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Abstract—Motivated by the ever-increasing demands for mas-
sive data processing and intelligent data analysis at the network
edge, federated learning (FL), a distributed architecture for ma-
chine learning, has been introduced to enhance edge intelligence
without compromising data privacy. Nonetheless, due to the large
number of edge devices (referred to as clients in FL) with only
limited wireless resources, client scheduling, which chooses only
a subset of devices to participate in each round of FL, becomes a
more feasible option. Unfortunately, the training latency can be
intolerable in the iterative process of FL. To tackle the challenge,
this article introduces update-importance based client scheduling
schemes to reduce the required number of rounds. Then latency-
based client scheduling schemes are proposed to shorten the time
interval for each round. We consider the scenario where no prior
information regarding the channel state and the resource usage of
the devices is available, and propose a scheme based on the multi-
armed bandit theory to strike a balance between exploration and
exploitation. Finally, we propose a latency-based technique that
exploits update importance to reduce the training time. Computer
simulation results are presented to evaluate the convergence rate
with respect to the rounds and wall-clock time consumption.

I. INTRODUCTION

Driven by the surge of mobile devices and the unprecedent
explosion of data, a new computation paradigm, widely known
as edge computing, has emerged [1]. By processing data via
an access point (AP) at the network edge, edge computing
avoids the long propagation latency required by sending data to
a remote cloud. Conventionally, centralized machine learning
(ML) tools are brought in for action at the edge AP to analyze
a large amount of data and extract useful information for
different tasks, such as classification, prediction, and detection.
Nevertheless, limited by communication resources and storage
capacities, as well as other issues such as data privacy and
security concerns, sending user data to the edge AP is often
considered impractical. Proposed by Google [2], the concept of
federated learning (FL) has recently attracted much attention.
The main idea of FL is to train ML models based on datasets
distributed across multiple devices and send the model updates
to an FL server (e.g., the AP) for aggregation.

As shown in Fig. 1, training in FL for wireless networks
typically involves an iterative process and each iteration (also
called a communication round) includes four main steps:
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Fig. 1. An FL system illustrating the four main steps in one communication
round of the training process.

¬ An edge AP chooses a subset of clients and distribute the
model parameters (e.g., gradients and model weights) to
the participating clients;

­ Each participant performs local updates by training the
downloaded model with its own dataset;

® Each participant uploads its updated model parameters to
an aggregator (i.e., the edge AP), and

¯ The aggregator aggregates the model parameters, e.g., by
weighted averaging. The aggregated results are then sent
back to the clients for the next round of FL iteration.

According to the above process, only the model parameters
are uploaded to the AP instead of the raw data, and therefore
the FL implementation alleviates the requirement for network
bandwidth and also enhances data privacy.

With the rapid development of Internet of Things (IoT),
smart cities and many emerging applications, more and more
devices (e.g., sensors, cameras, and smart phones) are involved
in wireless networks and these devices will be the clients in
wireless FL. The challenge is that an edge AP may not have
enough channels for all the clients to download/upload their
model updates simultaneously due to the limited spectrum



resource [3]. To overcome this, client scheduling, which selects
a subset of the clients for local updates in each round of train-
ing, can be very effective. Client scheduling can also reduce
the communication cost caused by the high-dimensionality of
model parameters as well as network congestion. An efficient
client scheduling scheme should take into account not only
the learning performance (e.g., test accuracy and loss) but the
wall-clock time consumption of the training process, achieving
low latency needed for 5G and Beyond 5G networks.

To come up with a high-performance model with a low-
latency training process, client scheduling should address the
following challenges. The first challenge is the heterogeneity
of clients, which is also referred to as systems heterogeneity
[4]. Specifically, the computational and communication capa-
bilities of different clients can be very different because of
the diversity of hardware (e.g., CPU and memory), network
connectivity (e.g., 3G, 4G, and 5G), and battery level [4].
The systems heterogeneity causes different completion times
among the clients and fast clients have to wait for the slow
clients, referred to as stragglers, before model aggregation.

The second challenge is the statistical heterogeneity. The
non-independent and non-identical distributions (non-i.i.d.)
and unbalanced prosperities of distributed data lead to drift of
local updates and result in instability and slow convergence.

