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Abstract: The reconstruction of viscous properties of soft tissues, and more specifically, of cervical
tissue is a challenging problem. In this paper, a new method is proposed to reconstruct the
viscoelastic parameters of cervical tissue-mimicking phantoms by a Torsional Wave Elastography
(TWE) technique. The reconstruction method, based on a Probabilistic Inverse Problem (PIP)
approach, is presented and experimentally validated against Shear Wave Elastography (SWE).
The anatomy of the cervical tissue has been mimicked by means of a two-layer gelatine phantom
that simulates the epithelial and connective layers. Five ad hoc oil-in-gelatine phantoms were
fabricated at different proportion to test the new reconstruction technique. The PIP approach was used
for reconstructing the Kelvin-Voigt (KV) viscoelastic parameters by comparing the measurements
obtained from the TWE technique with the synthetic signals from a Finite Difference Time Domain
(FDTD) KV wave propagation model. Additionally, SWE tests were realized in order to characterize
the viscoelastic properties of each batch of gelatine. Finally, validation was carried out by comparing
the KV parameters inferred from the PIP with those reconstructed from the shear wave dispersion
curve obtained from the SWE measurements. In order to test the degree of agreement between
both techniques, a Student’s T-test and a Pearson’s correlation study were performed. The results
indicate that the proposed method is able to reconstruct the KV viscoelastic properties of the cervical
tissue, for both the epithelial and connective layers, as well as the thickness of the first layer with
acceptable accuracy.

Keywords: Torsional Wave Elastography; Shear Wave Elastography; tissue-mimicking phantom;
viscoelasticity; Kelvin-Voigt model; cervical biomechanics

1. Introduction

The cervix is a muscular part of the female reproductive system located at the lower end of the
uterus. The cervix plays a crucial role during the gestation, acting as a gatekeeper, supporting the
fetus inside the uterus and keeping it safe from external hazard [1]. From the moment of conception
biological transformations in the cervix happen until the childbirth. These transformations, triggered
by mechanical and chemical processes, have an impact in the physiology of the cervical tissue to the
point of altering its mechanical properties [2]. For instance, before and during the delivery, the cervical
structure is deformed to allow the descent of the baby into the birth canal [3]. The mechanical
transformation during gestation consists in a decrease of stiffness of the cervix [2,4,5]. This mechanical
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transformation is linked to changes of the structural collagen, which mainly are the reduction in the
cross-linking between fibers and the shift of the distinctive arrangement of the fibers, from mostly
aligned to curled [6].

The preterm birth is the first cause of infant mortality and morbidity in children under five years
of age [7–9]. The change in the mechanical properties of the cervical tissue before and during the
delivery provides the basis for being used as an indicator of the preterm birth [10], so treatment
actions can be taken as anticipation of the preterm birth. One of the most employed techniques is
SWE imaging for quantify tissue softness or stiffness in cervical tissue [4,5,11–14]. Limitations of this
technique in the cervical tissue are: first, it is highly attenuating due to its microstructural complexity
and second the deposited energy in the medium [15,16]. Alternative dynamic techniques based
on torsional vibrations were employed in the characterization of soft tissue viscoelastic properties.
Valtorta et al. [17] proposed a new method for measuring the complex shear modulus of soft biological
tissues using a torsional resonator. In vitro experiments on bovine and porcine liver demonstrated the
feasibility of the technique. Henni et al. [18] presented shear wave induced resonance technique for
dynamic ultrasound elastography of confined mechanical inclusions. The method relies on torsional
shear waves modeled with the Helmholtz equation in spherical coordinates. This approach was
validated with in vivo measurements on a breast fibroadenoma. A more recent study carried out
by Yengul et al. [19] analyzed the dispersion in tissue-mimicking gels using a combination of SWE
with a torsional vibration rheometry. The precision of the results of torsional vibration rheometry was
comparable with SWE. A new promising elastography technique (TWE) was proposed for measuring
the viscoelastic properties of cervical tissue [20,21]. The technique employs a transvaginal probe that
makes contact with the cervix for transmitting and receiving a torsional wave propagated through
tissue. The use of a torsional wave presents the advantage of isolating a pure shear motion, thus,
eliminating the generation of spurious compressional waves [20,21].

To the date of this work, the method that TWE uses for reconstructing the viscoelastic properties is
based on a time-of-flight (TOF) approach [21]. The TWE probe transmits and receives a torsional wave
that not only propagates along the surface of the cervix but also in depth. Therefore, the wave not only
interacts with the most superficial layer, the epithelium, but also with the immediately below layer
made of connective tissue. The TOF-based method is blind to the fact that the cervix is composed of
several layers and that these layers have different mechanical properties. The integrity of the cervical
tissue is ensured by the extracellular matrix, where its histological composition provides support of the
structural functionality. The basic composition of the matrix is a cross-linked network of collagen fibers
enclosed by a ground substance. In the cervix, the collagen is mainly divided into two types I (67%)
and III (33%), a proportion that is maintained throughout the entire pregnancy [22–24]. Regarding
the epithelial layer, no content of collagen fibers was reported in literature [25]. Taking into account
that the content and distribution of collagen define the strength of the tissue, a new approach with
different layers of the cervix is required. The technique used in this work for the reconstruction of
the viscoelastic parameters was based on a numerical model that simulated the propagation of shear
waves through the phantom and that did not only take into account the start of the signal but the entire
received signal was analyzed.

