
 1 

Slow Motion Analysis of Repetitive Tapping (SMART) test: 1 

measuring bradykinesia in recently diagnosed Parkinson’s disease 2 

and idiopathic anosmia 3 

Cristina Simoneta, Miquel A. Galmesb, Christian Lambertc, Richard N. Reesd, Tahrina Haquea, 4 
Jonathan P. Bestwicka, Andrew J. Leese, Anette Schrag a,d, Alastair J. Noycea,d 5 

Affiliations:  6 

a. Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and 7 
The London School of Medicine and Dentistry, Queen Mary University of London, 8 
London, United Kingdom. 9 

b. Physical and Analytical Chemistry Department. Jaume I University, Castelló de la 10 
Plana, Spain.  11 

c. Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, 12 
United Kingdom 13 

d. Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, 14 
London, United Kingdom 15 

e. Reta Lila Weston Institute of Neurological Studies, University College London 16 
Queen Square Institute of Neurology, London, United Kingdom 17 

 18 
Running title: SMART assessment of early motor markers of PD 19 

 20 

 21 

Corresponding author: Dr Alastair Noyce.  22 

Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London 23 
School of Medicine and Dentistry, Queen Mary University of London, London, United 24 
Kingdom.  25 

Tel: 020 7882 3543. Email: a.noyce@qmul.ac.uk 26 

 27 

 28 

Word count: 5541  Abstract word count: 247 29 

 30 

 31 

mailto:a.noyce@qmul.ac.uk


 2 

ABSTRACT 32 

Background: Bradykinesia is the defining motor feature of Parkinson’s disease (PD). There are 33 

limitations to its assessment using standard clinical rating scales, especially in the early stages 34 

of PD when a floor effect may be observed.   35 

Objectives: To develop a quantitative method to track repetitive tapping movements and to 36 

compare people in the early stages of PD, healthy controls, and individuals with idiopathic 37 

anosmia. 38 

Methods: This was a cross-sectional study of 99 participants (early-stage PD=26, controls=64, 39 

idiopathic anosmia=9). For each participant, repetitive finger tapping was recorded over 20 40 

seconds using a smartphone at 240 frames per second. From each video, amplitude between 41 

fingers, frequency (number of taps per second), and velocity (distance travelled per second) 42 

was extracted. Clinical assessment was based on the motor section of the MDS-UPDRS.  43 

Results: People in the early stage of PD performed the task with slower velocity (p<0.001) and 44 

with greater frequency slope than controls (p=0.003). The combination of reduced velocity 45 

and greater frequency slope obtained the best accuracy to separate early-stage PD from 46 

controls based on metric thresholds alone (AUC = 0.88). Individuals with anosmia exhibited 47 

slower velocity (p=0.001) and smaller amplitude (p<0.001) compared with controls.  48 

Conclusions: We present a simple, proof-of-concept method to detect early motor 49 

dysfunction in PD. Mean tap velocity appeared to be the best parameter to differentiate 50 

patients with PD from controls. Patients with anosmia also showed detectable differences 51 

in motor performance compared with controls which may suggest that some are in the 52 

prodromal phase of PD.  53 
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1. INTRODUCTION 58 

The diagnosis of Parkinson’s disease (PD) depends on the detection of bradykinesia [1–4], but 59 

in the early stages of disease this may not be easy to see. Bradykinesia is defined as slow 60 

velocity of movement but is often seen in combination with other abnormalities of 61 

movement. These include hypokinesia (reduced amplitude), akinesia (slow initiation 62 

contributing to changes in sequence rhythm) and decrement, otherwise known as “sequence 63 

effect”, where there is progressive reduction in the velocity or amplitude with repeated 64 

movements. These abnormalities of movement can be detected in gait, arm swing, facial 65 

expression and handwriting. Many of the common rating scales for PD assess these features, 66 

and others, in combination [5,6].  67 

Bradykinesia is elicited clinically by sequential finger or foot tapping and can be scored using 68 

the motor section of the Movement Disorders Society-Unified Parkinson’s Disease Rating 69 

Scale (MDS-UPDRS-III) [7]. For diagnosis, assessment of the whole clinical picture is necessary 70 

and reliance should not be placed exclusively on finger tapping [8]. While the MDS-UPDRS-III 71 

is a useful research scale, the integers prevent adequate detection of subtle motor changes. 72 

In particular, bradykinesia-related sub-scores have imperfect interrater reliability [9]. Part of 73 

this variability may be due to the mixed definition of bradykinesia used by the MDS-UPDRS-74 

III, assigning equal weighting to speed, amplitude, and rhythm with no provision to sub-75 

classify them further. This is of particular relevance to the stage of PD close to diagnosis 76 

(based on motor criteria), where current questionnaires and scales may be insufficiently 77 

sensitive to detect change, reflecting the need for more accurate and specific measures to 78 

detect subtle motor dysfunction [10].  79 

Attempts to develop quantitative measurements of bradykinesia that would be useful in 80 

clinical practice began fifty years ago, but many devices are too insensitive or cumbersome 81 

for routine clinical use [11]. Wearable sensors have shown promise [12] but although these 82 

offer the potential of 24-hour monitoring, there are limitations such as lack of context to 83 

movement, interference with the natural range of movement and cost. There is also a lack of 84 

consensus about which derived metrics are best to assess the subtle motor changes in early 85 

stage disease [13]. This study aims to provide proof of concept that motion capture using a 86 
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smart phone could assess different elements of bradykinesia which may be sensitive to 87 

change in early PD.  88 

2. MATERIALS AND METHODS  89 

This was a cross-sectional, case-control study in which the main aim was to design a test to 90 

objectively quantify early patterns of motor dysfunction in PD. Repetitive finger tapping 91 

movements were recorded using an ordinary smartphone (iPhone X®) with slow motion video 92 

capture. Slow Motion Analysis of Repetitive Tapping (SMART) test results were compared in 93 

patients with early PD (less than two years since diagnosis), healthy controls and patients with 94 

idiopathic anosmia. Parameters derived from the SMART test were correlated with clinical 95 

ratings scored from the gold standard of assessment for PD, the MDS-UPDRS-III [14].  96 

