12. For all knowledge tuples ®, there is a good
max relaxation, and a good sum relaxation, of ® that is con-
sistent.

Proof. Let ® = [p(aq)#1v1, ..., 0(an)#nvy,] be a knowl-
edge tuple. Let aq, ..., a,, € L be the propositional formu-
lae appearing in the knowledge tuple. For the propositional
language, consider a probability distribution P’ : p(M) —
[0,1]. For each i € {1,...,n}, if P'(a;) = v}, then let
U = [p(a1) = vi,...,p(a) = vl,]. So ¥ is a consistent
knowledge tuple. Now the comparators and values can be
flipped exhaustively to identify a candidate that is minimal
in the max ranking or the sum ranking. O

So a good relaxation provides a measured (i.e. minimal)
and fair (w.r.t. to the items in the tuple) way of relaxing
the different items in a knowledge tuple in order to obtain
arguments that are global views on the knowledge.

6 Ideal Relaxation

Good relaxation does not favour some items over others.
Howeyver, often we do have extra information to enable us to
prefer some items other others. So in order to make a better
choice of relaxation, we introduce a probability distribution
over subsets of the knowledge tuple to represent the confi-
dence that the set of formulae is correct. So for the marginal
for a formula, the higher the marginal confidence, the higher
the inertia in changing it.

Definition 23. Let II be a value set. A confidence distri-

bution for a knowledge tuple ® = [¢1, ..., d,] is a prob-
ability distribution Pr : p({1,...,n}) — II such that

ng{L..i,n} Pr(S) =1.



A confidence distribution is intended to be meat-
information that represents the reliability of the belief state-
ments and/or the quality of the sources of the belief state-
ments. This could be learned over time.

Note, we can assign all confidence to the empty set, which
we means that we have no confidence in any formula, or
assign all confidence to the whole set, which would mean
we have total confidence in all the formulae. These extremes
just mean that we are unable to discriminate between the
formulae.

Definition 24. Let Pr be a confidence distribution for a
knowledge tuple ® = [¢1, ..., dy,]. For a formula ¢ € P,
the marginal confidence of the ith formulae, denoted Pr (1),

is ng{l,...,n} s.t. ies Pr(S).

Example 19. Let [p(b) = 0.75,p(b — f) = 0.75,p(p) =
0.75,p(p — —f) = 1] be the knowledge tuple, where b
denotes bird, p denotes penguin, and f denotes fly, with
confidence Pr({1,3,4}) = 0.6, Pr({1,2}) = 0.3, and
Pr({1,3}) = 0.1. So the marginals are Pr(l) = 1,
Pr(4) =0.6, Pr(3) = 0.7, and Pr(2) = 0.3.

We treat belief and confidence as orthogonal. Because
of the separation of the two dimensions at the formal level,
we do not have the possibility to infer confidence in a be-
lief statement from confidence in other belief statements.
For example, for ® = [p(a) = 1, p(—a) = 0], we are un-
able to get Pr(1) = 1 implies Pr(2) = 1 or vice versa.
Nonetheless, we can define a confidence distribution so that
it does satisfy some reasonable constraints such as the fol-
lowing which says that if ¢ implies 1), then the confidence
in 1) is greater than ¢.

Definition 25. Let ® be a knowledge tuple, and let Pr be a

confidence distribution. The special constraint on Pr and
D is the following

IfSat(®li], I1) C Sat(®[5], 11), then Pr(i) < Pr(j)

The following proposition gives some of the desirable
consequences of assuming the special constraint.

Proposition 13. Let Pr be a confidence distribution satis-
fying the special constraint, and assume {a} b B holds.
(1) If ®[i] = pla) > v and D[j] = p(B) > v then
Pr(i) < Pr(j). (2) If ®li] = p(a) < v and ®[j] =
p(B) < v then Pr(j) < Pr(i). (3)If ®[i] = p(a) > v
and ®[j] = p(B) > w and v < w then Pr(i) < Pr(j).

