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Abstract: 29 

Different assumptions and methodologies prompt divergent policy implications 30 

towards climate change. Although climate scientists would like to be as precise as 31 

possible, policymakers with different attitudes towards climate change will always 32 

choose the result that matches their own value judgment. This paper discusses the 33 

impact of climate change attitudes on optimal mitigation in 15 regions. The climate 34 

change attitude is reflected by a meta-analysis of 27 climate damage estimations and fit 35 

into five damage functions. The optimal mitigation is calculated using the non-36 

cooperative scenario of the regional integrated model of climate economy (RICE). The 37 

results show that the optimal mitigation in developing countries is more sensitive to 38 

climate change attitudes than it is in developed countries. In 2100, the range of optimal 39 

emissions divides the average of optimal emissions by 20% in developing countries, 40 

which is twice the value of that in developed countries. The average social carbon cost 41 

in developing countries is 20 times higher than that in developed countries. This large 42 

uncertainty may be the combined result of high shadow prices of capital and large 43 

amounts of future emissions in these developing countries. 44 

 45 

Key Word: Climate change; Climate damage; Impact assessment; Political attitudes; 46 

IAMs; 47 

 48 

1. Introduction: 49 

Cost-benefit integrated assessment models (IAMs) balance the marginal mitigation 50 

cost with the marginal mitigation benefits (i.e., the amount of climate damage that is 51 

avoided); therefore, IAMs inform us how the benefits of mitigation stack up against 52 

costs. The most important result is the estimation of the social cost of carbon (SCC), 53 

which denotes the dollar value of the reduced climate change damage associated with 54 

an additional ton of CO2 emissions. The value has been set as the basis for an optimal 55 

carbon tax and plays a critical role in regulatory implementation and public debate 56 



(Weyant, 2017). The United States has estimated the SCC as part of rulemaking cost-57 

benefit analysis; since 2010, the policy benefit has been estimated at more than $1 58 

trillion. In recent years, the value is increasingly adopted in state-level regulations 59 

(Larson, 2016; Schlatter, 2016; State of California, 2016).  60 

 However, the concept has been largely criticized for its uncertainty. The SCC 61 

estimation is sensitive to alternative socioeconomic paths (i.e., economic growth, 62 

demographic factors, mitigation and adaptation challenges such as marginal abatement 63 

costs) and the social discount rates (Yang et al., 2018). But among years of discussion, 64 

the SCC sensitivity to climate damage is always central (Pindyck, 2013). First, the 65 

impact of climate change is wide-ranging and hard to monetize (Hong et al., 2019; 66 

O'Neill et al., 2017). The fundamental productive elements are often found to be 67 

sensitive to climate change (Schlenker and Roberts, 2009), while the aggregate 68 

macroeconomic productivity may have little effect on temperature (Dell et al., 2012). 69 

The conflict between the macro- and micro-observations may make the research scope 70 

of climate impact estimation even more critical in relation to the estimated result 71 

(Yokohata et al., 2019). Similar inconsistency can also be found in estimation for 72 

marginal abatement cost, which is also critical for SCC estimates (An et al., 2021). 73 

Monetizing the climate change impact is also challenging. Several methodological 74 

approaches have been used to monetize climate change impact (Chegwidden et al., 75 

2019; Tol, 2009). The various methods use natural science models and sum the physical 76 

effects of climate change (Tol, 2002). The result is scientifically reliable but cannot 77 

fully be extrapolated to the future. Statistical methods use the economic model and 78 

result in the welfare impacts of climate change across time and space (Burke et al., 2015; 79 

Camus et al., 2017; Dale et al., 2017). However, statistical methods cannot fully 80 

differentiate the impact of climate change from that of other factors, and the bias among 81 

studies will produce a larger range of uncertainty. Second, climate change is a complex 82 

issue with a temporal dynamic over a long-term time horizon. The heterogeneous nature 83 

of climate impacts across regions and generations has resulted in different projections 84 



of future climate change. The economist focusing on the policy implications of climate 85 

change emphasizes the trade-off between the climate and economic system and prefers 86 

to smooth the relationship between the economic and climate variables (Nordhaus, 87 

2019; Nordhaus and Boyer, 2000). In contrast, the climate scientist often focuses on the 88 

nonlinear character of the earth system and suggests that several elements of the climate 89 

system could be tipped into a different state by global warming (Alley et al., 2003).  90 