Participants 97 

All the patients with PD fulfilled the UK Queen Square Brain Bank criteria [1]. Exclusion criteria 98 

included disease duration (defined as time from diagnosis on motor criteria) of more than 99 

two years, and any comorbidities that could interfere with performance of the task, such as 100 

arthritis, previous stroke, and dementia. Healthy controls were excluded if they had 101 

bradykinesia and scored more than 6 on the MDS-UPDRS-III (a cut off for subthreshold 102 

parkinsonism [7]). Cases with PD were recruited from two studies; the East London 103 

Parkinson’s disease (ELPD) project based at Barts Health NHS Trust and Quantitative MRI for 104 

Anatomical Phenotyping in Parkinson’s disease (QMAP-PD) study based at the Institute of 105 

Neurology, University College London. Controls were recruited from the PREDICT-PD study 106 

(www.predictpd.com) [15] and QMAP-PD study 107 

(https://gtr.ukri.org/projects?ref=MR%2FR006504%2F1). Patients with anosmia were 108 

recruited from the PREDICT-PD study, after referral from specialist ENT clinics, where nasal 109 

endoscopy and imaging had revealed no identifiable cause of smell loss. Ethical approval was 110 

granted by national research ethics committees. Assessments were carried out between 111 

October 2018 and December 2019 and all patients gave informed written consent to the 112 

study.  113 

Assessment  114 

http://www.predictpd.com/
https://gtr.ukri.org/projects?ref=MR%2FR006504%2F1
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Finger tapping was performed following the same standardised instructions that are used 115 

when administering the MDS-UPDRS-III (Table 1, supplementary material). Movements were 116 

recorded over 20 seconds using a smartphone at 240 frames per second (slow motion 117 

capture). In order to facilitate finger recognition by the software, we asked participants to tap 118 

their index finger on the thumb ‘as fast and as wide’ as they could while making a fist with 119 

the remaining three fingers (Figure 1). Participants were instructed to not rotate and move 120 

the arm during the task with the purpose of capturing the angle at the metacarpal-phalangeal 121 

joints between index finger and thumb. Patients were asked to stop taking any dopaminergic 122 

medication at least 12 hours before the assessment. In order to compare their performance 123 

‘on’ and ‘off’ medication, they were tested again after taking their regular dopaminergic 124 

medication.   125 

Video analysis  126 

We created a convolutional neural network (CNN), which was built using PyTorch 1.6.0 [16], 127 

to detect the shape of the hand in the video. This enabled the tracking of movement of the 128 

hand during the tapping task. We also built a 2D CNN which was trained to detect 8 key 129 

landmarks of the index finger and the thumb which were then tracked over time (Figure 1). 130 

Videos were resized and rotated for standardisation. The ‘pre-processing’ stage was carried 131 

out using OpenCV library [17]. Twenty frames were randomly extracted from each video and 132 

used as a dataset to train the CNN, making a total of 3934 frames in the initial dataset. The 133 

architecture of the CNN was divided into 8 blocks of 2D convolutional layers followed by a 134 

batch normalisation, 4 pooling layers and a final 3 fully connected layers, using the ReLU 135 

activation function. To measure the accuracy, we computed the deviation as the Euclidean 136 

distance between manual and predicted landmarks on the test dataset. We achieved an 137 

average deviation of 11.3 ± 8.6 pixels on the final 606 x 1080 images (i.e. an average error of 138 

0.9%). 139 

Once the training was completed, videos were processed using the CNN frame by frame to 140 

extract the predicted anatomical landmarks. After the position of the key landmarks had been 141 

predicted, the distances between the distal portion of the index finger and the thumb were 142 

calculated (Figure 1). Although normalising the amplitude allowed comparison between 143 

samples, the absolute amplitude was needed to calculate the initial and mean amplitude (fully 144 
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separating the finger from the thumb for one individual is not the same as for another 145 

individual), as well as the change in amplitude over time. Moreover, the distance from the 146 

hand to the camera could also interfere with the perceived amplitude of finger tapping. To 147 

overcome these limitations, the angle formed between the distal part of the index finger and 148 

the thumb and the key landmark corresponding to the metacarpal joint was computed (i.e. 149 

the angle formed between landmarks 1-4-8 in Figure 1) to mitigate the need for an external 150 

reference to normalise amplitude.  151 

Maximum amplitude peaks were detected for each tap and linear regression models were 152 

fitted to those signal peaks. Frequency was measured as the number of taps per second. 153 

Velocities were calculated as the change rate of the normalised signal, and a similar process 154 

was applied to obtain the peaks of maximum velocities along time. All the signal processing 155 

was done using SciPy [18] and NumPy libraries [19]. 156 

Statistical analysis  157 

Three kinetic parameters were extracted to be used in the statistical analysis: amplitude 158 

(angle formed between index finger and thumb), frequency (number of taps per second) and 159 

velocity (distance travelled per second extracted from the derivative of the amplitude). For 160 

each parameter, the mean, the coefficient of variation (CV) (standard deviation divided by 161 

the mean), and the slope (from regression of time against each parameter) was calculated.  162 

Normality of the data was assessed using the D'Agostino test. Quantitative data was 163 

presented as the median and interquartile range (IQR) when non-parametric and the mean 164 

and standard deviation (SD) for parametric data. Mann Whitney U tests, t-tests, and Welch’s 165 

t-tests (two-tailed) were used to compare test parameters between patients and controls, as 166 

appropriate. Linear regression was used to determine whether movement parameters 167 

derived from finger tapping (dependent variables) were influenced by age. Logistic regression 168 

was performed to examine whether test parameters were associated with binomial factors 169 

such as gender and handedness. Receiver operator characteristic (ROC) curves were drawn 170 

to find the optimal cut off value with the best combination of sensitivity and specificity for 171 

