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Abstract

Survival analysis is an important field of Statistics concerned with mak-
ing time-to-event predictions with ‘censored’ data. Machine learning,
specifically supervised learning, is the field of Statistics concerned with
using state-of-the-art algorithms in order to make predictions on unseen
data. This thesis looks at unifying these two fields as current research
into the two is still disjoint, with ‘classical survival’ on one side and su-
pervised learning (primarily classification and regression) on the other.
This PhD aims to improve the quality of machine learning research in
survival analysis by focusing on transparency, accessibility, and predic-
tive performance in model building and evaluation. This is achieved by
examining historic and current proposals and implementations for models
and measures (both classical and machine learning) in survival analysis
and making novel contributions.

In particular this includes: i) a survey of survival models including a crit-
ical and technical survey of almost all supervised learning model classes
currently utilised in survival, as well as novel adaptations; ii) a survey of
evaluation measures for survival models, including key definitions, proofs
and theorems for survival scoring rules that had previously been missing
from the literature; iii) introduction and formalisation of composition and
reduction in survival analysis, with a view on increasing transparency of
modelling strategies and improving predictive performance; iv) imple-
mentation of several R software packages, in particular mlr3proba for
machine learning in survival analysis; and v) the first large-scale bench-
mark experiment on right-censored time-to-event data with 24 survival
models and 66 datasets.

Survival analysis has many important applications in medical statistics,
engineering and finance, and as such requires the same level of rigour as
other machine learning fields such as regression and classification; this
thesis aims to make this clear by describing a framework from prediction
and evaluation to implementation.
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Impact Statement

Survival analysis is found throughout many fields of study, including engineering,
finance, and healthcare. As such the field has huge benefits throughout academic
and non-academic sectors.

Inside academia, this research contributes to the growing interest in machine
learning applied to fields outside of regression and classification. Historically
there is a clear relationship between: i) ease of understanding a field; ii) its ac-
cessibility; iii) the power of predictive models; iv) the rigour and attention with
which the field is given; and v) general academic interest. This thesis attempts to
improve the rigour and attention within academia by increasing accessibility and
understanding. Specifically there has been a division in academia between those
studying medical statistics and those interested in machine learning, this thesis
attempts to bridge this gap to harness knowledge and expertise from both sides.
A full list of the academic contributions that are directly related to the work in
this thesis is presented below.

Outside academia, this research is directly applicable to public health and policy,
financial institutions, and engineering. This thesis raises and tackles ethical con-
siderations for the correct usage of machine learning in survival analysis, which
includes highlighting where this has failed in the past. Failures of this kind are
not acceptable when deployed in a public health sector where transparency is
of the utmost importance. Similarly it is an ethical question whether the mod-
els currently deployed in the public sector are up to the standard expected by
modern machine learning techniques. This thesis tackles both problems by in-
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this research is already demonstrated by over 44,000 downloads of mlr3proba,
the machine learning survival analysis package introduced in this thesis. Ad-
ditionally, mlr3proba has been utilised in several research projects, including
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centres, and time-to-death from non-small cell lung cancer for Roche.
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Symbols and Notation

The most common symbols and notation used throughout this thesis are pre-
sented below; in rare cases where different meanings are intended within the
thesis, this will be made clear.

Cases, Fonts, and Symbols

Lower-case letters, x, refer to fixed (‘realised’, ‘observed’) values and upper-case
letters, X, refer to random variables. For example X is a random variable (r.v.)
taking values in (t.v.i.) the set X if, X : Ω→ X where Ω is the sample space of all
possible outcomes; then x ∈ X is a possible realised value from X. A lower-case
(Greek or Latin) letter, x, refers to either a single element or a vector, which
will be clear from context. Calligraphic letters, X, are used to refer to sets. A
lower-case bold-face letter, x, refers to a matrix. If x is a vector then xi refers to
the ith element in this vector. If x is a matrix then xi refers to the ith row of
the matrix, x;j refers to the jth column of the matrix, and xij refers to the ith
row of the jth column of matrix x. Unless otherwise stated, a ‘vector’ is used
to refer to a column vector. An element with a ‘hat’, x̂, refers to the prediction
or estimation of the variable without the hat, x. Inline code and datasets will
use this font and package names will use this font. Finally, any dates will be
presented in the ISO format: YYYY-MM-DD.

Italicised text emphasises a word or phrase that is the focus of the sentence
or definition. ‘Single quotation marks’ are most often utilised to signify that the
word or phase will either be defined later in the thesis, or to identify when a word
should be taken in an English and not mathematical sense, for example ‘a good
model’ would signify that the phrase does not refer to a particular mathematical
definition of a model being good. “Double quotation marks” are reserved for
direct quotes and are always followed by the associated citation.

Distributions and Random Variables

Two separate notations are used to represent probability distributions and ran-
dom variables. The first is the ‘standard’ notation: let X be a random variable
following some distribution ζ, then fX is the probability density function of X.

The second notation instead associates distribution functions directly with the
distribution and not the variable. So if ζ is a distribution then ζ.f is the proba-
bility density function of ζ; analogously for other distribution defining functions.
This notation is described in full detail when first introduced in the thesis.
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Variables

The majority of variables will be defined when required however below are some
that are commonly used throughout this thesis.

R Set of Reals.
R>0 Set of Positive Reals (excluding zero).
R≥0 Set of Non-Negative Reals (including zero).
R̄ Set of Extended Reals, equal to R ∪ {−∞,+∞}.
N0 Set of Naturals (including zero).
N>0 Set of Positive Naturals (excluding zero).
N Normal distribution.
U Uniform distribution.
x,x, X,X Vector, matrix, random variable, and set of features.
y,y, Y,Y Vector, matrix, random variable, and set of true outcomes.
t, t, T,T Vector, matrix, random variable, and set of observed time outcomes.
δ,∆ Vector and random variable of survival/censoring indicators.
β Vector of model coefficients, or weights.
η Linear predictor, Xβ.
ζ.f Probability density function of distribution ζ.
ζ.F Cumulative distribution function of distribution ζ.
ζ.h Hazard function of distribution ζ.
ζ.H Cumulative hazard function of distribution ζ.
ζ.S Survival function of distribution ζ.
L Likelihood function.

The indicator function, I(·), expects a well-defined logical statement (·) and
equals 1 when this statement is true, and 0 otherwise. Any distribution function
with a ‘0’ in the subscript refers to the ‘baseline’ function, e.g. h0, S0 are the
baseline hazard and baseline survival functions respectively.

Functions

Distr(D) Space of distributions over the set D.
|x| Absolute value of x.

‖x‖ Euclidean norm of vector x,
√
|x1|2 + ...+ |xn|2.

x̄ Sample mean of vector x, 1
n

∑n
i=1 xi.

E(X) Expectation of random variable X.
Var(X) Variance of random variable X.

Let f : X → Y be any function with domain X and codomain Y. Then the
function signature of f is X → Y. Arguments and parameters are separated in
function signatures by a pipe, ‘|’, where variables to the left are parameters (free
variables) and those to the right are arguments (fixed). For example let f be an
indicator function that ‘checks’ if the parameter, φ, is below the fixed argument,
θ, then f is fully defined by

f : R× R→ {0, 1}; (φ|θ) 7→ I(φ < θ)
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Traditionally arguments are not included in the formal signature and the
above could be expressed as: Let θ ∈ R then f : R → {0, 1}; (φ) 7→ I(φ < θ).
The first notation is preferred as it clearly specifies all variables included in the
function with their domains, whether they are free or fixed, and cleanly extends
to multiple parameters and arguments.

Acronyms

Below is a table of acronyms used throughout this thesis (styled as they appear
in the text), these are all fully defined the first time they are used.

AFT Accelerated Failure Time
APT Accessible, Performant, Transparent
ANN Artificial Neural Network
AUC Area Under the Curve
cdf Cumulative Distribution Function
chf Cumulative Hazard Function
CPH Cox Proportional Hazards
GBM Gradient Boosting Machine
GLM Generalised Linear Model
IGS Integrated Graf Score
IPC(W) Inverse Probability of Censoring (Weighted)
I(S)LL Integrated (Survival) Log Loss
KM Kaplan-Meier
LHS Left Hand Side
MAE Mean Absolute Error
ML Machine Learning
pdf Probability Density Function
PH Proportional Hazards
PO Proportional Odds
RHS Right Hand Side
(R)MSE (Root) Mean Squared Error
ROC Receiver Operating Characteristic
R(S)F Random (Survival) Forest
r.v. Random Variable
(S)SVM (Survival) Support Vector Machine
s.t. Such That
TNR True Negative Rate
TPR True Positive Rate
t.v.i. Taking Values In
w.r.t. With Respect To
(W)(S)DLL (Weighted) (Survival) Density Log Loss
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Chapter 1

Introduction

Writing in the middle of a global pandemic, applications of survival analysis are
more relevant than ever. Predicting the time from onset of COVID-19 symptoms
to hospitalisation, or the time from hospitalisation to intubation, or intubation to
death, are all time-to-event predictions that are at the centre of survival analysis.
As well as morbid applications, survival analysis predictions may be concerned
with predicting the time until a customer cancels their gym membership, or the
lifetime of a lightbulb; any event that is guaranteed (or at least very likely) to
occur can be modelled by a survival analysis prediction. As these predictions
can be so sensitive, for example a model predicting when a child should be taken
off breathing support [62], the best possible predictions, evaluated to the highest
standard, are a necessity. In other fields of predictive modelling, machine learn-
ing has made incredible breakthroughs (such as AlphaFold1), therefore applying
machine learning to survival analysis is a natural step in the evolution of an im-
portant field.

Survival analysis is the field of Statistics focusing on modelling the distribution
of an event, which may mean the time until the event takes place, the risk of
the event happening, the probability of the event occurring at a single time, or
the event’s underlying probability distribution. Survival analysis (‘survival’) is a
unique field of study in Statistics as it includes the added difficulty of ‘censoring’.
Censoring is best described through example: a study is conducted to determine
the mortality rate of a group of patients after diagnoses with a particular disease.
If a patient dies during this study then their outcome is ‘death’ and their time of
death can be recorded. However if a patient drops-out of the study before they
die, then their time of death (though guaranteed to occur) is unknown and the
only available information is the time at which they left the study. This patient
is now said to be censored at the time they drop out. The censoring mechanism
allows as much outcome information (time and event) to be captured as possible
for all patients (observations).

Machine learning (ML) is the field of Statistics primarily concerned with build-
ing models to either predict outputs from inputs or to learn relationships from
data [118, 145]. This thesis is limited to the former case, or more specifically
supervised learning, as this is the field in which the vast majority of survival

1https://deepmind.com/research/case-studies/alphafold

20

https://deepmind.com/research/case-studies/alphafold


1.1. Motivations and Objectives 21

problems live. Relative to other areas of supervised learning, development in sur-
vival analysis has been slow – the majority of developments in machine learning
for survival analysis have only been in the past decade (see chapters 3-4). This
appears to have resulted in less interest in the development of machine learning
survival models (chapter 3), less rigour in the evaluation of such models (chap-
ter 4), and fewer off-shelf/open-source implementations (chapter 6). This thesis
seeks to set the foundations for clear workflows, good practice, and precise results
for ‘machine learning survival analysis’.

Section 1.1 will elaborate further on the motivation and objectives behind this
PhD; research objectives and contributions are then presented in section 1.2.

