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Abstract 

Most educational jurisdictions prescribe the content of mathematics curricula 

in print documents, increasingly available as downloadable files. Digital mapping 

offers another view of curriculum that can depart from the linear structure of these 

documents and more effectively convey the connections within school mathematics. 

In this chapter we introduce three digital mapping projects: Math Mapper 6-8, the 

Dynamic Mathematics Curriculum Network, and the Cambridge Mathematics 

Framework. Each project draws on distinct theoretical and methodological 

approaches. Moreover, the connections within school mathematics shown in each 

map are based on different sources. Despite these differences, each project seeks 

to enhance mathematics teaching and learning by visually representing connections, 

making the basis for those connections explicit, ensuring the map can be used in 

flexible ways, and providing on-demand access to related instructional materials. 

Initial feedback from the intended audiences for each map reveals the unique ways 

each project can contribute to mathematics education. Some future directions for 

digital mapping of school mathematics that emerged from our discussion of shared 

challenges across projects are also offered.  

 
Keywords: curriculum mapping, learning trajectories, digital mathematics resources 



 2 

In his discussion of maps as cultural technologies, Siegert argues for a view 

of maps not as representations of space but as “spaces of representation” (2011, 

p.14). In this chapter, we explore spaces of representation that can be created 

through the digital mapping of school mathematics. We define digital mapping as the 

process by which information is compiled and represented as a digital image. 

Ifenthaler and Hanewald (2014) note that many educational settings have invested 

considerable resources in “digital knowledge maps” which they describe as “visual 

representations that enable enriching, imaginative and transformative ways for 

teaching and learning” (p.v). We are interested in the potential of digital maps as 

spaces of representation that offer a transformative view of mathematics curricula by 

departing from the linear structure of print documents. Digital maps can visually 

foreground the many connections within school mathematics and offer immediate 

access to related resources such as instructional materials and current research. 

Given that learning outcomes for students in K-12 mathematics depend partly on 

how curriculum policy, design, and enactment are aligned (Schmidt, Wang, & 

McKnight, 2005) and in light of the ways digital technology enhances the ability of 

communities to construct, organize and share knowledge (Stahl, 2000), we suggest 

that digital maps, when placed in the public domain, can facilitate the alignment 

identified by Schmidt et al. (2005). In doing so, digital maps can significantly 

enhance mathematics teaching and learning.  

In this chapter, we describe three digital mapping projects: Math-Mapper 6-8, 

a learning map developed in the US; the Dynamic Mathematics Curriculum Network, 

a digital network that resulted from a Canadian research project; and the Cambridge 

Mathematics Framework, a knowledge map being developed in England. Each 

author describes features of their project including: purpose; intended audience; 
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unit size of elements in the map; structure and relationships; positionality and 

navigation; processes enabling extensibility and evolution of the map; the 

language or mathematical register used; and connections to other resources. 

These descriptions introduce readers to the unique spaces of representation created 

in each project. Greater appreciation of the features of each map can be achieved by 

visiting each project website.   

Math Mapper 6-8 and the Epistemology of Learning Maps (Jere Confrey) 

The learning maps I have been developing are meant to provide insight into 

the paths a learner’s developing knowledge is likely to follow as the learner moves 

from less to more sophisticated reasoning. The primary goal of these maps is to 

focus instruction around nine big ideas and to support learner-centered instruction in 

mathematics. I began building learning maps in 2008 when I undertook a project to 

visually describe the New York City mathematics curriculum standards using 

hexagons. In this early work, individual curriculum standards constituted the nodes 

for the map, and the goal was to assemble the hexagons to show users how the 

curriculum standards evolved across grades. This work concluded in a map of the 

Common Core State Standards in Mathematics (CCSS-M) for grades K-8 offering 

two views. One view showed a set of 18 learning trajectories (LTs). The other 

highlighted the grades of each set of curriculum standards (Confrey & Maloney, 

2014; Confrey et al., 2011). However, the use of curriculum standards as nodes 

restricted the placement of any standard to a single location and because the United 

States curriculum standards vary in size, the map also lost consistency of scale. I 

created a second map.  