SMART test parameters separately and in combination. Spearman’s correlation coefficient 172 

was used to correlate SMART test parameters (continuous) with finger-tapping sub-scores 173 
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from the MDS-UPDRS-III (ordinal) [20]. Since multiple hypothesis tests were run, one for each 174 

component of the test parameters (mean, CV, and slope), a more stringent cut-off for the 175 

level of significance (p<0.005, Bonferroni corrected for nine hypothesis tests) was selected to 176 

ensure robustness of results and avoid false positives (i.e. type I error). Data analysis was 177 

carried out using STATA V.13 (StataCorp, College Station, TX).  178 

3. RESULTS 179 

Two hundred and ninety-four videos were analysed (99 recordings for the right and left hands 180 

for all participants, and recordings for the right and left hands of 24 PD patients during ‘on’ 181 

and ‘off’ medication recordings). Associations between SMART test parameters with age, 182 

gender and handedness were assessed in control subjects. Neither age, gender, nor 183 

handedness overtly affected the test parameters (Table 2 in supplementary material). Since 184 

there was no significant difference in the derived motor metrics between the dominant and 185 

non-dominant hands in the control group, the results are mainly focused on the dominant 186 

hand in the controls and anosmic cohorts. Even so, we carried out an additional comparison 187 

between the non-dominant hand of controls and the PD group. The most affected side in PD 188 

was used for comparison since PD is associated with asymmetric onset of motor signs and the 189 

patients were all in an early disease stage. The identification of the most affected side was 190 

based on the side with the worst finger-tapping sub-scores in the MDS-UPDRS-III.  191 

Early PD 192 

Clinical and demographic information 193 

Twenty-six patients with early PD and 30 controls were included in the first analysis. The other 194 

34 controls were on average much older than the PD patients and were excluded to make 195 

both groups more comparable (PD: 59.60 years, SD 10.88 vs Control: 63.81 years, SD 7.21, p-196 

value=0.060). Compared with controls, PD cases were more likely to be male (65.38% vs 197 

36.67%, p=0.030). All patients had a disease duration of less than two years (median 0.75 198 

years, IQR 0.5-1.2) and were taking levodopa. The mean MDS-UPDRS-III score was 21.2  8.3 199 

points (range 11–47). Most of the patients exhibited abnormal finger-tapping to a slight-mild 200 

degree (12 patients scored 1 and 12 patients scored 2 in the MDS-UPDRS-III sub-score). One 201 
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patient was found to had normal finger-tapping and another one had moderately abnormal 202 

finger-tapping performance (score 3). Table 1 summarises the clinical and demographic 203 

information of both groups.  204 

SMART scores 205 

When comparing the most affected side in patients with PD to the dominant side of controls, 206 

patients with PD performed repetitive finger tapping with slower mean velocity (PD: 1.20 207 

degrees/s, 95% CI 1.02 to 1.38 vs Control: 1.63 degrees/s, 95% CI 1.44 to 1.81 p<0.001) but 208 

similar mean amplitude to controls with wider confidence interval (CI) and overlap between 209 

both groups (PD: 27.08 degrees, 95% CI 22.49 to 31.67 vs Control: 31.10 degrees, 95% CI 26.91 210 

to 35.28, p=0.189). There was some evidence that patients with PD displayed greater 211 

variability in frequency (CV frequency) (PD: 0.18, 95% CI 0.13 to 0.22 vs Control: 0.11, 95% CI 212 

0.08 to 0.14, p=0.007) and more so in velocity (CV velocity) compared with controls (PD: 0.31, 213 

95% CI 0.27 to 0.34 vs Control: 0.20, 95% CI 0.15 to 0.25 p<0.001). There was also more 214 

evident decrement (slope) of frequency in patients than controls (PD: -0.02, 95% CI -0.03 to 215 

0.01 vs Control: -0.002, 95% CI -0.01 to 0.007, p=0.003) (Table 2). 216 

An additional comparison between the non-dominant hand in controls and the most affected 217 

side in the PD group was carried out. Again, the mean velocity parameter was found to show 218 

the greatest difference between groups (PD: 1.20 degrees/s, 95% CI 1.02 to 1.38 vs Control: 219 

1.56 degrees/s, 95% 1.30 to 1.67, p=0.004). Mean amplitude in PD cases did not differ from 220 

controls, with wider CI (PD: 27.08 degrees, 95% CI 22.49 to 31.67 vs Control: 29.72 degrees, 221 

95% CI 25.77 to 33.66, p=0.375). CV velocity was found to be higher in PD cases than controls 222 

(PD: 0.31, 95% CI 0.27 to 0.34 vs Control: 0.21, 95% CI 0 .17 to 0.25 p<0.001). However, in 223 

contrast to the results with dominant hand, CV frequency and slope frequency were similar 224 

between the non-dominant hand of controls and the PD group (all p-values >0.005 as our pre-225 

established cut-off). When looking at the distribution CV frequency and slope frequency in 226 

the non-dominant hand compared to the dominant hand of controls, the non-dominant side 227 

had wider ranges than the dominant side which might be explained different degrees of hand 228 

dominance (Figure 1 in the supplementary material). 229 
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Action tremor was visible in eleven patients. To prevent over estimation of an inflated 230 

frequency parameter caused by tremor, when two consecutive peaks of amplitude were 231 

found without reaching the baseline amplitude of 0 (meaning that both fingers were close 232 

together), it was interpreted as a finger tremor instead of a finger tap. The highest peak was 233 

selected to avoid under estimation of the amplitude. In some patients a re-emergent action 234 

tremor was seen with the tremor occurring after a finite period (latency) from the time the 235 

patient started the finger tapping task (illustrated in Figure 2).  236 

Diagnostic accuracy 237 

When using the dominant hand of controls for comparison, velocity offered the best 238 

discriminatory power with 84.62% sensitivity for 73.33% specificity and an AUC of 0.81 (95% 239 