Additionally, dynamic wireless environments cannot guar-
antee communication quality and time-varying activity charac-
teristics of the clients fails to provide stable computing power.
Such environmental dynamics is highly unpredictable. Note
also that the available computing resource on each client varies
over time because a client can execute other processing tasks
(e.g., playing games) while performing the local updates.

Moreover, obtaining channel state information (CSI) of the
wireless channel and knowledge of the computing resource
usage for each client causes considerable overhead and may
even be impractical, especially when the number of the clients
is very large. These challenges can cause a slow and unstable
convergence process if not properly addressed.

In the literature, most research focused on having a faster
convergence rate for client scheduling by reducing the number
of communication rounds to achieve a certain level of test
accuracy. However, this does not necessarily reduce the wall-
clock time consumption of the whole training process, since
the time interval per round is also a key factor. Note that the
time interval per round in synchronous FL training depends
on the time consumed by the stragglers since the AP cannot
perform model aggregation until it receives all the local up-
dates from the chosen clients. Recognizing this fact, this article
investigates client scheduling with an emphasis on the wall-
clock time consumption of the whole training process, which
includes the latency incurred by both wireless transmission
and local computation on the clients. Also, different from the
existing works assuming the availability of prior information
regarding the CSI and computing resource usage [3, 5, 6], we
consider a more practical scenario without the prior informa-
tion, and utilize the multi-armed bandit (MAB) tool to estimate
the statistical information online. Our overarching aim is to

achieve a fast convergence speed with respect to the wall-
clock time by performing client scheduling in (1) reducing
the required number of communication rounds and also (2)
shortening the average time interval for each round.

The remainder of this article is organized as follows. We
begin by introducing two client scheduling schemes based on
update importance that aim to reduce the required number
of communication rounds. Then we analyze latency-based
client scheduling schemes in both cases with and without
prior information. Afterwards, we propose a client scheduling
scheme which jointly considers update importance and latency
in order to reduce the required number of communication
rounds and the average time interval per round simultaneously.
Finally, simulation results are presented before we conclude
the article.

II. UPDATE IMPORTANCE BASED SCHEDULING

In this article, synchronous update is considered for FL in
wireless networks. To reduce the number of communication
rounds required by a certain level of test accuracy, we need
to choose the clients whose local updates can help accelerate
the convergence and reduce the required rounds. The local
updates of such clients, we think, are more important. To
describe the update importance, we introduce two metrics,
i.e., update staleness and update drift. The former aims to
quantify the staleness of the local updates whereas the latter
can be regarded as a direct response to the heterogeneity of
distributed datasets of the clients.

A. Update Staleness

Stale updates have an undesirable impact on the learning
performance of wireless FL. The staleness of local updates
slows down convergence and can even make the training pro-
cess diverge [7]. Motivated by the notion of age-of-information
[8], age-of-update (AoU) was proposed to measure the stale-
ness associated with the local updates of each client [9].

The update rule is well known to be: ak(t+ 1) = (ak(t) +
1)(1 − sk(t)), where ak(t) is the age of the local update of
client k in round t and sk(t) ∈ {0, 1} is an indicator, which
equals 1 if client k receives the aggregated model parameters
in round t and 0 otherwise. The main idea behind the update
staleness based client scheduling schemes is to keep the local
updates as fresh as possible, by minimizing a certain function
of the AoUs in each round, e.g.,

∑
k log2(1 + ak). Generally,

a client with a larger AoU has priority to be selected to
participate in the current communication round if its wireless
channel is available.

Fig. 2 presents an example of AoU based client scheduling
where at most two clients are chosen from four clients in each
round. A client cannot be selected and its AoU increases by
one if its channel gain is lower than a threshold, as shown in
Fig. 2(a). This is because poor connection will fail to provide
stable transmission. Figs. 2(b) and 2(c) illustrate the utility of
AoUs and the selected clients in each round, respectively.
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Fig. 2. An example of AoU based client scheduling where at most two
clients are chosen from four clients in each round. (a) The AoUs of different
clients, (b) the utility of AoUs, and (c) the scheduling results in each round.