This new map is one component of a digital learning system called Math 

Mapper 6-8 (MM6-8) which covers the content of middle grades mathematics in the 
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United States prior to a full course in algebra (Siemens & Confrey, 2015). The map 

can be accessed by registering an account at sudds.co. The purpose of the MM6-8 

map is two-fold. Firstly, the map creates a visual representation of the relationships 

among the big ideas and sub-constructs within middle school math. We see big 

ideas as concepts that anchor and coherently connect the content, processes, and 

forms of argumentation in a discipline; they help avoid viewing mathematics as a set 

of fragmented topics and skills. The non-linear, hierarchical design of the map is 

intended to support the use of the map with a variety of curricular materials. 

Secondly, the map is intended to provide teachers with direct access to empirically-

based learning trajectories (LTs) (Clements & Sarama, 2004; Confrey, 

Toutkoushian, & Shah, 2019; Simon, 1995) which can guide learner-centered 

instruction and ground the map’s related diagnostic assessments. A LT is: 

a researcher-conjectured, empirically supported description of the 

ordered network of constructs a student encounters through instruction 

(i.e., activities, tasks, tools, forms of interaction and methods of 

evaluation), in order to move from informal ideas, through successive 

refinements of representation, articulation, and reflection, towards 

increasingly complex concepts over time (Confrey, Maloney, Nguyen, 

Mojica, & Myers, 2009, p. 347).  

On the map, LTs are specified for each sub-construct and connected to the 

curriculum standards to help assure the teacher’s adequate coverage of standards 

while focusing their attention on student learning.   
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The map’s audience is both students and teachers1. The map replaces the 

linearity of a book’s table of contents in favor of multiple levels of visual illustration. 

The map’s hierarchical structure helps to parsimoniously represent the primary 

relationships among big ideas supplemented with magnification of additional detail. 

Students who use the map can see how what they are learning connects to a small 

but powerful set of big ideas. Teachers can use MM6-8 to reexamine instructional 

materials and curriculum documents, access internet-based resources, and 

diagnostically assess student progress along LTs (Confrey, Gianopulos, McGowan, 

Shah, & Belcher, 2017). The map gives teachers access to empirically established 

ideas about learning using LTs and every level of the trajectories has a related set of 

assessment tasks. Assessment tests and practice are available to students and 

teachers accompanied by intuitive student and class reports to guide diagnostically-

valid instructional moves.  

Structure and relationships in the map are critical to its purpose. The 

learning map includes: nine big ideas, 25 relational learning clusters (RLCs), and 62 

constructs, each of which is associated with a LT. An RLC is a set of 1-4 constructs 

that create a constellation of ideas to be learned together because their meaning 

derives from their relationships. For instance, in the RLC “key ratio relations” (Figure 

1), the constructs of ratio equivalence (at the bottom), base ratio, and unit ratio co-

support and inform each other. Base ratio and unit ratio are parallel constructs on 

the map. When students move to the next RLC, “building, comparing, and solving 

 
1 MM6-8 has been developed in ongoing partnership with three districts using the map and 
assessments and benefitted substantially from their suggestions and observations of their practices. 
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proportions,” the first cluster’s elements serve as a foundation. 

 

Figure 1. Learning trajectory for base ratio next to the RLC “Key Ratio Relationships” 

Critical to the learning map’s meaning are the underlying LTs. A LT appears 

when any construct in a cluster within a big idea is tapped. The LT levels are 

displayed from bottom to top to parallel a movement upwards in sophistication. Each 

LT level is labeled with a grade level to help teachers interpret what to expect from 

students across the grades. For example, the base ratio LT in Figure 1 has five 

levels. The small yellow triangles signal access to common misconceptions. Tapping 

one reveals its description on a flip card, with the correct conception on the back. 

While developing MM6-8, the unit sizes at each level of the map have been a 

constant source of challenge. Four levels (big idea ® RLC ® construct ® LT) 

proved necessary to reach the level of specificity needed to capture meaningful 

distinctions in student thinking. Nine big ideas seemed parsimonious. Only one big 

idea contains more than four RLCs. To support relatively efficient, valid, and reliable 

assessment, we limited the number of constructs in a cluster to four. We 

subsequently added, at the request of teachers, diagnostic assessments and 
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practice at the construct level. Finally, the number of levels in an LT averages 5, 

depending on the extent of detail in the research, with no LT in the map exceeding 

10 levels.  