CI 0.69 to 0.93). The CV of frequency also showed reasonable discrimination with 80.77% 240 

sensitivity for 70% specificity and an AUC of 0.75 (95% CI 0.62 to 0.88). Combining both 241 

parameters (velocity mean and the CV of frequency) meant that the specificity improved to 242 

86.67% for the same sensitivity AUC 0.83; 95% CI 0.72 to 0.95). The slope of frequency was 243 

able to distinguish between groups with a moderate accuracy (AUC 0.72; 95% CI 0.59 to 0.86), 244 

but when it was combined with velocity the discriminatory power improved, yielding a 245 

sensitivity of 80.77% for 83.33% specificity (AUC 0.88, 95% CI 0.78 to 0.97). In the same way, 246 

when the slope of frequency was combined with CV velocity, both parameters also reached 247 

a high accuracy (AUC 0.85; 95% CI 0.74 to 0.95) with 80.77% sensitivity for 85% specificity 248 

(Table 3 and Figure 3).  249 

Clinical correlation 250 

Correlations between the three SMART test parameters and finger tapping sub-scores of the 251 

MDS-UPDRS-III were examined in patients with PD (for sub-scores definition see Table 1 in 252 

the supplementary material). All PD patients except two scored between 1 (slight degree) and 253 

2 (mild degree) in the MDS-UPDRS-III sub-score. In order to avoid the two patients scoring 0 254 

(normal degree) and 3 (moderate degree) influencing the correlation curves (Figure 1 in 255 

supplementary material), they were excluded from the main correlation analysis. Thus, the 256 

mean amplitude was found to have the highest correlation with finger tapping score (r= -0.49, 257 

p=0.003) followed by velocity (r= -0.43, p=0.016), whereas there was no correlation with 258 
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mean frequency. For more detailed information about the correlations explored see Table 3 259 

and Figure 2 in the supplementary material.  260 

‘On’ and ‘off’ medication 261 

For 24 of the patients with PD, it was possible to assess them both ‘on’ and ‘off’ dopaminergic 262 

medication. All participants except one experienced a worsening in their MDS-UPDRS-III total 263 

score with a median of 25% increase in scores from ‘on’ to ‘off’ medication. In contrast, 264 

medication did not change MDS-UPDRS finger tapping sub-score in more than a half of 265 

patients (62.50%). Seven patients with PD experienced a worsening in their FT score (from 0 266 

-normal- to 1 -slight-) and in 2 patients their score improved by 1 point. From SMART 267 

recordings, no significant differences were found in any of the parameters (amplitude, 268 

frequency, and velocity) when doing a within PD group comparison between the right hand 269 

of PD group in their ‘on-medication’ state against their ‘off-medication’ state. The same 270 

comparison was done for the left hand with again no differences found. Comparing only those 271 

who showed a worsening in their FT sub-scores (n=7) did not make any difference, with 272 

SMART parameters still being on average similar between ‘on’ and ‘off’ medication state.  273 

Idiopathic anosmia group  274 

Clinical and demographic information 275 

Patients with idiopathic anosmia were older on average than patients with PD, with similar 276 

mean age to the control group (Anosmia: 70.94 years SD 8.17 vs Control: 69.19 years SD 7.68, 277 

p= 0.581) and were therefore compared with the full number of controls. Mean duration since 278 

diagnosis of anosmia was 5.25 years (SD 4.65 years). Nine patients with idiopathic anosmia 279 

and 64 controls were included in this analysis. There was a higher proportion of males in the 280 

anosmia group compared to controls (Anosmia: 77.78% males vs Control: 40.62% male, 281 

p=0.069). The median motor score on the MDS-UPDRS-III was 1 (IQR= 0-3) and no patients 282 

met the diagnostic criteria for PD. However, one individual, who scored 10 on the MDS-283 

UPDRS-III, was classified as having sub-threshold parkinsonism based on MDS Task Force 284 

criteria (cut off >6 excluding action tremor) [7]. The remaining patients with anosmia scored 285 

between 0 and 4 in the total MDS-UPDRS-III. Finger-tapping sub-scores in the MDS-UPDRS-III 286 

were normal (score = 0) except for two individuals who exhibited slight bradykinesia (score = 287 
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1) and one who was scored as having mild bradykinesia (score = 2). Table 1 summarises the 288 

clinical and demographic information of both groups.  289 

SMART scores 290 

Although FT sub-scores were normal in the majority of anosmic individuals (7 out of 9), the 291 

SMART test detected motor impairment in finger-tapping performance compared with the 292 

control group. The pattern of movement in participants with anosmia shared similarities with 293 

PD patients. Individuals with anosmia performed the task with a reduced mean amplitude; 294 

despite broad ranges there was no overlap between groups (Anosmia: 13.94 degrees, 95% CI 295 

9.19 to 18.69 vs Control: 29.38 degrees, 95% CI 26.87 to 31.89 p<0.001) (Table 4). Compared 296 

with controls, the anosmia group showed a slower mean velocity (Anosmia: 0.96 degrees/s, 297 

95% CI 0.64 to 1.27 vs Control: 1.48 degrees/s, 95% CI 1.37 to 1.60 p<0.001). Although mean 298 

frequency was similar between anosmia and controls, there was weak evidence that 299 

individuals with anosmia exhibited slightly greater decrement over time compared with 300 

controls (p=0.059). In contrast to PD, CV of velocity was similar between groups (p=0.054).  301 

We then compared the anomic group to the unaffected side of patients with unilateral PD 302 

(n=13). Both groups were comparable in terms of the CV of amplitude, the CV of frequency, 303 

and the CV of velocity, together with the mean of frequency (all p-values >0.05). However, 304 

they differed in terms of the mean of amplitude (Anosmia: 13.95 degrees, 95% CI 9.18 to 305 