B. Update Drift

The local data is usually non-i.i.d. and each client usually
has a unique distribution of data. The skewness of the local da-
ta distribution from the population distribution causes the drift
of the local updates and degrades the training performance of
FL [10]. To quantitatively characterize the update drift, we
introduce a new concept weight divergence, in terms of the
Manhattan distance or the Euclidean distance of the weights of
a local model and the global model [11]. Generally, the weight
divergence increases as the distributed data becomes more non-
i.i.d. For a client, a larger weight divergence suggests that the
client should participate in more rounds to reduce the weight
divergence. In addition to the weight divergence, similar
concepts such as dissimilarity [4], parameter divergence, and
gradient diversity [5] can be used to quantify the update drift
of distributed datasets of the clients.

Fig. 3 shows an example of client scheduling based on the
weight divergence. In each round, the weight divergence of
each client is computed after the local updates are uploaded.
Based on the report of the weight divergence, the AP uses
a certain scheduling policy to make a decision about which
clients are selected and informs the selected clients to upload
their weights. In this example, two clients are chosen in each
round. It is worth pointing out that the update drift based client
scheduling schemes can reduce the required communication
rounds, but they do not necessarily decrease the time con-
sumption of the whole training process, because they ignore
the time consumed by a client to finish each communication
round.

III. LATENCY BASED CLIENT SCHEDULING

In wireless FL, the clients are typically large in number and
have unstable network connections due to dynamic wireless
environments. In addition, ML models especially deep neural
network models often have hundreds of millions of parameters.
Insisting on directly training such huge models can result in
the systematic exclusion of clients with restricted bandwidth
or limited network access, as well as unacceptable delay.
Motivated by these facts, it is important to take into account
the time consumption for each round while performing client

Round t t+1 t+2
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Fig. 3. An example of weight divergence based client scheduling where
two clients are chosen from three clients in each round. Different shapes
represent the weights of different clients and the solid ones suggest that the
corresponding clients are selected for local updates in the next round.

scheduling, rather than just the number of the required commu-
nication rounds. The latency includes the communication and
computation delay and the communication delay includes the
model distribution and model upload time. Here, it is assumed
that the delay incurred by model aggregation is negligible
because the AP has relatively stronger computation capability
compared to the clients and the computational complexity of
model aggregation is considered low. In the following, we
will analyze two scenarios: one with prior information and
the other without prior information available.

A. Prior Information Available

Since the wireless communication environment as well as
the activity characteristics of the clients is dynamic, prior
information such as the CSI between the clients and AP and
the computing resource usage of each client would be very
useful [6]. If such information is collected, then the AP can
choose a subset of the clients with low latency to participate
in the wireless FL training in each round, thereby shortening
the average time interval of the training rounds. However, this
approach focuses only on communication latency and ignores
the effect of distributed data of the clients on the convergence
rate and therefore may increase the number of communication
rounds. To deal with this challenge, we propose a latency based
client scheduling scheme with a fairness constraint.

The proposed latency based client scheduling scheme with
a fairness constraint is a mixed timescale method which has
a short-term optimization objective in each round and a long-
term fairness constraint across all communication rounds. In
particular, the proposed scheme aims to minimize the time
interval in each round, i.e., minS(t) maxk∈S(t) τk(t), where
S(t) denotes the subset of the clients chosen in round t
and τk(t) denotes the time consumed by client k in round
t, which is the sum of the three main components: the
model distribution time, the local update time, and the model
upload time. Note that the time consumption of each round
is determined by the slowest client because the AP cannot



perform model aggregation until all the selected clients finish
uploading data. Meanwhile, a long-term fairness constraint
lim inf 1

T

∑T
t=1 E[sk(t)] ≥ ck is introduced to “tell” each

client that how many communication rounds they should be
involved in, where E denotes the expectation operator, T is
the number of communication rounds, and the fairness factor
ck ∈ [0, 1) denotes the minimum fraction of communication
rounds that client k should participate in. Note that the virtual
queue technique can be adopted to meet the fairness constraint
[12].

The fairness constraint enables a fair participation among
the clients and avoids slow clients but with important training
data being neglected due to the pursuit of low delay. Further-
more, the fairness constraint can let the clients with important
training data participate in more communication rounds by
setting a larger fairness factor. Note that the fairness factors
ck’s should be carefully designed as they play an important
role in improving the learning performance, but how to design
the fairness factors is still an open problem. One heuristic
solution is to choose them proportional to the dataset size,
i.e., a client with a larger dataset will be set with a larger
fairness factor.