Positioning nodes and supporting navigation involves other design 

principles. The four main quadrants (number, statistics and probability, 

measurement, and algebra) are positioned to support an overall sense of movement 

from bottom left to upper right. Number is an entry point and movement is towards 

algebra. Likewise, RLCs within big ideas proceed left to right and bottom to top, 

again to signal the idea of growth. Within RLCs, lower constructs are likely to be 

learned before higher ones while those on the same level can be taught in any order. 

Navigation within the map allows easy and consistent movement with access to 

resources such as curriculum standards, misconceptions, and assessments handled 

through tabs and menus. 

Coordinating topics across locations in the map was a major challenge in this 

project, involving significant decisions about where to locate ideas with strong 

connections to two big ideas. For example, linear regression is a topic with primary 

connections to statistics (a means to describe covarying relationships), and as an 

application in algebra (linear functions). For parsimony, I located topics in only one 

place, though I envisioned developing the idea of “wormholes” to connect disparate 

topics in future development. 

MM6-8 is inherently extensible and evolving. Certain clusters have already 

been revised in light of subsequent research and validation of the diagnostic 

assessments. For instance, we added a construct, “building up/down with ratios,” 

based on data showing students floundering in comparing ratio and finding missing 

values in proportions.  
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Mapping requires careful attention to language, with the challenge being to 

communicate to users in a precise fashion. Space is limited on a map. For instance, 

LT levels need to be short but convey a depth of meaning. For example, L5 of 

“comparing ratios” reads ”compares ratios by examining relative steepness (later 

slope) of graph”.  The term, “steepness”, was needed to avoid teachers prematurely 

introducing a formal definition of slope. Working for consistency of language use 

across the map has required frequent discussions and revisions based on 

practitioner feedback. 

We built in connections to other resources to help users understand how 

the map relates to the larger educational enterprise. One such resource is access to 

the CCSS-M curriculum standards. Also, for each cluster, an icon allows access to 

illustrative curricular resources from the “Resource library” which is extensible and 

can be filtered by construct. Another icon accesses the diagnostic assessments and 

practice resources. 

I see the creation of learning maps as a visually expressive activity that is 

ongoing and dialogic. Many characteristics and design principles of MM6-8 represent 

the first generation of a learning map. Because our map is linked to practice most 

vigorously through the use of the diagnostic assessments (n> 75,000 tests), my 

research team studies the use of the tool focusing on the validation of the LTs on 

which the maps are based (Confrey et al., 2019); and on how the data from the 

assessments are used to improve instruction (Confrey et al., 2018). Because our 

purpose is to promote learner-centered instruction, the map is subject to ongoing 

revision. In my mind, the admonition that “the map is not the territory” (Korzybski, 

1933) reminds one that a map is fundamentally a cultural tool (Siegert, 2011) 
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designed to help one navigate within a space. Its effectiveness is ultimately tied to 

how well it proves able to do that. 

A participatory dynamic curriculum network (Martha Koch & Christine 

Suurtamm) 

The Dynamic Mathematics Curriculum (DMC) Network 

(www.dynamicmathcurriculum.ca) emerged from our research on making 

connections within school mathematics more visible through the use of digital 

technology (Koch, Suurtamm, Lazarus & Masterson, 2018). The concept of the 

Network originated at a meeting of the Canadian Mathematics Education Study 

Group as we participated in a working group on reconceptualizing curricula (Davis & 

Kubota-Zarivnij, 2014). We began to envision a curriculum with elements of school 

mathematics represented as layers of connected nodes. Since then, with support 

from the Social Sciences and Humanities Research Council of Canada, we 

developed a method for engaging mathematics educators in co-creating such a 

curriculum network and designed a prototype based on their contributions.  

