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Abstract  35 

The brain is highly sensitive to auditory regularities and exploits the predictable 36 

order of sounds in many situations, from parsing complex auditory scenes, to the acquisition 37 

of language. To understand the impact of stimulus predictability on perception, it is 38 

important to determine how the detection of predictable structure influences processing 39 

and attention. Here we use pupillometry to gain insight into the effect of sensory regularity 40 

on arousal. Pupillometry is a commonly used measure of salience and processing effort, 41 

with more perceptually salient or perceptually demanding stimuli consistently associated 42 

with larger pupil diameters.  43 

In two experiments we tracked human listeners’ pupil dynamics while they listened 44 

to sequences of 50ms tone pips of different frequencies. The order of the tone pips was 45 

either random, contained deterministic (fully predictable) regularities (experiment 1, n = 18, 46 

11 female) or had a probabilistic regularity structure (experiment 2, n = 20, 17 female). The 47 

sequences were rapid, preventing conscious tracking of sequence structure thus allowing us 48 

to focus on the automatic extraction of different types of regularities.  We hypothesized 49 

that if regularity facilitates processing by reducing processing demands, a smaller pupil 50 

diameter would be seen in response to regular relative to random patterns.  Conversely, if 51 

regularity is associated with heightened arousal and attention (i.e. engages processing 52 

resources) the opposite pattern would be expected. In both experiments we observed a 53 

smaller sustained (tonic) pupil diameter for regular compared with random sequences, 54 

consistent with the former hypothesis and confirming that predictability facilitates sequence 55 

processing.  56 

  57 
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Significance statement  58 

The brain is highly sensitive to auditory regularities. To appreciate the impact that 59 

the presence of predictability has on perception, we need to better understand how a 60 

predictable structure influences processing and attention. We recorded listeners’ pupil 61 

responses to sequences of tones that followed either a predictable or unpredictable pattern, 62 

as the pupil can be used to implicitly tap into these different cognitive processes. We found 63 

that the pupil showed a smaller sustained diameter to predictable sequences, indicating 64 

that predictability eased processing rather than boosted attention. The findings suggest that 65 

the pupil response can be used to study the automatic extraction of regularities, and that 66 

the effects are most consistent with predictability helping the listener to efficiently process 67 

upcoming sounds.  68 

Introduction 69 

The sensory environment is laden with regularities. The brain readily exploits this 70 

predictable information, using it to drive perceptual experiences (de Lange et al., 2018), 71 

guide attention (Zhao et al., 2013) and influence decision-making (Soltani and Izquierdo, 72 

2019). In the domain of hearing, our ability to use these statistics plays many important 73 

roles, from auditory scene analysis (Bendixen, 2014; Heilbron and Chait, 2018)  to 74 

discovering regularities in the speech signal (Erickson and Thiessen, 2015). 75 

 Accumulating work demonstrates that listeners automatically detect predictable 76 

structure in unfolding sound sequences. In a seminal demonstration, Saffran et al (1996) 77 

showed that infants are able to segment a continuous stream of syllables based only on the 78 

statistical relationships (frequency of co-occurrence) between adjacent elements. This 79 
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paradigm has since been expanded to a variety of statistical structures and behavioral tasks 80 

to reveal robust “statistical learning” across the life span (Conway, 2020). Sensitivity to 81 

statistical regularities is also exhibited in the brains of naïve listeners during passive 82 

exposure to sound patterns (Barascud et al., 2016; Southwell et al., 2017) and in other 83 

species (Milne et al., 2018; Wilson et al., 2017).  84 

A key question pertains to understanding how the detection of predictable structure 85 

influences processing and attention. The link between regularity and attention has been 86 

contentious. On the one hand it is argued that regularity automatically biases attention 87 

(Mackintosh, 1975; Feldman and Friston, 2010; Zhao et al., 2013; Alamia and Zénon, 2016). 88 

This is consistent with the premise that regular structure in the environment carries 89 

important information about behaviorally relevant elements within our surroundings, and 90 

should therefore receive perceptual priority and attentional resources. On the other hand, a 91 

large body of work demonstrates that the brain exhibits reduced responses to regular, 92 

predictable stimuli (de Lange et al., 2018; Itti and Baldi, 2009; Richter et al., 2018), 93 

interpreted as reflecting the fact that the detection of regular structure facilitates the 94 

conservation of processing and computational resources. Indeed, it has been shown that 95 

regular patterns are easier to process  (Rohenkohl et al., 2012) and also, critically, easier to 96 

ignore (Andreou et al., 2011; Southwell et al., 2017; Makov and Zion Golumbic, 2020) which 97 

has been taken as evidence that regularity does not draw on attentional resources.  98 

Here we use pupillometry to tap into these different cognitive processes.  Pupil 99 

diameter is a commonly used measure of bottom-up driven salience and processing effort. 100 

Non-luminance-mediated pupil dynamics are controlled by a balance between 101 

norepinephrine (NE), reflecting the activation of the arousal system (for reviews see Joshi et 102 

al., 2016; Larsen and Waters, 2018) and acetylcholine (ACh), hypothesized to correlate with 103 
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the processing load experienced by the individual (Sarter et al., 2006). By studying pupil 104 

responses to structured vs. random auditory patterns we sought to determine how 105 

sustained pupil diameter, and by proxy the listener’s arousal and processing load, change as 106 

a function of regularity.  107 

If regularity facilitates processing, a smaller pupil diameter would be predicted in 108 

response to regular relative to random patterns.  Conversely, if the emergence of regularity 109 

is associated with an increased demand on attention, we expect the opposite pattern - a 110 

larger pupil diameter associated with more predictable stimuli, reflecting increased salience-111 

evoked arousal and a consequent draw on processing resources.  112 

We studied two types of predictable acoustic structure: in Experiment 1 we used 113 

deterministic (i.e. fully predictable; Figure 1) sequences, as described in Barascud et al 114 

(2016), to study the pupil response to regular, relative to randomly-ordered, tone pip 115 

sequences. These sequences were generated anew on every trial, tapping into processes 116 

that rapidly detect, and exploit, the predictable structure.  In Experiment 2 we used a more 117 

complex probabilistic structure similar to the classic Saffran paradigm (Figure 2). These 118 

sequences did not follow a deterministic order, instead the transitional probabilities 119 

between tones allowed the stream to be segmented into triplets. Listeners were pre-120 

exposed to such sequences, and pupil responses were measured subsequently to quantify 121 

responses to the pre-acquired statistical pattern.  122 

Materials and Methods 123 

Results from two experiments are reported. We continuously tracked pupil diameter while 124 

participants listened to 9-second-long sequences of contiguous tone pips, that either 125 

contained a predictable structure or did not. To control participants’ attention, and to make 126 
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sure it was broadly focused on the auditory stimuli, an incidental, easy  gap detection task 127 

was used; listeners were required to monitor the stream of tones and indicate when they 128 

noticed a silent ‘gap’ within the sequence. The gaps, generated by the removal of several 129 

consecutive tones, were placed at a random position in ~25% (experiment 1) and 20% 130 

(experiment 2) of the sequences. Participants were kept naïve to the presence of an 131 

underlying pattern to enable the study of implicit sequence learning. This study was not pre-132 

registered. 133 

Stimuli and Procedure 134 

Participants sat with their head fixed on a chinrest in front of a monitor (24-inch 135 

BENQ XL2420T with a resolution of 1920x1080 pixels and a refresh rate of 60 Hz), in a dimly 136 

lit and acoustically shielded room (IAC triple-walled sound-attenuating booth). Sounds were 137 

delivered diotically to the participants’ ears with Sennheiser HD558 headphones (Sennheiser, 138 

Germany) via a Roland DUO-CAPTURE EX USB Audio Interface (Roland Ltd, UK), at a 139 

comfortable listening level that was adjusted by the participant during the practice phase. 140 