 Given the wide range of estimations over climate damage, politician's attitudes 91 

towards climate change have become even more important (Kousser and Tranter, 2018). 92 

Many have been focused on the role of policy actors in determining the political 93 

capacity to respond to climate change (Dunlap, 2014; Parker et al., 2015). The literature 94 

is further enriched after Trump withdraws from Paris Agreement (Panno et al., 2019) 95 

and the Yellow Vests crisis (Douenne, T., & Fabre, 2020). Factors such as values, 96 

ideologies, and worldviews can shape people's climate beliefs, but the belief is not 97 

necessarily turning into actions (Hornsey et al., 2016). When making policy decisions, 98 

respondents' position in the policy process and the identified geographical scale of focus 99 

(tendency to think locally) dominant politician's attitudes towards climate change 100 

(Stedman, 2004). The difference in attitudes can be reflected in the climate damage 101 

projections. For example, a proactive climate policymaker might suggest an 102 

exponential damage function that indicates colossal damage in the long term, while a 103 

prudent policymaker might choose a linear function that indicates the steady growth of 104 

climate damage in the future.  105 

Studies have discussed the optimal mitigation under damage risk valuation from 106 

various approaches, given the large inconsistencies in climate change assumptions and 107 

value judgments. Some studies discuss the uncertainty by changing the parameters 108 

(Anthoff et al., 2009) or the form of damage functions (Bretschger and Pattakou, 2019; 109 

Wouter Botzen and van den Bergh, 2012). Some studies introduce a more complex 110 

damage mechanism to discuss this uncertainty; for example, the original damage on net 111 

output can be extended to capital stock (Dietz et al., 2016), and the objective of 112 



maximizing the total welfare can be changed to maximizing the average utilitarianism 113 

(Scovronick et al., 2017). Probabilistic and stochastic versions of IAMs have also been 114 

developed and used to discuss the uncertainty related to damage (Lontzek et al., 2015; 115 

Tol, 2005). Most discussions are structurally based on the dynamic integrated climate-116 

economy model (DICE), which is an archetypical cost-benefit IAM employed to assess 117 

the social cost of carbon for the US government. Keller et al. (2004) explored the 118 

combined effects of a climate threshold and parameter uncertainty; Crost and Traeger 119 

(2014) discussed the uncertainty by treating the damage parameters as stochastic; and 120 

Cai et al. (2016) incorporated tipping points into a stochastic dynamic IAM. However, 121 

the DICE model can only provide global optimization without national comparison. 122 

Ortiz et al. (2010) built a regional DICE model and used a Monte Carlo simulation of 123 

the key parameter to address the uncertainty in regions. Under the complex structure of 124 

IAM, they considered only the optimal policy scenario, which assumed the full 125 

participation of all regions in terms of combating climate change. 126 

 How much will climate risk valuation and attitudes affect future climate change? 127 

Will the effect be different among countries? This paper uses alternative damage 128 

functions to present different political attitudes while using the social carbon cost to 129 

reflect the impacts. Climate damage uncertainty is addressed by meta-analysis. We 130 

integrate the national damage estimations of 27 studies and fitting the results into five 131 

forms of damage functions. Different forms of damage functions are used to present the 132 

selection bias of the policymakers. To reflect the regional characteristics, we use the 133 

regional integrated model of climate economy (RICE) and divide the world into 15 134 

regions (Table 1). Estimations were conducted under non-cooperative hypothesis, 135 

where each nation optimizes its national emissions by maximizing its national welfare. 136 

The optimal emission trajectory, SCC, and temperature increase are estimated under 137 

five types of damage functions, while comparisons are made between developed and 138 

developing countries. 139 



Table 1 Abbreviation table 140 

Abbreviation Full name 

ASIA Asia countries 

BASIC group Brazil, South Africa, India, China 

CGE the Computable General Equilibrium model 

DICE The Dynamic Integrated Climate-Economy model 

IAM Integrated Assessment Model 

LAM Latin America and the Caribbean countries 

MAF the Middle East and African countries 

NDC National Determined Contribution 

OAB Other Annex B countries 

OEU Other European countries 

REF the Reforming Economies of the Former Soviet Union 

RICE Regional Integrated model of Climate and the Economy 

SCC Social cost of carbon 

SSP Shared socioeconomic pathway 

 141 

2. Methods 142 

The climate damage equation is constructed using the proper function form and 143 