We view mathematics as emergent and deeply connected and value non-

linear views of mathematics teaching and learning. We also see curriculum as 

inherently dynamic; a curriculum emerges as each teacher transforms their written 

curriculum standards and available resources into classroom activity. We see 

participatory approaches to curriculum design as ways to enhance teaching 

(Clandinin & Connelly, 1988; Cochran-Smith & Lytle, 2009) and recognize that 

mathematics teachers, working together, can create a curriculum that responds to 

their students’ needs (Breyfogle, McDuffie & Wohlhuter, 2010; Drake & Sherin, 

2006). Researchers have also shown that mathematics learning is enhanced as 

teachers emphasize connections between concepts, processes, and representations 
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(Johanning, 2010). Although we find many curricula align with this research by 

encouraging teachers to make connections as they teach, we also notice curriculum 

documents and resources typically present mathematics as discrete strands and 

provide little support for teachers to make connections. 

Accordingly, in Phase One of our research we devised a method of using 

collaborative problem solving to prompt educators to articulate the connections they 

make as they engage in mathematical thinking. In a series of video-recorded 

sessions, we asked participants to note aspects of mathematics that came to mind 

as they worked on a mathematical task in a small group. Each group then created a 

physical model connecting the mathematical content and processes they had 

identified. Figure 2 shows one model where participants represented the 

mathematical processes of problem solving, collaboration, and visualization using 

coloured pipe cleaners entwined around each of the connections the group had 

made between the concepts they had identified.  

 
Figure 2. Research participants’ model of mathematics concepts and processes 

 

Analysis of these models became the basis for the first iteration of the DMC 

Network posted on the project website. Participants sometimes referred to their 
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province’s curriculum as they created their models but the DMC Network itself is not 

linked to one set of curriculum standards. In Phase Two, we invited other 

mathematics educators to visit the website and provide feedback on the first iteration 

of the Network using an “Add to the Network” tab. After analyzing their proposed 

contributions, we added several new nodes and connections and renamed some 

existing nodes. Educators from both phases were also invited to comment on 

features of the website and propose relevant instructional resources. 

Mathematicians, teacher educators, graduate students, teachers, and university-

based researchers participated and the most recent iteration of the Network shown 

on the website is based on their collective views and experiences. The screenshot in 

Figure 3 provides a view of the website and the dynamic network showing the 

“Relations/functions” node.  

 
Figure 3. Screenshot from DMC Network focused on Relations/functions node 

 

Our goal in this project has been to foreground connections in school 

mathematics by gathering and representing the connections educators make as they 

engage in problem solving. The purpose of the Network is to provide a prototype of 
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what such a curriculum might look like. We anticipate the main audience for the 

Network would be teachers as they enact their curriculum and make instructional 

plans. Teacher educators may also use the Network to help pre-service and in-

service teachers become more aware of these connections.  

As with the other maps in this chapter, we wrestled with unit size as we 

developed the Network. Participants were comfortable including different grain sizes 

of mathematics ideas as they built their models. We were committed to ensuring the 

Network reflected their contributions and this has resulted in a lack of consistency of 

scale (noted in relation to Math Mapper 6-8). For instance, some nodes in the 

Network encompass more complex concepts (e.g. “Proportionality”) than others (e.g. 

“Table of values”). We also found unit size to be challenging because participants 

represented mathematics concepts and processes as interwoven in their models. To 

reflect this view, yet show some distinction between concepts and processes, we 

opted to use green nodes for concepts (e.g. “Algebraic expressions”) and blue nodes 

for processes (e.g. “Conjecturing & verifying”). We view this as an interim approach 

to resolving this aspect of unit size. 

Language selection and use was also a concern in our research. As we 

compiled the original models and reviewed Phase Two participant input, we found a 

range of terms used to express ideas. We created a chart of similar and related 

terms and referred to that chart, sometimes making additions to it, as we decided 

which terms to use in the Network. Our goal has been to use terms that will make 

sense to as many users and contributors as possible. 

The structure and relationships in the Network reflect complexity thinking 

(Davis & Simmt, 2003; Doll, 2008; St. Julien, 2005). A complex system, represented 

as a network, is more flexible than a linear or hierarchical structure since one can 
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move from node to node in non-linear ways. It is also generative and adaptive as a 

result of interactions between its elements. These characteristics, within the digital 

interface we designed, mean an unlimited number of nodes and connections are 

possible and that some nodes may connect to many parts of the Network (e.g. 