Stimulus presentation and response recording were controlled with Psychtoolbox 141 

(Psychophysics Toolbox Version 3; Brainard, 1997) on MATLAB (The MathWorks, Inc.). 142 

Experiment 1 143 

Stimuli were 9-second-long tone sequences (Fig. 1a and b) of contiguous 50ms tone 144 

pips (ramped on and off with a 5 ms raised cosine ramp; 180 tone pips per sequence). Tone 145 

frequencies were selected from a pool of 20 logarithmically spaced values between 222-146 

2000Hz. Sequences were generated as previously described in Southwell et al. (2017).  A 147 

unique sequence was presented on each trial. Sequences were defined by two parameters: 148 
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regularity (whether they consisted of a regularly repeating or random pattern) and alphabet 149 

size – the number of frequencies comprising the pattern (5, 10 or 15). In regular (REG) 150 

sequences, a subset of frequencies (‘alphabet size’) were randomly drawn from the full pool 151 

and arranged in repeating cycles. Paired random (RAND) sequences were generated for the 152 

same frequency subset by randomly arranging the tones. Therefore, REG and RAND 153 

conditions were matched for the occurrence of each frequency. Overall six conditions were 154 

used (RAND/REG x 3 alphabet sizes; REG5, RAND5, REG10, RAND10 and REG15, RAND15).  155 

Approximately 25% of the stimuli contained a single silent gap anywhere between 1 156 

and 8 s after sequence onset. This was created by removing two tones from REG sequences 157 

(100ms gap) and three tones from RAND sequences (150ms) to equate task difficulty  (Zhao 158 

et al., 2019b) . 159 

The experiment consisted of seven blocks (~ 8 mins each) and a practice block. There 160 

were 24 trials per block (4 trials per condition) for a total of 168 trials (28 trials per 161 

condition).  Inter-trial intervals were jittered between 2500-3000ms. Stimuli were presented 162 

in a random order, such that on each trial the specific condition was unpredictable.  163 

Throughout the block a black cross was presented at the center of the screen against 164 

a gray background.  Participants were instructed to fixate on the cross while monitoring the 165 

sequence of tones for gaps, and to respond by button press as quickly as possible when a 166 

‘gap’ was noticed in the tone stream. At the end of each trial, visual feedback indicated 167 

whether gaps were detected correctly. Further feedback was given at the end of each block, 168 

indicating the total number of correct responses, false alarms, and average response time.  169 

The practice block contained six gap trials (3 REG, 3 RAND) to ensure participants 170 

understood the task. In the main blocks only 25% of the trials contained gaps. The 171 
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experimental session lasted approximately 2 hrs. A break of at least 3 minutes was imposed 172 

between blocks to reduce the effects of fatigue. 173 

Previous work with MEG (Barascud et al, 2016) and EEG (Southwell et al., 2017; 174 

Southwell and Chait, 2018) demonstrated that brain responses in naïve passive listeners 175 

rapidly differentiate RAND from REG signals, with responses to REG diverging from RAND 176 

within 2 regularity cycles. We expected pupil responses to also follow this pattern and show 177 

a change in pupil size once the structure has been acquired. Further, we expected the 178 

change in pupil size to occur later for larger alphabet sizes, as more information is required 179 

in order to identify a longer pattern. 180 

  181 

Experiment 2 182 

Experiment 2 investigated sequences that contained a probabilistic rather than 183 

deterministic structure.  Sequences were based on the pure tone version of the 184 

segmentation paradigm introduced by Saffran and colleagues (Saffran et al., 1999), with the 185 

key modification, that instead of the 333ms long tones in Saffran et al (1999), we used 50ms 186 

tones.  187 

To generate the underlying probabilistic structure, twelve different tones were 188 

arranged into four tone ‘words’ made from the following musical notes, AFB, F#A#D, EGD#, 189 

CG#C# (Fig. 2d), these corresponded to frequencies: A = 440 Hz; A# = 466.16 Hz; B = 493.88 190 

Hz; C = 523.25 Hz; C# = 554.37 Hz; D = 587.33 Hz; D# = 622.25 Hz; E = 659.25 Hz; F = 698.46 191 

Hz;  F# = 739.99 Hz;  G = 783.99 Hz; G# = 830.31 Hz. As in Saffran et al. (1999) the same tone 192 

‘words’ were used for each subject.  Sequences were generated anew for each trial by 193 

randomly ordering the tone words, with the constraint that the same word did not occur 194 
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twice in a row, thus tone words always transitioned to a different tone word. This created a 195 

probabilistic structure where the transitional probability (TP; the probability that tone “a” 196 

will be followed by tone “b” calculated as the; frequency of a to b/frequency of a) between 197 

tones within a word was 1, and the TP at word boundaries was 0.33.  RAND sequences were 198 

generated in the same way as for experiment 1 but using the 12 frequencies listed above.  199 

To formally demonstrate how this probabilistic structure emerged over the course of 200 

a sequence we used a PPM (prediction by partial matching) statistical learning model. The 201 

model, Information Dynamics of Music (IDYOM; Pearce et al., 2010), uses unsupervised 202 

statistical learning to acquire the transitional probabilities of tone pips within each sequence.  203 

The output of the model shows the information content (IC) for each tone as the negative 204 

log probability (-log P) of a tone pip, therefore the higher the IC value the more unexpected 205 

the tone. The model output (Fig. 2c) demonstrates that, following presentation of the first 206 

12 tones (each of the four tone ‘words’) the two types of sequence, regular (REGp, blue) and 207 

random (RAND, red), rapidly diverge. While the random sequences remain unpredictable, 208 

the tones in REGp gradually become more predictable as the model learns the sequence 209 

structure. In contrast to deterministic regularities (see model in Barascud et al., 2016), these 210 

probabilistic sequences have a much more gradual change in information content. As a 211 

result we would expect that for this, more complex, regularity listeners will exhibit more 212 

variability in learning rate. For this reason, we introduced a familiarization phase to ensure 213 

listeners had ample opportunity to become sensitive to the structure. This familiarization 214 

phase consisted of only REGp sequences. Participants were then tested on REGp and RAND 215 

sequences while recording the pupil response. Following pupillometry measurements, a 216 

further behavioral test was administered to more explicitly probe if the subjects had 217 
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become sensitive to the regularities. Therefore experiment 2 consisted of the following 218 

three phases: 219 

 220 

(1) Familiarization: The familiarization phase gave listeners ample opportunity to 221 

acquire the probabilistic structure. In this phase, trials consisted of 27-second-222 

long REGp sequences (540 individual tones in total) such that each ‘tone word’ 223 

was encountered 45 times within each sequence. A gap detection task was used 224 

to ensure participants attended to the sequence. Each sequence contained two 225 

gaps. The gaps were generated by removing six tones, creating a 300 ms gap. The 226 

gap was intentionally longer in the familiarization phase to make the task easy 227 

and reduce the effects of fatigue for the next phase. Overall, the familiarization 228 

stage lasted ~7.5 mins consisting of 15 trials. Participants were instructed to 229 

respond (key press) when they heard a gap. After each trial participants received 230 

visual feedback on the number of correct responses and false alarms. No pupil 231 

data were collected in this phase. 232 

 233 

(2) Pupillometry: Following a minimum three minute break, participants completed 234 

the pupillometry phase. All trials contained a 9-second-long tone sequence (180 235 

tones in total, 60 tone words).  20% of trials (“target trials”; REGp and RAND with 236 

equal proportion) contained a single gap that occurred between 1 s and 8 s post-237 

onset. In all conditions, the gap was 150ms long (removal of three tones). This 238 

phase consisted of two blocks of 30 trials. This provided a total of 24 trials per 239 

condition.   240 

 241 
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(3) Behavioral probe: This phase tested how much knowledge listeners had gained 242 