parameters. The form of the function indicates the long-term expectation of climate 144 

change damage, while the parameters are fitted by creditable climate damage data. With 145 

limited knowledge on the nature of climate change, it is hard to predict the future 146 

physical process along with the economic impacts. Currently, there is no certain form 147 

of damage function being used in the literature. Moreover, while the impact of climate 148 

change is wide-ranging, from economic production to the things people value, the 149 

damage data cannot be observed directly. Most of the climate damage data are being 150 

estimated by experts, and the boundary of climate change damage and the methodology 151 

being used for estimation will both be affected by the results of these estimations. 152 

However, the boundary and methodology used to estimate climate change damage do 153 

not have a consensus. Therefore, we used the meta-analysis on national climate damage 154 

from 27 studies, and the data were aggregated into 15 regions in the RICE model and 155 

fit the data with five forms of damage functions to consider the different expectations 156 

of climate damage. 157 



2.1 The regional integrated model of climate and the economy 158 

RICE couples an economic model with a simple climate model to internalize the 159 

externality of climate change (Nordhaus and Yang, 1996). As an extension of DICE 160 

(Nordhaus, 2018), RICE provides optimal mitigation strategies at the national/regional 161 

levels. Considering the current bottom-up structure of the Paris Agreement, where 162 

nations committed to nationally determined contributions (NDCs) by maximizing 163 

national interests, the national optimal mitigation trajectory provided by the RICE 164 

model will be more suitable under the current situation (MacCracken, 2016). 165 

The model we used was based on the latest version of the RICE model (Nordhaus, 166 

2010), and changes were made in three parts, namely the climate module, regional 167 

definition, and damage function. First, we updated the climate module to incorporate 168 

the latest research on the carbon cycle (Archer et al., 2009; Nordhaus, 2017). Second, 169 

we extended the model to 15 regions by the international climate regime to provide a 170 

better understanding under the Paris Agreement. The European Union is featured as a 171 

pioneer in climate change with stringent mitigation policy. The United States, Russia, 172 

Japan, Canada, and other Annex-B (OAB) countries who participated in the Kyoto 173 

Protocol, also named the umbrella group, are laggards in terms of climate actions. These 174 

are mostly developed countries that want to keep their voice in international negotiation 175 

but who do not have much desire to invest in their future. The BASIC group (i.e., China, 176 

India, Brazil, and South Africa) represents countries with emerging power in climate 177 

negotiations. Economic development is booming in these countries, but the energy 178 

demand is also increasing. Other regions were categorized geographically following the 179 

IPCC Regional definition. The full list of countries included is shown in the 180 

Supplementary Information. By analyzing the climate risks of different parties and 181 

estimating the SCC in each region, the results may provide guidance for national 182 

climate action and the evaluation of national policies. Finally, the damage functions are 183 

discussed with alternative forms and parameters. 184 

SCC and optimal emissions are calculated under the non-cooperation scenario, 185 



where nations optimize their emissions by maximizing their national welfare. The 186 

nation's mitigation policy reaches a Nash equilibrium, i.e., when given another nation's 187 

information, no country will gain benefits by changing its own strategy. 188 

2.2 Meta-analysis of damage risk valuation and expectation 189 

2.2.1 Meta-analysis of risk evaluation 190 

Several methodological approaches have been used in estimating the economic 191 

damage caused by climate change. The estimation of early climate damage can be done 192 

by interviewing experts (Nordhaus, 1994). Then, enumerative methods that monetize 193 

the "physical effects" of climate change based on natural science experiments can be 194 

used (Fankhauser, 2013; Griscom et al., 2017; Tol, 2002). The results of the latter 195 

methods were more physically realistic but had limited extrapolation capabilities. The 196 

statistical methods assume that the observed variation of economic activity with climate 197 

over space holds over time as well and provides an estimation of production loss for a 198 

range of temperatures (Burke et al., 2015; Mendelsohn et al., 2000). Other studies have 199 

used the computable general equilibrium (CGE) to estimate economic damage while 200 

considering the market reaction to climate change (Moore et al., 2017). As both 201 

methods have advantages and disadvantages, Tol (2018) conducted a meta-analysis of 202 