“Algebraic expressions” currently connects to 12 nodes), while others have fewer 

connections (e.g. “Proportionality” currently connects to 4 nodes). As it grows, the 

Network also reflects multiple and emergent approaches to mathematics. Indeed, 

the first iteration had 10 nodes with 31 connections, growing to 13 nodes with 59 

connections after Phase Two. 

With respect to positionality and navigation, in the DMC Network the 

position of a node is determined solely by the connections between that node and 

other nodes. Users can click and drag any node in the Network to a different place 

on their screen and the connections from the node will be maintained. Clicking on a 

node also highlights all connections between that node and other nodes. These 

features, along with a +/- zoom tool, help users focus on a specific part of the 

Network. Clicking on a node or a connection also reveals definitions, explanations, 

examples, connections to other resources and a description of the continuum of 

the concept across grades. These resources have also been derived from our 

analysis of input from participants. Readers can explore other navigational features, 

including some still in the design phase, by visiting our website. 

As with the other maps in this chapter, extensibility and evolution are key to 

our participatory approach. The problem-solving task we gave participants in Phase 

One of our research tended to prompt algebraic thinking and mathematics ideas 

often encountered in grades 6 to 10. Engaging participants with a different task 

would be one way to extend the Network to other topics. In theory, the extensibility 
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and evolution of the Network is without limits as users contribute their ideas through 

the “Add to the network” feature. That said, moderating participants’ suggestions has 

been challenging. Thus far, the research team reviews each submission and applies 

guidelines to determine which proposed changes should be made in the Network. 

One criterion we use for nodes is trying to avoid redundancy. For connections, a key 

criterion is our ability to follow and verify the mathematical thinking of the proposed 

connection (the “Add to the network” tool asks participants to explain their thinking 

for each proposed change). Moderating these contributions is a rich research 

opportunity but is also time consuming. More feasible strategies would be needed if 

the Network were to move from research project to widespread use. 

Our project has provided insights about the ways collaborative problem 

solving prompts mathematical thinking and helps teachers articulate the connections 

they see in school mathematics. We have been encouraged by the enthusiasm and 

thoughtful contributions of participants and have learned a great deal about digital 

affordances and constraints. Our original vision for the Network included 

interconnected layers of nodes, strikingly similar to the layers of the Cambridge 

Mathematics Framework (see Figure 4). We felt these layers could effectively 

represent the many dimensions of mathematics teaching and learning. However, 

some of our participants suggested a virtual reality interface would be preferable as 

it would allow users to move freely within the connections space. Translating these 

ideas into reality captured our imagination but exceeded our financial resources. 

Thus, some of our participants’ most innovative suggestions remain future visions.  

Mapping knowledge about learning in the Cambridge Mathematics Framework 
(Ellen Jameson) 

In the Cambridge Mathematics Framework (CM) project 

(www.cambridgemaths.org) a team of designers, teachers, and researchers are 
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developing a framework for expressing mathematics learning experiences and key 

relationships between those experiences. The CM Framework is a tool for the 

dynamic generation of maps which highlight connections between ideas and 

experiences in school mathematics. These connections do not represent the paths 

that students follow, or that teachers plan. Rather, they highlight some important 

ways in which mathematical experiences can contribute to or depend on one another 

as students develop their understanding. The maps, and associated content, are 

representations of knowledge about mathematics learning, as interpreted from 

reports of research and practice according to our methodology (Jameson, 2019; 

Jameson, Gould & McClure, 2018). The maps are derived from a database which 

stores all connected content, and a front-end interface that allows us to create, edit, 

search, filter, group and map the content. 

Our goal in developing the ability to generate multiple maps from a larger set 

of connections is to provide flexibility and additional perspectives on the relationships 

between mathematical ideas and experiences. This can be useful when developing 

curriculum objectives, planning curriculum scope and sequence, designing 

resources, and developing assessments. The ability to generate multiple maps can 

also contribute to teacher education and professional development. Research 

suggests that when people such as teachers, designers, researchers and 

policymakers, interpret the curriculum they are working with using a shared frame of 

reference, it may be possible to better explain and support coherent implementation 

of that curriculum (Remillard & Heck, 2014; Schmidt et al., 2005; Cunningham, 

2017). Greater coherence, in turn, can have a positive impact on students’ 

opportunity to learn mathematics by providing a shared logic for what is being taught 
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and lowering barriers to learning that some students may otherwise not have the 

support to overcome (Schmidt et al., 2005).  