Proof. (1) Assume ®[i] = p(a) > v and D[] = p(B) > v.
For all P, P(«) > v implies P(3) > v. Therefore, Pr(i) <
Pr(j). (2) Now assume ®[i] = p(a) < v ®[j] = p(f) <
v. For all P, P(8) < v implies P(a) < v. Therefore,
Pr(j) < Pr(i). (3) Now assume ®[i] = p(a) > v and
®[j] = p(B) > vand v > w. For all P, P(a) > v implies
P(B3) > w. Therefore, Pr(i) < Pr(j). O

We now define the weighted version of the ranking rela-
tions we saw before. The confidence for each belief state-
ment is used as a weight for that formula in the distance
calculation. At the extremes, if the confidence is 1, then any
change has maximal effect, whereas if the confidence is 0,
then the change is not taken into account.

[ {p(®) = Lp(n) = 0.5, p(b A — f) = 075} p(f) < 0.5)
i

’ {p(p) = 0.75,p(p — —n) = 1}, p(-n) > 0.75) ‘

Figure 4: Argument graph for Example 21.

Definition 26. Let I be a value set, let ® be a knowledge
tuple, where Len(®) = n, ler U, U’ € Candidates(®, II),
and let Pr be a confidence distribution. The weighted max
ranking, denoted <", and the weighted sum ranking,

—max
denoted <27 are defined as follows.

U <8P W' iff maxeqr,ny Pr(i) x Diff(®[i], )

< max;eqy,.. o) Pr(i) x Diff(®[d], ¥)

U SEEOW yy Prii) % DIfE(®[], 0)
< Zie{l,‘.,n} Pr(i) x Diff(®[q], T’)

The following follows from a simple generalization of the
proof for Proposition 11.

Proposition 14. The weighted max ranking and the
weighted sum ranking are pre-ordering relations.

Based on the definition for weighted ranking, it is straight-
forward to provide the following definitions for ideal relax-
ations.

Definition 27. Let I1 be a value set. For a knowledge tu-
ple ®, ¥ € Candidates(®,II) is an ideal max relaxation
(resp. an ideal sum relaxation) of ® iff there is no V' €
Candidates(®, II) s.t. O/ <227 W (resp. W/ <07 ),
Example 20. Consider the knowledge tuple [p(a) =
1,p(a) = 0] with I = {0,0.25,0.5,0.75,1} and with
Pr(p(a) = 1) = 0.9 and Pr(p(a) = 0) = 0.1. The ideal
relaxation is [p(a) = 1,p(a) = 1] where the max and sum
distances are 0.1.

Note, if it were the case that Pr(1) = Pr(2) in the above
example, then there would be multiple ideal relaxations. In
general when there multiple relaxations, we could make an
arbitrary choice, or we could summarize the range of relax-
ations by using intervals.

Example 21. For value set 11 = {0,0.25,0.5,0.75, 1}, and
knowledge tuple [p(b) = 1,p(n) = 0.75,p(bAn — f) =
0.75,p(p) = 0.75,p(p — —m) = 1], where b is bird,
n is normal bird, f is fly, and p is penguin. Each argu-
ment in Figure 3 is a local view based on this knowledge.
For confidence Pr(1) = 1, Pr(2) = 0.2, Pr(3) = 0.6,
Pr(4) = 0.6, and Pr(5) = 1, the ideal relaxation is
[p(b) = L,p(n) = 0.25,p(b An — f) = 0.75,p(p) =
0.75,p(p — —n) = 1], and the resulting global views are
given in Figure 4 where the undercut (and not the root) is in
the epistemic extension.

Example 22. Condider Example 21 but with the confidence
Pr(1) =1, Pr(2) =08 Pr(3) =1, Pr(4) = 0.2, and
Pr(5) = 0.8. The ideal relaxation is [p(b) = 1,p(n) =
0.75,p(b An — f) = 0.75,p(p) = 0.5,p(p — —n) =
0.75], and resulting global views given in Figure 5 where
the root (and not the undercut) is in the epistemic extension.



[ {p(b) = Lp(n) = 0.75,p(b A — f) = 075} p(f) > 0.5)
i

’ ({p(p) = 0.5,p(p — —n) = 0.75},p(—n) < 0.5) \

Figure 5: Argument graph for Example 22.

Proposition 15. For all knowledge tuples ®, and all confi-
dence distributions Pr, there is an ideal max relaxation, and
an ideal sum relaxation, of ® that is consistent.

This proposition follows from a simple generalization of
the proof for Proposition 12.