27 published estimates contained in 22 studies. We aggregated the national data into 15 203 

regions, and the results are shown below in Figure 1. 204 

 205 
Figure 1 Meta-analysis of 27 climate damage estimations for 15 regions, damage 206 

valued by welfare equivalent income change (%) to temperature increase 207 

compared to the pre-industrial level. OAB: Other Annex B countries; MAF: Middle 208 



East and Africa; LAM: Latin America and the Caribbean; OEU: Other European 209 

countries; REF: Reforming Economies of Eastern Europe and the Former Soviet Union 210 

 211 

2.2.2 Meta-analysis of risk expectation 212 

Experiments related to climate change also varied. Some extended the trend of 213 

current climate damage, assuming a quadratic or polynomial relationship between 214 

temperature and climate damage (Burke et al., 2015; Hope, 2013). Other studies 215 

assumed "tipping points" for harboring large-scale discontinuities, where a small 216 

change in a driver resulted in an irreversible change (Cai et al., 2016; Kriegler et al., 217 

2009; Lontzek et al., 2015). We tried to include most of the functions in the model; 218 

however, the optimization structure of the RICE model has narrowed the possibility to 219 

only a few of the functions. Therefore, we excluded some of the forms that may result 220 

in an infeasible solution, only considering the following five forms of damage functions 221 

(Table 2). 222 

 223 

Table 2 Forms of damage functions 224 

No. Damage function Author Characteristics 

(1) (a*T) IT<TR + (b*T) IT≥TR 

TR: temperature threshold 

Meta-analysis 

(Tol, 2018)5555 

Based on 27 published estimates 

(2) a*T + b*T2 Tol 6  Damage function from the framework for 

uncertainty, negotiation and distribution 

model (FUND). The model is one of the 

three models used to provide SCC for the US 

Government. 

(3) a*T Hope 7 Damage function from the policy analysis of 

the greenhouse effect model (PAGE). The 

model is one of the three models used to 

provide SCC for the US Government. 

(4) a*T2 Nordhaus 8 Damage function from the dynamic 

integrated climate-economy model (DICE). 

The model is one of the three models used to 

provide SCC for the US Government. 



(5) a*exp(T) +b Karp 9; 

van der Ploeg 

and de Zeeuw 

10 

The climate damage is expected to increase 

exponentially. Like the tipping point 

assumption, the damage will increase 

dramatically after the threshold is reached. 

 225 

3. Results 226 

3.1 Meta damage function of 15 regions 227 

Using the meta-analyzed damage data, we fit the climate damage parameters for the 228 

15 regions. Five forms of damage functions for 15 regions are shown in Figure 2. With 229 

a small increment of temperature, the projected welfare change is largely reflecting the 230 

damage estimation. When the temperature rises up to 4℃, the projection will be 231 

determined by the form of damage functions. 232 

Results show that the net impact of climate change at the earlier stage of global 233 

warming is estimated as a welfare loss for most countries, except for Russia, Canada, 234 

the USA, and the EU. According to the data included in our meta-analysis, the Arctic 235 

region will experience extremely cold weather, and climate change may introduce more 236 

favorable conditions to these countries. However, when the average surface temperature 237 

increases, the positive effect may become negative. It is unclear whether climate change 238 

will lead to a net welfare gain or loss for Canada and Russia. Based on the meta-analysis 239 

functions, Nordhaus and Hope predict the future climate impact by extending the 240 

current trend, and Russia and Canada will continue benefiting from the temperature 241 

increase. 242 

In contrast, according to the function used by Tol and Karp, the negative climate 243 

impact in Russia and Canada will exceed the positive impact, and the net impact will 244 

reverse in these two countries near the threshold of 5℃. With increasing research into 245 

the Arctic region, many studies have found negative effects of climate change on the 246 

Arctic countries (Stephen, 2018). The melting permafrost, the release of diseases 247 

trapped in the permafrost, and the loss of ecosystem service will also cause irreversible 248 

damage to humans, yet have not been included in our studies (O'Garra, 2017; Ranjan, 249 



2014). 250 

The damage estimation for developing countries is generally higher than for 251 

developed countries. With less capability to implement serious adaptation measures, 252 

developing countries may suffer more from climate change, while the climate impact 253 

further hinders the development of the economics. Geographically, many developing 254 

countries are situated in low latitude areas where concentrates 80% of the climate 255 

damage (Mendelsohn et al., 2006). The climate damage of developed countries is less 256 

than 15% of the total income, even when the average temperature increases to 7℃ 257 

above the pre-industrial level. Whereas for the developing countries, the income loss 258 

will account for 10-40% of the income. Under the damage function proposed by 259 

Nordhaus, India will suffer 51.2% of welfare equivalent income loss at a change of 7℃. 260 