Coherence in a mathematics curriculum depends on what can be known 

about mathematics and the learning process (Cobb, 1988; Tall, 2013; Thurston, 

1990) as well as on what allows expert perspectives to converge (Pring, 2012; 

Schmidt et al., 2005) or to coordinate (Hall, Morley, & Chen, 2005; Robutti et al., 

2016; Thurston, 1990) in line with some shared understanding. In our view, 

coherence in students’ mathematical experiences depends in part on coherence in 

how professionals in different areas of mathematics education understand and 

support these experiences in their curricular environment (McClure, 2015). To 

address this need, the CM Framework is a network of mathematical ideas and 

experiences, as understood and documented by professionals in mathematics 

education research and practice - that is, of professional knowledge about student 

learning.  

The purpose of this network is to support coherence in mathematics 

education. The CM Framework relates mathematical ideas to one another, in a way 

that is not specific to any particular curriculum. At the same time, the Framework 

relates mathematical ideas to things that may be applicable to a particular curriculum 

context such as curriculum standards, tasks, assessment components and 

professional development activities. The Framework can generate maps to represent 

these relationships in ways which are useful for different audiences.  

Our audiences include anyone who holds and develops professional 

knowledge in mathematics education. However, the audiences for whom we feel we 

need to provide the most support are those who work most directly with large 

amounts of curriculum content: curriculum designers, resource designers, teachers, 
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and teacher educators. An important part of professional knowledge in many of 

these roles is knowledge about someone else’s knowledge. For example, maps of 

professional mathematicians’ knowledge could be expected to be quite different from 

maps of teachers’ or educational researchers’ knowledge of student learning, which 

in turn would be different from maps of students’ learning trajectories. We have 

made decisions about how to represent researchers’ and teachers’ knowledge of 

student learning in the CM Framework based on our purpose and audiences. 

After some exploratory writing, we formalised the structure and 

relationships of the CM Framework in an ontology which defines what features 

appear in the network, what they mean to us and our audiences, and how they can 

be related to each other (Jameson et al., 2019). This ontology structures our 

database, determining how we create, store, search, filter and display content. The 

ontology helps us maintain consistency in the way mathematical ideas and 

experiences are represented. Similarly, it provides a guide to interpreting maps from 

the CM Framework for reviewers, and a version of it may help our audiences do the 

same. 

We express mathematical content in our maps as waypoints, which we define 

as “‘places where learners acquire knowledge, familiarity or expertise”. Our definition 

is based on characterisations of learning sequences by Michener (1978) and Swan 

(2014). Each waypoint contains a summary of the mathematical idea (the ‘what’) and 

its part in the wider narrative (the ‘why’), and lists examples of ‘student actions’ that 

would provide opportunities to experience the mathematics in meaningful ways. 

Some waypoints have particular roles; exploratory waypoints “indicate a place where 

ideas can be played with in a less formal or more playful way, as part of building 

mathematical intuition” and landmark waypoints are places where “ideas are brought 
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together such that the whole experience may seem greater than the sum of its parts” 

(Jameson et al., 2019, p. 4). Waypoints are related to one another by themes. A 

theme might be a concept, skill or procedure, since a student might use or develop a 

mathematical idea in various ways. Themes representing development have a 

direction, leading from one waypoint to another. Waypoints are arranged from left to 

right roughly according to the ‘order’ created by these directed connections. 

Research Summaries are documents in the CM Framework which tell the 

story of a group of waypoints and themes. They include a literature review, an 

interactive map of the waypoints and themes, and a section which describes how 

research has influenced the structure and contents of the map. An example of a 

Research Summary is available on our website along with a description of our 

ontology (Jameson et al., 2019). 