In this work, a probabilistic approach, based on a new metric of information density and
a numerical forward wave propagation model of torsional waves, is proposed for solving the
probabilistic inverse problem (PIP) [26]. The final aim is the reconstruction of the viscoelastic properties
of the layers that form the cervical tissue structure. Methods based on the use of a forward wave
propagation model within an optimization algorithm for reconstructing the viscoelastic properties of
soft tissue can be found in the literature, for instance, the deterministic inverse problem approach using
a genetic algorithm [27,28] for prostate cancer detection. The reconstruction of the parameters has
several limitations if one considers the existence of noise in the measurements performed, heterogeneity
in the properties of the sample, and even the fact that the model used to simulate its behavior is an
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approximation of reality. To solve these limitations, the use of a probabilistic approach based on the
theory of Tarantola [29] was employed [26,30].

The wave propagation model requires a constitutive law that defines the stress-strain relationship
of the cervical tissue. Although the commercial elastography techniques consider a pure elastic
relationship, it is well known that the mechanical response of soft tissue is viscoelastic [28,31,32].
Viscosity has an important role in wave propagation by increasing attenuation and producing frequency
dispersion. Furthermore, viscosity is becoming an interesting parameter to study, since it might provide
additional characterization of pathologies [33]. According to the results of the work carried out by
Callejas et al. [21] the Kelvin-Voigt model was the simplest model that best fit the stress-strain
relationship of the ex-vivo human cervical tissue when using the TWE technique. The proposed wave
propagation model is numerically developed using a finite difference time domain (FDTD) algorithm.
The choice was made from a practical point of view since solving the torsional wave propagation
analytically is complex and, after considering that the algorithm offers simplicity, speed and flexibility
for implementing a singular constitutive law such as the Kelvin-Voigt (KV) model.

Validation is a crucial step when using numerical models for simulating physical phenomena,
such is the propagation of torsional waves in this case. Validation can be achieved by different
means, for instance by comparing the observations from experimental work against the computational
model. Well-accepted experimental techniques can be used to measure certain features of the physical
phenomenon that can be compared with model simulations. The model is validated when a certain
level of agreement is reached. For instance, Gómez Fernández [28] used experimental observations
from rheometry and high-speed camera in translucent prostate phantoms for validating the numerical
wave propagation model. In this case, the numerical simulations using the FDTD wave propagation
model were compared against results from experimental tests in multi-layer cervix-like gelatine
phantoms using the well-established SWE technique by the Verasonics system (Verasonics Inc.,
Kirkland, WA, USA).

Therefore, the main aim of this work is to propose a new method for the reconstruction of KV
viscoelastic parameters in cervical tissue-mimicking phantoms using the TWE technique. For such
a purpose, this paper has been divided into several sections. First, a brief introduction to the core
content has been shown. Second, a section of materials and methodology details the methods used
in this work. A probabilistic approach was employed to reconstruct the KV viscoelastic parameters
by comparing the results obtained from TWE technique with the synthetic signals from the FDTD
KV model. Additionally, the characterization of the phantoms was realized by SWE measurements,
the gold standard technique in elastography. Third, the results of the comparison between the
experimental tests using SWE and the numerical simulations were tested using Student’s T-test and
a Pearson’s correlation study. Finally, sections for the discussion of the results and conclusion of the
work are shown.

2. Materials and Methods

The proposed methodology consists of five steps (see Figure 1): (1) An idealization of the
mechanical behaviour of the cervical tissue with five different tissue-mimicking phantoms; (2) A
viscoelastic characterization of the phantoms using SWE (single-layer phantoms); (3) The measurement
of the phantoms using the TWE technique (bilayer phantoms); (4) A PIP is performed to reconstruct
the phantom viscoelastic parameters by comparing the experimental signals using the TWE technique
and the synthetic signals from the FDTD KV model; (5) finally, comparison between the parameters
obtained with TWE technique and SWE is analyzed.
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Figure 1. Schematic flowchart used for validating the KV viscoelastic model.

2.1. Tissue-Mimicking Phantom Fabrication

The viscoelastic characterization of the cervical tissue requires the use of a model that simulates the
torsional wave propagation. According to the results of the work carried out by Callejas et al. [21], the KV
model is the simplest model that best fit the ex-vivo cervical tissue experimental results. The next step
after selecting the model is its validation, which consists of measuring tissue-mimicking phantoms with
TWE technique and comparing against SWE, a well-known technique by the scientific community.

Fabrication of tissue-mimicking phantoms is straightforward in general and has been described
by taking into account characteristics from the recipe by [34]. After studying different ingredients and
fabrication methods, the ingredients found in Table 1 were proposed. Potassium sorbate was included
to keep the phantom from early decay due to bacterial and fungal activity. The formalin ingredient was
used to raise the melting point of the gelatine, stabilizing the response of the phantom properties to
room temperature variations and as a cross-linking agent. Finally, sodium dodecyl sulfate (surfactant)
was added for a better mixture of oil with water. Phantoms contain different concentrations of gelatine
and oil to mimic the elastic and viscous parameters of cervical tissue. In addition, the constituent oil
generates scattering for the visualization of the shear wave propagation through the phantom with
SWE technique. Three different gelatine percentages were considered (7.5, 10 and 15 %) as well as two
percentages of oil (5 and 10 %).

Table 1. Ingredients of the gelatine solution for the tissue-mimicking phantoms. The amount of gelatine
and oil was varied for each batch (percentage specified in Table 2).