1.1. Motivations and Objectives

Experiments throughout the literature demonstrate that machine learning sur-
vival models often perform worse (or at least no better) than classical statistical
models [102, 154, 233, 241] (also see chapter 7).1 This thesis sets out to explore
why this is the case and how this has potential to be improved. The following
questions, based on observations of the field, motivated this thesis:

Why are regression and classification more popular than survival anal-
ysis in machine learning? There is no doubt that this is the case, for example
the ‘bibles of machine learning’ [23, 118, 145] discuss classification and regression
in detail but survival analysis is never discussed. Survival analysis has important
applications in healthcare, finance, engineering and more, all fields that directly
impact upon individual lives on a day-to-day basis, and should perhaps be con-
sidered as important as classification and regression. The result of this gap in
interest, is the erroneous assumption that one field can be directly applied to
another. For example there is evidence of researchers treating censoring as a
nuisance to be ignored and using regression models instead [268]. Censoring is
indeed a challenge and may contribute to making survival analysis less accessible
than other fields, but this need not be the case; a clear unification of terminology
and presentation of methods may help make ‘machine learning survival analysis’
more accessible. Added accessibility could lead to more academics (and non-
academics) engaging with the field and promoting good standards of practice, as
well as developing more novel models and measures.

Why are probabilistic survival predictions important? Development of
survival models appears to be skewed towards ‘ranking models’, which predict
the relative risk of an event occurring (section 2.3). In many applications these
predictions are sufficient, for example in randomised control trials if assessing
the increased/decreased risk of an event after treatment. However, there are
many use-cases where predicting an individual’s survival probability distribution
is required. Take, for example, an engineer calculating the lifetime of a plane’s

1The distinction between a ‘classical’ and ‘machine learning’ model used in this thesis is
provided in chapter 3.
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engine.1 There are three important reasons to replace a jet engine at the optimal
time: i) financial: jet engines are very expensive and replacing one sooner than
required is a waste of money; ii) environmental: an engine being replaced too
early is a waste of potential usage; and iii) safety: if the engine is replaced too
late then there is a risk to passengers. Now consider examples for the three
possible ‘prediction types’ the engineer can make:

i) A ‘relative risk prediction’: This engine is twice as likely to fail as another.

ii) A ‘survival time prediction’: The engine is expected to fail in 30 days.

iii) A ‘survival distribution prediction’: The lifetime of the engine is distributed
according to the probability distribution ζ.

The first prediction type is not useful as the underlying relative risk may be
unknown and the engineer is concerned with the individual lifetime. The second
prediction type provides a useful quantity for the engineer to work with however
there is no uncertainty captured in this prediction. The third prediction type can
capture the uncertainty of failure over the entirety of the positive Reals (though
usually only a small subset is possible and useful). With this final prediction
type, the engineer can create safe decisions: ‘replace the engine at time τ , where
τ is the time when the predicted probability of survival drops below 60%, S(τ) =
0.6’. There are ethical, economic, and environmental reasons for a good survival
distribution prediction and this thesis considers a distribution prediction to be
the most important prediction type.

How are survival models evaluated? Evaluating predictions from survival
models is of the utmost importance. This is especially important as survival mod-
els are often deployed in the public domain, particularly in healthcare. Physical
products in healthcare, such as new vaccines, undergo rigorous testing and re-
search in randomised control trials before being publically deployed; the same
level of rigour should be expected for the evaluation of survival models that are
used in life-and-death situations. Evaluation measures for regression and classifi-
cation are well-understood with important properties, however survival measures
have not undergone the same treatment. For example many survival models are
still being evaluated solely with concordance indices that have been repeatedly cr-
ticised [105, 246, 265]. This paper argues for the use of scoring rules (section 4.6),
which simultaneously assess predictions of distribution and relative risk.

Motivated by these questions, this thesis attempts to unify the two fields of ma-
chine learning and survival analysis to make the intersection of the two (‘machine
learning survival analysis’) more concise and accessible. This aim is guided by
three key themes: Accessibility, Transparency, and Performance. These are now
briefly described to explain why they have been identified as key principles for
this thesis.

1In this engineering context, survival analysis is usually referred to as reliability analysis.
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1.1.1. Accessibility, Transparency, and Predictive

Performance

In all critical analyses there must be a metric with which to judge the surveyed
objects. For example, machine learning models may be judged by predictive per-
formance, i.e. does one model outperform another? Or estimators may be judged
according to bias and consistency properties. As this thesis compares multiple
different types of objects, a more universal criteria is applied for the reviews, sur-
veys, and comparisons. These are: Accessibility, Transparency, and (predictive)
Performance. A model that satisfies all three criteria may be considered APT
(accessible, transparent, performant). These key themes are now briefly described
and then further discussion is given to why all must be satisfied for this thesis
to consider a model or measure to be ‘good’. These are primarily explained in
terms of a ‘model’, though all extend naturally to other objects.

A model is termed accessible if there either exists an open-source implemen-
tation of the model, or sufficient infrastructure and published mathematics for
the model to be implementable.1 For example, a novel neural network without an
open-source implementation can still be accessible if the model’s architecture is
clearly described and can therefore be implemented with neural network packages
such as TensorFlow [2].

A model is called transparent if its properties are well-understood, its use and
manipulation of data is clear, and its predictions have a precise interpretation.
The word ‘transparent’ does not refer to the inner workings of the model and
therefore a transparent model could still be a ‘black-box’.2 For example, random
forests (section 3.3) are built of hundreds or thousands of individual predictive
models, thus making it impossible to fully identify how the final prediction is
created. However the model is considered transparent as it is mathematically clear
and intuitive how it utilises the individual components to produce its prediction.

A model has good predictive performance if its predictions are notably im-
proved over some baseline model [111]. Unlike transparency and accessibility, it
is possible to quantify performance and compare this between models (chapter 4).
Whilst there is often a trade-off between predictive performance and model in-
terpretability (e.g. compare neural networks and linear regression), this is not
the case for predictive performance and transparency. When considering non-
predictive objects, such as measures, then performance instead refers to verifying
other established performance properties, for example consistency, unbiasedness,
and robustness. An object with good performance is called ‘performant’.

Performance is traditionally the primary metric by which models (and measures)
are judged, but this thesis only considers a model to be ‘good’ (or APT) if all
three of these themes are satisfied. In fact, it can be demonstrated that if even
one of these conditions is not satisfied a model can be dishonest or inefficient.

1The term ‘accessible’ is slightly more general than terms such as ‘off-shelf’ as accessibility
is defined to include objects that are not off-shelf but that can be implemented given
information provided in the literature.

2Therefore the term ‘transparent’ here does not refer to the concept of a ‘glass-box’
model, which is the opposite of a black-box model.
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By example, take the model that always predicts the height of a person as
42cm. This model is very accessible and transparent but has terrible predictive
performance, the model is therefore useless. Now consider a patented model
without open-source implementation that not only makes perfect predictions but
is also clearly described. In this case as no accessible implementation exists,
the model cannot be used and tested by the community and more importantly
cannot be externally validated, leading to ethical questions about commercial
implementation and even whether the results can be trusted. Finally, in the
case of an accessible model with strong predictive performance but without clear
description in a paper or reader-friendly code/documentation, there can only
be limited trust in the model’s performance, especially with respect to future
performance.

1.1.2. Research Objectives

This PhD aims to understand how machine learning has been used in survival
analysis historically, at present, and how it could, or even should, be utilised in
the future. This is achieved by the following concrete objectives:

O1) Mathematically define predictive formulations for ‘machine learning sur-
vival analysis’ with unified notation and terminology from the separate
fields of machine learning and survival analysis.

O2) Complete a critical survey of machine learning survival models to determine
which are APT.

O3) Survey metrics for evaluation of survival models (‘survival measures’). Where
required, provide novel definitions and proofs to extend or critique capabil-
ities of survival measures, in particular for ‘scoring rules’.

O4) Formalise the concepts of ‘composition and reduction’ in survival analysis.
Design and implement strategies for survival analysis that help further the
three themes.

O5) Improve accessibility of machine learning survival analysis via implementa-
tion of an open-source R package, mlr3proba.

O6) Perform the first large-scale benchmark experiment of commonly utilised
classical and machine learning survival models.

The next section details the contributions in this thesis that address these
research objectives.

1.2. Contributions and Thesis Structure

Contributions made by the author and external collaborators are first listed sep-
arately, and then the thesis structure is detailed.
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1.2.1. Personal Contributions

Key contributions made by the author are listed below.

• Chapter 1: Derivation of the accessibility, transparency, and predictive per-
formance themes for reviewing models and measures.

• Chapter 2: Formalisation of survival analysis as a machine learning task,
including identification and formalisation of distinct survival predict types
and tasks [162].

• Chapter 3: Survey of machine learning models for survival analysis with
a return type taxonomy and with a survey focus on the three identified
themes. Proposals of novel adaptations for machine learning methods, pri-
marily focusing on optimisation of distribution predictions.

• Chapter 4: Literature review of in-sample measures. Survey of evaluation
measures for evaluating survival models. Definitions for survival losses, ap-
proximate survival losses, and properness properties of survival losses. Sur-
vey of survival scoring rules utilised in the literature and definition of novel
losses. Proofs that common survival scoring rules are improper. Proof of
theorem relating strictly proper regression and survival losses. Conjectures
on the strict properness of survival losses to guide future research.

• Chapter 5: Design and formalisation of 5 composition and 8 reduction
strategies for survival analysis.

• Chapter 6: Design and implementation of software packages: R62S3, set6,
distr6, mlr3proba, mlr3extralearners, mlr3benchmark, survivalmod-
els, param6. First author on three publications included in the chapter
for set6 [278], distr6 [277], and mlr3proba [281].

• Chapter 7: Conducted first large-scale benchmark experiment of machine
learning survival models. Derived simulated data for benchmark experi-
ments. Collected real datasets for experiments.

1.2.2. External Contributions

Key contributions made by external collaborators are listed below.

• Chapter 5: Composition strategies (C1) and (C3) were initially discussed
with Dr. Franz Király (FK) and Prof. Dr. Bernd Bischl (BB). Reduction
strategies (R7) and (R8) were originally derived as part of a project for
Nuffield Health. Initial formalisation of (R7) and (R8) were written up in
the author’s BSc dissertation.

• Chapter 6

– Section 6.2: Parts of this section: the use-cases and parts of the in-
troduction, were directly copied from a paper in the Journal of Open
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Source Software [278], which was written with FK. Notable bottle-
necks in the software were identified by Jakob Richter (JR), solving
these lead to significant improvements in speed of construction and
comparison of sets.

– Section 6.3: This section is copied directly from a paper accepted in
The R Journal [277], which was written with FK. FK introduced the
novel distribution notation and contributed significantly to the intro-
duction and the section on composite distributions. The designs of
distr6 were based on the distr [258] package built by Prof. Dr. Pe-
ter Ruckdeschel and Prof. Dr. Matthias Kohl, who both contributed
to design discussions for the package. BB also helped informed some
early design choices. The kernel interface in distr6 was primarily im-
plemented by Nurul Ain Toha. Several distributions were implemented
by a team of undergraduates at UCL: Shen Chen, Jordan Deenichin,
Chengyang Gao, Chloe Zhaoyuan Gu, Yunjie He, Xiaowen Huang,
Shuhan Liu, Runlong Yu, Chijing Zeng and Qian Zhou.

– Section 6.4: Parts of this section were copied from a paper in Bioin-
formatics [281], written with FK, Andreas Bender (AB), BB, and
Michel Lang (ML); these were: the motivating example, significant
parts of the introduction, the ‘Related software’ section, and parts of
the ‘Return Types’ paragraph. mlr3proba was originally built from
mlr3survival1, created by ML. mlr3survival contained five learn-
ers (coxph, glmnet, ranger, rpart), two measures (harrellc, unoc), and
original designs for the survival prediction, learner, and task classes.
Since merging mlr3survival into mlr3proba, these have been mod-
ified however some of the original code remains. Design discussions
for mlr3proba were held with FK, BB, ML, JR, and Martin Binder.
Implementation of some learners were made by AB.