about the structure of the sequence. Pupil responses were not recorded. We 243 

conducted two separate probes designed to test familiarity and sensitivity to 244 

sequence structure. In the Familiarity probe, participants were presented with 245 

sixty 3 second trials (REGp vs. RAND; 50% of each condition). They were 246 

instructed to listen carefully to the sounds and decide if the sequence felt 247 

“Familiar” based on the initial exposure phase.  They were told to use a ‘gut’ 248 

feeling if they were unsure.  In the Structure probe, participants were instructed 249 

to listen and identify if the sequence contained any sort of structure, or, 250 

appeared to be random.  The two probes were completed by the “main” group 251 

(those participants who completed the Familiarization and Pupillometry stages), 252 

and by a “control” group that was recruited to only complete the behavioral 253 

probes. The purpose of this control group was to establish the degree to which 254 

the structure could be extracted without prior exposure. As these participants 255 

had no prior exposure to the REGp and RAND stimuli in the familiarity probe they 256 

were told to use a ‘gut’ feeling to identify familiar sequences. 257 

Participants 258 

 259 

Sample size: We aimed for a sample size of approximately 20, based on previous 260 

data from a related pupillometry study (Zhao et al., 2019a) where robust pupil response 261 

effects were observed using as few as 10 participants.  262 

All participants declared that they had no known otological or neurological 263 

conditions. Experimental procedures were approved by the research ethics committee of 264 
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University College London and written informed consent was obtained from each 265 

participant. 266 

Experiment 1: 22 paid participants were recruited, four were excluded providing a 267 

final sample size of 18 participants (11 females, mean age 25.2, range 19-35). In both 268 

experiments, exclusion occurred either during data collection e.g.  due to difficulty tracking 269 

the eye or excessive blinking or tiredness (eye closure), or due to a high blink rate that was 270 

identified in pre-processing, before separating trials by condition.  271 

Experiment 2: For the main group, 24 paid participants were recruited, four were 272 

excluded providing a final sample size of 20 participants (17 females, mean age 21.2, range 273 

19-28). The control group consisted of 20 paid participants (10 females, mean age 22.3, 274 

range 18-30).  275 

Pupil diameter measurement  276 

An infrared eye-tracking camera (Eyelink 1000 Desktop Mount, SR Research Ltd.) was 277 

positioned at a horizontal distance of 65 cm away from the participant. The standard five-278 

point calibration procedure for the Eyelink system was conducted prior to each 279 

experimental block and participants were instructed to avoid head movement after 280 

calibration. During the experiment, the eye-tracker continuously tracked gaze position and 281 

recorded pupil diameter, focusing binocularly at a sampling rate of 1000 Hz. Participants 282 

were instructed to blink naturally during the experiment and encouraged to rest their eyes 283 

briefly during inter-trial intervals. Where participants blinked excessively during the practice 284 

block, additional instructions to reduce blinking were provided. Prior to each trial, the eye-285 

tracker automatically checked that the participants’ eyes were open and fixated 286 

appropriately; trials would not start unless this was confirmed. 287 
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Statistical Analysis 288 

Statistical analysis was conducted in SPSS (IBM SPSS Statistics, version 27) and Matlab 289 

(Mathworks, 2017a). 290 

Behavioral Data 291 

Gap detection task: For experiment 1, sensitivity scores (d’) were computed using 292 

the hit and false alarm rate (z(hits) -z(false alarms). A keypress was classified as a hit if it 293 

occurred less than 1.5 s following a target gap. Where hit rates or false alarms were at 294 

ceiling (values of 1 and 0, respectively; resulting in an undefined d’) a standard correction 295 

was applied whereby 1/2t (where t is the number of trials) was added or subtracted. For 296 

four out of six of the conditions d’ was not normally distributed, therefore Wilcoxon signed 297 

rank tests were used to compare REG vs RAND performance. We first averaged d’ across 298 

alphabet sizes to test the main effect of regularity (REG vs RAND). As there was a main 299 

effect of regularity, we then conducted three pairwise comparisons (Wilcoxon signed rank) 300 

to test if the effect was present for all alphabet sizes. We were not interested in the effect 301 

of alphabet size independent of regularity therefore did not test this as a main effect.  P-302 

values were adjusted for multiple comparisons using the Holm–Bonferroni method. For 303 

experiment 2, no false alarms were made, therefore only Hit rate (HR) was computed and 304 

analyzed. Due to normality-violating ceiling effects Wilcoxon signed-rank tests were again 305 

used to compared REGp vs RAND performance 306 

Reaction times (RT) were recorded from each ‘hit’. For experiment 1 these were 307 

analyzed with a repeated measures (RM) ANOVA with factors of regularity (REG vs RAND) 308 

and alphabet size (5,10,15). For experiment 2, a paired-samples t-test was used to contrast 309 

RAND and REGp. Reaction times met the assumptions for parametric tests and alpha was a 310 
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priori set to p < .05. An additional exploratory  RM ANOVA was conducted to compare 311 

reaction times that occurred early (< 4.5s) or late (> 4.5s) in the trial. Regularity (REG vs 312 

RAND) and time (Early vs Late) were entered as factors. No post hoc tests were run for this 313 

analysis.  314 

 315 

Behavioral probe (experiment 2 only): For the two probe tasks, sensitivity scores (d’) 316 

were computed as described in the previous section. To test if d’ scores were higher in the 317 

main group relative to the control group, who were naïve to the sequences, an independent 318 

samples t-test compared group (‘main’ vs ’control’) for each probe task. Spearman’s 319 

correlations were used to test if performance (d’) for the two probes (familiarity vs structure) 320 

was correlated across the two tasks. For each probe, exploratory analysis also correlated d’ 321 

against pupil diameter for each time point in the trial (down-sampled to 20hz), using 322 

Spearman correlation. We present the correlation coefficient at each time point and 323 

indicate time points where p < 0.05, family-wise error (FWE) uncorrected.  324 

Pupillometry data analysis 325 

Trials containing a gap and trials where the participant made a false alarm were 326 

excluded from the analysis. Most participants made infrequent false alarms in experiment 1 327 

and only 3 subjects made more than one false alarm per condition. Between 17 and 21 trials 328 

were analyzed per participant per condition ([20-21] for REG5, REG10, REG15; [19-21] for 329 

RAND5; [17-21] for RAND10). There were no false alarms in experiment 2. 330 
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Pre-processing 331 

Where possible the left eye was analyzed. To measure the pupil dilation response 332 

(PDR) associated with tracking the auditory sequence, the pupil data from each trial were 333 

epoched from 1 s prior to stimulus onset to stimulus offset (9 s post-onset).  334 

The data were smoothed with a 150 ms Hanning window and intervals where full or 335 

partial eye closure was detected (e.g. during blinks) were treated as missing data and 336 

recovered using shape-preserving piecewise cubic interpolation. The blink rate was low 337 

overall, with the average blink rate (defined as the proportion of excluded samples due to 338 

eye closure) at approximately 4% (exp. 1) and 2.6% (exp. 2).  339 

To allow for comparison across trials and subjects, data for each subject in each 340 

block were normalized. To do this, the mean and standard deviation across all baseline 341 

samples (1 second pre-onset interval) in that block were calculated and used to z-score 342 

normalize all data points (all epochs, all conditions) in the block. For each participant, pupil 343 

diameter was time-domain averaged across all epochs to produce a single time series per 344 

condition.  345 

Time-series statistical analysis of pupil diameter 346 

To identify time intervals where a given pair of conditions, REG5 vs RAND5, REG10 vs 347 