Tissue-Mimicking Phantom Constituents

Ingredient Supplier, Type

Gelatine Fisher Chemical, Gelatine General purpose grade
Formalin (0.24 cc) Sigma Aldrich, Formaldehyde sol. 37% wt in H2O
K-Sorbate (1.62 g) Alfa Aesar, Potassium sorbate, 99%

Lubricating Oil 50501 TDI 5W40
Surfactant (0.5 g) Sodium dodecyl sulfate, ACS reagent, ≥99%

H2O (100 mL) Laboratory distilled water

Taking into account the nature of the cervical tissue, composed of epithelial and connective
layers, the phantoms were fabricated considering two layers (see Figure 2). The specific percentages of
gelatine, oil and the thickness of the first layer (simulating the epithelial layer of the cervix) have been
chosen to simulate the viscoelastic properties of the cervical tissue according to the evidence found in
the literature [35–37]. For this purpose, five different phantoms have been fabricated. The ingredients
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that interfere with the parameters of the KV model are those that have been varied (gelatine, oil and
layer thickness), the rest were kept constant (formalin, K-sorbate, surfactant and H2O). The aim is to
vary each of the parameters of each phantom that are reconstructed and verify that the PIP is capable
of reconstructing them. Details about the percentages of gelatine and oil, as well as the thickness of the
two layers are given in Table 2.

Table 2. Percentages of gelatine and oil wt/wt, as well as the thickness (Th) of the two layers for each
of the five phantoms.

Phantoms Layer Gelatine (%) Oil (%) Th (mm)

1 First layer 7.5 5 1
Second layer 15 5 15

2 First layer 10 5 1
Second layer 15 5 15

3 First layer 7.5 5 1
Second layer 10 5 15

4 First layer 7.5 10 1
Second layer 15 10 15

5 First layer 7.5 5 0.5
Second layer 15 5 15

The procedure carried out for the fabrication of the phantoms required for measurements with
TWE technique is listed below. The phantoms for the measurements with SWE technique have been
manufactured with the same batches for the TWE phantoms but in round molds of larger diameter
(7 cm) and greater depth (6 cm) for correct measurement with the above technique. The steps followed
to fabricate the phantoms are based on the procedure followed by Dunmire et al. [34].

1. Weigh and prepare each of the components listed in Table 1.
2. Add the K-sorbate to the distilled water and begin mixing for five min.
3. Add the surfactant and keep mixing for another 5 min.
4. Add the oil with the previous solution and mix manually at a rate that minimized the formation

of air bubbles and the formation of large clumps.
5. Heat the combined solution at a rate of approximately 1 ◦C per minute.
6. Gradually add the gelatine powder to the combined solution.
7. Allow 5–10 min to verify that the gelatine is well mixed.
8. Cover and heat the solution to 85 ◦C at a rate of approximately 1 ◦C per minute.
9. Hold the solution between 85 ◦C and 90 ◦C for 90 min.
10. Cool the mixture from 85 ◦C to 40 ◦C at a rate of 1 ◦C per minute.
11. Add the formalin and mix the solution for 5 min.
12. Pour the mixture into the round molds (5 cm in diameter) until the thickness of the connective layer

is reached. A thickness of 15 mm has been considered to avoid interference in the measurements
due to reflections with the bottom of the gelatin.

13. Wait until the mixture reaches 37 ◦C–38 ◦C.
14. While the first batch is getting cold, repeat steps 1 to 11 with the ingredients needed to fabricate

the first layer.
15. When both batches reach the temperature of 37 ◦C–38 ◦C, carefully pour the second batch (first

layer) on the first batch using a syringe. According to the dimensions of the mold, the volume of
gelatine necessary to reach the required thickness is calculated.

16. Leave the phantom to solidify at room temperature for 2 h before being stored in the refrigerator.
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17. Remove the phantom from the refrigerator and left at room temperature for 6 h.

Figure 2. Phantoms number 1 and 3. The phantoms were unmolded and cut to appreciate the two
layers of which they are composed.

2.2. SWE Characterization of the Phantoms

Mechanical properties of soft tissue are directly related to the speed of the waves propagating
through it [38–41]. A perturbation in the media is needed in order to capture shear waves. In this
work, Acoustic Radiation Force (ARF) is used to excite the tissue producing its deformation; tissue
displacements are generated due to this focused ARF and induce shear waves that propagate away
from this push.

A programmable research ultrasound system (Vantage, 128 Verasonics Inc., Kirkland, WA, USA)
was configured to provide both the B-mode image and the shear wave motion speed. A linear-array
transducer with a center frequency of 7.8 MHz and properties shown in Table 3 was used for imaging
(L11 − 5v, Verasonics Inc.). Each of the five phantoms was imaged three times and shear wave
speeds were estimated. All the measurements were performed at laboratory temperature (22 ± 1 ◦C).
Verasonics offers big flexibility in sequence design and permits access to raw data from each element of
the array [42]. Verasonics uses the MATLAB programming environment (Release 2018b, MathWorks,
Natick, United States), the user needs to write a program script to generate the imaging sequence.
Several types of pushing sequences can be used to generate shear waves, in this work Multiple Track
Location (MTL) SWE Imaging is used for a single focused push for the center of the frequency of
7.8 MHz. Scanning process of a gelatin phantom with the Verasonics system is shown in Figure 3.

Table 3. Properties of the L11− 5v Verasonics transducer.

Number of elements 128
Pitch (mm) 0.3

Elevation focus (mm) 18
Sensitivity (dB) −52 ± 3

In Table 4, the SWE acquisition parameters used in this paper are shown. Push transmit frequency
and track frequency are typically selected to be the center frequency of the transducer. However, in this
work, lower track transmit frequency was used to successfully receive the harmonic frequency in the
case of harmonic tracking. Furthermore, for push transmit frequency, a lower frequency was also used
to minimize underestimation of tracked tissue displacement due to speckle shearing within the track
point spread function. In this paper, we used a push frequency that is in the lower −25 dB bandwidth
of the transducer to expand the push beam keeping a high transmit efficiency [43,44].
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Table 4. SWEI acquisition parameters for L11− 5v Verasonics transducer.