• Chapter 7: Discussions about the analysis of the real data experiments were
held with FK, BB, ML, and Florian Pfisterer. The code to analyse these
experiments was primarily written by the package author and implemented
in mlr3benchmark, with some code written by ML and Patrick Schratz.

In addition to direct contributions, discussions with the primary supervisor,
Dr Franz Király, and secondary supervisor, Dr Gareth Ambler, contributed to
work in all chapters.

1.2.3. Thesis Structure

• Chapter 2 introduces the survival and machine learning settings separately.
First a mathematical overview to survival analysis is provided (section 2.1)
and then the scope of this thesis is identified and justified (section 2.2). Sur-
vival prediction types are then mathematically defined for use throughout
the thesis (section 2.3). This is then mirrored for machine learning by first
introducing supervised learning and important machine learning methods

1https://github.com/mlr-org/mlr3survival

https://github.com/mlr-org/mlr3survival
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(section 2.4) and then defining survival analysis as a machine learning task
(section 2.5).

• Chapter 3 reviews classical survival models (section 3.1) and surveys ma-
chine learning survival models (sections 3.2-3.6). Only a short review is
provided for the classical setting as this has been covered extensively in the
literature over the past few decades. This thesis takes a novel approach
by focusing the classical review on model prediction types, in order to gain
clarity in understanding how the models can and cannot be utilised. The
rest of the chapter critically surveys the use of machine learning in survival
analysis. The survey is first split by machine learning classes, and then
further categorised again by model prediction types.

• Chapter 4 discusses how to evaluate the models introduced in the previous
chapter. This starts (section 4.1) with a general discussion about the im-
portance of evaluation and how survival measures must be selected to relate
to the correct survival task. The chapter continues with a full review of the
different types of survival measures, how these relate, and what properties
exist for the most common of these. Extensive discussion is given to sur-
vival scoring rules (section 4.6) including introducing and completing novel
definitions (section 4.6.2) and proofs (section 4.6.4).

• Chapter 5 introduces the concepts of composition and reduction to survival
analysis. The chapter beings with an introduction to composition (sec-
tion 5.2) as an abstract concept before identifying how it is already preva-
lent in survival analysis. The closely related concept of reduction is then
introduced (section 5.3). Concrete composition (section 5.4) and reduction
(section 5.5) strategies are then detailed.

• Chapter 6 focuses entirely on software engineering and introduces the pack-
ages that have been published to the Comprehensive R Archive Network
(CRAN)1. The chapter begins (section 6.1) with a general overview to the
ecosystem that the packages live in, as well as their original motivations.
Then three packages are discussed in greater detail (sections 6.2-6.4).

• Chapter 7 draws together results from all previous chapters in a large-scale
benchmark experiment of survival models for right-censored survival data.

• Chapter 8 concludes the thesis and details potential future plans and re-
search.

1https://cran.r-project.org/

https://cran.r-project.org/
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1.3. Code and Reproducibility

Finally, some brief words on the programming present in this thesis.

Programming Languages This thesis includes simulations and figures gener-
ated in R and the benchmark experiments in chapter 7 are also conducted in R.
Some Python implementations are considered in chapter 3. Only R and Python
are considered as they are the two most popular open-source programming lan-
guages that intersect classical statistics and machine learning. Further discussion
on these languages is provided in chapter 6.

Reproducibility The R code for any figures or experiments in this thesis are
freely available in a public1 GitHub repository2 under an MIT license.3 For
any code that requires specific software packages, these are listed when required
alongside version numbers. All R scripts have set seeds for reproducibility. The
code used in this thesis was run using various R versions from 3.6 to 4.0.2 and
whilst this should not affect reproducibility, this cannot be guaranteed.

1This repository will remain private until the experiment in chapter 7 has been released as
a pre-print (target: 2021-05-01). Until this time access will be granted upon request.

2https://github.com/RaphaelS1/thesis_supplementary
3https://opensource.org/licenses/MIT

https://github.com/RaphaelS1/thesis_supplementary
https://opensource.org/licenses/MIT


Chapter 2

Survival Analysis and Machine

Learning

In their broadest and most basic definitions, survival analysis is the study of
temporal data from a given origin until the occurrence of one or more events
or ‘end-points’ [55], and machine learning is the study of models and algorithms
that learn from data in order to make predictions or find patterns [118]. Reducing
either field to these definitions is ill-advised.

This chapter collects terminology utilised in survival analysis (section 2.1)
and machine learning (section 2.4) in order that this thesis can cleanly discuss
‘machine learning survival analysis’ (section 2.5). Once the mathematical setting
is set up, the thesis scope is fully presented in section 2.2. Whilst the content
of this chapter is not novel with respect to either survival analysis or machine
learning separately, this does appear to be the first formulation of the survival
analysis machine learning ‘task’ [162].

2.1. Survival Analysis

Survival analysis is the field of Statistics concerned with the analysis of time-
to-event data, which consists of covariates, a categorical (often binary) outcome,
and the time until this outcome takes place (the ‘survival time’). As a motivating
example of time-to-event data, say 100 patients are admitted to a COVID-19 ward
and for each patient the following covariate data are collected: age, weight and
sex; additionally for each patient the time until death or discharge is recorded. In
the time-to-event dataset, which takes a standard tabular form, each of the 100
patients is a row, with columns consisting of age, weight, and sex measurements,
as well as the outcome (death or discharge) and the time to outcome.

Survival analysis is distinct from other areas of Statistics due to the incor-
poration of ‘censoring’, a mechanism for capturing uncertainty around when an
event occurs in the real-world. Continuing the above example, if a patient dies
of COVID-19 five dies after admittance, then their outcome is exactly known:
they died after five days. Consider now a patient who is discharged after ten
days. As death is a guaranteed event they have a true survival time but this may

29
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be decades later, therefore they are said to be censored at ten days. This is a
convenient method to express that the patient survives up to ten days and their
survival status at any time after this point is unknown. Censoring is a unique
challenge to survival analysis that attempts to incorporate as much information
as possible without knowing the true outcome. This is a ‘challenge’ as statis-
tical models usually rely on learning from observed, i.e. known, outcome data;
therefore censoring requires special treatment.

Whilst survival analysis occurs in many fields, for example as ‘reliability anal-
ysis’ in engineering and ‘duration analysis’ in economics, in this thesis the term
‘survival’ will always be used. Moreover the following terminology, analogous to a
healthcare setting, are employed: survival analysis (or ‘survival’ for short) refers
to the field of study; the event of interest is the ‘event’, or ‘death’; an observation
that has not experienced an event is ‘censored’ or ‘alive’; and observations are
referred to as ‘observations’, ‘subjects’, or ‘patients’.

Some of the biggest challenges in survival analysis stem from an unclear def-
inition of a ‘survival analysis prediction’ and different (sometimes conflicting)
common notations. This thesis attempts to make discussions around survival
analysis clearer and more precise by first describing the mathematical setting for
survival analysis in section 2.1.1 and only then defining the prediction types to
consider in section 2.3.

2.1.1. Survival Data and Definitions

Survival analysis has a more complicated data setting than other fields as the
‘true’ data generating process is not directly modelled but instead engineered
variables are defined to capture observed information. Let,

• X t.v.i. X ⊆ Rp, p ∈ N>0 be the generative random variable representing
the data features/covariates/independent variables.

• Y t.v.i. T ⊆ R≥0 be the (unobservable) true survival time.

• C t.v.i. T ⊆ R≥0 be the (unobservable) true censoring time.

It is impossible to fully observe both Y and C. This is clear by example: if an
observation drops out of a study then their censoring time is observed but their
event time is not, whereas if an observation dies then their true censoring time
is unknown. Hence, two engineered variables are defined to represent observable
outcomes. Let,

• T := min{Y,C} be the observed outcome time.

• ∆ := I(Y = T ) = I(Y ≤ C) be the survival indicator (also known as the
censoring or event indicator).1

Together (T,∆) is referred to as the survival outcome or survival tuple and
they form the dependent variables. The survival outcome provides a concise

1Indicators are usually named to reflect a positive condition in the function (in this case
the event when Y = T ), but counter to this convention the ‘censoring indicator’ is possibly
the most common term.
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mechanism for representing the time of the observed outcome and indicating
which outcome (death or censoring) took place.

Now the full generative template for survival analysis is given by
(X,∆, C, Y, T ) t.v.i. X × {0, 1} × T × T × T and with (Xi,∆i, Ci, Yi, Ti) jointly
i.i.d. A survival dataset is defined by D = {(X1, T1,∆1), ..., (Xn, Tn,∆n)} where

(Xi, Ti,∆i)
i.i.d.∼ (X,T,∆) and Xi is a p-vector, Xi = (Xi;1, ..., Xi;p). Though

unobservable, the true outcome times are defined by (Y1, C1), ..., (Yn, Cn) where

(Yi, Ci)
i.i.d.∼ (Y,C).

Table 1 exemplifies a random survival dataset with n observations (rows) and
p features.

Table 1: Theoretical time-to-event dataset. (Y,C) are ‘hypothetical’ as they can never
be directly observed. Rows are individual observations, X columns are features, T is
observed time-to-event, ∆ is the censoring indicator, and (Y,C) are hypothetical true
survival and censoring times.

X T ∆ Y C
X11 · · · X1p T1 ∆1 Y1 C1

...
. . .

...
...

...
...

...
Xn1 · · · Xnp Tn ∆n Yn Cn

Table 2 exemplifies an observed survival dataset with a modified version of
the rats dataset [291].

Table 2: rats [291] time-to-event dataset with added hypothetical columns (Y,C).
Rows are individual observations, X columns are features, T is observed time-to-event,
∆ is the censoring indicator, and (Y,C) are hypothetical (here arbitrary values depen-
dent on (T,∆)) true survival and censoring times.

X T ∆ Y C
litter (X.;1) rx (X.;2) sexF (X.;3) time status survTime censTime

1 1 1 101 0 105 101
1 0 1 49 1 49 55
1 0 1 104 0 200 104
2 1 0 91 0 92 91
2 0 0 104 1 104 104
2 0 0 102 1 102 120

Both datasets includes two extra columns, on the right of the triple vertical
line, which imagine hypothetical data for the unobserved true survival and cen-
soring times.

Finally the following terms are used frequently throughout this report. Let

(Ti,∆i)
i.i.d.∼ (T,∆), i = 1, ..., n, be random survival outcomes. Then,

i) The set of unique or distinct time-points refers to the set of time-points in
which at least one observation dies or is censored, UO := {Ti}i∈{1,...,n}.
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ii) The set of unique death times refers to the set of unique time-points in
which death (and not censoring) occurred, UD := {Ti : ∆i = 1}i∈{1,...,n}.

iii) The risk set at a given time-point, τ , is the set of subjects who are known
to be alive (not dead or censored) just before that time, Rτ := {i : Ti ≥ τ}
where i is a unique row/subject in the data.

iv) The number of observations alive at τ is the cardinality of the risk set, |Rτ |,
and is denoted by nτ :=

∑
i I(Ti ≥ τ).

v) The number of observations who die at τ is denoted by dτ :=
∑

i I(Ti =
τ,∆i = 1).

vi) The Kaplan-Meier estimate of the average survival function of the training
data survival distribution is the Kaplan-Meier estimator (section 3.1.1) fit
(section 2.4.1) on training data (Ti,∆i) and is denoted by ŜKM .

vii) The Kaplan-Meier estimate of the average survival function of the training
data censoring distribution is the Kaplan-Meier estimator fit on training
data (Ti, 1−∆i) and is denoted by ĜKM .

Notation and definitions will be recapped at the start of each chapter for
convenience.