18.69 vs unaffected-side PD: 36.18 degrees, 95% CI 27.89 to 44.36, p<0.001) and mean 306 

velocity (Anosmia: 0.96 degrees/s, 95% CI 0.64 to 1.27 vs unaffected-side PD: 1.89 degrees/s, 307 

95% CI 1.46 to 2.32, p<0.001). However, the anosmic group were significantly older than the 308 

PD group with unilateral signs (Anosmia: 70.94 years SD 8.17 vs PD: 59.60 years, SD 10.88, 309 

p=0.004). 310 

4. DISCUSSION 311 

The main aim of the study was the proof of concept that subtle abnormalities in finger tapping 312 

in PD which might be difficult to pick up with the ‘naked eye’, may be detectable through 313 

slow-motion video capture. It is important to note that the SMART test was not designed to 314 

be used as a diagnostic tool in isolation. PD diagnosis is quite complex to be diagnosed with a 315 

unique simple test.  316 
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We found that patients with PD had slower finger tapping in line with the etymological 317 

definition of bradykinesia (‘slowness of movement’). In addition, we found there was 318 

significantly greater decrement in frequency of finger tapping. However, we did not find any 319 

difference in either mean amplitude or decrement (slope) in amplitude using the SMART test. 320 

Slowing, interruptions and reduced amplitude of finger tapping are all aspects typically seen 321 

in PD and evaluated in the finger tapping component of the MDS-UPDRS-III. Other studies 322 

using electronic measures have yielded similar results [21]. One explanation for the failure of 323 

these measurements to capture reduction in amplitude might be that change in amplitude in 324 

PD cases does not follow a linear trend over time. This was seen in many of the plots extracted 325 

from time series of PD cases showing a non-linear trend with a ‘burst’ phenomenon: repetitive 326 

cycles of slowing down and becoming smaller followed by a late amplitude increase. In fact, 327 

this last augmentation could compensate for the decrement and the average of amplitude 328 

over the 20-second task (see PD case example B in Figure 4). This rebound pattern could have 329 

a proprioceptive origin, suggesting that it might be an early feature before grinding down to 330 

a complete halt in more established PD.  331 

In contrast, kinetic parameters (velocity and frequency) were able to distinguish patients from 332 

controls with a good accuracy particularly using a combination of both (AUC 0.88). Our 333 

findings agreed with some other studies, with velocity and the parameter of variation (CV) 334 

found to have a high accuracy (see Table 5). In contrast, in a study by Růžička and colleagues, 335 

who used a contactless 3D motion capture system to compare 22 patients with 20 controls, 336 

amplitude was the best marker [22]. The slope of amplitude alone provided an accuracy of 337 

0.87. Since their cases had a longer disease duration (9.3 years) than ours, this might suggest 338 

that ‘sequence effects’ are more apparent later in the disease course.  339 

Amplitude and velocity from tapping tasks correlated best with the MDS-UPDRS-III finger 340 

tapping sub-scores and might therefore be useful surrogate markers for assessing disease 341 

severity. It is however important to consider that two different means of data were 342 

compared, categorical (from normal to severe FT sub-score) and continuous data (SMART test 343 

parameters). One might expect a floor effect, as it can be interpreted from correlation graphs 344 

in the supplementary material (Figure 2), between lower categorical scores (slight and mild 345 

score) which continuous data might be better able to define. Although there was a moderate 346 

positive correlation with FT sub-scores, the lack of any stronger correlation suggests that the 347 

SMART test and the finger tapping sub-scores of the MDS-UPDRS-III are identifying different 348 
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phenomena. Williams and colleagues carried out a project with a similar approach [23]. 349 

Smartphone video recordings of a 10-second finger tapping task were tracked with 350 

DeepLabCut (CNN). In this study patients had a longer disease duration (median of 4 years) 351 

and were on average 9 years older than ours. Although accuracy was not reported, the 352 

velocity parameter exhibited a greater correlation with FT-sub-score of MDS-UPDRS-III than 353 

ours (r: -0.74 vs r: -0.60). This may support the notion that the MDS-UPDRS-III is best adapted 354 

to patients with established disease rather than earlier stages [24], suggesting that the 355 

findings from this study should be confirmed in people with longer disease duration. In line 356 

with the previous study, Schneider and colleagues studied patients with PD (around 4 years 357 

of disease duration). Patients were tested using a semiquantitative scale integrated in a motor 358 

battery which covered arm swing assessment, single finger tremor, number of finger taps, 359 

and handwriting analysis. Whilst the number of repetitive fingers taps per minute was similar 360 

between groups, ‘fatigability’ (decrement of amplitude) was more evident among patients. 361 

Although the findings were descriptive, they believe that their battery was capable of 362 

detecting early subtle motor markers that might be missed by the UPDRS-III [25].  363 

Slow motion tracking of repetitive finger tapping may help to understand how fast, fluid, and 364 

erratic normal voluntary movements are. Beyond the decrement of amplitude and frequency, 365 

defined as ‘sequence effect’ in bradykinesia, non-linear patterns are seen among patients and 366 

controls which make it more difficult to establish cut-offs for normal. It is important to 367 

consider that clinical scales are semi-quantitative and semi-objective, and they are prone to 368 

individual bias which increases inter- and intra-rater variability [24]. To be of practical value, 369 

technology should exceed the performance of “Gold Standard” clinical scales or at least be 370 

more efficient. 371 

A study conducted in 384 patients at an early stage of PD (2 or less years from diagnosis), 372 

highlighted that limitation of the MDS-UPDRS-III in early PD. The motor impact shown by 373 

MDS-UPDRS-II (capturing motor experiences) did not correlate well with motor severity of 374 

motor signs detected by MDS-UPDRS-III, especially in those with very mild degrees of severity 375 

[26]. A marked floor effect (large concentration of clinical phenotypes near the lower limit) of 376 

clinical appeared to be the key reason for that gap. The authors concluded that MDS-UPDRS-377 