Parameter L11 − 5v

Push frequency (MHz) 4.8
Track frequency (MHz) 5.6
Push duration (cycles) 1000

Pulse repetition interval (µs) 100
Excitation Voltage (V) 28
Focal distance (mm) 20

2.2.1. Tissue Motion Estimation

The Loupas algorithm was used to estimate the axial displacements [45]. This is done by
postprocessing the In-phase and Quadrature (IQ) data obtained from the shear wave propagation as
follows (see Figure 4):

• Generate the push sequence (Create displacements).
• Transmit shear waves according to the push sequence.
• Record shear wave propagation during a period of time.
• Transfer the recorded RF to the host computer, then transform RF data to IQ data.
• Call the Ultrasound Toolbox (USTB) with the IQ data and post-process using Loupas

2D autocorrelator.

Figure 3. Experimental setup of Verasonics measurements.
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Figure 4. Schematic flowchart used for postprocessing IQ data.

Although Verasonics offers postprocessing of IQ data using the Kasai algorithm it is recommended
to use Loupas 2D autocorrelator. This is because Kasai’s algorithm uses a constant frequency to
compute the phase shift: the center frequency of the transducer. However, the center frequency
of RF-echoes decreases along with the axial depth, and Loupas approach corrects the mean RF
frequency along with each axial extent and this leads to getting more accurate results. In this paper
post-processing of the IQ data measured was done using the USTB [46].

2.2.2. Dispersion Shear Wave Speed Curve

From the speed field resulted from SWE excitation, the dispersion shear wave speed curve was
obtained for each batch of single-layer phantom. Using the curve as a reference, the viscoelastic tissue
properties can be extracted by fitting the data with a mechanical model of the tissue. For a linear,
elastic, isotropic, homogeneous and unbounded material, the shear wave speed (cs) is expressed in
terms of the shear elasticity µ and density ρ by the relation:

cs =

√
µ

ρ
(1)

In contrast, for a viscoelastic material described by the KV model, the shear wave speed is not a
constant value, it depends on the angular frequency (ω) [31,32].

cs(ω) =

√
2(µ2 + ω2η2)

ρ(µ +
√

µ2 + ω2η2)
(2)

where η is the KV shear viscosity of the sample. The density of soft tissue is usually assumed to be
1000 kg/m3.

This dispersion, shown in the frequency-dependent phase velocity and shear attenuation is the
consequence of the propagation of the shear waves through the tissue [38]. The phase shear wave
speed was obtained using the equation:

cs(ω) =
ω∆r

∆φ(ω)
(3)

A Fast Fourier Transform (FFT) of the tissue speed field has been used to obtain the phase change
∆φ(r, t) of the wave over the traveled distance ∆r at each frequency [47,48]. Finally, the dispersion
curve obtained was fitted by Equation (2) to get the shear elasticity (µ) and the shear viscosity (η).
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2.3. TWE Characterization of the Phantoms

The phantoms were tested when they reached the laboratory temperature (22 ± 1 ◦C) and
a scale was employed to quantify the applied pressure during the measurement (see Figure 5).
The pressure employed (100 ± 5 g) was chosen according to a previous experience using a normal
testing procedure [21]. Each of the five bilayer phantoms was measured in three different areas by
an in-lab designed and prototyped probe capable of generating, receiving and analyzing torsional
waves. The probe [21,49] comprises (1) an emitter, made of polylactic acid disk (PLA), whose rotational
movement is due to an electromechanical actuator, (2) a receiving part composed of two PLA rings
elements to reduce sensitivity to dilatational waves and an array of piezoceramic elements, and (3) a
casing with geometrical and material selection to control the mechanical cross-talk.

The propagated torsional wave is a burst composed of a 1-cycle sinusoid of frequency 1000 Hz
with 10x averaging to increase the strength of the signal relative to noise. For each gelatine phantom,
five measurements were performed at three different points, with the objective of reconstructing the
viscoelastic parameters with mean and standard deviation. The torsional sensor receives a signal in
terms of voltage that is representative of the interaction with the different layers of the phantom.

Figure 5. Picture of the experimental setup of TWE measurements. The phantoms were positioned on
a balance to control the pressure applied.

2.4. Kelvin-Voigt FDTD Propagation Model

With the aim of inferring the viscoelastic properties of the phantoms using the PIP (explained
in detail in Section 2.6), a FDTD method has been proposed in order to simulate the torsional wave
propagation through the tissue-mimicking phantoms. The FDTD formulation was developed in
cylindrical coordinates since torsional waves propagate axisymmetrically from the center of the
probe [21]. As discussed above, with the objective of simulating the nature of the cervical tissue,
two layers have been taken into account in the numerical simulations (see Figure 6).
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Figure 6. Two dimensional finite difference time domain scheme.

One of the most used viscoelastic constitutive laws for modeling shear wave propagation in
tissue is the KV model. Following the conclusions obtained by [21], the KV model is the one that best
simulates the behavior of cervical tissue under the propagation of torsional waves.

The equations that govern the torsional wave propagation through the phantom for the KV
model have been deduced taking into account the equations of motion, the kinematic relation, and the
constitutive equations [28]: 

ρv̇θ =
∂σrθ

∂r
+

2
r

σrθ +
∂σθz
∂z

σ̇rθ = µ

[
∂vθ

∂r
− vθ

r

]
+ η

[
∂v̇θ

∂r
− v̇θ

r

]

σ̇θz = µ
∂vθ

∂z
+ η

∂v̇θ

∂z

(4)

where ρ denotes the phantom density, µ and η (KV parameters) the shear elasticity and viscosity
respectively, r, θ and z the cylindrical components, v the particle velocity and σ the stress tensor.