2.1.2. Censoring

Censoring is now discussed in more detail and important concepts introduced.
Given the survival generating process (X,T,∆) with unobservable (Y,C), the
event is experienced if Y ≤ C and ∆ = 1 or censored if ∆ = 0.

Censoring ‘Location’ Right-censoring is the most common form of censoring
in survival models and it occurs either when a patient drops out (but doesn’t
experience the event) of the study before the end and thus their outcome is
unknown, or if they experience the event at some unknown point after the study
end. Formally let [τl, τu] be the study period for some, τl, τu ∈ R≥0. Then right-
censoring occurs when either Y > τu or when Y ∈ [τl, τu] and C ≤ Y . In the first
case T = C = τu and censoring is due to the true time of death being unknown
as the observation period has finished. In the latter case, a separate censoring
event, such as drop-out or another competing risk, is observed.

Left-censoring is a rarer form of censoring and occurs when the event happens
at some unknown time before the study start, Y < τl. Interval-censoring occurs
when the event takes place in some interval within the study period, but the
exact time of event is unknown. Figure 1 shows a graphical representation of
right-censoring.

Censoring ‘Dependence’ Censoring is often defined as uninformative if Y⊥⊥C
and informative otherwise however these definitions can be misleading as the term
‘uninformative’ appears to be imply that censoring is independent of both X and
Y , and not just Y . Instead the following more precise definitions are used in this
report.
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Figure 1: Dead and censored subjects (y-axis) over time (x-axis). Black diamonds
indicate true death times and white circles indicate censoring times. Vertical line is the
study end time. Subjects 1 and 2 die in the study time. Subject 3 is censored in the
study and (unknown) dies within the study time. Subject 4 is censored in the study
and (unknown) dies after the study. Subject 5 dies after the end of the study.

Definition 2.1.1. Let (X,T,∆, Y, C) be defined as above, then

i) If C ⊥⊥X, censoring is feature-independent, otherwise censoring is feature-
dependent.

ii) If C⊥⊥Y , then censoring is event-independent, otherwise censoring is event-
dependent.

iii) If (C ⊥⊥ Y )|X, censoring is conditionally independent of the event given
covariates, or conditionally event-independent.

iv) If C⊥⊥(X, Y ) censoring is uninformative, otherwise censoring is informative.

Non-informative censoring can generally be well-handled by models as true
underlying patterns can still be detected and the reason for censoring does not
affect model inference or predictions. However in the real-world, censoring is
rarely non-informative as reasons for drop-out or missingness in outcomes tend
to be related to the study of interest. Event-dependent censoring is a tricky case
that, if not handled appropriately (by a competing-risks framework), can easily
lead to poor model development; the reason for this can be made clear by exam-
ple: Say a study is interested in predicting the time between relapses of stroke but
a patient suffers a brain aneurysm due to some separate neurological condition,
then there is a high possibility that a stroke may have occurred if the aneurysm
had not. Therefore a survival model is unlikely to distinguish the censoring event
(aneurysm) from the event of interest (stroke) and will confuse predictions. In
practice, the majority of models and measures assume that censoring is condition-
ally event-independent and hence censoring can be predicted by the covariates
whilst not directly depending on the event. For example if studying the survival
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time of ill pregnant patients in hospital, then dropping out of the study due to
pregnancy is clearly dependent on how many weeks pregnant the patient is when
the study starts (for the sake of argument assume no early/late pregnancy due
to illness).

Type I Censoring Type I and Type II censoring are special-cases of right-
censoring, only Type I is discussed in this thesis as it is more common in sim-
ulation experiments. Type I censoring occurs if a study has a set end-date, or
maximum survival time, and a patient survives until the end of the study. If
survival times are dependent on covariates (i.e. not random) and the study start
date is known (or survival times are shifted to the same origin) then Type I cen-
soring will usually be informative as censored patients will be those who survived
the longest.

2.2. Thesis Scope

Now that the mathematical setting has been defined, the thesis scope is provided.
For time and relevance the scope of this thesis is narrowed to the most parsimo-
nious setting that is genuinely useful in modelling real-world scenarios. This is
the setting that captures all assumptions made by the majority of proposed sur-
vival models and therefore is practical both theoretically and in application. This
setting is defined by the following assumptions (with justifications):

i) Let p be the proportion of censored observations in the data, then p ∈ (0, 1).
This open interval prevents the case when p = 0, which is simply a regression
problem (section 2.4.2.2), or the case when p = 1, in which no useful models
exist (as the event never occurs).

ii) Only right-censoring is observed in the data, no left- or interval-censoring.
This accurately reflects most real-world data in which observations that
have experienced the event before the study start (left-censoring) are usu-
ally not of interest, and close monitoring of patients means that interval-
censoring is unlikely in practice. It is acknowledged that left-truncation is
a common problem in medical datasets though this is often handled not
by models but by data pre-processing, which is not part of the workflow
discussed in this thesis.

iii) There is only one event of interest, an observation that does not experience
this event is censored. This eliminates the ‘competing risk’ setting in which
multiple events of interest can be modelled.

iv) The event can happen at most once. For example the event could be death
or initial diagnosis of a disease however cannot be recurrent such as seizure.
In the case where the event could theoretically happen multiple times, only
the time to one (usually the first) occurrence of the event is modelled.

v) The event is guaranteed to happen at least once. This is an assumption
implicitly made by all survival models as predictions are for the time until
the true event, Y , and not the observed outcome, T .
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For both the multi-event and recurrent-event cases, simple reductions exist
such that these settings can be handled by the models discussed in this paper
however this is not discussed further here.

No assumptions are made about whether censoring is dependent on the data
but when models and measures make these assumptions, they will be explicitly
discussed.

The purpose of any statistical analysis is dependent on the research question.
For example techniques are available for data analysis, imputation, exploration,
prediction, and more. This thesis focuses on the predictive setting; other objec-
tives, such as model inspection and data exploration can be achieved post-hoc
via interpretable machine learning techniques [219].

Finally, the methods in this thesis are restricted to frequentist statistics. Bayesian
methods are not discussed as the frequentist setting is usually more parsimonious
and additionally there are comparatively very few off-shelf implementations of
Bayesian survival methods. Despite this, it is noted that Bayesian methods are
particularly relevant to the research in this thesis, which is primarily concerned
with uncertainty estimates and predictions of distributions. Therefore, a natural
extension to the work in this thesis would be to fully explore the Bayesian setting.

2.3. Survival Prediction Problems

This section continues by defining the survival problem narrowed to the scope
described in the previous section. Defining a single ‘survival prediction problem’
(or ‘task’) is important mathematically as conflating survival problems could lead
to confused interpretation and evaluation of models. Let (X,T,∆) and D be as
defined above. A general survival prediction problem is one in which: i) a survival
dataset, D, is split (section 2.4.1) for training, D0, and testing, D1; ii) a survival
model is fit on D0; and iii) the model predicts some representation of the unknown
true survival time, Y , given D1.

The process of ‘fitting’ is model-dependent, and can range from simple max-
imum likelihood estimation of model coefficients, to complex algorithms. The
model fitting process is discussed in more abstract detail in section 2.4 and then
concrete algorithms are discussed in chapter 3. The different survival problems
are separated by ‘prediction types’ or ‘prediction problems’, these can also be
thought of as predictions of different ‘representations’ of Y . Four prediction types
are discussed in this paper, these may be the only possible survival prediction
types and are certainly the most common as identified in chapters 3 and 4. They
are predicting:

i) The relative risk of an individual experiencing an event – A single contin-
uous ranking.

ii) The time until an event occurs – A single continuous value.

iii) The prognostic index for a model – A single continuous value.

iv) An individual’s survival distribution – A probability distribution.
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The first three of these are referred to as deterministic problems as they pre-
dict a single value whereas the fourth is probabilistic and returns a full survival
distribution. Definitions of these are expanded on below.

Survival predictions differ from other fields in two respects. Firstly, the predicted
outcome, Y , is a different object than the outcome used for model training, (T,∆).
This differs from, say, regression in which the same object (a single continuous
variable) is used for fitting and predicting. Secondly, with the exception of the
time-to-event prediction, all other prediction types do not predict Y but some
other related quantity.

Survival prediction problems must be clearly separated as they are inherently
incompatible. For example it is not meaningful to compare a relative risk pre-
diction from one observation to a survival distribution of another. Whilst these
prediction types are separated above, they can be viewed as special cases of each
other. Both (1) and (2) may be viewed as variants of (3); and (1), (2), and (3)
can all be derived from (4); this is elaborated on below.

Relative Risk/Ranking This is perhaps the most common survival problem
and is defined as predicting a continuous rank for an individual’s ‘relative risk
of experiencing the event’. For example, given three patients, {i, j, k}, a relative
risk prediction may predict the ‘risk of event’ as {0.1, 0.5, 10} respectively. From
these predictions, the following types of conclusions can be drawn:

i) Conclusions comparing patients. e.g. i is at the least risk; the risk of j is
only slightly higher than that of i but the risk of k is considerably higher
than j; the corresponding ranks for i, j, k, are 1, 2, 3.

ii) Conclusions comparing risk groups. e.g. thresholding risks at 1.0 places i
and j in a ‘low-risk’ group and k in a ‘high-risk’ group

So whilst many important conclusions can be drawn from these predictions, the
values themselves have no meaning when not compared to other individuals. In-
terpretation of these rankings has historically been conflicting in implementation,
with some software having the interpretation ‘higher ranking implies higher risk’
whereas others may indicate ‘higher ranking implies lower risk’ (section 6.4.4.2).
In this thesis, a higher ranking will always imply a higher risk of event (as in the
example above).

Time to Event Predicting a time to event is the problem of predicting the
deterministic survival time of a patient, i.e. the amount of time for which they
are predicted to be alive after some given start time. Part of the reason this
problem is less common in survival analysis is because it borders regression – a
single continuous value is predicted – and survival – the handling of censoring is
required – but neither is designed to solve this problem directly. Time-to-event
predictions can be seen as a special-case of the ranking problem as an individual
with a predicted longer survival time will have a lower overall risk, i.e. if ti, tj and
ri, rj are survival time and ranking predictions for patients i and j respectively,
then ti > tj → ri < rj.
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Prognostic Index Given covariates, x ∈ Rn×p, and a vector of model coeffi-
cients, β ∈ Rp, the linear predictor is defined by η := xβ ∈ Rn. The ‘prognostic
index’ is a term that is often used in survival analysis papers that usually refers to
some transformation (possibly identity), φ, on the linear predictor, φ(η). Assum-
ing a predictive function (for survival time, risk, or distribution defining function
(see below)) of the form g(ϕ)φ(η), for some function g and variables ϕ where g(ϕ)
is constant for all observations (e.g. Cox PH (section 3.1.2)), then predictions of
η are a special case of predicting a relative risk, as are predictions of φ(η) if φ is
rank preserving. A higher prognostic index may imply a higher or lower risk of
event, dependent on the model structure.

Survival Distribution Predicting a survival distribution refers specifically to
predicting the distribution of an individual patient’s survival time, i.e. mod-
elling the distribution of the event occurring over R≥0. Therefore this is seen
as the probabilistic analogue to the deterministic time-to-event prediction, these
definitions are motivated by similar terminology in machine learning regression
problems (section 2.4). The above three prediction types can all be derived from
a probabilistic survival distribution prediction (section 5.4).