III had clinimetric limitations which could reduce its accuracy in early disease. In contrast, 378 
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technology could potentially overcome this limitation. Gao and collaborators designed a 379 

sensor device able to assess finger tapping and explore whether it could be used to identify 380 

early stages of PD and correlate with disease progression [27]. Readings from the sensors 381 

were analysed by using evolutionary algorithms which are a form of artificial intelligence 382 

designed to create classifiers of patterns of movement [28]. Their tool reached a high 383 

accuracy (≥89.7%) for detecting different severity degrees of bradykinesia. Moreover, it could 384 

discriminate early stages of PD with AUC of 0.899. These findings should encourage further 385 

research to focus on meticulous detection methods of motor dysfunction throughout the 386 

disease course, including the prodromal phase of PD. In fact, a recent review gave evidence 387 

about the potential role of video-based artificial intelligence in PD diagnosis and monitoring 388 

which could be particularly useful when classification involves complex and dynamical 389 

patterns of movement [29].   390 

Our study is the first to use a technology-based tool to look for subtle motor features in 391 

idiopathic anosmia. Although our findings remain exploratory and warrant further 392 

investigation in a larger sample, the SMART test appeared able to detect subtle changes in 393 

anosmia group whilst the finger-tapping sub-score of the MDS-UPDRS-III was less able to 394 

identify such discrepancies (6 out 9 patients had normal finger tapping sub-scores). Similar to 395 

the most affected side of the PD group, the SMART test was able to detect clear differences 396 

in the mean velocity parameter between individuals with anosmia and controls. The anosmic 397 

group also shared similarities (CV of all three parameters: amplitude, frequency, and velocity) 398 

with the unaffected side of PD, which may suggest identification sub-clinical movement 399 

abnormalities. Interestingly, mean amplitude and mean frequency had opposite results. 400 

Subjects with anosmia showed on average a reduced amplitude and a similar frequency to 401 

controls, whereas PD patients exhibited reduced frequency with similar amplitude to controls 402 

(Figure 5). This might suggest distinct compensatory mechanisms (maintaining a bigger 403 

amplitude by reducing the frequency and vice versa) at different stages of the disease. 404 

Anosmia is a prodromal marker of future PD risk [30]. The Health, Aging and Body 405 

Composition study showed the hazard ratio for PD over 10 years of follow up to be 4.8 for 406 

subsequent PD diagnosis [31]. Another large population-based cohort, the PRIPS study, 407 

reported a relative risk ratio of 6.5 in participants with reduced sense of smell after 3 years 408 

follow-up [32]. Most studies of idiopathic anosmia did not find detectable motor dysfunction 409 
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using the MDS-UPDRS-III [33–35]. One longitudinal study showed that whereas subjects with 410 

hyposmia did not have worse UPDRS-III scores than individuals with a normal sense of smell, 411 

a greater proportion had abnormalities on dopamine transporter SPECT (11% vs. 1%) [34]. 412 

One systematic review and meta-analysis suggested that anosmia was associated with a 3.84-413 

fold risk of developing PD [36] and the MDS Criteria for Prodromal PD show that, based on 414 

seven prospective studies, objective smell loss has a positive likelihood ratio of 4.0 [7]. Based 415 

on these findings, the presence of motor features in some patients with anosmia might be 416 

expected. The fact that UPDRS-III is often normal in patients with anosmia suggests that other 417 

assessments adapted for early stages of PD are needed [37].  418 

The SMART test offers several advantages. It is a sensor-free tool; therefore, it does not 419 

interfere with the natural range of movement. It is inexpensive with a smartphone camera 420 

only being required which can potentially make it applicable in larger scale studies. However, 421 

it also entails several methodological and data processing limitations. 422 

In terms of limitations, one important consideration is that the exclusion of controls scoring 423 

more than 6 in the MDS-UPDRS-III (cut off for subthreshold parkinsonism) may have 424 

contributed to artificially increasing test accuracy. In a similar way, the selection of the best 425 

scenario comparing the dominant hand in controls and the most affected side in PD could 426 

also have magnified the accuracy of the test. Although handedness was reported as a binary 427 

variable, degrees of hand dominance amongst controls should be presumed. Pure-right and 428 

pure-left handed people are expected to exhibit bigger discrepancies between their dominant 429 

and non-dominant hand. However, in this proof-of-concept study, the main purpose was to 430 

know whether SMART test was able to distinguish patients form controls under the best 431 

circumstances without potential confounding factors such as handedness. Further studies 432 

would need to account for the role of handedness as a continuous variable with scales such 433 

as Edinburgh Handedness Inventory [38].  434 

Gender matching was difficult to accomplish due to our source of recruitment. Most of our 435 

controls were the partners of PD cases (who were predominantly male). One might expect 436 

that the lack of gender matching could bias comparisons (since men and women's hands have 437 

different characteristics). However, there were no differences in terms of their performance 438 

between male and female controls. Another methodological limitation to consider would be 439 
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that by asking to not rotate the hand which was done to capture the real angle we might have 440 

prevented patients adopting certain hand postures. It would be particular important in 441 

patients exhibiting action tremor since a possible co-existence of dystonic action tremor could 442 

be expected, especially in early diagnosed patients. Finally, although we tested for a longer 443 

period of time than it is recommended by the MDS-UPDRS-III (10 seconds), we should 444 

consider testing for longer than 20 seconds, especially in patients at earlier stages.  445 

Moving to data processing limitations, we derived relatively simple summary statistics from 446 

the derived time series, and it may be using other techniques based on the frequency domain 447 

that capture beat-to-beat variation may be more sensitive, as demonstrated by Biase and 448 

colleagues with the tremor stability index [39]. However, the aim of this work was to provide 449 

proof of concept, that motion capture using a smart phone could provide metrics sensitive to 450 

changes in early PD. There are a large number of non-linear, time-series metrics, and this 451 

question will be the focus of future work. Although we used a simple, threshold-based 452 

method, for discriminating PD from controls, we acknowledge that there are other 453 

approaches based on machine learning that may be able to leverage the whole time-series, 454 

or indeed the raw video footage, and ultimately prove more accurate. However, in this work 455 

we sought to derive quantitative metrics from video footage, given these measures have 456 

much broader utility beyond mere categorical diagnostics (e.g. treatment biomarkers). 457 