B. Prior Information Unavailable

Obtaining prior information, such as the CSI and the com-
puting resource usage of the clients, often comes with a high
cost and may even be impossible if the number of clients is too
massive. Without the prior knowledge, the AP cannot know
which clients have a shorter delay in advance and hence would
be unable to make proper decisions about client scheduling. To
deal with, instead of estimating the instantaneous information
in each round as the prior information, we attempt to learn
the related statistical information online during the training
process, to aid decision making. The MAB theory is useful in
shedding light on the scheduling problems [12].

MABs are a special class of reinforcement learning prob-
lems that handle decision making in uncertain environments.
Specifically, in the model, a player is in charge of making a
decision of which arms of the bandits are to be pulled in each
round. Each arm pull is regarded as an action. As a result
of an action, a reward is observed. The MAB problems aim
to maximize the cumulative reward obtained in a sequence of
actions. However, due to the lack of prior information, the
player has to learn some statistical information online while
performing the actions, to help make decisions in the future.
Therefore, the player should balance between the exploitation
of actions that did well in the past and the exploration of
actions that might return higher rewards in the future [13].
Some classic algorithms, such as ε-greedy, upper confidence
bound (UCB), etc, can collect and use statistical information
at the same time to strike a balance between exploration and
exploitation. As shown in Fig. 4, the AP and clients in wireless
FL can be regarded as the player and arms, respectively. An
action is to choose a subset of the arms (referred to as a super
arm) to pull. Furthermore, the original objective function, i.e.,
minimizing the latency of the whole training process, can be
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Fig. 4. An example of MAB. A player (i.e., the AP) is responsible for
making a decision about which arms (i.e., the clients) are chosen to be pulled
in each round. A reward is observed at the AP after performing an action.

recast as the maximization of the latency reduction. Here, the
latency reduction is viewed as the reward of an action.

For easy of illustration, we take an orthogonal frequency-
division multiple-access (OFDMA) system with N wireless
channels as an example, in which a channel is allocated to at
most one client such that at most N clients are selected in each
communication round and there is no interference among the
clients. The model distribution time as well as the model up-
load time, relying on the model size and the wireless channel
between the AP and clients, is i.i.d. over time according to a
certain distribution and its expectation is unknown in advance.
Similarly, the time for local updates is assumed to be i.i.d. over
time according to a certain distribution whose expectation is
also unknown a priori. Instead of estimating the three main
components independently, i.e., the model distribution time,
the local update time, and the model upload time, we collect
the current average value τ̄k(t) of the consumed time τk(t) of
client k. A smaller value of τ̄k(t) suggests that client k have
a larger reward and be chosen with a larger probability. The
same arm can be observed in different actions and we collect
and exploit information about the reward of one certain arm
from the operations of different actions, in order to make better
decisions in the future. Then, with the observed reward, the
classic MAB algorithms (e.g., ε-greedy and UCB algorithms)
can be adopted. Note that for more complex scenarios, such as
with inter-user interference and/or mobility, the algorithms of
contextual and/or adversarial MAB problems can be exploited.

IV. UPDATE IMPORTANCE AND LATENCY BASED
SCHEDULING

According to the above analysis, it is found that both the
update importance based or latency based client scheduling
metrics do not necessarily decrease the latency of the whole
training process because the former ignores the time interval
of each round and the the latter does not take into account how
to reduce the required number of rounds. To address this, we
propose a client scheduling scheme which aims to reduce the
time consumption per round and also the required number of
communication rounds simultaneously by jointly considering
the update importance and latency issues of the clients.



The proposed scheme integrates with the MAB theory and
learns to schedule clients online without prior information. On
one hand, we use the weight divergence to quantify the effect
of the clients on the convergence rate. On the other hand,
the MAB tool is used to estimate the average value τ̄k(t) of
the delay τk(t) of client k in round t. Then the scheduling
indicator of each client is set as a weighted sum of the weight
divergence and the learned average time cost per round. The
clients with a larger indicator have higher priority to be chosen
as the participants in the next round of FL training.