RAND10, REG15 vs RAND15 exhibited differences in pupil diameter, a non-parametric 348 

bootstrap-based statistical analysis was used (Simonoff et al., 1994). Using the average pupil 349 

diameter at each time point, the difference time series between the conditions was 350 

computed for each participant and these time series were subjected to bootstrap re-351 

sampling (1000 iterations: with replacement). At each time point, differences were deemed 352 

significant if the proportion of bootstrap iterations that fell above or below zero was more 353 
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than 95% (i.e. p < .05). Any significant differences in the pre-onset interval would be 354 

attributable to noise, therefore the largest number of consecutive significant samples pre-355 

onset was used as the threshold for the statistical analysis for the entire epoch. 356 

Pupil event rate analysis  357 

In addition to pupil diameter, the incidence of pupil dilation events was also 358 

analyzed. Pupil dilation events were defined as instantaneous positive sign-changes of the 359 

pupil diameter derivative (i.e. the time points where pupil diameter begins to increase).  360 

This activity was analyzed to focus on phasic pupil activity which has been associated 361 

with corresponding phasic activity in the Locus Coeruleus and the release of NE  (Joshi et al., 362 

2016; Reimer et al., 2016). Following Joshi et al., (2016) and Zhao et al., (2019b) events were 363 

defined as local minima (dilations; PD) with the constraint that continuous dilation is 364 

maintained for at least 300 ms. For each condition, each subject, and each trial a causal 365 

smoothing kernel ω(τ)= α2  × τ × e-αt  was applied with a decay parameter of α = 1/150  ms  366 

(Dayan and Abbott, 2001). The mean across trials was computed and baseline corrected. To 367 

facilitate the comparison between regular and random sequences, and because pupil 368 

dilation events are quite rare (1-2 events per second), we collapsed across alphabet size to 369 

derive a single mean time series for REG and RAND. To identify periods in which the event 370 

rate significantly differed between conditions, a non-parametric bootstrap-based analysis 371 

was used.  As for the diameter analysis, this involved computation of a difference time 372 

series between conditions for each participant, that was then subject to re-sampling with 373 

replacement (1000 iterations). At each time point, differences were deemed significant if 374 

the proportion of bootstrap iterations that fell above or below zero was more than 99% (i.e. 375 

p < .01). 376 
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Regressing out behavioral performance 377 

 We conducted exploratory analysis to examine whether performance on the 378 

incidental gap detection task affected the observed differences in pupil dynamics between 379 

REG and RAND patterns. This was achieved by regressing out the variance associated with 380 

the gap detection performance from the pupil data. For both experiments each participant’s 381 

mean reaction time was used. RT is less limited by ceiling effects and is therefore a good 382 

proxy for behavioral difficulty.  Sensitivity score (d') was used as a second performance 383 

metric for experiment 1. For experiment 2 there were no false alarms and only 5/20 384 

participants were not at ceiling. As a result, it was not appropriate to attempt to model the 385 

pupil response to hit rates and only the RT data were analyzed in this way. 386 

 Two analysis approaches were taken: the first used average pupil diameter over the 387 

latter portion of the trial (4.5 – 9s) where robust differences emerged between conditions 388 

(see figures 3d and 4e). Using mean pupil diameter for this time window as the dependent 389 

variable, we conducted a repeated measures analysis of covariance (ANCOVA),  with a 390 

repeating factor of regularity (REG vs RAND) and the difference (RAND-REG) in RT and d’ 391 

(experiment 1 only) as covariates. In Experiment 1, this analysis was focused on alphabet 392 

size 5 (REG5 vs RAND5), as this showed the most robust effect of regularity on the pupil. To 393 

increase power, we also combined the datasets from Experiment 1 and 2, entering 394 

Experiment as a between-subjects factor. 395 

The second approach involved regressing out the variance related to the behavioral 396 

measures from the unfolding pupil diameter data. For each subject, sample-by-sample 397 

differences in pupil diameter (RAND-REG) were regressed onto behavioral performance 398 

(difference in RT or d' between RAND and REG) to remove variance attributable to this 399 

potentially confounding factor. The residual pupil data were then analyzed as described in 400 
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the section "Time-series statistical analysis of pupil diameter". This analysis was conducted 401 

on all conditions (REG5/RAND5; REG10/RAND10; REG15/RAND15; REGp/RAND in 402 

Experiment 2). Because extreme values can skew the regression, the behavioral data were 403 

checked for outliers and one participant was removed from the regression analysis with d’ 404 

for REG15/RAND15.  405 

 406 

Results 407 

Experiment 1 – Deterministic regularities. 408 

This experiment used sequences of tone pips that were either regularly repeating 409 

(REG) or random (RAND; Fig. 1). Previous work showed that brain responses, even from 410 

naïve listeners, rapidly distinguished regular from random patterns. The differences 411 

emerged as early as 400ms for REG5, 700ms for REG10 and 1050ms for REG15, consistent 412 

with the prediction of an ideal observer model which indicated that the emergence of 413 

regularity should be detectable from roughly 1 cycle and 4 tones after the introduction of 414 

the regular pattern (for details see Barascud et al., 2016; Southwell et al., 2017). Using the 415 

same regular sequence structure, we compared the pupil response to regular (REG), highly 416 

predictable deterministic sequences to matched random (RAND) sequences of the same 417 

alphabet size.  418 

Two factors were manipulated, 1) whether the sequence contained a repeating 419 

pattern (REG vs RAND); 2) the alphabet size (5,10 or 15), reflecting the number of different 420 

tones in the sequence, and thus its complexity in terms of draw on memory and other 421 

perceptual resources. 422 
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Gap detection Results   423 

Sensitivity to the presence of gaps was analyzed using d’(Fig 3a). However overall 424 

performance was high, with hit rate close to ceiling: (median hit rate: REG5 = 1; REG10= 425 

1;REG15 = 1; RAND5 = 0.86; RAND10 = 0.86; RAND15 = 0.86) and false alarm rates close to 426 

floor (median all conditions = 0). Parametric tests could not be conducted on d’ due to 427 

normality violations, therefore, d’ was initially averaged across alphabet sizes for REG and 428 

RAND and compared using a Wilcoxon signed Rank test. This confirmed that d’ was 429 

significantly higher for REG (mean = 3.12, std = .50) than RAND (mean = 2.87, std = 0.48, Z = 430 

2.564, p = 0.010, Fig 3a). Pairwise Wilcoxon signed rank tests for each alphabet size (Holm-431 

Bonferroni correction was applied) indicated that the effect may be driven by alphabet size 432 

10, as there was a significant difference between REG10 and RAND10 (Z = 2.836  p = 0.02) 433 

but no significant difference between REG5 and RAND5 (Z = 1.536,  p = 0.25) or REG15 vs 434 

RAND15 (Z = 1.26,  p = 0.25).  435 

For reaction times (Fig. 3b), a repeated measures (RM) ANOVA with two factors, 436 

Regularity (REG vs RAND) and Alphabet size (5,10,15) revealed a main effect of regularity, 437 

with significantly faster response times in REG (mean =0.590 s, SEM = 0.027 ) compared to 438 

RAND (mean = 0.677 s, SEM = 0.031), F(1,17) = 41, p <.001, ƞp² = 0.71. There was no main 439 

effect of alphabet size F(2,34) = 0.263, p = .771, ƞp² = 0.015, and no interaction F(2,34) = 440 

1.786, p = 0.183, ƞp² = 0.095.  441 

As an exploratory analysis, we tested whether reaction times varied based on the 442 

timing of the gap relative to the sequence onset. As will be demonstrated in the next section, 443 

the pupil response to regular sequences emerged later in the trial, particularly for larger 444 

alphabet sizes. As we show above, reaction times were faster for REG sequences, therefore 445 

we questioned if there were faster reaction times in the latter portion of the trial in the REG 446 
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condition that were driving both the behavioral effects and pupil response. As each 447 

condition only provided 6 target trials, and faster RTs and smaller pupil sizes were observed 448 

for all regular conditions, we collapsed across alphabet sizes and calculated the average 449 

reaction time for gaps that occurred earlier (< 4.5 s post-sound onset) vs.  later in the trial (> 450 