Finally, we did not find a difference between ‘on’ and ‘off’ stages whereas MDS-UPDRS-III did 458 

find a 40% change. A reasonable explanation for that would be that MDS-UPDRS-III covers 459 

the ‘whole picture’ (walking, facial expression, rigidity, etc) whereas finger tapping only 460 

assesses distal bradykinesia. A longstanding LD response could be another reason for not 461 

having found differences between ‘on’ and ‘off’ medication. Twelve hours off medication 462 

might not be enough to get a clinically evident off state, especially in recently diagnosed 463 

patient [40]. MDS-UPDRS-III FT sub-scores was also similar in the majority of PD patients could 464 

suggest that FT might not be a useful task to measure, in isolation, LD response. However, 465 

there is a lack of studies measuring the LD response of each one MDS-UPDRS sub-scores 466 

separately. Vassar and collaborators carried out a confirmatory factor analysis of the UPDRS 467 

for ‘on’ and ‘off’ state examination and found that a five factor model fitted the data better, 468 

with finger tapping being included in the same factor as rigidity, hand movements, and leg 469 
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agility [41]. Although ‘on’ and ‘off’ comparison was not carried out, finger taps had the lowest 470 

factor loading contribution in ‘on’ and ‘off’ state separately.  471 

Finally, it is important to mention that the SMART test was not designed to be used as a 472 

diagnostic tool in isolation. Ideally, it might help to guide further tools more focused on 473 

velocity assessment for in the end to be included in a quantitative motor battery able to 474 

capture the whole picture of movement abnormalities (hand dexterity, facial expression, and 475 

walking among others), in particular in the early stages of PD. 476 

CONCLUSIONS 477 

The SMART test provides objective evidence of motor dysfunction in PD with velocity being 478 

the best parameter to differentiate recently diagnosed PD cases from controls. Individuals 479 

with idiopathic anosmia exhibited abnormal patterns of movement supporting the idea of 480 

anosmia being part of the prodromal phase of PD.  481 
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Table 1 Demographic and clinical data   

 Control1 

(n=30)  

-from control2- 

PD 

(n=26) 

Control2  

(n=64) 

Anosmia  

(n=9) 

Age, years (SD) 63.81 (7.21) 59.60 (10.88) 69.19 (7.68) 70.94 (8.17) 

Gender, male: female 11:19 17:9 26:38 7:2 

Median years since PD diagnosis (IQR) NA 0.75 (0.5-1.2) NA NA 

Last dose of LD, median hours (IQR)  NA 16.6 (15-21) NA NA 

Median MDS-UPDRS-III score (IQR) 1 (0-2) 20 (15-26) 1.5 (0-3) 1 (1-3) 

Median MDS-UPDRS-III score worsening       

(on-off medication) 

NA 25% (13%-61%) NA NA 

Visible tremor during task 0 11 0 0 

FT sub-score (MDS-UPDRS-III)   

0 30 1 63 6 

1 0 12 1 2 

2 0 12 0 1 

3 0 1 0 0 

4 0 0 0 0 

*Finger tapping (FT) sub-score in the MDS-UPDRS-III: 0-normal, 1- slight, 2-mild, 3-moderate, 4-severe. IQR: interquartile 
range, SD: standard deviation, NA: not applicable. Overall, 64 controls were included. Group (1): 30 out of 64 were 
extracted to compare with PD. Group (2): overall control group used for comparison with anosmia.  
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Table 2. Test parameter comparison and ROC analysis between PD and controls 

 Controls  PD p value 

Amplitude            Mean 31.10 (26.91 to 35.28) 27.08 (22.49 to 31.67) 0.189 

CV 0.18 (0.14 to 0.23) 0.21 (0.17 to 0.25) 0.447 

Slope -0.42 (-0.58 to 0.27) -0.39 (-0.62 to -0.17) 0.817 

Frequency            Mean 3.18 (2.84 to 3.53) 2.63 (2.29 to 2.98) 0.017 

CV 0.11 (0.08 to 0.14) 0.18 (0.13 to  0.22) 0.007 

Slope -.002 (-0.01 to 0.007) -0.021 (-0.03 to 0.01) 0.003 

Velocity                Mean 1.63 (1.44 to 1.81) 1.20 (1.02 to 1.38) <0.001 

CV 0.20 (0.15 to 0.25)     0.31 (0.27 to 0.34) <0.001 

Slope -0.06 (-0.08 to -0.04) -0.07 (-0.08 to -0.05) 0.662 

The dominant hand from controls and the most affected side from PD cases was used for comparison. All parameters 
presented with 95% coefficient interval (CI). CV: coefficient variation. Amplitude: degrees. Frequency: taps/sec. Velocity: 
degrees/sec. P-value: Welch’s t-tests (two-tailed) except for frequency were Two-sample Wilcoxon rank-sum (Mann-
Whitney) test was used 
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Table 3.  ROC analysis between PD and control group  

 CV velocity +                    

Slope frequency 

Velocity +                       

Slope frequency 

Velocity +  

CV frequency 

          Sensitivity Sensitivity Sensitivity 

Specificity 85%  

(cut-off) 

80.77% 

(>=0.49) 

73.08% 

(>=0.51) 

73.08% 

(>=0.53) 

Specificity 75%  

(cut-off) 

80.77% 

(>=0.53) 

84.62% 

 (>=0.46) 

80.77% 

(>=0.39) 

AUC (95% CI)  0.85 (0.74 to 0.95) 0.88 (0.78 to 0.97) 0.83 (0.72 to 0.95) 

The dominant hand from controls and the most affected side from PD cases was used for the ROC analysis. 
AUC: area under the curve for the ROC (Receiver operating characteristic) analysis.  