The system of equations was simplified by neglecting all the normal components and
solely leaving the deviatoric (torsional) components. According to the work carried out by
Orescanin et al. [50], this simplification did not seem to affect the results due to the low level of
normal pressure generated by the exciter, in this case, the torsional probe.

The time-staggering approach used in this work consist of computing all stress, strain,
and displacement at the same time interval, according to previous work carried out by Orescanin et
al. [50]. Time and space were uniformly sampled, with a = i∆r/2 and b = j∆z/2 for integers a, b and
space step of discretization ∆r and ∆z. Shear stiffness and viscosity have been introduced into the
model by setting their values at the grid points of the discretized space domain. The selected values of
the parameters used for the numerical FDTD simulations are summarized in Table 5.
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Table 5. Values of the parameters for the simulations by using the FDTD model.

Parameter Description Value

∆r r spatial step 75 µm
∆z z spatial step 75 µm
∆t time interval 1 µs
tT total time of simulation 12 ms

nABC number of ABC elements 100

The system of Equations (4) was discretized according to Taylor series expansions [51], For
derivatives with respect to one of the spatial variables (r or z), a first-order accurate centered scheme
finite difference discretization has been employed (see Figure 7).

Figure 7. Staggered grid discretization showing the locations of variables. Velocity (vθ) and stresses (σrθ,σθz).

Where f is an arbitrary function within the domain of interest, t denotes the time, x the spatial
variable r or z and ∆x the spatial step for r or z.

The same centered finite difference scheme was chosen for first order time derivative (see Equations (5)
and (6)):

∂ f (x, t)
∂x

∣∣∣∣
xi ,tn

=
f
(

xi+ 1
2
, tn

)
− f

(
xi− 1

2
, tn

)
∆x

+ O(∆x2) (5)

∂ f (x, t)
∂t

∣∣
xi ,tn+1

=
f
(
xi, tn+1

)
− f

(
xi, tn

)
∆t

+ O(∆t) (6)

The boundary conditions used in the 2D space were (Figure 8): at the surface of the
tissue-mimicking phantom the excitation source, the absence of the shear stress on the surface
air-phantom (σθz(r, 0, tn) = 0), the absence of velocity (vθ(rreception, 0, tn) = 0) in the grid point on the
reception place due to the pressure applied between the receiver of the probe and the gelatine phantom
and finally, the Absorbing Boundary Conditions (ABC). The ABC consist in a set of absorbing elements
whose attenuation factor is leaded by an exponential law. The attenuation law ensures the reduction of
reflections, thus simulating an infinite boundary condition.

The dimensions of the emitter, receiver, emitter-receiver and receiver-ABC are shown in Figure 8.
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Figure 8. Spatial distribution of the boundary conditions of the model. 2D domain surrounded
by absorbing boundary conditions, excitation, reception (vθ = 0) and free surface conditions.
Dimensions of the emitter, receiver, emitter-receiver and receiver-ABC.

The average stress σθz was obtained on the reception points. This received stress must be converted
into voltage terms taking into account the layers of the receiver [21] in order to compare it with the
experimental signal received by the torsional sensor (in terms of voltage). Therefore, knowing the
different layers of the receiver, PLA ring-piezoelectric element (NCE51), the voltage on the piezoelectric
element is approximately the stress on the tissue by a correction factor αc.

VoltageNCE51

σ
phantom
θz

= αc = transmission Phantom-PLA · transmission PLA-NCE51 · factor Stress-Voltage (7)

The transmission coefficient in terms of stresses between the phantom and PLA is calculated
through the shear impedance of both media (see Table 6),

TPhantom−PLA =
2 · ZPLA

ZPhantom + ZPLA
= 1.98 (8)

where Z = cs · ρ is the shear impedance, cs the torsional wave speed and ρ the density of the medium.
The transmission coefficient in terms of stresses between the PLA and NCE51 and the factor

stress-voltage are taken from literature [52].

transmission PLA-NCE51 = 0.78 (9)

factor Stress-Voltage = 1.8275× 10−4 (10)

Table 6. Shear impedance for each medium [38].

Medium ρ (kg/m3) cs (m/s) Z (kg/(m2 s))

Phantom 1000 2 2000
PLA 1180 200 236,000
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2.5. Viscoelastic Parameters Reconstruction from SWE Measurements

The KV viscoelastic parameters were acquired by fitting the dispersion shear wave speed curve
obtained after analyzing Verasonics measurements (see Section 2.2.2). The adjustment that was
performed employs an inverse problem using a combination of genetic algorithms and quasi-Newton
type optimization algorithms. The complex shear moduli for the KV model is,

G∗KV(ω) = G
′
(ω) + iG

′′
(ω) = µ + iωη (11)

where ω is the angular frequency. The relationship between the shear wave speed (cs) and the complex
shear modulus (Equation (2)) was employed to fit the experimental data.

2.6. Probabilistic Inverse Problem (PIP)

We propose the technique based on a PIP with logical inference framework to evaluate the most
plausible parameters of the physical model for the particular case of characterizing a viscoelastic
material [26] using a KV approach. Then, the information-theoretic inverse problem framework is
applied, describing the process of parametrization, the operation with discrete observation data of
signals, and its extension to probabilistic parameter optimization.

The values of the search range of the parameters have been taken according to scientific evidence
that are showed in [36,37], and developed in the experimental setup under the consideration of a set of
phantoms previously manufactured.

To derive the effectiveness of the PIP method, the following inverse problem is solved.
The outcomes are the constitutive KV viscoelastic mechanical parameters of the phantoms evaluated.

The requested constitutive equation is defined as linear viscoelasticity that additively combines
strains from consistency shear modulus of first and second layer, µE

f irst and µE
second, respectively, shear

viscoelastic parameter η and thickness. The search range of these parameters are detailed in Table 7.