 261 

Figure 2 Welfare equivalent income change (%) under five damage functions. 262 

OAB: Other Annex B countries; MAF: Middle East and Africa; LAM: Latin America 263 

and the Caribbean; OEU: Other European countries; REF: Reforming Economies of 264 

Eastern Europe and the Former Soviet Union. 265 

 266 

3.2 Optimal mitigation under damage risk and evaluation 267 

The different expectations of climate change will not significantly alter the optimal 268 



emissions under the non-cooperation scenario; however, they will significantly change 269 

the SCC of each nation (Table 3). Under the non-cooperation scenario, the optimal 270 

emission in developing countries will be doubled or even tripled from 2020 to 2050, 271 

while emission in developed countries decreases gradually from 2020 to 2050. India's 272 

emission increases from 2.7 GtCO2 to 6.2 GtCO2 during this period, while China's 273 

emission increases to 21.1 GtCO2 in 2050. The result provided considers the current 274 

trend of carbon intensity change, balancing the marginal mitigation cost with the future 275 

climate damage, but the result does not consider the political benefits or risk preferences 276 

in combating climate change. China is seeking its new identity as a responsible middle-277 

income country and has made ambitious climate commitments. The reputation gain and 278 

intention to lower future climate change risks will significantly reduce the likelihood 279 

that China's emissions will reach 21.1 GtCO2 in 2050. Countries that may not worsen 280 

off by climate change (e.g., Russia and Canada) will not spend additional budget in 281 

mitigation. However, with substantial improvement in energy efficiency and 282 

technological change, all countries may have a natural carbon intensity decline without 283 

policy. The intensity decline will still reduce the overall emission for the two countries. 284 

The SCC, also known as the optimal carbon tax (Crost and Traeger, 2014), is greatly 285 

affected by the climate change attitude (i.e., assumptions and value judgment). The 286 

range of SCC values under different climate functions is even larger in developing 287 

countries. As the prediction goes beyond 2050, the variance is even higher. 288 

Comparatively, India and China have a higher SCC than the other countries, indicating 289 

more serious monetized climate damage for each additional ton of carbon emissions. 290 

Table 3 Carbon tax and optimal emissions in major economics in 2020 and 2050. 291 

  

2020 Optimal Emission 

(GtCO2) 

2050 Optimal Emission 

(GtCO2) 

2020 SCC 

($/GtCO2) 

2050 SCC 

($/GtCO2) 

Average Max Min Average Max Min Average Max Min Average Max Min 

USA 5.3  5.4  5.1  4.2  4.4  3.9  3.8  10.3  0.5  6.6  19.5  0.6  

EU 3.2  3.2  3.1  2.1  2.1  2.0  3.9  8.2  1.4  6.7  17.2  1.6  

Russia 1.9  1.9  1.9  1.6  1.7  1.6  -0.4  1.3  -1.4  -0.1  3.2  -2.3  

Japan 1.2  1.2  1.2  1.0  1.0  1.0  0.7  1.2  0.4  1.0  2.2  0.4  

Canada 0.5  0.5  0.5  0.4  0.4  0.4  -0.5  0.8  -1.4  -0.4  1.6  -2.3  



China 11.5  11.7  11.4  21.1  22.1  19.8  6.8  8.4  4.9  20.5  34.5  10.7  

India 2.7  2.7  2.6  6.2  6.5  5.6  15.5  27.9  6.0  44.9  96.0  20.1  

Brazil 0.6  0.6  0.6  1.0  1.0  1.0  3.8  6.1  1.8  5.8  10.4  3.4  

South 

Africa 
0.5 0.5 0.5 0.7 0.7 0.6 5.2 22.9 0.6 10.8 48.5 0.8 

Different damage projections may change the optimal mitigation rate but will not 292 

significantly change the average surface temperature in 2100. The average surface 293 

temperature above the pre-industrial level at the end of this century will be 294 

approximately 4.3℃. Temperature increases the least under the exponential damage 295 

function proposed by Karp, with a value of 4.27 ℃ at the end of this century. The 296 

function including the quadratic term is relatively higher, and the temperatures under 297 