 661 
 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 



 26 

Table 4. Test parameter comparison between Anosmia and controls  

 Controls Anosmia p value 

Amplitude         Mean 29.38 (26.87 to 31.89) 13.94 (9.19 to 18.69) <0.001 

CV 0.19 (0.16 to 0.22) 0.30 (0.20 to 0.40) 0.009 

Slope -0.39 (-0.49 to -0.29) -0.23 (-0.49 to -0.03) 0.243 

Frequency         Mean 3.05 (2.82 to 3.28) 3.26 (2.62 to 3.90) 0.515 

CV  0.13 (0.10 to 0.16) 0.15 (0 .05 to  0.26) 0.560 

Slope -.002 (-0.01 to 0.005) -0.020 (-0.04 to -0.003) 0.059 

Velocity             Mean 1.48 (1.37 to 1.60) 0.96 (0.64 to 1.27) 0.001 

CV 0.21 (0.18 to 0.23) 0.28 (0.16 to 0.40) 0.054 

Slope 0.02 (0.02 to 0.03) 0.01 (-0.004 to 0.03) 0.369 

All parameters presented with 95% coefficient interval (CI). CV: coefficient variation, AUC: area under the curve, ROC: 
Receiver operating characteristic. P-value: Welch’s t-tests (two-tailed) 
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Table 5. Representative literature about quantitative measures of finger movements 

Reference  Test Task Sample Parameters studied Accuracy Clinical correlation 

R Okuno et 

al 2007[42] 

Digital sensor + 

accelerometer 

PCA  

FT 

60” 

16 PD 

32 HC 

Velocity (MOV**) 

Amplitude Rhythm  

Number of FT  

mean MoV: misclassification rate/AIC of 

15.6%/ 85.9 

TD with a misclassification rate/AIC of 

18.8%/ 85.4. 

MoV - UPDRS-FT score  

r=0.59 

Noyce et al 

2014[43]  

BRAIN test: keyboard  ATT 

30” 

58 PD 

93 AMC 

KS** 

AT 

IS 

KS: 56% sensitivity, 80% specificity KS - total UPDRS-III 

r= -0.53  

CY Lee et al 

2016[21] 

Smartphone tapper  ATT  

10” 

57 PD 

87 HC 

Number taps  

Amplitude** 

Inter-tap distance 

Dwelling time 

Total distance: 

AUC: 0.92 (95% CI 0.88–0.96) 

Dwelling time: AUC: 0.88 (95% CI 0.82–0.93) 

Overall test - UPDRS-III  

r2= 0.25  

Overall test - UPDRS- FT sub-score 

r2= 0.32 

Ruzicka et al 

2016[22] 

Contactless 3D motion 

capture system 

FT 

10” 

22 PD 

22 HC 

AvgFrq  

MaxOpV  

AmpDec 

AmpDec:  AUC =0.87   

MaxOpV: AUC =0.81 

MaxOpV – UPDRS-FT sub-score  

r = -0.48 

 

Gao et al 

2018 [25] 

 PD-monitor (sensor) FT 

30” 

107 PD 

49 HC 

41 ET 

EA- dynamical classifiers  PD-monitor score: AUC= 0.89 Right side – MDS-UPDRS-FT: r = 0.82 

Left side – MDS-UPDRS-FT: r = 0.78 

JH Shin et al 

2020[44] 

Conventional camera 

DL tracking algorithm 

FT 

LA 

10” 

29 PD  

1 HC 

Amplitude  

(mean, variability**) 

Interpeak interval  

(mean, variability**) 

NR FT – UPDRS-III: 

Interpeak interval var: r = 0.66 

LA-UPDRS-III: 

Interpeak interval var: r = 0.7 

S William et 

al 2020[23]  

Smartphone camera 

DL tracking algorithm 

FT 

10” 

MAS 

39 PD 

30 HC 

Speed 

Amp CV 

Rhythm  

NR r=0.74 (speed in MBRS) 

r=0.69 (three parameters combined) 

**: best parameter, NR: not reported, FT: finger tapping, LA: leg agility, ATT: alternating tapping test, PD: Parkinson’s disease, HC: healthy controls,  AMC: age matched controls, SWEDD: scan 
without evidence of dopamine deficiency, ET: essential tremor, CV: coefficient variance, KS: kinesia score, AT: alternating score, IS: incoordination score, EA: evolutionary algorithms (a form of 
artificial intelligence using an objective score scaled from – 1 to +1 where higher scores indicate greater severity of bradykinesia), MOV: maximum opening velocity, TD: total 
distance,  Average frequency (AvgFrq), maximum opening velocity (MaxOpV) and amplitude decrement (AmpDec), SVM : support vector machine classifier 
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Figure 1. Hand detection: 8 key landmarks across the first and the second finger (red). Angle 

between 1,4,8 key landmarks (black). Extrapolated amplitude between point 1 and 8 (blue). 

Figure 2. PD case with index finger action tremor appearing after 10 seconds of latency (re-

emergence phenomena). Only the highest peak of amplitude is selected.  

Figure 3. Receiver operator characteristic (ROC) curves for the best parameter combination 

to distinguish patients with PD and controls. A) Velocity and CV frequency (AUC 0.83; 95% CI 

0.72 to 0.95), B) Velocity and frequency slope (AUC 0.88, 95% CI 0.78 to 0 0.97), C) CV velocity 

and frequency slope (AUC 0.85; 95% CI 0.74 to 0.95).  

Figure 4. Control subject (A) with constant frequency and amplitude compared to patient with 

PD (B) showing a ‘burst phenomena’ (repetitive amplitude rebound over 20 seconds task). 

Figure 5. Boxplots comparing the PD group with the control group1 (A-C) and the anosmia 

group with the control group2 (D-F).  

 

 