7 Comparison with the Literature

Two important approaches to probabilistic abstract argu-
mentation are the constellations and the epistemic ap-
proaches (Hunter 2013): In the constellations approach,
there is uncertainty over the structure of the graph (see
(Dung and Thang 2010; Li, Oren, and Norman 2012;
Hunter 2012) for instances of the approach); Whereas in the
epistemic approach (which is the approach used in this pa-
per), the topology of the argument graph is fixed, but there is
uncertainty about whether an argument is believed (Thimm
2012; Hunter 2013; Baroni, Giacomin, and Vicig 2014;
Gabbay and Rodrigues 2015; Hunter and Thimm 2017). A
further approach is based on labellings for arguments us-
ing in, out, and undecided, from (Caminada and Gabbay
2009), augmented with off for arguments not occurring in
the graph (Riveret and Governatori 2016). A probability
distribution over labellings gives a form of probabilistic ar-
gumentation that overlaps with the constellations and epis-
temic approaches.

At the structured level, Haenni (Haenni 1998) considered
a restricted form of probabilistic argumentation in which
pros and cons are generated from a classical logic knowl-
edgebase, and then a probability distribution over models
of the language are used to assign a belief in each argu-
ment. Subsequently, this was generalized by Hunter to ar-
bitrary argument graphs (Hunter 2013) in which various
kinds of counterargument can be accommodated. More re-
cently, Prakken considered a similar approach for ASPIC+
(Prakken 2018). In other logic-based proposals, Verheij has
combined probabilities with non-monotonic inference (Ver-
heij 2012), and separately, he has combined qualitative rea-
soning in terms of reasons and defeaters (adapting Pollock’s
definitions (Pollock 1995)), with quantitative reasoning us-
ing argument strength, modeled as the conditional probabil-
ity of the conclusions given the premises (Verheij 2014). In
these proposals, the language is a form of propositional lan-
guage, rather than a probabilistic language, the inference re-
lation is for rules or propositional formulae, rather than de-
feasible inference for the probabilistic formulae, and there
is no consideration of how the knowledge could be revised
so that we could get a coherent view on it, and thereby on
the probability of acceptablity of the arguments. In a rule-
based system for dialogical argumentation, the belief in the
premises of an argument is used to calculate the belief in the

argument, though the nature of this belief is not investigated
(Riveret et al. 2007).

Bayesian networks can be used to model argumenta-
tive reasoning (Vreeswijk 2004; Grabmair, Gordon, and
Walton 2010). Conversely, arguments can be generated
from a Bayesian network, and used to explain the network
(Timmer et al. 2015). Argumentation can also be used
to construct Bayesian networks (Bex and Renooij 2016;
Wieten et al. 2019), and it can be used to combine multiple
Bayesian networks (Nielsen and Parsons 2007). However,
none of the above use a probabilistic logic for representing
and reasoning with uncertain knowledge to generate argu-
ments, and none offer methods for resolving conflict to give
a consistent knowledgebase for constructing arguments.

8 Discussion

In this paper, we have provided a framework for reasoning
with inconsistent knowledge using probabilistic argumenta-
tion with the following features: (1) A probabilistic logic
for generating arguments from belief formulae; and (2) Be-
lief relaxation to find a coherent knowledge tuple. Whilst
the probabilistic logic, the maximum entropy reasoning, the
distance measure, etc are harnessed from the literature, the
novelty in our approach is in putting them together for com-
putational argumentation.

This proposal means that we can harness uncertain for-
mulae in argumentation. There are many applications where
uncertainty in propositional formulae can be quantified.
This may be because there are experts available to assign
subjective probabilities to the items of knowledge, or be-
cause the propositional formulae have been obtained by sta-
tistical analysis of data (e.g. from scientific studies or from
surveys with participants), or by machine learning (and so
for each belief statement, both the proposition and the belief
assignment can be automatically obtained). Then using re-
laxation we obtain a consistent knowledge tuple that means
there is at least one probability distribution that satisfies all
the premises of the arguments, and satisfies normative prop-
erties such as the rational constraint.

In future work, we will consider alternative monotonic
and non-monotonic entailment relations for belief formu-
lae, we will investigate alternative constraints on confidence
distribution, we will generalize relaxation to belief formu-
lae, and we will develop methods for harnessing SAT tech-
nology for entailment and relaxation. We will also inves-
tigate incorporating further kinds of probabilistic reasoning
including formalisms for handling inconsistent probabilis-
tic knowledge (e.g. (Finthammer, Kern-Isberner, and Ritter-
skamp 2007; Potyka and M. Thimm 2015)).
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