A survival distribution is a mathematical object that is estimated by predict-
ing a representation of the distribution. Let W be a continuous random variable
t.v.i. R≥0 with probability density function (pdf), fW : R≥0 → R≥0, and cumu-
lative distribution function (cdf), FW : R≥0 → [0, 1]; (τ) 7→ P (W ≤ τ). The pdf,
fW (τ), is the likelihood of an observation dying in a small interval around time
τ , and FW (τ) =

∫ τ
0
fW (τ) is the probability of an observation being dead at time

τ (i.e. dying at or before τ). In survival analysis, it is generally more interesting
to model the risk of the event taking place or the probability of the patient being
alive, leading to other distribution representations of interest.

The survival function is defined as

SW : R≥0 → [0, 1]; (τ) 7→ P (W ≥ τ) =

∫ ∞
τ

fW (u) du (2.3.1)

and so SW (τ) = 1−FW (τ). This function is known as the survival function as it
can be interpreted as the probability that a given individual survives until some
point τ ≥ 0.

Another common representation is the hazard function,

hW : R≥0 → R≥0; (τ) 7→ fW (τ)

SW (τ)
(2.3.2)

The hazard function is interpreted as the instantaneous risk of death given that
the observation has survived up until that point; note this is not a probability as
hW can be greater than one.

The cumulative hazard function (chf) can be derived from the hazard function
by

HW : R≥0 → R≥0; (τ) 7→
∫ τ

0

hW (u) du (2.3.3)
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The cumulative hazard function relates simply to the survival function by

HW (τ) =

∫ τ

0

hW (u) du =

∫ τ

0

fW (u)

SW (u)
du =

∫ τ

0

−S
′
W (u)

SW (u)
du = − log(SW (τ))

(2.3.4)
Any of these representations may be predicted conditionally on covariates for

an individual by a probabilistic survival distribution prediction. Once a function
has been estimated, predictions can be made conditional on the given data. For
example if n survival functions are predicted, Ŝ1, ..., Ŝn, then Ŝi is interpreted as
the predicted survival function given covariates of observation i, and analogously
for the other representation functions.

2.4. Machine Learning

This section begins with a very brief introduction to machine learning and a
focus on regression and classification; the survival machine learning task is then
introduced (section 2.5). Of the many fields within machine learning (ML), the
scope of this thesis is narrowed to supervised learning. Supervised learning is
the sub-field of ML in which predictions are made for outcomes based on data
with observed dependent and independent variables. For example predicting
someone’s height is a supervised learning problem as data can be collected for
features (independent variables) such as age and sex, and outcome (dependent
variable), which is height. Predictive survival analysis problems fall naturally in
the supervised learning framework as there are identifiable features and (multiple
types of) outcomes.

2.4.1. Terminology and Methods

Common supervised learning methods are discussed in a simplified setting with
features X t.v.i. X and outcomes Y t.v.i. Y; usually outcomes are referred to as
‘targets’ (a ‘target for prediction’). Let D0 = {(X1, Y1), ..., (Xn, Yn)} be a (train-

ing) dataset where (Xi, Yi)
i.i.d.∼ (X, Y ). The methods below extend naturally to

the survival setting.

Strategies and Models In order to clearly separate between similar objects,
several terms for machine learning are now introduced and clearly distinguished.

Let g : X→ Y be the true (but unknown) mapping from the features to out-
comes, referred to as the true prediction functional. Let G be the set of prediction
functionals such that ∀Υ ∈ G,Υ : X → Y. A learning or fitting algorithm is
defined to be any function of the form A : Xn × Yn → G. The goal of super-
vised learning is to learn g with a learning algorithm fit on (i.e. the input to
the algorithm is) training data, ĝ := A(D0) ∈ G. Note that ĝ may take hyper-
parameters that can be set or tuned (see below). The learning algorithm is ‘good’
if ĝ(X) ≈ g(X) (see ‘Evaluation’ below).

The learning algorithm is determined by the chosen learning strategy and
model, where a model is a complete specification of a learning strategy including
hyper-parameters. These terms are more clearly illustrated by example:
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i) Learning strategy – simple linear regression

ii) Model – y = β0 +β1x where x ∈ R is a single covariate, y ∈ R is the target,
and β0, β1 ∈ R are model coefficients.

iii) Learning algorithm (model fitting) – Minimise the residual sum of squares:
(β̂0, β̂1) := argminβ0,β1{

∑n
i=1(yi − β0 − β1xi)

2} for (xi, yi) ∈ D0, i = 1, ..., n.

iv) Prediction functional – ĝ(x) = β̂0 + β̂1x

To further illustrate the difference between learning strategy and model, note
that the same learning strategy ‘simple linear regression’ could either utilise the
model above or instead a model without intercept, y = βx, in which case the
learning algorithm and prediction functional would also be modified.

The model in (ii) is called unfitted as the model coefficients are unknown and
the model cannot be used for prediction. After step (iii) the model is said to be
fit to the training data and therefore the model is fitted.1 It is common to refer to
the learning algorithm (and associated hyper-parameters) as the unfitted model
and to refer to the prediction functional (and associated hyper-parameters) as
the fitted model.

Evaluation Models are evaluated by evaluation measures called losses or scores,2

L : Y× Y→ R̄. Let (X∗, Y ∗) ∼ (X, Y ) be test data (i.e. independent of D0) and
let ĝ : X → Y be a prediction functional fit on D0, then these evaluation mea-
sures determine how closely predictions, ĝ(X∗), relate to the truth, Y ∗, thereby
providing a method for determining if a model is ‘good’.3

Task A machine learning task is a simple mechanism to outline the problem
of interest by providing: i) the data specification; ii) the definition of learning;
iii) the definition of success (when is a prediction ‘good’?) [162]. All tasks in
this paper have the same definitions of learning and success. For (ii), the aim
is to learn the true prediction functional, g, by fitting the learning algorithm on
training data, ĝ := A(D0). For (iii), a predicted functional is considered ‘good’
if the expected generalization error, E[L(Y ∗, ĝ(X∗))], is low, where (X∗, Y ∗) ∼
(X, Y ) is independent of the training data D0, and L is some loss that is chosen
according to the domain of interest (regression, classification, survival).

Resampling Models are tested on their ability to make predictions. In order
to avoid ‘optimism of training error’ [145] – overconfidence caused by testing the
model on training data – models are tested on previously unseen or ‘held-out’
data. Resampling is the procedure of splitting one dataset into two or more
for separated training and testing. In this paper only two resampling methods
are utilised: holdout and cross-validation. Holdout is the process of splitting a

1The terms ‘fitted’ and ‘unfitted’ are used instead of ‘fit’ and ‘unfit’ to prevent confusion
with words such as ‘suitable’ and ‘unsuitable’.

2The term ‘loss’ is usually utilised to refer to evaluation measures to be minimised,
whereas ‘scores’ should be maximised, this is returned to in chapter 4.

3Here evaluation refers specifically to predictive ability; other forms of evaluation and
further discussion of the area are provided in chapter 4.
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primary dataset into training data for model fitting and testing data for model
predicting. This is an efficient method but may not accurately estimate the
expected generalisation error for future model performance, instead this is well-
estimated by K-fold cross-validation (KCV) [118]. In KCV, data is split into
K ∈ N>0 ‘folds’ such that K − 1 of the folds are used for model training and the
final Kth fold for testing. The testing fold is iterated over all K folds, so that
each at some point is used for testing and then training (though never at the same
time). In each iteration the model is fit on the training folds, and predictions are
made and evaluated on the testing fold, giving a loss Lk := L(ĝ(Xk), Y k), where
(Xk, Y k) are data from the kth fold. A final loss is defined by, L∗ := 1

K

∑K
k=1 Lk.

Commonly K = 5 or K = 10 [32, 166].

Model Performance Benchmarking Whilst benchmarking often refers to
speed tests, i.e. the time taken to complete an operation, it can also refer to
any experiment in which objects (mathematical or computational) are compared.
In this report, a benchmark experiment will either refer to the comparison of
multiple models’ predictive abilities, or comparison of computational speeds and
object sizes for model fitting; which of these will be clear from context.

Model Comparison Models can be analytically compared on how well they
make predictions for new data. Model comparison is a complex topic with many
open questions [67, 69, 223] and as such discussion is limited here. When models
are compared on multiple datasets, there is more of a consensus in how to evaluate
models [67] and this is expanded on further in chapter 7. Throughout this thesis
there are small simulation experiments for model comparison on single datasets
however as these are primarily intended to aid exposition and not to generalise
results, it suffices to compare models with the conservative method of constructing
confidence intervals around the sample mean and standard error of the loss when
available [223].

Hyper-Parameters and Tuning A hyper-parameter is a model parameter
that can be set by the user, as opposed to coefficients that are estimated as part
of model fitting. A hyper-parameter can be set before training, or it can be
tuned. Tuning is the process of choosing the optimal hyper-parameter value via
automation. In the simplest setting, tuning is performed by selecting a range of
values for the hyper-parameter(s) and treating each choice (combination) as a
different model. For example if tuning the number of trees in a random forest
(section 3.3), mr, then a range of values, say 100, 200, 500 are chosen, and three
models mr100,mr200,mr500 are benchmarked. The optimal hyper-parameter is
given by whichever model is the best performing. Nested resampling is a common
method to prevent overfitting that could occur from using overlapping data for
tuning, training, or testing. Nested resampling is the process of resampling the
training set again for tuning.
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2.4.2. Machine Learning in Classification and Regression

Before introducing machine learning for survival analysis, which is considered
‘non-classical’, the more standard classification and regression set-ups are pro-
vided; these are referenced throughout this thesis.

2.4.2.1. Classification

Classification problems make predictions about categorical (or discrete) events,
these may be deterministic or probabilistic. Deterministic classification predicts
which category an observation falls into, whereas probabilistic classification pre-
dicts the probability of an observation falling into each category. In this brief
introduction only binary single-label classification is discussed, though the multi-
label case is considered in section 5.5.7.4. In binary classification, there are two
possible categories an observation can fall into, usually referred to as the ‘posi-
tive’ and ‘negative’ class. For example predicting the probability of death due to
a virus is a probabilistic classification task where the ‘positive’ event is death.

A probabilistic prediction is more informative than a deterministic one as it
encodes uncertainty about the prediction. For example it is clearly more informa-
tive to predict a 70% chance of rain tomorrow instead of simply ‘rain’. Moreover
the latter prediction implicitly contains an erroneous assumption of certainty, e.g.
‘it will rain tomorrow’.

Box 1 (Classification Task). Let (X, Y ) be random variables t.v.i. X × Y

where X ⊆ Rp and Y = {0, 1}. Then,

i) The probabilistic classification task is the problem of predicting the

probability of a single event taking place and is specified by g : X →
[0, 1].

ii) The deterministic classification task is the problem of predicting if a

single event takes place and is specified by g : X→ Y.

The estimated prediction functional ĝ is fit on training data

(X1, Y1), ..., (Xn, Yn)
i.i.d.∼ (X, Y ) and is considered ‘good’ if E[L(Y ∗, ĝ(X∗))]

is low, where (X∗, Y ∗) ∼ (X, Y ) is independent of (X1, Y1), ..., (Xn, Yn) and

ĝ.

In the probabilistic case, the prediction ĝ maps to the estimated proba-

bility mass function p̂Y s.t. p̂Y (1) = 1− p̂Y (0).

2.4.2.2. Regression

A regression prediction is one in which the goal is to predict a continuous outcome
from a set of features. For example predicting the time until an event (without
censoring) occurs, is a regression problem.
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Box 2 (Regression Task). Let (X, Y ) be random variables t.v.i. X×Y where

X ⊆ Rp and Y ⊆ R. Let S ⊂ Distr(Y) be a convex set of distributions on Y.

Then,

i) The probabilistic regression task is the problem of predicting a condi-

tional distribution over the Reals and is specified by g : X→ S.

ii) The deterministic regression task is the problem of predicting a single

continuous value in the Reals and is specified by g : X→ Y.