Nordhaus's and Tol's functions are 4.29℃ and 4.33℃, respectively. The two linear 298 

functions both end with a 4.35℃ temperature increase relative to the pre-industrial level, 299 

and this value was the highest compared with the other function forms. The main reason 300 

behind this result is climate lag, but the result might also be caused by the mechanism 301 

of optimization, as each nation considers only their national interest and minimizes the 302 

mitigation only to balance their national damage. Compared with the cooperative 303 

scenario, the original mitigation level under the non-cooperative scenario is relatively 304 

low; thus, the impact of damage functions will not significantly change the temperature 305 

in 2100. 306 

3.2.1 Optimal mitigation in the Annex B countries 307 

The differences in climate risk valuation and expectation have limited impacts on 308 

the optimal emission growth of the Annex-B countries, mainly because their climate 309 

impacts are relatively small, and the emission levels are comparatively low (Figure 3). 310 



 311 

Figure 3 Optimal emission, social carbon cost, and climate impact in the Annex-B 312 

countries. OAB: Other Annex B countries. 313 

The optimal carbon emissions in all Annex-B countries peaked around 2025 and 314 

then declined. Under different climate risk perceptions, countries should optimize their 315 

optimal emission reduction rates accordingly. As larger emitters will be more sensitive 316 

to emission reduction rates, the optimal emission of the USA has a wider range of 317 

uncertainty, with a range of 0.52 GtCO2. The average range of the optimal emissions of 318 

Annex-B countries is 0.13 GtCO2 in 2100. By dividing the uncertainty range by the 319 

average national emission, the USA ranked the highest, at 19.5%, while the average 320 

fluctuation rate of the Annex-B countries was equal to 9.9%. 321 

The highest SCC of the Annex-B countries ranged from 4.0 $/tCO2 (Canada) to 43.8 322 

$/tCO2 (EU) in 2100. Three function forms indicate an increasingly positive impact of 323 

climate change in Russia and Canada. As the temperature increase is within 5℃ for all 324 

scenarios, the net climate impacts in these two countries remained positive, estimated 325 

at approximately $400 billion in 2100. However, the positive impacts do not indicate 326 

emissions should be increased in these countries. The emission reduction rate is 327 

decreased to zero in the two countries, indicating that the countries will not exert extra 328 

effort to reduce emissions. However, with technological innovation, the carbon 329 



intensity is assumed to decline naturally with economic growth. Therefore, the 330 

emissions in these countries will still decrease gradually over time. The climate impact 331 

in the USA is projected to be mostly positive within this century under the function 332 

proposed by Tol and Karp. However, as the impact quickly reverses after this period, 333 

the SCC in the USA is positive throughout the period. Although emissions might have 334 

some positive impacts in the near term, the USA is still considered to have reduced 335 

social welfare given the considerable damage that might be caused in the long term. 336 

3.2.2 Optimal mitigation in the BASIC countries 337 

The optimal mitigation in BASIC countries is more sensitive to climate change 338 

perception (Figure 4). Emissions in these countries were projected to have rapid growth 339 

with economic development. Given the geographical locations and economic situations, 340 

these countries all experience negative impacts of climate change, while the damage is 341 

even more serious than in developed countries. A large amount of emissions and a high 342 

level of climate damage make their optimal mitigation strategies more sensitive to 343 

climate change perception. Optimal emissions of China have the widest range of 344 

uncertainty of 4.90 GtCO2. The average range of the optimal emissions of BASIC 345 

countries is 2.27 GtCO2 in 2100. By dividing the uncertainty range by the average 346 

national emissions, India ranked the highest, at 53.2%, followed by China (34.7%). The 347 

average fluctuation rate of BASIC countries was 24.3%, which was twice the value of 348 

the Annex-B countries. Assumptions and value judgment towards climate change may 349 

have a higher impact on climate policies, which means the optimal national emissions 350 

determined by an idealistic policymaker may be much lower than those determined by 351 

a cynical policymaker. For a cynical policymaker to perceive low climate damage and 352 

expect linear growth of climate damage, the optimal emissions would be much higher 353 

than those determined by an idealistic policymaker, who perceives serious climate 354 

damage and expects exponential growth. If the actual climate damage is higher than the 355 

cynical policymaker has expected, the economic damage might be higher than the 356 

economic income produced by the emissions. 357 



 358 

Figure 4 Optimal emission, social carbon cost, and climate impact in the BASIC 359 

countries.  360 

The SCC values of the BASIC countries are much higher than those of the Annex-361 