4.5 s post trial onset). An RM-ANOVA was conducted with repeating factor of Time (Early vs 451 

Late) and Regularity (REG vs RAND). Reaction times showed a clear effect of regularity (F 452 

(1,17) = 29.198, p = <.001, ƞp² = .632) but no effect of time (F (1,17) = 1.006, p = .316, ƞp² 453 

= .059) and no interaction  (F (1,17) = .009, p = .925, ƞp² = .001).  454 

Sustained pupil dilation is modulated by sequence predictability 455 

Figure 3c plots the average pupil diameter (relative to the pre-onset baseline) as a 456 

function of time. All six conditions share a similar PDR pattern. Immediately after scene 457 

onset (t = 0), the pupil diameter rapidly increased, forming an initial peak at ~0.6 s. Over the 458 

next second, pupil diameter slowly increased again to reach a broader peak around ~3 s 459 

after onset. Thereafter, the response entered a sustained phase, which lasted until 460 

sequence offset and was associated with a slow continuous decrease in pupil diameter. 461 

Regular sequences elicited a smaller pupil diameter than random sequences, for all 462 

alphabet sizes. As can be seen in figure 3, the REG conditions were associated with a faster 463 

decrease in pupil diameter (steeper reduction in the sustained response) than the RAND 464 

conditions and this effect was modulated by alphabet size. The comparison across matched 465 

REG and RAND pairs (Figs. 3d-f) revealed that the separation between traces occurred 466 

substantially earlier for alphabet size 5 (Fig. 3d), where a divergence was observed from 467 

~1.5 s after onset, than the other two conditions. The average trace for REG diverged from 468 

RAND at ~ 3 s for REG10 and ~4.5 seconds for REG15 (fig. 3e,f) and became statistically 469 
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significant later in the trial (> 6 s). The staggered divergence is consistent with larger 470 

alphabet sizes ( i.e. longer REG cycles) requiring more time before a regularity can be 471 

established. A similar pattern of divergence latencies has been observed in the brain 472 

(Barascud et al., 2016; Southwell et al., 2017), albeit on a faster timescale.  473 

The significant difference between conditions emerged surprisingly late for alphabet 474 

size 10, although the conditions separated much earlier. It is likely that a combination of 475 

noise and a weaker signal impacted the results for this condition.  476 

  477 

Experiment 2 – Probabilistic regularities 478 

Experiment 2 investigated whether the effects observed in Experiment 1 extend to 479 

sequences that contain probabilistic rather than deterministic structure.  Towards this aim, 480 

we focused on a structure that has been extensively used to study statistical learning in the 481 

context of language. Saffran et al., (1996) tested if infants could segment a continuous 482 

stream of syllables based only on the statistical regularities between successive items.  The 483 

streams of syllables had high transitional probabilities within ‘words’ consisting of triplets of 484 

syllables, and low transitional probabilities at word boundaries. Infants were found to spend 485 

longer looking at non-words that breached the word boundaries, suggesting they had 486 

become sensitive to the distributional cues of the syllable stream. Forms of the paradigm 487 

have since been used in behavioral and neuroimaging studies  (Batterink and Paller, 2017; 488 

Farthouat et al., 2017), in adults (Saffran et al., 1997), infants (Saffran, 2020) and other 489 

species (Hauser et al., 2001; Toro and Trobalón, 2005) using a variety of stimuli (Saffran et 490 

al., 1999; Kirkham et al., 2002). The current experiment uses the pure tone version of this 491 

segmentation paradigm (Saffran et al., 1999), with a key modification. The original study 492 
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used a tone length of 333ms to model the length of syllables, in contrast we use 50ms tones 493 

to study this structure at a rate comparable with the sequences in Experiment 1.   494 

To generate the underlying probabilistic structure, twelve different tones were 495 

arranged into four tone ‘words’ (see methods). Following Saffran et al. (1999) the same tone 496 

‘words’ were used for each subject.  Probabilistic regular sequences (REGp; 9 second-long), 497 

generated anew for each trial, were created by randomly ordering the four tone words, with 498 

the stipulation that the same tone word could not occur twice in a row (i.e. tone words 499 

always transitioned to a different tone word). This created a probabilistic structure where 500 

the transitional probability between tones within a word was 1 and the TP at word 501 

boundaries was 0.33, see Figure 2 for more details.  RAND sequences were generated in the 502 

same way as for experiment 1, but using the pool of 12 frequencies from which the tone 503 

‘words’ were created.  504 

The experimental session consisted of three phases. First, participants were 505 

familiarized with the REGp sequences. Subsequently, pupil responses were recorded as they 506 

listened to REGp or RAND sequences. A gap detection task was used to ensure that 507 

participants focused their attention on the sound stream. In a final phase, the same subjects 508 

and a control group were asked to make decisions about the familiarity and underlying 509 

structure of the different sequence types.  510 

Gap detection Results  511 

No false alarms were made but there were significantly more gaps detected in REGp 512 

compared to the RAND (Wilcoxon Signed Ranks Test: Z = 2.07, p = .038, Fig. 5a). Reaction 513 

times showed no significant difference between conditions (paired samples t-test, t(19) = -514 

.772, p = .450,  d = -.173 Fig 4b).  Therefore, though the effects are weak and most 515 
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participants performed at ceiling, the gap detection data demonstrate, similar to 516 

Experiment 1, that performance was facilitated in REGp relative to RAND sequences.  517 

Exposure to REGp sequences improved subsequent sensitivity to structure 518 

Following the main pupillometry task, participants completed two further tasks, in 519 

the first identifying whether a 3-second-long sequence was “familiar” and in the second 520 

identifying if the sequence had a “structure” (see methods). These tasks were also 521 

completed by a control group who had not participated in the previous phases. The results 522 

are shown in figure 4c and d. In both tasks, the majority of participants in the control group 523 

showed d’ > 0. This indicates that for some listeners 3 seconds (60 tones) of exposure to the 524 

sequence were sufficient to detect a structure, which the listener then interpreted as feeling 525 

‘familiar’. This is in line with previous statistical learning paradigms that show a ‘familiarity’ 526 

decision can reflect implicit sequence learning (Forkstam et al., 2008). However, sensitivity 527 

in the control group still remained low (d’ < 1) suggesting poor sensitivity overall.  528 

Importantly, as expected, the main group showed significantly higher sensitivity than the 529 

control group in both tasks (Independent samples t-test, Familiarity: t(38) = 2.8, p = .008; 530 

Structure: t(38) = 3.2, p = .003), demonstrating that previous exposure improved sensitivity. 531 

Unsurprisingly,  performance across the ‘familiarity’ and ‘structure’ tasks was correlated for 532 

the main (Spearman’s rho = .797, p < .001) and the control group (Spearman’s rho = .570, p 533 

= .009), confirming that both tasks probed sequence learning (Forkstam et al., 2008).  534 

Sustained pupil dilation is modulated by sequence predictability 535 

Figure 4e shows the normalized pupil diameter to REGp (blue) and RAND (red) 536 

sequences. As in experiment 1, both conditions showed an increase in diameter after sound 537 
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onset, followed by a sharp decrease in pupil diameter for REGp but not RAND. Since 538 

listeners were pre-exposed to the regular stimuli we expected that the pupil response to the 539 

REGp condition should rapidly diverge from RAND - as soon as it is statistically possible to 540 

differentiate the two sequences (i.e. within 2-3 ‘words’ after sequence onset). Indeed, a 541 

sustained difference between conditions emerged from ~ 2 s post-stimulus onset, roughly at 542 

the same time as that observed for REG5 (repeating cycle of 5 tones) in experiment 1. We 543 

interpret that as indicating that REGp was differentiated from RAND at a similar latency as 544 