The estimated prediction functional ĝ is fit on training data

(X1, Y1), ..., (Xn, Yn)
i.i.d.∼ (X, Y ) and is considered ‘good’ if E[L(Y ∗, ĝ(X∗))]

is low, where (X∗, Y ∗) ∼ (X, Y ) is independent of (X1, Y1), ..., (Xn, Yn) and

ĝ.

Whilst regression can be either probabilistic or deterministic, the latter is
much more common and therefore in this thesis ‘regression’ refers to the deter-
ministic case unless otherwise stated.

2.5. Survival Analysis Task

The survival prediction problems identified in section 2.3 are now formalised as
machine learning tasks.

Box 3 (Survival Task). Let (X,T,∆) be random variables t.v.i. X×T×{0, 1}
where X ⊆ Rp and T ⊆ R≥0. Let S ⊆ Distr(T) be a convex set of distributions

on T and let R ⊆ R. Then,

i) The probabilistic survival task is the problem of predicting a conditional

distribution over the positive Reals and is specified by g : X→ S.

ii) The deterministic survival task is the problem of predicting a continu-

ous value in the positive Reals and is specified by g : X→ T.

iii) The survival ranking task is specified by predicting a continuous ranking

in the Reals and is specified by g : X→ R.

The estimated prediction functional ĝ is fit on training data

(X1, T1,∆1), ..., (Xn, Tn,∆n)
i.i.d.∼ (X,T,∆) and is considered ‘good’ if

E[L(T ∗,∆∗, ĝ(X∗))] is low, where (X∗, T ∗,∆∗) ∼ (X,T,∆) is independent of

(X1, T1,∆1), ..., (Xn, Tn,∆n) and ĝ.
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Any other survival prediction type falls within one of these tasks above, for ex-
ample predicting log-survival time is the deterministic task and predicting prog-
nostic index or linear predictor is the ranking task. Removing the separation
between the prognostic index and ranking prediction types is due to them both
making predictions over the Reals; their mathematical difference lies in interpre-
tation only. In general, the survival task will assume that T ⊆ R≥0, and the terms
‘discrete’ or ‘reduced survival task’ will refer to the case when T ⊆ N0. Unless
otherwise specified, the ‘survival task’, will be used to refer to the probabilistic
survival task.1

Survival Analysis and Regression Survival and regression tasks are closely
related as can be observed from their respective definitions. Both are specified
by g : X→ S where for probabilistic regression S ⊆ Distr(R) and for survival S ⊆
Distr(R≥0). Furthermore both settings can be viewed to use the same generative
process. In the survival setting in which there is no censoring then data is drawn
from (X, Y ) t.v.i. X×T,T ⊆ R≥0 and in regression from (X, Y ) t.v.i. X×Y,Y ⊆ R,
so that the only difference is whether the outcome data ranges over the Reals or
positive Reals.

These closely related tasks are discussed in more detail in 5.3, with a particular
focus on how the more popular regression setting can be used to solve survival
tasks. In chapter 3 the models are first introduced in a regression setting and then
the adaptations to survival are discussed, which is natural when considering that
historically machine learning survival models have been developed by adapting
regression models.

2.6. Summary

This chapter has introduced survival analysis and machine learning, defined each
and provided consistent notation and terminology for use throughout this thesis.

The problem of censoring in survival analysis was presented and it was demon-
strated why this is a helpful but challenging feature for survival modelling. The
primary survival prediction types in the classical setting were identified then sep-
arately defined and the scope of this thesis was presented.

The machine learning scope of this thesis is narrowed to the supervised learn-
ing setting with a view to make predictions either over the Reals (for rankings),
the positive Reals (time to event), or for a full probability distribution over the
positive Reals. Key machine learning methods were introduced and will be re-
ferred to throughout this paper. Finally classification, regression, and survival
tasks were defined and the close connections between regression and survival were
identified. These will be exploited fully in chapters 3 and 5.

1These definitions are given in the most general case where the time variable is over R≥0.
In practice, all models instead assume time is over R>0 and any death at Ti = 0 is set to
Ti = ε for some very small ε ∈ R>0. Analogously for the discrete survival task. This
assumption may not reflect reality as a patient could die at the study start however models
cannot typically include this information in training.
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The next chapter will use the terminology and notation from this chapter to
review and survey both classical and machine learning survival models.



Chapter 3

A Critical Survey of Survival

Analysis Models

This chapter provides a brief review of classical survival models and then a crit-
ical survey of machine learning survival models. The terms ‘classical’, ‘machine
learning’, and even ‘model’ have hazy definitions that will be further specified to
make clear how they apply in this paper.

Recall (section 2.4.1) the separation between the following terms:

• Learning strategy – A method for estimating the true prediction functional,
g

• Fitting algorithm, A – A function mapping the training data, D0, to an
estimate of the true prediction functional, ĝ := A(D0). The choice of fitting
algorithm is determined by the learning strategy.

• (Unfitted) Model – The complete specification of a learning strategy with
hyper-parameters and any other components such as pre-processing

• Fitted Model/Prediction functional, ĝ : X → Y – Function, possibly with
hyper-parameters, for making predictions on unseen data

‘Classical’ models are defined with a very narrow scope in this thesis: low-
complexity models that are either non-parametric or have parameters that can be
fit with maximum likelihood estimation (or an equivalent method). In contrast,
‘machine learning’ (ML) models require more intensive model fitting procedures
such as recursion or iteration. The classical models in this paper are fast to fit
and highly interpretable, though can be inflexible and may make unreasonable
assumptions. Whereas the ML models are more flexible with hyper-parameters
however are computationally more intensive (both in terms of speed and storage),
require tuning to produce ‘good’ results, and are often a ‘black-box’ with difficult
interpretation.

This chapter investigates models for predictive survival analysis with a focus
on whether a model is APT (section 1.1.1). As classical survival models have
been studied extensively for decades, these are separated from the ML models in
this chapter and reduced to a smaller literature review in section 3.1. The rest of
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this chapter then surveys each of the primary machine learning classes separately.
The scope of the models discussed in this chapter is limited to the general thesis
scope (section 2.2), i.e. single event with right-censoring and no competing-risks,
though in some cases these are discussed.

Novel adaptations for each of the ML models are suggested at the end of
each section, these primarily serve as interesting avenues to explore for future
research but none have been studied for theoretical properties or implemented
in software packages, though most have been informally explored to demonstrate
some ‘proof-of-concept’.

Notation and Terminology The notation introduced in chapter 2 is recapped
for use in this chapter: the generative template for the survival setting is given
by (X,T,∆, Y, C) t.v.i. X × T × {0, 1} × T × T where X ⊆ Rp and T ⊆ R≥0,
where C, Y are unobservable, T := min{Y,C}, and ∆ = I(Y = T ). Random

survival data is given by (Xi, Ti,∆i, Yi, Ci)
i.i.d.∼ (X,T,∆, Y, C). Usually data will

instead be presented as a training dataset, D0 = {(X1, T1,∆1), ..., (Xn, Tn,∆n)}
where (Xi, Ti,∆i)

i.i.d.∼ (X,T,∆). For simplicity only a single testing observation
needs to be defined to effectively write about the prediction functional, this test
observation is given by D1 = (X∗, T ∗,∆∗) ∼ (X,T,∆).

For regression models the generative template is given by (X, Y ) t.v.i. X ⊆ Rp

and Y ⊆ R. As with the survival setting, a regression training set is given by

{(X1, Y1), ..., (Xn, Yn)} where (Xi, Yi)
i.i.d.∼ (X, Y ) and a testing observation by

D1 = (X∗, Y ∗) ∼ (X, Y ).
Finally recall: the set of unique time-points, UO := {Ti}i∈{1,...,n}, the set of

unique death times, UD := {Ti : ∆i = 1}i∈{1,...,n}, the risk set at τ is Rτ := {i :
Ti ≥ τ}, the number of observations alive or at risk at τ is nτ :=

∑
i I(Ti ≥ τ),

and the number of observations that die at τ is dτ :=
∑

i I(Ti = τ,∆i = 1).

3.1. A Review of Classical Survival Models

This section provides a literature review of ‘classical’ models proposed for survival
analysis. There are several possible taxonomies for categorising statistical models,
these include:

i) Parametrisation Type: One of non-, semi-, or fully-parametric.
Non-parametric models assume that the data distribution cannot be spec-
ified with a finite set of parameters. In contrast, fully-parametric models
assume the distribution can be specified with a finite set of parameters.
Semi-parametric models are a hybrid of the two and are formed of a finite
set of parameters and an infinite-dimensional ‘nuisance’ parameter.

ii) Conditionality Type: One of unconditional or conditional. A conditional
prediction is one that makes use of covariates in order to condition the
prediction on each observation. Unconditional predictors, which are referred
to below as ‘estimators’, ignore covariate data and make the same prediction
for all individuals.

iii) Prediction Type: One of ranking, survival time, or distribution (section 2.3).
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Table 3 summarises the models discussed below into the taxonomies above
for reference. Note that the Cox model is listed as predicting a continuous rank-
ing, and not a survival distribution, which may appear inconsistent with other
definitions. The reason for this is elaborated upon in 5.4.1. Though the predict-
type taxonomy is favoured throughout this thesis, it is clearer to review classical
models in increasing complexity, beginning with unconditional estimators before
moving onto semi-parametric continuous ranking predictions, and finally condi-
tional distribution predictors. The review is brief with mathematics limited to the
model fundamentals but not including methods for parameter estimation. Also
the review is limited to the ‘basic’ model specification and common extensions
such as regularization are not discussed though they do exist for many of these
models.

All classical models are highly transparent and accessible, with decades of
research and many off-shelf implementations. Predictive performance of each
model is briefly discussed as part of the review and then again in chapter 7.

Table 3: Table of models discussed in this literature review, classified by parametri-
sation, prediction type, and conditionality.

Model1 Parametrisation2 Prediction3 Conditionality
Kaplan-Meier Non Distr. Unconditional
Nelson-Aalen Non Distr. Unconditional

Akritas Non Distr. Conditional
Cox PH Semi Rank Conditional

Parametric PH Fully Distr. Conditional
Accelerated Failure Time Fully Distr. Conditional

Proportional Odds Fully Distr. Conditional
Flexible Spline Fully Distr. Conditional

1. All models are implemented in the R package survival [291] with the exception of flexible
splines, implemented in flexsurv [141], and the Akritas estimator in survivalmodels [275].
2. Non = non-parametric, Semi = semi-parametric, Fully = fully-parametric.
3. Distr. = distribution, Rank = ranking.

3.1.1. Non-Parametric Distribution Estimators

Unconditional Estimators Unconditional non-parametric survival models as-
sume no distribution for survival times and estimate the survival function using
simple algorithms based on observed outcomes and no covariate data. The two
most common methods are the Kaplan-Meier estimator [153], which estimates
the average survival function of a training dataset, and the Nelson-Aalen estima-
tor [1, 226], which estimates the average cumulative hazard function of a training
dataset.

The Kaplan-Meier estimator of the survival function is given by

ŜKM(τ |D0) =
∏

t∈UO,t≤τ

(
1− dt

nt

)
(3.1.1)



48 3. A Critical Survey of Survival Analysis Models

As this estimate is so important in survival models, this thesis will always use
the symbol ŜKM to refer to the Kaplan-Meier estimate of the average survival
function fit on training data (Ti,∆i). Another valuable function is the Kaplan-
Meier estimate of the average survival function of the censoring distribution,
which is the same as above but estimated on (Ti, 1−∆i), this will be denoted by
ĜKM .