Table 7. The range of the parameters implemented for the FDTD model [36,37].

Kelvin-Voigt Model

Parameter Search Range

µ f irst 0–20 kPa
µsecond 0–50 kPa

η 0–5 Pa · s
th 0–2000 µm

Note that for each sample, the same percentage of oil has been used (main responsible of the
shear viscosity), this is due to the larger effect that the shear stiffness causes on the received signal
with respect to the shear viscosity, in addition to the reduction of the number of parameters that are
reconstructed with the PIP, which results in a reduction in the computational cost.

To solve the PIP by assuming known or unknown viscoelastic constants, the linear viscoelastic
model described previously is programmed using,

f = k f 0
∫
M

f (M)dM = kI (12)

whereM are the model parameters, f 0 is a source from experimental observations of the system and
the constant k [53]. The integral I,

I =
∫
M

e−J(M)dM (13)
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J = −1
2

∫ Ni

∑
i,j=1

(oi(t,M)− oo
i (t))

(
Co

ij+ Cm
ij

)−1 (
oj(t,M)− oo

j (t)
)

dt (14)

is approximated computationally by a standard Montecarlo sampling where J corresponds to a misfit
function between synthetic signals from the KV model (oi) and experimental signals (observations)
(oo

i ), being Co
ij and Cm

ij the covariance matrices that represent the error noise of the observations and
model respectively, and f (M) the classical probability density which approximates the integral of any
integrand f (x) that depends on the parameters x over a parameter subspace Ω using,

∫
Ω

f (x) =
1
N

N

∑
n=1

f (xi) (15)

where the integrand f (x) is assessed at N random points xi ∈ Ω called samples. The accurate of the
algorithm is defined by the number of samples, they have been chosen as N = 214 points. This integral
is uniquely calculated at the computation of the model.

3. Results

3.1. KV Parameters Reconstruction from SWE Measurements

Shear wave speeds (dots), obtained after analyzing the data of Verasonics (see Section 2.2.2),
as a function of frequency are depicted in Figure 9. The range of frequencies for each of the plots
was selected according to the distribution of power into frequency components composing the shear
wave signals (see Figure 10). The solid black lines are the optimal fits from the KV model for each
single-layer phantom and the dashed lines are 95% confidence intervals. The KV parameters for each
fitted curve are shown in Table 8. Mean and standard deviation values were estimated from three
independent measurements with the SWE technique.
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Figure 9. Dispersion curve for each batch of gelatine (shear wave speed data points acquired from
Verasonics). The curves for Kelvin-Voigt model (solid black lines) and 95% confidence intervals (dashed
lines) are shown. (a) Batches 7.5% gelatine 5% oil and 7.5% gelatine 10% oil; (b) Batch 10% gelatine 5%
oil; (c) Batches 15% gelatine 5% oil and 15% gelatine 10% oil.
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Table 8. Kelvin Voigt parameters from TWE versus Verasonics for each batch of gelatine.

TWE SWE

µ ± std (kPa) η ± std (Pa · s) µ ± std (kPa) η ± std (Pa · s)

7.5% Gelatine
5% Oil 0.923 ± 0.11 0.196 ± 0.04 0.993 ± 0.31 0.224 ± 0.02

7.5% Gelatine
10% Oil 1.17 ± 0.10 0.30 ± 0.04 1.494 ± 0.42 0.420 ± 0.08

10% Gelatine
5% Oil 1.77 ± 0.34 0.20 ± 0.03 1.673 ± 0.23 0.150 ± 0.03

15% Gelatine
5% Oil 6.37 ± 0.58 0.21 ± 0.03 6.111 ± 0.30 0.269 ± 0.04

15% Gelatine
10% Oil 6.52 ± 0.54 0.30 ± 0.04 6.249 ± 0.41 0.369 ± 0.05
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Figure 10. Power spectrum of the shear wave tracked for 7.5% gelatine and 10% oil batch (data acquired
from Verasonics).

3.2. KV Parameters Reconstruction from TWE Measurements

After performing the probabilistic inverse problem that mainly consists of comparing the
experimental signals (acquired from TWE measurements) with those obtained from the FDTD KV
model (Section 2.4), the inferred parameters are presented in Table 9. Shear elasticity, shear viscosity
and the thickness of the first layer were reconstructed after solving the PIP. Mean and standard
deviations values were calculated from the three independent measurements made in each specimen.
Examples of the fit of experimental and simulated signals for phantoms 1 and 5 are shown in Figure 11.
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Table 9. Kelvin Voigt parameters reconstruction from TWE. Data from the first and second layer is
shown (shear elasticity and shear viscosity), including the thickness of the first layer for each of the
five phantoms.

Phantoms Layer µ (kPa) η (Pa · s) Th (mm)

1 First layer 1.14 ± 0.15 0.20 ± 0.03 1.00 ± 0.12
Second layer 6.31 ± 0.62 -

2 First layer 1.43 ± 0.17 0.22 ± 0.02 0.79 ± 0.11
Second layer 6.02 ± 0.55 -

3 First layer 0.72 ± 0.045 0.19 ± 0.05 1.15 ± 0.38
Second layer 2.12 ± 0.52 -

4 First layer 1.17 ± 0.10 0.30 ± 0.04 0.87 ± 0.19
Second layer 6.52 ± 0.54 -

5 First layer 0.91 ± 0.16 0.20 ± 0.04 0.56 ± 0.23
Second layer 6.79 ± 0.57 -

3.3. Validation of the Kelvin-Voigt Parameters Reconstruction Method

The following table (Table 8) summarizes the values obtained with TWE and SWE for each batch
of gelatine. The mean and standard deviation of the shear elasticity and shear viscosity are shown.
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Figure 11. Examples of the fit of the experimental and simulated signals: Kelvin-Voigt model, time
domain. (a) Phantom 1; (b) Phantom 5.