 
Figure 4: Connected layers within the CM Framework and external add-on modules 
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In the CM Framework, there is not one overall unit size. Rather, the unit size 

depends on the way the CM Framework is being used. For example, a single node 

in the network such as a waypoint, can function as a unit, but so can a Research 

Summary and a group of Research Summaries could outline a subdomain. Features 

of waypoints, themes, Research Summaries and other layers (examples are shown 

in Figure 4) are designed to provide different ways of engaging with and interpreting 

the CM Framework for different audiences. Some people may be looking for a ‘way 

down’ to get a perspective on more detailed content, while others may need a ‘way 

up’ to position their detailed understanding within a bigger picture. Likewise, some 

may be working at a time scale of a few weeks, while others may be designing for 

learning over a few months, a few years, or a decade. 

Connections to other resources are managed within this layered structure. 

These resources might be for designers (such as curriculum statements for 

curriculum comparison or revision), for teachers and teacher educators (such as 

professional development activities), or for both (such as glossary definitions of 

mathematical terms). The structure of the CM Framework allows us to maintain 

connections within and between layers, so that research sources can be linked to 

waypoints and to Research Summaries, tasks can be linked to mathematical content 

which is linked to research, and so on. This structure also opens up other 

possibilities for connections to outside resources depending on future directions.  

In the maps that are generated from the CM Framework, positioning of 

waypoints is key to navigation. We use a left-to-right order of “dependencies,” 

where, roughly speaking, elements toward the right have more waypoints “leading 

in” to them. The vertical axis does not represent anything in a typical waypoint map. 

However, for some purposes, we might split a map horizontally into two regions, with 
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the upper region representing some “grouping” category, such as curriculum 

statements, so that connections to the network of waypoints “underneath” can be 

examined more easily. At other times, we use the vertical axis to stack waypoints 

with equivalent “dependencies” in order to demonstrate that designers have leeway 

when ordering these waypoints in their curriculum or resource. Navigation of the 

wider network involves building a subset of waypoints which can be added to or 

subtracted from the rest of the network to focus on a particular topic. 

As with the other projects in this chapter, language is essential for articulating 

meaning in the CM Framework. Our research sources, which influence the content 

and structure of the Framework, are mainly in English. However, we collaborate with 

researchers familiar with research in other languages (including Spanish, French, 

German, Japanese, and Chinese) in an effort to identify perspectives and findings of 

which we might otherwise have been unaware - though this still leaves important 

gaps that we seek to fill over time. While our familiarity with English-language 

research strongly influences our work, we hope through collaboration our work will 

be applicable outside that context as well. We also use a glossary to define key 

mathematical terms in the Framework. The structure of this glossary allows us to 

offer multiple definitions, which is important since contexts for learning which draw 

on a particular term can vary widely. We imagine this being useful in the future as a 

way to create definitions specific to certain user roles or regions. In fact, we have 

created a survey app which allows teachers to rate a family of definitions for a term 

according to usefulness and accuracy for their role and context, and as of this writing 

we are collecting data on our first set of terms. 

The CM Framework is a large undertaking, and extensiblity and evolution 

are key in our design. Not only will new areas of content continue to be added and 
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existing areas fleshed out, but as new research becomes available we will need to 

revise existing content. Our graph database, network structure and tools for online 

access work together to make these processes part of the work that we do on a daily 

basis. As our work progresses, we have been piloting the use of the CM Framework 

for curriculum and resource design. The feedback we have received thus far has 

been that the flexibility and perspectives afforded by the Framework are very 

valuable. However, we are also mindful of what we call the “map of gaps” - the ideas 

and paths not shown because they are unknown to us, research not consulted 

because of the constraints of time or language, or perspectives not taken because 

they are too distant from our own or those of our collaborators. While any 

interpretation would be susceptible to these issues, maps may be more susceptible 

as they can “feel” visually complete. We hope the flexibility and possibility for 

extension and curation in the CM Framework will help audiences probe beyond one 

view and learn from multiple perspectives, as designing this structure has certainly 

done for our learning. 

Affordances, Challenges and Future Directions 

These projects illustrate many aspects of the design and use of digital maps 

that can enhance mathematics teaching and learning. In each project, innovative 

approaches are used to visually represent connections within school mathematics. 