The Nelson-Aalen estimator for the cumulative hazard function is given by

Ĥ(τ |D0) =
∑

t∈UO,t≤τ

dt
nt

(3.1.2)

The primary advantage of these models is that they rely on heuristics from
empirical outcomes only and don’t require any assumptions about the form of the
data. To train the models they only require (Ti,∆i) and both return a prediction
of S ⊆ Distr(T) (box 3). In addition, both simply account for censoring and can
be utilised in fitting other models or to estimate unknown censoring distributions.
The Kaplan-Meier and Nelson-Aalen estimators are both consistent estimators
for the survival and cumulative hazard functions respectively.

Utilising the relationships provided in section 2.3, one could write the Nelson-
Aalen estimator in terms of the survival function as ŜNA = exp(−Ĥ(τ |D0)). It
has been demonstrated that ŜNA and ŜKM are asymptotically equivalent, but
that ŜNA will provide larger estimates than ŜKM in smaller samples [57]. In
practice, the Kaplan-Meier is the most widely utilised non-parametric estimator in
survival analysis and is the simplest estimator that yields consistent estimation of
a survival distribution; it is therefore a natural, and commonly utilised, ‘baseline’
model [19, 123, 134, 317]: estimators that other models should be ‘judged’ against
to ascertain their overall performance (chapter 4).

Not only can these estimators be used for analytical comparison, but they
also provide intuitive methods for graphical calibration of models (section 4.5.2).
These models are never stuidied for prognosis directly but as baselines, compo-
nents of complex models (section 5.4.1), or graphical tools [112, 144, 218]. The
reason for this is due to them having poor predictive performance as a result of
omitting explanatory variables in fitting. Moreover, if the data follows a partic-
ular distribution, parametric methods will be more efficient [317].

Conditional Estimators The Kaplan-Meier and Nelson-Aalen estimators are
simple to compute and provide good estimates for the survival time distribution
but in many cases they may be overly-simplistic. Conditional non-parametric esti-
mators include the advantages described above (no assumptions about underlying
data distribution) but also allow for conditioning the estimation on the covari-
ates. This is particularly useful when estimating a censoring distribution that
may depend on the data (chapter 4). However predictive performance of condi-
tional non-parametric estimators decreases as the number of covariates increases,
and these models are especially poor when censoring is feature-dependent [98].

The most widely used conditional non-parametric estimator for survival anal-
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ysis is the Akritas estimator [5] defined by1

Ŝ(τ |X∗,D0, λ) =
∏

j:Tj≤τ,∆j=1

(
1− K(X∗, Xj|λ)∑n

l=1 K(X∗, Xl|λ)I(Tl ≥ Tj)

)
(3.1.3)

where K is a kernel function, usually K(x, y|λ) = I(|F̂X(x) − F̂X(y)| < λ), λ ∈
(0, 1], F̂X is the empirical distribution function of the training data, X1, ..., Xn,
and λ is a hyper-parameter. The estimator can be interpreted as a conditional
Kaplan-Meier estimator which is computed on a neighbourhood of subjects closest
to X∗ [24]. To account for tied survival times, the following adaptation of the
estimator is utilised [24]

Ŝ(τ |X∗,D0, λ) =
∏

t∈UO,t≤τ

(
1−

∑n
j=1 K(X∗, Xj|λ)I(Tj = t,∆j = 1)∑n

j=1K(X∗, Xj|λ)I(Tj ≥ t)

)
(3.1.4)

If λ = 1 then K(·|λ) = 1 and the estimator is identical to the Kaplan-Meier
estimator.

The non-parametric nature of the model is highlighted in eq. (3.1.4), in which
both the fitting and predicting stages are combined into a single equation. A new
observation, X∗, is compared to its nearest neighbours from a training dataset,
D0, without a separated fitting procedure. One could consider splitting fitting
and predicting in order to clearly separate between training and testing data.
In this case, the fitting procedure is the estimation of F̂X on training data and
the prediction is given by eq. (3.1.4) with F̂X as an argument. This separated
fit/predict method is implemented in survivalmodels [275]. As with other non-
parametric estimators, the Akritas estimator can still be considered transparent
and accessible. With respect to predictive performance, the Akritas estimator
has more explanatory power than non-parametric estimators due to conditioning
on covariates, however this is limited to a very small number of variables and
therefore this estimator is still best placed as a conditional baseline.

3.1.2. Continuous Ranking and Semi-Parametric Models:

Cox PH

The Cox Proportional Hazards (CPH) [59], or Cox model, is likely the most widely
known semi-parametric model and the most studied survival model [112, 218,
248, 317]. The Cox model assumes that the hazard for a subject is proportionally
related to their explanatory variables, X1, ..., Xn, via some baseline hazard that
all subjects in a given dataset share (‘the PH assumption’). The hazard function

1Arguments and parameters are separated in function signatures by a pipe, ‘|’, where
variables to the left are parameters (free variables) and those to the right are arguments
(fixed). In this equation, τ is a parameter to be set by the user, and X∗,D0, λ are fixed
arguments. This could therefore be simplified to Ŝ(τ) to only include free variables.
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in the Cox PH model is defined by

h(τ |Xi) = h0(τ) exp(Xiβ) (3.1.5)

where h0 is the non-negative baseline hazard function and β = β1, ..., βp where
βi ∈ R are coefficients to be fit. Note the proportional hazards (PH) assumption
can be seen as the estimated hazard, h(τ |Xi), is directly proportional to the
model covariates exp(Xiβ). Whilst a form is assumed for the ‘risk’ component
of the model, exp(Xiβ), no assumptions are made about the distribution of h0,
hence the model is semi-parametric.

The coefficients, β, are estimated by maximum likelihood estimation of the
‘partial likelihood’ [60], which only makes use of ordered event times and does
not utilise all data available (hence being ‘partial’). The partial likelihood al-
lows study of the informative β-parameters whilst ignoring the nuisance h0. The
predicted linear predictor, η̂ := X∗β̂, can be computed from the estimated β̂ to
provide a ranking prediction.

Inspection of the model is also useful without specifying the full hazard by
interpreting the coefficients as ‘hazard ratios’. Let p = 1 and β̂ ∈ R and let
Xi, Xj ∈ R be the covariates of two training observations, then the hazard ratio
for these observations is the ratio of their hazard functions,

h(τ |Xi)

h(τ |Xj)
=
h0(τ) exp(Xiβ̂)

h0(τ) exp(Xjβ̂)
= exp(β̂)Xi−Xj (3.1.6)

If exp(β̂) = 1 then h(τ |Xi) = h(τ |Xj) and thus the covariate has no effect on

the hazard. If exp(β̂) > 1 then Xi > Xj → h(τ |Xi) > h(τ |Xi) and therefore the
covariate is positively correlated with the hazard (increases risk of event). Finally
if exp(β̂) < 1 then Xi > Xj → h(τ |Xi) < h(τ |Xi) and the covariate is negatively
correlated with the hazard (decreases risk of event).

Interpreting hazard ratios is known to be a challenge, especially by clinicians
who require simple statistics to communicate to patients [260, 284]. For example
the full interpretation of a hazard ratio of ‘2’ for binary covariate X would be:
‘assuming that the risk of death is constant at all time-points then the instanta-
neous risk of death is twice as high in a patient with X than without’. Simple
conclusions are limited to stating if patients are at more or less risk than others in
their cohort. Further disadvantages of the model also lie in its lack of real-world
interpretabilitity, these include [248]: i) the PH assumption may not be realistic
and the risk of event may not be constant over time; ii) the estimated baseline
hazard from a non-parametric estimator is a discrete step-function resulting in a
discrete survival distribution prediction despite time being continuous; and iii) the
estimated baseline hazard will be constant after the last observed time-point in
the training set [94].

Despite these disadvantages, the model has been demonstrated to have excel-
lent predictive performance and routinely outperforms (or at least does not un-
derperform) sophisticated ML models [95, 204, 306] (and chapter 7). It’s simple
form and wide popularity mean that it is also highly transparent and accessible.

The next class of models address some of the Cox model disadvantages by
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making assumptions about the baseline hazard.

3.1.3. Conditional Distribution Predictions: Parametric

Linear Models

Parametric Proportional Hazards The CPH model can be extended to a
fully parametric PH model by substituting the unknown baseline hazard, h0, for
a particular parameterisation. Common choices for distributions are Exponen-
tial, Weibull and Gompertz [151, 317]; their hazard functions are summarised in
table 4 along with the respective parametric PH model. Whilst an Exponential
assumption leads to the simplest hazard function, which is constant over time,
this is often not realistic in real-world applications. As such the Weibull or Gom-
pertz distributions are often preferred. Moreover, when the shape parameter, γ,
is 1 in the Weibull distribution or 0 in the Gompertz distribution, their hazards
reduce to a constant risk (fig. 2). As this model is fully parametric, the model
parameters can be fit with maximum likelihood estimation, with the likelihood
dependent on the chosen distribution.

Table 4: Exponential, Weibull, and Gompertz hazard functions and PH specification.

Distribution1 h0(τ)2 h(τ |Xi)
3

Exp(λ) λ λ exp(Xiβ)
Weibull(γ, λ) λγτ γ−1 λγτ γ−1 exp(Xiβ)

Gompertz(γ, λ) λ exp(γτ) λ exp(γτ) exp(Xiβ)

1. Distribution choices for baseline hazard. γ, λ are shape and scale parameters respectively.
2. Baseline hazard function, which is the (unconditional) hazard of the distribution.
3. PH hazard function, h(τ |Xi) = h0(τ) exp(Xiβ).

In the literature, the Weibull distribution tends to be favoured as the initial
assumption for the survival distribution [95, 112, 124, 244, 246], though Gom-
pertz is often tested in death-outcome models for its foundations in modelling
human mortality [104]. There exist many tests for checking the goodness-of-
model-fit (section 4.2) and the distribution choice can even be treated as a model
hyper-parameter. Moreover it transpires that model inference and predictions
are largely insensitive to the choice of distribution [55, 248]. In contrast to the
Cox model, fully parametric PH models can predict absolutely continuous sur-
vival distributions, they do not treat the baseline hazard as a nuisance, and in
general will result in more precise and interpretable predictions if the distribution
is correctly specified [248, 256].

Whilst misspecification of the distribution tends not to affect predictions too
greatly, PH models will generally perform worse when the PH assumption is
not valid. PH models can be extended to include time-varying coefficients or
model stratification [59] but even with these adaptations the model may not
reflect reality. For example, the predicted hazard in a PH model will be either
monotonically increasing or decreasing but there are many scenarios where this
is not realistic, such as when recovering from a major operation where risks tends
to increase in the short-term before decreasing. Accelerated failure time models
overcome this disadvantage and allow more flexible modelling, discussed next.
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Figure 2: Comparing the hazard curves under Weibull and Gompertz distributions for
varying values of the shape parameter; scale parameters are set so that each parametri-
sation has a median of 20. x-axes are time and y-axes are Weibull (top) and Gompertz
(bottom) hazards as a function of time.