In order to study the degree of agreement between the reconstructed KV viscoelastic parameters
with TWE and SWE, a Student’s T-test and a Pearson’s correlation study were carried out.
Overall, the T-test yielded values higher than 0.05, which indicates that the sets of values reconstructed
by both techniques are not significantly different (see Table 10). The Pearson’s correlation studied
showed a high degree of agreement between the shear stiffness values obtained from both techniques
(see Figure 12), with a Pearson value of r = 0.9942. In the case of the shear viscosity, the degree of
agreement was lower (see Figure 13), with a Pearson value of r = 0.8913.



Sensors 2019, 19, 3281 18 of 24

0 1 2 3 4 5 6 7 8

Shear stiffness TWE (kPa)

0

1

2

3

4

5

6

7

S
h
ea
r
st
iff
n
es
s
S
W

E
(k
P
a)

r =0.9942

Figure 12. Pearson’s correlation between shear stiffness measured with TWE and shear stiffness
obtained with SWE. Pearson correlation coefficient r = 0.9942.

Table 10. Shear elasticity and shear viscosity measurements comparison between TWE and SWE
for each batch of gelatine. p-Value obtained from the Student’s T-test was the metric used for this
comparison. (* p-value < 0.05).

p-Value

Batch µ η

7.5% Gelatine
5% Oil 0.365 0.1640

7.5% Gelatine
10% Oil 0.134 0.041 *

10% Gelatine
5% Oil 0.262 0.0551

15% Gelatine
5% Oil 0.274 0.0553

15% Gelatine
10% Oil 0.263 0.067
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Figure 13. Pearson’s correlation between shear viscosity measured with TWE and shear viscosity
obtained with SWE. Pearson correlation coefficient r = 0.8913.
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Figures 14 and 15 show the mean and standard values of shear elasticity and shear viscosity
respectively for each batch of gelatine and elastography technique.
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Figure 14. Mean and standard deviations of the shear elasticity for each batch of gelatine. Light gray
bars represent TWE measurements whilst those in dark gray show SWE measurements.
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Figure 15. Mean and standard deviations of the shear viscosity for each batch of gelatine. Light gray
bars represent TWE measurements whilst those in dark gray are SWE measurements (* p-value < 0.05).

4. Discussion

The main purpose of this study is to propose and experimentally validate the results of a new
method for the reconstruction of the viscoelastic parameters of cervical tissue-mimicking phantoms
by the TWE technique. The TWE technique, developed by our group, aims to locally measure the
mechanical parameters of the cervix, so they can be correlated with the different stages of the cervix
maturing during pregnancy [21]. The previously developed reconstruction approach used is based on
a TOF procedure. This approach does not take into account the fact that the waves detected on the
cervix surface are altered by the mechanical response of both the epithelial and connective tissue layers
of the cervix. In fact, the provided reconstructed parameter is the apparent shear wave speed measured
at the surface of the cervix, which is linked to the combined mechanical response of the two tissue
layers in an unknown manner. The presented reconstruction approach is based on a PIP procedure,
which uses a forward model of the propagation of torsional waves in a bilayer axisymmetric cervix-like
medium (see Figure 6), numerically solved by a self-developed FDTD algorithm. This way to solve
the inverse problem provides the thickness of the epithelial layer, thus reconstructing separately the
shear elastic modulus and the shear viscosity of each cervical layer. Furthermore, the probabilistic
framework has been employed rather than the deterministic one to solve the limitations of noise in the
measurements performed, heterogeneity in the properties of the sample, and even the fact that the
model used to simulate its behavior is an approximation of reality.
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The mechanical behavior of the cervix is viscoelastic, as most of the soft biological tissue.
A viscoelastic KV constitutive law was implemented into the wave propagation model, as the KV
model was found to be the simplest model in terms of a number of parameters that provides the best
approximation to the mechanical behavior of ex vivo cervical tissue in our previous characterization
study [21].

Five ad hoc oil-in-gelatine phantoms were fabricated to test the new reconstruction technique.
The phantoms were composed of two layers to resemble the epithelial and connective cervical structure,
labeled as first and second layers, respectively (see Figure 2). Different proportion of gelatine and oil
were used for fabricating each layer and each phantom, so that different viscoelastic parameters where
achieved (see Table 2).

The resulting viscoelastic parameters of each layer, i.e., the shear elastic modulus and the shear
viscosity, fell within the range of values observed in the literature. In this study, the range obtained for
the shear elasticity reconstructed parameter for the second layer (connective layer) is within the range
of values estimated by Carlson et al. [11] (4.45–12.67 kPa). As far as shear viscosity in the same layer
is concerned, the range obtained in this study is also in good agreement with the value found in the
work performed by Peralta et al. [35] (0.26 Pa · s). To our knowledge, there are no references regarding
shear elasticity and shear viscosity in the epithelial layer.

Two thickness values for the first layer were selected, 0.5 and 1 mm, which is in concordance with
the values observed in the study performed by Patton et al. [36]. The thickness of the second
layer was kept at 15 mm, shorter than the values found for the connective tissue layer in the
literature, and sufficiently large to fully attenuate reflections from the bottom side of the phantom.
Reconstructed values using the TWE technique in conjunction with the PIP approach are shown
in Table 9. It can be claimed, without not much mistake, that the thickness of each phantom was
satisfactorily reconstructed. Inferred thickness values were very close to the expected ones, keeping
the error of reconstruction below 21%, and the standard deviation between 0.11 and 0.38 mm.