The connections in the CM Framework are derived from the research literature and 

interpreted and prioritised by a team of designers with educator backgrounds. In 

MM6-8, connections are based on empirically-researched learning trajectories. In the 

DMC Network connections are continually being gathered from mathematics 

educators. Deeper mathematics understandings can be achieved for students and 

teachers when greater emphasis is placed on connections among concepts and 
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processes (Johanning, 2010). Yet, showing connections visually and in a non-linear 

manner is only one way these maps contribute to more effective teaching and 

learning. Given the capacity of digital technology for storing and accessing 

information, these maps also provide immediate access to related instructional 

resources, curriculum standards, assessments, and in some cases, learning 

trajectories or other research literature. Moreover, these maps are enormously 

flexible allowing individuals to use them in ways that meet their specific needs. The 

connections shown in each map are more general than a single curriculum 

document and each map uses different tools to enable users to focus on particular 

subsets of the connections. In addition, in all three projects, the maps allow for 

multiple paths through each space.  

Given these characteristics, these maps are spaces of representation that 

foster shared and emergent understandings of mathematics and mathematics 

teaching and learning. For instance, in MM6-8 teachers are able to link big ideas in 

mathematics to empirically-based learning trajectories while students can see how 

what they are learning connects to those big ideas. Feedback from users of the CM 

Framework suggest it has enhanced the design of digital mathematics resources 

being developed by industry. Previously, such resources were often developed with 

more limited input from subject domain experts. In the DMC Network project, 

analysis of participants’ comments suggests that articulating the connections they 

percieve and explaining those connections to others led to new ways of thinking 

about mathematics concepts and processes. In a similar way, we found the maps 

fostered emergent understandings across the three project teams. Recognizing 

commonalities in the design and development approaches we used prompted 

generative conversations about mathematics and led to a deeper appreciation of 



 23 

mathematics education in each of our jurisdictions. In these ways, whether used by 

policymakers, educational resource designers, researchers, teacher educators, 

teachers or students, digital maps can make a substantial contribution to more 

effective mathematics teaching and learning.     

The challenges encountered in each project also suggest some future 

directions for this work. The unit size within digital maps is one area for further 

consideration. In MM6-8, consistent unit size is maintained within one level of the 

map while magnification enables more fine-grained information to be displayed. In 

essence, multiple unit sizes are supported by the affordances of digital technology. 

Allowing for multiple unit sizes also creates maps that can be used in more flexible 

ways, as posited by the CM Framework team. Multiple unit sizes might also more 

closely reflect the ways users see connections in school mathematics, as noted in 

the DMC Network. At the same time, allowing for multiple unit sizes can compromise 

consistency of scale. The potential impact on users of this sort of compromise needs 

to be more fully understood. 

Another challenge is that significant resources are required both for the initial 

development and the continued evolution of these maps. In each project, additional 

aspects of school mathematics can be included and the connections represented 

can grow and change in response to new research (for MM6-8 and CM Frameworks) 

or as members of the mathematics education community contribute their ideas (for 

DMC Network). At the same time, fully representing the inherently multifaceted 

nature of mathematics and of mathematics teaching and learning remains somewhat 

elusive. The connections in school mathematics are more layered and complex than 

we can effectively represent, even with the affordances of digital technology. Thus, 

Confrey looks for a wormhole to more fully connect aspects of the MM6-8 learning 
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map, participants in Koch and Suurtamm’s project suggest the use of virtual reality 

or the addition of sound and motion to the DMC Network, and CM Framework 

designers endeavour to enable switching rapidly between multiple representations 

and views. Continuing to push the horizons toward these possibilities could mean 

these digital maps become even more imaginative spaces of representation, more 

fully capturing the richness of mathematics and the complexity of mathematics 

teaching and learning.  

At the same time, further study of how the current iterations of these first-

generation maps are being used to facilitate decision-making, in discussions among 

and between curriculum and resource designers, teachers, teacher educators and/or 

policy-makers will provide important insights into how these maps contribute to more 

effective and equitable mathematics teaching and learning within and across 

educational contexts.   
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