B countries, with the highest levels ranging from 17.4 $/tCO2 (Brazil) to 278.6 $/tCO2 362 

(India) in 2100. The high level of monetized damage per additional emission can be 363 

explained from two aspects. First, according to the proposed damage functions, climate 364 

change has a greater effect on the percentage of economic outcomes (GDP) in these 365 

countries than in developed countries. Under Hope's damage function, the total damage 366 

is as high as 20% of the total GDP in India ($22273 billion) and 17% of the GDP in 367 

Brazil ($1651.44 billion) at the end of this century. On the other hand, the shadow prices 368 

of capital in these countries are also higher comparatively, which potentially make the 369 

cost of mitigation even higher. Therefore, even under such an extreme level of climate 370 

damage, emissions in these countries do not decline to zero. 371 

3.2.3 Optimal mitigation for regions 372 

The optimal emissions in the five regions are also sensitive to climate change 373 

perceptions (Figure 5). With high-speed economic development, emissions in MAF 374 

sharply increase throughout the century. The total emissions reach 13.8 GtCO2 in 2100, 375 

which is nearly five times higher than in 2015. Climate change damage is estimated to 376 



be approximately 10% of the total GDP in MAF, ASIA, and LAM. The damage will 377 

also be incredibly serious, e.g., up to 20,237 billion$ in MAF at the end of this century, 378 

given the rapid economic development in these regions. Damage is considerably lower 379 

in the OEU and REF, estimated at approximately 5% of the total economic outcome. In 380 

2100, the optimal emissions of MAF have the widest range of uncertainty, at 2.19 381 

GtCO2, and the average range of the optimal emissions of the five regions is 0.92 GtCO2. 382 

By dividing the uncertainty range by the average national emissions, LAM ranked the 383 

highest, at 30%. The average fluctuation rate of the five regions is 16.6%, which is 384 

slightly lower than that of the BASIC countries but still higher than that of the Annex-385 

B countries. 386 

 387 

Figure 5 Optimal emission, social carbon cost, and climate impact in the five 388 

regions. MAF: Middle East and Africa; LAM: Latin America and the Caribbean; OEU: 389 

Other European countries; REF: Reforming Economies of Eastern Europe and the 390 

Former Soviet Union. 391 

The highest SCC of the five regions ranged from 191.7 $/tCO2 (MAF) to 435.4 392 

$/tCO2 (REF) in 2100. Although the climate damage in the OEU and the REF is low, 393 

their SCC values are the highest among all regions under the function with the quadratic 394 

term (Tol and Nordhaus). This high value may result from the increasing climate 395 



damage projected in the long term or from the high shadow price of consumption in the 396 

two countries. 397 

4. Conclusion 398 

How much will climate risk valuation and attitudes affect climate change policy? 399 

Will the effect be different among countries? This study answers these questions by 400 

analyzing the impact of climate change attitudes on a nation's optimal mitigation 401 

strategy through meta-analysis. We use 27 studies of climate damage estimation to 402 

present value judgments of climate damage, while five forms of damage functions are 403 

used to present the assumptions and future expectations of climate change. Under the 404 

non-cooperation scenario of the RICE model, each nation maximizes its national 405 

welfare and balances the marginal mitigation cost with the marginal mitigation benefit 406 

(the climate damage avoided).  407 

The climate risk valuation and attitudes will affect both the optimal emission 408 

trajectory and the social carbon cost, while the impact is more significant in developing 409 

countries. For India, alternative climate change perspectives bring a 4 GtCO2 range of 410 

optimal emissions, while the average emission estimation is 7.6 GtCO2 in 2100. The 411 

range equals 53% of the average, which shows considerable uncertainty. The number 412 

is 35% for China, 19% for the USA, and 15% for the EU. On average, the uncertainty 413 

range for the nine developing countries/regions are accounts for 20% of the optimal 414 

emission, which is twice the value of that for the six developed countries/regions. 415 

The range of the SCC is also much higher in developing countries than that in the 416 

developed countries, indicating it is much more difficult for developing countries to 417 

follow the optimal mitigation strategies. In 2100, the estimated SCC range from 418 