Characterization of the different oil-in-gelatine batches was needed in order to analyze the
quality of the reconstruction of the viscoelastic parameters. This characterization was carried
out by a well-established technique, such SWE, in this case, performed by a Verasonics system.
Homogeneous phantoms were fabricated from the same oil-in-gelatine batches used before for
producing the cervix-like phantoms. The propagation of the shear waves generated by the ARF yielded
a shear wave dispersion speed curve for a broad range of frequency, with maximum energy between
500 and 3000 Hz (see Figure 10). This range of frequency was in agreement with the experimental
SWE study in ex vivo porcine cornea [54]. As concluded by the authors, tissue targets with direct
contact, such as the case of this ex vivo study, or for the ex vivo porcine cornea study, allow a higher
range of frequency when using SWE ARF-based applications, compared to deep organs, such as
breast, liver or prostate [54]. Oil-in-gelatine mixtures with the lower proportion of gelatine, 7.5%,
and the higher proportion of oil, 10%, showed higher dispersion, i.e., steeper shear wave speed curves.
Moreover, the 95% confidence intervals in this curve were also wider compared with the rest of the
curves, around ±0.45 m/s against ±0.2 m/s averaged for the rest of the curves. On the contrary,
mixtures with the higher proportion of gelatine, 15%, and the lower proportion of oil, 5%, showed less
dispersion with a flatter variation of values in the shear wave curves. The value of the viscoelastic
parameters of the different oil-in-gelatine mixtures was extracted by fitting the theoretical expression
of the shear wave speed according to the KV model (a combination of Equations (2) and (11)) to the
values obtained in the SWE tests (see Table 8). A direct comparison between the values obtained by
both the TWE and the SWE techniques is also shown in Table 8.

The reconstruction of the viscoelastic parameters by using the TWE technique with the new
proposed inversion method was validated against the SWE technique by using two approaches,
a Student’s T-test and a Pearson’s correlation study. T-test results were shown in Table 10,
in terms of the p-value for the shear elasticity and the shear viscosity from each oil-in-gelatine
batch. Most of the p-values obtained were above 0.05, which can be considered to represent a



Sensors 2019, 19, 3281 21 of 24

not significant difference between the parameters reconstructed by the two techniques. Only the
shear viscosity for the batch containing 7.5% of gelatine and 10% oil showed a lower p-value of
0.042. Nevertheless, the reconstruction of this parameter by the SWE also showed the higher range of
variability, i.e., the higher standard deviation. The explanation for this low p-value can be associated
to both the high dispersion effect of this oil-in-gelatine batch and the higher variability in the SWE
measurements. Further tests should be carried out in high dispersive oil-in-gelatine phantoms in order
to clarify the origin of the low correlation value.

Results from the Pearson’s correlation study were shown in Figures 12 and 13, for the
reconstruction of the shear stiffness and the shear viscosity parameters, respectively. As can be
observed in the Figures 12 and 13, the correlation between results from both techniques, the TWE and
the SWE were high, specially for the shear stiffness, which yielded a Pearson’s correlation coefficient
r = 0.9942. The Pearson’s correlation coefficient for the shear viscosity was lower, with r = 0.8913.
This may be due to the larger effect that shear elastic modulus has on the torsional wave received
compared to that produced by the shear viscosity. Furthermore, the reconstructions were more similar,
for both the shear elasticity and shear viscosity when excluding the most dispersive batch (that made
of 7.5% gelatine and 10% oil).

In general, by the obtained results from the T-test and the Pearson’s correlation study, it can be
concluded that the viscoelastic parameters reconstructed by the TWE technique in conjunction with
the new inversion approach are similar to those provided by the SWE technique. Therefore, it can be
concluded that this new inversion method is validated for its use in the TWE technique. In order to
study the performance of the new inversion method in a scenario closer to the final medical application,
future work must be carried out on experimental studies using ex vivo cervical tissue samples.

5. Conclusions

In this work, the results of a new method based on a Probabilistic Inverse Problem (PIP) for
the reconstruction of the viscoelastic parameters of cervical tissue-mimicking phantoms by the TWE
technique were presented and experimentally validated. Five ad-hoc oil-in-gelatine phantoms were
fabricated with different gelatine batches, simulating the anatomy of the cervical tissue composed
mainly by the epithelial and connective layer, to test the new reconstruction technique. On the one
hand, a probabilistic approach was employed that reconstruct the KV viscoelastic parameters by
comparing the results obtained from TWE technique with the synthetic signals from the FDTD KV
model. On the other hand, the characterization for each batch of gelatines was performed by SWE
measurements. The validation of the method was carried out by comparing the KV parameters
reconstructed from the PIP with those inferred from the shear wave speed curve obtained with SWE
measurements. Finally, the degree of agreement between both techniques was tested using a Student’s
T-test and a Pearson’s correlation study. As a conclusion, it can be confirmed that the viscoelastic
parameters reconstructed by the TWE technique in conjunction with the PIP approach were in good
agreement with those obtained by SWE technique. Future research lines must be carried out on
experimental studies using ex vivo cervical tissue samples in order to test the performance of the
new method.
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Abbreviations

The following abbreviations are used in this manuscript:

TWE Torsional Wave Elastography
PIP Probabilistic Inverse Problem
KV Kelvin-Voigt
FDTD Finite Difference Time Domain
ABC Absorbing Boundary Conditions
SWE Shear Wave Elastography
TOF Time-Of-Flight
ARF Acoustic Radiation Force
MTL Multiple Tracking Location
IQ In-Phase and Quadrature
USTB Ultrasound Toolbox
FFT Fast Fourier Transform
PLA Polylactic Acid
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