V. PERFORMANCE EVALUATION

To validate the performance of the proposed scheme, we
provide some numerical results for wireless FL at the network
edge which considers one AP and 20 clients. These clients
are assumed to be randomly distributed within the coverage
of the AP. OFDMA is adopted and there are five sub-channels,
meaning that at most five clients are chosen in each round.

We consider an FL task of classifying handwritten digits
using a popular dataset, i.e., the MNIST. We assume that the
data of the clients is non-i.i.d. and each client is randomly
assigned training samples with only two types of digits. A
standard multilayer perceptron model is employed for training.
Besides, we introduce five baseline schemes for comparison.
The first one is based on the update importance only in which
the AP selects the clients according to the weight divergence.
The second one is based on the latency-only of each client
where the AP selects the fast clients to minimize the time
interval in each round. The third one is the second one with
an additional fairness constraint. A heuristic solution to setting
the fairness factors is adopted, where all the fairness factors are
set with the same constant. In addition, a randomized scheme
is introduced where the AP selects a subset of the clients
randomly. Finally, the proposed scheme with prior information
available is also introduced for comparison.

According to the results in Fig. 5(a), the test accuracy, as
well as the convergence rate with respect to the number of
the communication rounds, of the proposed client scheduling
scheme is close to that of the update importance based scheme.
However, the latency based client scheduling schemes and the
random scheme have lower test accuracy. This is because the
update importance based scheme and the proposed scheme
take into account the update importance, whereas the other
schemes do not. Moreover, we also find that the fairness con-
straint can help improve the test accuracy of the latency based
scheme, as the fairness constraint enables a fair participation
of the clients in the training process. It is reasonable to infer
that a more carefully designed solution to the fairness factors
can bring more improvement of the test accuracy compared to
the scheme solely based on the latency issue.

Fig. 5(b) presents the test accuracy versus the wall-clock
time consumption. It is easy to find that without prior in-
formation, the proposed scheme consumes the least time to
achieve the given test accuracy (i.e., 0.88 accuracy). More
specifically, the proposed scheme can save more than 50% of
time compared to the update importance based scheme. Similar
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Fig. 5. Comparison of the proposed scheme and the baselines: test accuracy
versus (a) the communication rounds and (b) the wall-clock time consumption.

to the observation in Fig. 5(a), the proposed scheme achieves
a better test accuracy than the latency based schemes and
the randomized scheme. The training latency can be further
reduced when prior information is available, but with the high
overhead of achieving prior information.

VI. CONCLUSIONS AND OPEN ISSUES

This article studied the issues associated with client schedul-
ing to obtain low-latency in the context of FL for wireless
networks, in terms of wall-clock time consumption. To achieve
fast convergence for a given service requirement, we per-
formed client scheduling according to two features jointly:
(1) reducing the required number of communication rounds
and (2) shortening the average time interval per round. The
former was realized by performing client scheduling based on
update importance and two metrics, i.e., update staleness and
update drift. The latter was achieved by performing latency
based client scheduling. Both scenarios with and without prior
information were considered. Particularly, the MAB theory
was introduced to learn the statistical information online in



the scenario without the prior information available. Further-
more, we proposed a scheme which jointly considered update
importance and latency. Finally, the numerical results validated
the performance of the proposed schemes.

Research on wireless FL is still in its very early stage
and there remain open research challenges that deserve future
investigation. For example, the first challenge is the availability
issue of clients. A client may be unavailable temporarily
due to poor channel conditions or exhaustion of computing
power. The AP should check carefully the availability of the
clients before performing client scheduling, which causes extra
overhead. The second challenge is the incentive mechanism.
Clients are generally reluctant to take part in the training
process due to limited communication and computation re-
sources. How to encourage clients to participate in the training
process is a major concern. A possible solution is to introduce
financial rewards but this is yet to be explored more closely.
Finally, security issue cannot be ignored. Adversarial clients
can manipulate/interfere the training result by embedding
carefully designed samples into the training dataset (i.e., data-
poisoning attacks) or by sending malicious gradient updates
(i.e., model-poisoning attacks). These attacks entail defense
mechanisms to prevent severe performance loss.
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