REG5 (~9 tones; see Barascud et al, 2016; Southwell et al, 2017). Although, relative to the 545 

neural effects, the pupil response to regularity exhibits a delay linked to slower modulatory 546 

pathway effects (i.e. the time it takes for the signal to travel from the cortical network which 547 

tracks the regularity, to the LC and from there to the pupil musculature).  However, the 548 

extent of divergence between REGp and RAND was smaller than that observed for REG5 549 

(compare 4c and 3d), this was also expected as the probabilistic structure in experiment 2 550 

(see Fig. 2d) retains some degree of unpredictability, i.e. at tone word boundaries. In 551 

contrast, REG5 can be predicted with 100% certainty once the tone order has been 552 

established.  553 

 This results pattern was maintained when the 5 participants who performed 554 

below ceiling were excluded from the analysis (see Fig 4e; dark grey shading).  555 
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Pupil size correlates with (subsequently obtained) explicit identification of 556 

structure 557 

An exploratory analysis was conducted into the relationship between pupil dynamics 558 

and sensitivity to sequence structure. We correlated the instantaneous PDR difference 559 

between REGp and RAND at every time sample (20Hz), with the d’ for each participant 560 

(separately for the ‘familiarity’ and ‘structure’ tasks). For this analysis we re-ran the pre-561 

processing to remove blinks without subsequent interpolation to ensure the accuracy of the 562 

point-by-point correlations. 563 

As shown above, performance on the two probe tasks was highly correlated, 564 

therefore we expected the two measures to have a similar relationship to pupil diameter.  In 565 

Figure 4f correlation coefficients (Spearman) are plotted in dark purple (correlation with 566 

familiarity probe) and light purple (correlation with structural probe) significant time 567 

samples (family-wise error (FWE) uncorrected) are marked in gray, (light gray = familiarity, 568 

dark gray = structure). Significant correlations are observed partway through the epoch – 569 

between ~4-6 seconds after onset, revealing that those participants who later indicated high 570 

sensitivity to sequence structure were also those exhibiting a larger PDR regularity effect. 571 

That correlations appear to be confined to this interval may be due to the fact that the PDR 572 

regularity effect stabilizes around that time.  The disappearance of correlations towards the 573 

end of the trial is consistent with previous observations (Zhao et al., 2019a) and may be 574 

because the expectation of trial offset affects pupil dynamics in a manner that interferes 575 

with the correlation with behavior.  576 

 577 
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Pupil dilation rate is not modulated by predictability  578 

Event rate (instantaneous positive sign-changes of the pupil diameter derivative) was 579 

analyzed to focus on phasic pupil activity which has been associated with corresponding 580 

phasic activity in the Locus Coeruleus and the release of NE  (Joshi et al., 2016; Reimer et al., 581 

2016) . To determine whether the observed pupil response is driven by tonic (sustained) or 582 

phasic changes in pupil dynamics, we also analyzed the pupil dilation event rate over the 583 

course of the trial (see methods).  Figure 5 plots both the event rate (solid lines) and dilation 584 

response (dotted line) to show how the two measures evolve over time for Experiment 1 585 

(top panel) and Experiment 2 (bottom panel). To improve power in experiment 1, we 586 

collapsed across alphabet size, providing a single time series for REG and RAND.  587 

For both experiments the dilation event rate data revealed a series of onset peaks, 588 

followed by a return to baseline, with no substantial difference between REG and RAND 589 

conditions, in contrast to the robust difference observed for pupil diameter.  This suggests 590 

that the difference in pupil dynamics between REG and RAND signals is driven largely by 591 

tonic rather than phasic pupil activity.  592 

Behavioral performance is not driving the pupil effects 593 

Both experiments used a gap detection task to ensure that listeners focused their 594 

attention on the tone sequence. The task was deliberately easy so as to reduce possible 595 

effects of task difficulty on pupil data. However, at the group level regularity was found to 596 

modulate performance, increasing sensitivity to gaps (Figures 3a and 4a) and reducing 597 

reaction time (RT, experiment 1 only, Figure 3b). We therefore conducted  additional 598 

analyses to confirm that the regularity-linked difference in pupil diameter persists after the 599 

variance associated with gap detection performance is regressed out.  600 
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 601 

Regressing out behavioral performance  602 

Two approaches were taken to regress out performance on the gap detection task. First, 603 

pupil diameter was averaged over the latter portion of the trial (4.5 – 9s) where robust 604 

differences emerged between conditions (see figures 3d and 4e). A repeated measures 605 

analysis of covariance (ANCOVA) was conducted on pupil size, with a repeating factor of 606 

regularity (REG vs RAND) and the difference (RAND - REG) in RT and dprime (d’; experiment 607 

1 only) as covariates.  This analysis on experiment 1 data confirmed that the effect of 608 

regularity remained significant, F = 7.307, df = 1,15, p = 0.016 ƞp² = 0.328, with no 609 

interaction with either covariate, Regularity*RT:F (1,15) = 1.635, p = .220, ƞp² = 0.098; 610 

Regularity vs d’ :F (1,15) = .001, p = .977, ƞp²  = 0. For experiment 2, the ANCOVA could only 611 

be conducted with RT as a covariate (see methods). Results confirmed that the effect of 612 

regularity persisted: F (1,18) = .4.983, p = .039, ƞp²  = .217 and there was no interaction 613 

between regularity and RT:F (1,18) = .069, p = .796, ƞp²  = 004.  As a further analysis we also 614 

collapsed the data across Experiment 1 (REG5/RAN5) and Experiment 2. As detailed in the 615 

previous sections these data yielded similar behavioral effects and pupil dynamics. The 616 

ANCOVA confirmed a robust effect of regularity: F (1,35) = 15.347,  p <.001, ƞp²  = .968 and 617 

no interaction between regularity and RT or experiment (p-values > .2).   618 

A second approach was based on a point-by-point regression analysis. We focused 619 

on the subject-wise point-by-point pupil diameter difference between conditions (RAND-620 

REG) and regressed out the behavioral difference between conditions, this was done 621 

separately for reaction time and performance. For experiment 2, hit rate could not be 622 

regressed out due to ceiling effects (see methods), we therefore focus on reaction time only.  623 
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 Statistical analysis (see methods) was then conducted on the resulting time series. 624 

The results are plotted (gray horizontal bars) in figures 3d-f and 4e and demonstrate that 625 

the main effects of regularity remain after the variance associated with the behavioral 626 

measures has been removed.  627 

 This experiment was designed to involve a task that ensured the tone sequences 628 

were behaviorally relevant. Therefore, there is likely to be a degree of shared variability 629 

between performance on the gap detection task and the pupil response to regularity. 630 

However, the demonstration that the pupil effects remain after accounting for task 631 

performance suggests that effort towards the gap detection task is not driving the pupil 632 

effects.  633 

Discussion  634 

Over two experiments we show that pupil diameter is modulated by the statistical 635 

structure of rapidly unfolding auditory stimuli, be they deterministic structures that 636 

developed anew on each trial, or more complex statistical structures to which the listener 637 

had been pre-exposed. In line with our prediction, we consistently observed a smaller 638 

sustained pupil diameter to regular compared with random sequences.   639 

The pupil effects were not correlated with incidental task performance but did reveal 640 

a link with subsequently administered familiarity and structure judgements. This 641 

demonstrates that pupil dynamics were driven by sequence structure per se, and it’s draw 642 

on processing resources, rather than just effort to perform the incidental task.   643 
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Predictability of deterministic sequences modulates sustained pupil size 644 

Previous work has studied pupil responses to deviant stimuli embedded in a 645 

predictable structure (Liao et al., 2016; Marois et al., 2018; Quirins et al., 2018; Bianco et al., 646 