$1/tCO2 to $435/tCO2 for the REF countries under different climate change perspectives. 419 

The gap between the highest and lowest estimation is $254/tCO2 ($24/tCO2 - $279/tCO2) 420 

for India and $93/tCO2 ($15/tCO2 - $105/tCO2) for China, which is a much wider range 421 

compared to the range for the US ($1/tCO2 - $41/tCO2) and the EU ($2/tCO2 - 422 

$44/tCO2). The reason behind this is the high degree of uncertainty around the damage 423 



estimation and the high shadow prices of capital. With such a wide range of 424 

uncertainties, the optimal strategy might be easily biased under different climate change 425 

assumptions and value judgments. For example, the linear damage function proposed 426 

by Hope usually results in higher optimal emissions and a lower SCC. If a policymaker 427 

in a developing country is promulgating optimal mitigation policy using a linear 428 

function, but the actual climate damage is more like an exponential form, the optimal 429 

emissions posited under the linear function will no longer be optimal. The climate 430 

damage will be greater than expected, and the marginal mitigation cost will be much 431 

lower than the marginal mitigation benefits, making it economically efficient to achieve 432 

larger emissions reductions for the nation. 433 

According to the meta-analysis, the total climate damage in developing countries 434 

is projected to be higher than that in developed countries. The total damage in India 435 

could be 50 times that in the USA in 2100. The climate damage estimates the economic 436 

impact in each term, while the SCC measures the discounted monetized climate damage 437 

for an incremental increase in carbon emissions. According to our results under the non-438 

cooperative scenario, the average SCC is also higher in developing countries. In 2100, 439 

the average SCC in the Annex-B countries is estimated to be from 0.1 $/tCO2 (Canada) 440 

to 13.5 $/tCO2 (EU) in 2100. In the BASIC countries, the number is higher, ranging 441 

from 10.0 $/tCO2 (Brazil) to 123.8 $/tCO2 (India). The five developing regions have 442 

the highest levels of average SCC, ranging from 113.6 $/tCO2 (MAF) to 174.7 $/tCO2 443 

(REF) in 2100. This indicates that, in a global non-cooperative optimal situation, one 444 

incremental unit of carbon emission in a developing country usually causes more 445 

monetized climate damage than that in a developed country. 446 

The EU Carbon Border Adjustment Mechanism is announced to come into force 447 

by the end of 2022 to prevent carbon leakage (European Commission, 2020). By 448 

imposing a fee on carbon-insensitive imports from countries with less stringent climate 449 

policy, the mechanism is aimed to incentivize the development of carbon pricing 450 

schemes in third parties. Although there is no doubt such a mechanism may boost 451 



climate actions and awareness, our results illustrate the challenge of establishing a 452 

carbon pricing scheme in developing countries. According to the meta-damage 453 

estimates, developing countries are more vulnerable, while this vulnerability will 454 

further hinder their economic development. A sharply rising social carbon cost indicates 455 

the benefit from emission reduction and illustrates a range of uncertainty if these 456 

developing countries price the carbon by its social cost. The price mechanism could 457 

focus more on the production side to incentivize technological innovation. 458 

There are many limitations that can be addressed in future studies. First, regional 459 

aggregate results cannot inform policy-making, as countries are in different economic 460 

and environmental development stages. Although our results underscore the basic 461 

problems of political economy at the heart of the current bottom-up voluntary regime, 462 

questions remain as to what emerging economies should do to balance emission 463 

reduction with economic growth. The social carbon cost is much higher in these 464 

developing countries, yet these countries need carbon emissions to develop their 465 

economies and pay for the social costs. Sustainable development is always suggested 466 

as a way to solve the dilemma, but much more effort should be made to elaborate how 467 

to develop sustainably and profitably. Second, there is still a limitation in applying all 468 

the damage functions in the RICE model; as the RICE model is an optimization model, 469 

some functions may produce an infeasible solution. Third, the outcome of a meta-470 

analysis invariably depends on the studies included. As with all meta-analyses, publication 471 

bias, search bias, and selection bias are, to some degree, unavoidable. Even so, the 472 

importance of these studies has been widely recognized outside medical sciences where 473 

they originated, such that they are now standard in social sciences as well. Future work 474 

may be improved from these three aspects and provide a more detailed analysis for 475 

discussion. 476 
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