2020). Zhao et al., (2019b) showed a transient pupil dilation in response to an unexpected 647 

transition from a regular to random pattern. Quirins et al., (2018) used a local-global 648 

paradigm, also with rapid tone pips. They found that a deviation from the global but not 649 

local structure elicited an increase in pupil diameter, but only when actively attending to the 650 

deviants, and only in subjects who subsequently showed an awareness of the global 651 

regularity.  In contrast, the current study examined the dynamics of the pupil response to 652 

ongoing regularity. 653 

Participants performed a task that ensured they were broadly attending to the 654 

sound sequences. By manipulating the predictability of the tone pip patterns, we were able 655 

to assess the extent to which the processing of each sequence type affects pupil-linked 656 

arousal. 657 

Based on previous work that demonstrated increased pupil diameter to salient  or 658 

behaviorally engaging stimuli (Nieuwenhuis et al., 2011; Wang and Munoz, 2015; Liao et al., 659 

2016), we hypothesized that a larger pupil size in response to regular sequences would 660 

indicate that attentional resources were engaged to a greater degree by regular relative to 661 

random patterns (Zhao et al., 2013). Conversely, a reduction in pupil diameter would 662 

indicate that regularity reduces the draw on processing resources by facilitating sequence 663 

processing (Southwell et al., 2017). In both experiments reported here pupil diameter 664 

rapidly decreased once the brain had established the predictable structure of the tone pip 665 

sequence, thus supporting the latter hypothesis. In contrast, matched randomly ordered 666 
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sequences were associated with a largely sustained pupil diameter, suggesting that 667 

processing of these stimuli remained more resource-demanding.  668 

For highly predictable, deterministic sequences (Experiment 1), the pupil response 669 

showed a rapid divergence between regular and random sequences, reflecting the quick 670 

detection of the regular structure. The emergence of regularity was associated with a 671 

sustained decrease in pupil size, relative to that evoked by sequences of the same tones 672 

presented in a random order.  The effect was modulated by alphabet size, with the simplest 673 

regular sequences (REG5) showing the more rapid change in pupil diameter.  674 

The pupil response to regularity was consistent with previous neuroimaging work 675 

that revealed a rapid change in neural activity following the emergence of regularity 676 

(Barascud et al., 2016; Southwell et al., 2017; Herrmann and Johnsrude, 2018). However, 677 

the effects seen here arose substantially later than those observed in the brain responses, 678 

consistent with a slower pathway (i.e. delays incurred between the cortical network that 679 

detected the regularity and the pupil). The mechanisms driving the neural response to 680 

regularity are poorly understood, but emerging work (Barascud et al., 2016; Auksztulewicz 681 

et al., 2017) has implicated an interplay between auditory cortical, inferior frontal and 682 

hippocampal sources in the discovery of regularity. A similar network has also been 683 

implicated in detecting more complex predictable structure (see Milne et al., 2018 for a 684 

summary and also Abla and Okanoya, 2008; Schapiro et al., 2012; Ordin et al., 2020). 685 

Probabilistic sequence structure modulates pupil size 686 

A clear difference between REGp and RAND conditions was also observed for 687 

sequences comprised of probabilistic transitions (Saffran et al., 1996, 1999). The 688 

relationships between items in the sequence transform it from a stream of individual 689 



 

31 

elements to a series of larger integrated items, in this case triplets of elements, some argue 690 

this perceptual shift is a critical component of statistical learning (Batterink and Paller, 2017).  691 

Exploiting this feature of statistical learning , Batterink and Paller (2017) found  that 692 

as listeners became exposed to the statistical structure they exhibited neural entrainment 693 

to not only the rate of individual syllables but also the “words” that were generated using 694 

transitional probabilities (also see Farthouat et al., (2017) for a similar study). Furthermore, 695 

there was a correlation between entrainment to the words and reaction time to targets that 696 

could be predicted by the structure, supporting a relationship between neural signatures of 697 

sequence learning and the influence of sequence learning on subsequent behavior. 698 

To our knowledge the present study is the first to apply this extensively used 699 

probabilistic paradigm to rapid sequences. Our demonstration that the probabilistically 700 

structured sequences are associated with reduced pupil size relative to matched random 701 

sequences reveals that the statistical structure of these rapidly unfolding sequences was 702 

discovered by listeners and facilitated more efficient processing of the regular patterns.   703 

 Critically, similar to Batterink and Paller (2017) , we also observed a correlation 704 

between modulation of pupil size by sequence type and offline sequence classification 705 

(familiarity/structural judgment made after pupillometry measurements), suggesting a 706 

relationship between the pupil response to the unfolding sequence and the acquired 707 

statistical knowledge; those listeners who showed a larger pupil response difference 708 

between REGp and RAND patterns were also those who were better at subsequently 709 

discriminating statistically structured from random sequences. 710 

 711 
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Predictability modulates tonic rather than phasic pupil activity 712 

Phasic pupil responses (pupil dilation events) have been linked with phasic firing in 713 

the LC-NE system (Joshi et al, 2016) and hypothesized to reflect activation of the arousal 714 

system.  In contrast, slow (tonic) modulation of pupil diameter has been linked to states of 715 

perceptual uncertainty (Nassar et al., 2012; Krishnamurthy et al., 2017) and increased 716 

demand on processing resources (Sarter et al., 2006). Here, the analysis of pupil dilation 717 

event rate demonstrated no difference between conditions, suggesting that the observed 718 

pupil effects arise from tonic rather than phasic pupil dynamics. 719 

Krishnamurthy and colleagues (2017) created sequences of sounds played from 720 

different locations and asked listeners to make decisions about the locations of upcoming 721 

sounds. Over the course of the experiment they manipulated how well the previous sounds 722 

could be used to predict the location of an upcoming sound. Where prior information was 723 

reliable, the upcoming sound could be accurately predicted. Analysis of baseline pupil 724 

dilation, prior to decision making, showed smaller tonic pupil sizes when there were more 725 

reliable priors. In other words, as with our data, more predictable stimuli were associated 726 

with smaller pupil diameters. Unlike these studies (Nassar et al., 2012; Krishnamurthy et al., 727 

2017), the present results demonstrate sustained changes without perceptual judgements 728 

related to stimulus likelihood, and with sequences that were too fast for conscious tracking 729 

of predictability.  730 

Whilst it may be premature to discuss the underlying brain machinery, the basal 731 

forebrain - acetylcholine (BF-ACh) system (Joshi and Gold, 2020) could be hypothesized as a 732 

possible underpinning for the observed effects. The basal forebrain has extensive 733 

projections in the brain, including to auditory cortex (Guo et al., 2019). Cholinergic signaling 734 

has been implicated in the representation of sensory signal volatility (Marshall et al., 2016), 735 
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and in supporting the rapid learning of environmental contingencies, for example,  by 736 

boosting bottom-up sensory processing (Yu and Dayan, 2005; Bentley et al., 2011). In the 737 

current paradigm the rapid decrease in pupil size during predictable sequences is consistent 738 

with a reduction in ACh-driven learning once the sequence structure has been established. A 739 

related but mechanistically different proposal is that lower levels of ACh for predictable 740 

sequences reflect a decrease in processing demands (Witte et al., 1997; Phillips et al., 2000; 741 

Sarter et al., 2006). For REG relative to RAND sequences there is a streamlining of processing 742 

that is possible when upcoming tones can be accurately predicted.  This contrasts with 743 

unpredictable sequences (RAND) where learning cannot take place and thus the resources 744 

required to process upcoming tones will remain high.   745 

Conclusions 746 

We demonstrate that sustained changes in pupil size can be used to identify the 747 

emergence of regularity in rapid auditory tone sequences. The results were robust even 748 

with a small number of trials (<25 per condition) and consistent across both deterministic 749 

and probabilistic sequences. Furthermore, the effects persisted after regressing out 750 

performance on the incidental task, although future studies may wish to further probe the 751 

interactions between the pupil, regularity, and task-related effort. Finally, the speed of 752 

sequences used in this paradigm prevented conscious sequence structure tracking, and the 753 

task did not require decision making or analysis of the sequence structure. As a result, our 754 

findings establish pupillometry as an effective, non-invasive, and fast method to study the 755 

automatic extraction of different types of regularities across different populations and even 756 

different species. 757 

 758 
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 897 

Figure Legends 898 

 899 

Figure 1. Stimuli used in experiment 1. Stimuli were sequences of contiguous tone pips (50ms) 900 

with frequencies drawn from a pool of 20 fixed values. The tone pips were arranged 901 

according to frequency patterns, generated anew for each subject and on each trial. REG 902 

sequences were generated by randomly selecting 5 (REG5), 10 (REG10) or 15 (REG15) 903 

frequencies from the pool and iterating that sequence to create a regular repeating pattern, 904 

(a) example of a spectrogram for REG5, dotted lines indicate the first 3 cycles. RAND 905 

sequences were generated by randomly sampling 5 (RAND5), 10 (RAND10) or 15 (RAND15) 906 

frequencies with replacement. (b), example of a spectrogram for RAND10. A subset of trials 907 
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were target trials containing a gap generated by the removal of 2 (REG) or 3 tones (RAND), 908 

indicated by the dark blue band in the spectrogram.  909 

 910 

Figure 2. Stimuli used in experiment 2. Stimuli were sequences of concatenated tone pips 911 

(50ms) with frequencies consisting of 12 different values that correspond to the musical 912 

notes shown in (d). (a) spectrogram of RAND sequences where the tones do not follow a 913 

predictable pattern. A subset of trials were target trials containing a gap generated by the 914 

removal of 3 tones, the gap is indicated by a dark blue band in the spectrogram of a and b.  915 

(b), spectrogram of the “regular” (REGp) condition that followed  the probabilistic structure 916 

shown in (d, top row); tones were arranged into four three-item tone ‘words’, the four words 917 

are shown in different shades of gray. The tones within a word always occurred together 918 

giving them a transitional probability (TP) of 1. Each word could transition to any of the 919 

other words, giving tones at word boundaries a TP of ~0.3. Therefore, these sequences do 920 

not have a regular structure in the same way as experiment 1, compare with Figure 1a.  (c) 921 

Ideal observer model response to RAND (red) and REGp (blue) signals shows the information 922 

content (IC;  negative log probability (-log P) ; the higher the IC value the more unexpected 923 

the tone) of each tone pip (averaged over 24 different sequences). . This modelling confirms 924 

that while IC remains consistently high for unpredictable sequences (RAND, red), for REGp 925 

(blue) it begins to drop on average after 12 tones. Evidence for the predictable structure then 926 

continues to accumulate throughout the sequences as indicated by the gradual separation 927 

between the REGp and RAND ICs.  Shading indicates ± 1 SEM.  (d, bottom row). The random 928 

sequences presented the same tones as the regular sequences but in a random order. 929 

 930 
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Figure 3. Experiment 1 – Regularity modulated pupil size. (a-b) The gap detection 931 

task showed worse performance for RAND compared to REG sequences. Sensitivity (d’) to the 932 

gap was significantly higher, and RT shorter for REG relative to RAND sequences. Circles 933 

represent individual data points. Error bar shows ± 1 SEM.  Plots (c-f) show averaged 934 

normalized pupil diameter over time, baseline corrected (-1 – 0s pre-onset). The shaded area 935 

shows ±1 SEM. The horizontal bars show time intervals during which significant differences 936 

(bootstrap statistics) were observed. The black bar shows the original results, the gray bars 937 

show the significant time intervals after adjusting for the subject-wise difference (RAND-REG) 938 

in reaction time (mid-gray) and d-prime (light-gray). (c) Averaged pupil diameter for all 939 

conditions. (d-f) Average pupil diameters separated by alphabet size 5, 10 and 15 (left to 940 

right), showed sustained larger pupil diameters for random conditions (red, orange and 941 

yellow) than regular conditions (shades of blue). (d) Alphabet size 5 showed significant 942 

differences between REG5 and RAND5 from 2-3s onwards. (e) For alphabet size 10, REG10 943 

separates from RAND10 from 3 s onwards with a sustained significant difference from ~ 7-8 944 

s. (f) For alphabet size 15, REG15 separates from RAND15 from 4 s, and is significantly 945 

different from 6 s onwards. For figures (e) and (f) the significant effects at onset are likely 946 

artefacts of regressing out the behavioral measures, resulting from low variability between 947 

participants at the onset time points. 948 

 949 

 950 

 951 

Figure 4: Experiment 2 – probabilistic regularities modulate pupil size. (a) Hit rate analysis 952 

showed more gaps were detected in REGp (blue) than RAND (red) sequences. There were no 953 

false alarms (not shown). (b) reaction times for gap detection showed no significant 954 
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differences. Following the main experiment two behavioral probes were separately 955 

conducted, in one, listeners were asked to judge if sequences were “familiar” (c), and in the 956 

other if they contained a “structure” (d).  D prime (d’) is plotted for the main group (light 957 

green) and a control group who had not conducted the main pupillometry experiment (dark 958 

green). Error bars show ±1 SEM, circles show individual subjects. (e) Average normalized 959 

pupil diameter over time, baseline corrected (-1 – 0s pre-onset). The shaded area shows ±1 960 

SEM. The horizontal bars show time intervals during which significant differences (bootstrap 961 

statistics) were observed. The black bar shows the original results, , the dark gray bar shows 962 

significant time intervals  when the 5 participants with below ceiling performance were 963 

removed from the analysis (see methods),  the light gray bar shows the significant time 964 

intervals after adjusting for the subject-wise difference (RAND-REG) in reaction time . In all 965 

cases the difference between RAND and REG persists suggesting that the main effects are 966 

not driven by effort towards the gap detection task (f) Spearman Correlation between the 967 

difference in pupil diameter (RAND – REGp) and d’ from the familiarity probe (light purple) 968 

and structure probe (dark purple) conducted sample-by-sample (20 Hz) over the entire trial 969 

duration. Each purple bar shows the Spearman correlation coefficients at each time point for 970 

the two probe tasks. Gray shaded areas indicate time intervals where a significant 971 

correlation (p < .05; FWE uncorrected) was observed, light gray corresponds to the 972 

correlation with the familiarity probe, significant periods for the structure probe are in dark 973 

gray and plotted only on the lower part of the y-axis. For the gray bars, the relationship to 974 

the y-axis is for visualization purposes and not meaningful. The plot on the right illustrates 975 

the link between pupil size and subsequently assessed sensitivity to regularity by displaying 976 

the correlation (Spearman r) between pupil size differences (averaged across 4-6 s) and 977 

individual ‘familiarity’ (light purple) and ‘structure’ judgments (dark purple). 978 
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 979 

Figure 5: Sequence regularity was not associated with differences in incidence of dilatory 980 

pupil events. (a) Experiment 1, (b) Experiment 2. Solid lines show pupil dilation event rate. 981 

Events were defined as the onset of each pupil dilation with a duration of at least 300ms. 982 

These were collapsed across alphabet sizes for REG (blue) and RAND (red). Gray markers at 983 

the bottom of the graph indicate time intervals where bootstrap statistics showed a 984 

significant difference between the two conditions. Dotted lines show the pupil diameter REG 985 

(blue) and RAND (red) collapsed across alphabet size. The black bar indicates intervals where 986 

bootstrap statistics showed a significant difference between the two conditions. Only the 987 

pupil diameter data showed a sustained difference between REG and RAND conditions.  988 
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