Accelerated Failure Time In contrast to the PH assumption, where a unit
increase in a covariate is a multiplicative increase in the hazard rate, the Accel-
erated Failure Time (AFT) assumption means that a unit increase in a covariate
results in an acceleration or deceleration towards death (expanded on below). The
hazard representation of an AFT model demonstrates how the interpretation of
covariates differs from PH models,

h(τ |Xi) = h0(exp(−Xiβ)τ) exp(−Xiβ) (3.1.7)

where β = (β1, ..., βp) are model coefficients. In contrast to PH models, the ‘risk’
component, exp(−Xiβ), is the exponential of the negative linear predictor and
therefore an increase in a covariate value results in a decrease of the predicted
hazard. This representation also highlights how AFT models are more flexible
than PH as the predicted hazard can be non-monotonic. For example the hazard
of the Log-logistic distribution (fig. 3) is highly flexible depending on chosen
parameters. Not only can the AFT model offer a wider range of shapes for the
hazard function but it is more interpretable. Whereas covariates in a PH model
act on the hazard, in an AFT they act on time, which is most clearly seen in the
log-linear representation,

log Yi = µ+ α1Xi1 + α2Xi2 + ...+ αpXip + σεi (3.1.8)
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where µ and σ are location and scale parameters respectively, α1, ..., αp are model
coefficients, and εi is a random error term. In this case a one unit increase in
covariate Xij means a αj increase in the logarithmic survival time. For example if
exp(Xiα) = 0.5 then i ‘ages’ at double the baseline ‘speed’. Or less abstractly if
studying the time until death from cancer then exp(Xiα) = 0.5 can be interpreted
as ‘the entire process from developing tumours to metastasis and eventual death
in subject i is twice as fast than the normal’, where ‘normal’ refers to the baseline
when all covariates are 0.

Specifying a particular distribution for εi yields a fully-parametric AFT model.
Common distribution choices include Weibull, Exponential, Log-logistic, and Log-
Normal [151, 317]. The Buckley-James estimator [36] is a semi-parametric AFT
model that non-parametrically estimates the distribution of the errors however
this model has no theoretical justification and is rarely fit in practice [320]. The
fully-parametric model has theoretical justifications, natural interpretability, and
can often provide a better fit than a PH model, especially when the PH assump-
tion is violated [234, 243, 330].

Figure 3: Log-logistic hazard curves with a fixed scale parameter of 1 and a changing
shape parameter. x-axis is time and y-axis is the log-logistic hazard as a function of
time.

Proportional Odds Proportional odds (PO) models [15] fit a proportional
relationship between covariates and the odds of survival beyond a time τ ,

Oi(τ) =
Si(τ)

Fi(τ)
= O0(τ) exp(Xiβ) (3.1.9)

where O0 is the baseline odds.
In this model, a unit increase in a covariate is a multiplicative increase in the

odds of survival after a given time and the model can be interpreted as estimating
the log-odds ratio. There is no simple closed form expression for the partial
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likelihood of the PO model and hence in practice a Log-logistic distribution is
usually assumed for the baseline odds and the model is fit by maximum likelihood
estimation on the full likelihood [15].

Perhaps the most useful feature of the model is convergence of hazard func-
tions [163], which states hi(τ)/h0(τ) → 1 as τ → ∞. This property accurately
reflects real-world scenarios, for example if comparing chemotherapy treatment
on advanced cancer survival rates, then it is expected that after a long period
(say 10 years) the difference in risk between groups is likely to be negligible. This
is in contrast to the PH model that assumes the hazard ratios are constant over
time, which is rarely a reflection of reality.

In practice, the PO model is harder to fit and is less flexible than PH and
AFT models, both of which can also produce odds ratios. This may be a reason
for the lack of popularity of the PO model, in addition there is limited off-shelf
implementations [55]. Despite PO models not being commonly utilised, they have
formed useful components of neural networks (section 3.6) and flexible parametric
models (below).

Flexible Parametric Models – Splines Royston-Parmar flexible parametric
models [256] extend PH and PO models by estimating the baseline hazard with
natural cubic splines. The model was designed to keep the form of the PH or
PO methods but without the semi-parametric problem of estimating a baseline
hazard that does not reflect reality (see above), or the parametric problem of
misspecifying the survival distribution.

To provide an interpretable, informative and smooth hazard, natural cubic
splines are fit in place of the baseline hazard. The crux of the method is to use
splines to model time on a log-scale and to either estimate the log cumulative
Hazard for PH models, logH(τ |Xi) = logH0(τ) + Xiβ, or the log Odds for PO
models, logO(τ |Xi) = logO0(τ) +Xiβ, where β are model coefficients to fit, H0

is the baseline cumulative hazard function and O0 is the baseline odds function.
For the flexible PH model, a Weibull distribution is the basis for the baseline
distribution and a Log-logistic distribution for the baseline odds in the flexible
PO model. logH0(τ) and logO0(τ) are estimated by natural cubic splines with
coefficients fit by maximum likelihood estimation. The standard full likelihood
is optimised, full details are not provided here. Between one and three internal
knots are recommended for the splines and the placement of knots does not greatly
impact upon the fitted model [256].

Advantages of the model include being: interpretable, flexible, can be fit with
time-dependent covariates, and it returns a continuous function. Moreover many
of the parameters, including the number and position of knots, are tunable, al-
though Royston and Parmar advised against tuning and suggest often only one
internal knot is required [256]. A recent simulation study demonstrated that even
with an increased number of knots (up to seven degrees of freedom), there was
little bias in estimation of the survival and hazard functions [29]. Despite its
advantages, a 2018 review [229] found only twelve instances of published flexible
parametric models since Royston and Parmar’s 2002 paper, perhaps because it
is more complex to train, has a less intuitive fitting procedure than alternatives,
and has limited off-shelf implementations; i.e. is less transparent and accessible
than parametric alternatives.
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The PH and AFT models are both very transparent and accessible, though
require slightly more expert knowledge than the CPH in order to specify the
‘correct’ underlying probability distribution. Interestingly whilst there are many
papers comparing PH and AFT models to one another using in-sample metrics
(section 4.2) such as AIC [97, 112, 218, 330], no benchmark experiments could be
found for out-of-sample performance. PO and spline models are less transparent
than PH and AFT models and are even less accessible, with very few implemen-
tations of either. No conclusions can be drawn about the predictive performance
of PO or spline models due to a lack of suitable benchmark experiments.

3.2. A Survey of Machine Learning Models for

Survival Analysis

These next sections provide a technical, critical survey of machine learning mod-
els proposed for survival analysis with the focus on the ‘simpler’ setup of non-
competing risks. Models are separated into their different ‘classes’ (table 5),
which exists as a natural taxonomy in machine learning. Each class review is
then further separated by first discussing the simpler and more standard regres-
sion setting, before expanding into their survival framework. The focus is once
again on the different predict types of the model, which enables clear exposition
and discussion around how some areas have successfully dealt with the survival
predictive problem, whereas others have fallen short.

This is not the first survey of machine learning models for survival analysis.
A recent 2017 survey [317] focused on covering the breadth of machine learning
models for survival analysis and this survey is recommended to the reader as a
strong starting point to understand which ML models are available for survival
analysis. However whilst this provides a comprehensive review and a ‘big-picture’
view, there is no discussion about how successful the discussed models are in
solving the survival task.

A comprehensive survey of neural networks was presented by Schwarzer et
al. (2000) [268] in which the authors collected the many ways in which neu-
ral networks have been ‘misused’ in the context of survival analysis. This level
of criticism is vital in the context of survival analysis and healthcare data as
transparency and understanding are often prioritised over predictive performance.
Whilst the survey in this thesis will try not to be as critical as the Schwarzer re-
view, it will aim to discuss models and how well they actually solve the survival
problem.

In line with the core topic of this thesis, this survey aims to demonstrate if
each model is APT (section 1.1.1). Historically, surveys have focused primarily
on predictive performance, which is generally preferred for complex classification
and regression tasks. However in the context of survival analysis, transparency is
of the utmost importance and any model that does not solve the task it claims to,
despite strong predictive performance, can be considered sub-optimal. The survey
will also examine the accessibility of survival models. A model need not be open-
source to be accessible, but it should be ‘user-friendly’ and not require expert
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cross-domain knowledge. For example, a neural network may require knowledge
of complex model building, but if set-up correctly could be handled without medi-
cal or survival knowledge. Whereas a Gaussian Process requires knowledge of the
model class, simulation, (usually) Bayesian modelling, and also survival analysis.

Table 5 provides information about the models reviewed in this survey, including
a model reference for use in the chapter 7 benchmark experiment, the predict
types of the model, and in which R package it is implemented.
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Table 5: Summarising the models discussed in section 3.2 by their model class and respective survival task. .

Class1 Name (Page)2 Authors (Year)3 Task4 Implementation5

RF RRT (p. 66) LeBlanc and Crowley (1992) [188] Rank rpart [292]

RF RSDF-DEV (p. 66) Hothorn et al. (2004) [130] Prob. ipred [238]

RF RRF (p. 66) Ishwaran et al. (2004) [140] Rank -

RF RSCIFF (p. 66) Hothorn et al. (2006) [131] Det., Prob. party [127], partykit [129]

RF RSDF-STAT (p. 67) Ishwaran et al. (2008) [138] Prob. randomForestSRC [139], ranger [325]

GBM GBM-COX (p. 72) Ridgeway (1999) [249] & Buhlmann (2007) [38] Prob. mboost [132], xgboost [45], gbm [110]

GBM CoxBoost (p. 73) Binder & Schumacher (2008) [19] Prob. CoxBoost [20]

GBM GBM-AFT (p. 75) Schmid & Hothorn (2008) [263] Det. mboost, xgboost

GBM GBM-BUJAR (p. 76) Wang & Wang (2010) [319] Det. bujar [318]

GBM GBM-GEH (p. 76) Johnson & Long (2011) [149] Det. mboost

GBM GBM-UNO (p. 77) Mayr & Schmid (2014) [212] Rank mboost

SVM SVCR (p. 82) Shivaswamy et al. (2007) [273] Det. survivalsvm [84]

SVM SSVM-Rank (p. 84) Van Belle et al. (2007) [303] Rank survivalsvm

SVM SVRc (p. 83) Khan and Zubek (2008) [158] Det. -

SVM SSVM-Hybrid (p. 81) Van Belle (2011) [306] Det. survivalsvm

SVM SSVR-MRL (p. 86) Goli et al. (2016) [102, 103] Det. -

ANN ANN-CDP (p. 94) Liestøl et al. (1994) [197] Prob. -

Continued on next page...
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Table 5: (continued)

Class1 Name (Page)2 Authors (Year)3 Task4 Implementation5

ANN ANN-COX (p. 92) Faraggi and Simon (1995) [78] Rank -

ANN PLANN (p. 95) Biganzoli et al. (1998) [18] Prob. -

ANN COX-NNET (p. 93) Ching et al. (2018) [49] Prob. cox-nnet ∗ [48]

ANN DeepSurv (p. 93) Katzman et al. (2018) [156] Prob. survivalmodels [275]

ANN DeepHit (p. 98) Lee et al. (2018) [191] Prob. survivalmodels

ANN Nnet-survival (p. 96) Gensheimer & Narasimhan (2019) [96] Prob. survivalmodels

ANN Cox-Time (p. 94) Kvamme et al. (2019) [174] Prob. survivalmodels

ANN PC-Hazard (p. 97) Kvamme & Borgan (2019) [173] Prob. survivalmodels

ANN RankDeepSurv (p. 98) Jing et al. (2019) [148] Det. RankDeepSurv ∗,† [147]

ANN DNNSurv (p. 97) Zhao & Fend (2020) [332] Prob. survivalmodels

1. Model Class. RSF – Random Survival Forest; GBM – Gradient Boosting Machine; SVM – Support Vector Machine; ANN – Artificial Neural Network.

There is some abuse of notation here as some of the RSFs are actually decision trees and some GBMs do not use gradient boosting.

2. Model identifier used in this section and chapter 7.

3. Authors and year of publication, for RSFs this is the paper most attributed to the algorithm.

4. Survival task type: Deterministic (Det.), Probabilistic (Prob.), Ranking (Rank).

5. If available in R then the package in which the model is implemented, otherwise ‘∗’ signifies a model is only available in Python. With the exception of

DNNSurv, all ANNs in survivalmodels are implemented from the Python package pycox [172] with reticulate [301].

† – Code available to create model but not implemented ‘off-shelf’.
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3.3. Random Forests

3.3.1. Random Forests for Regression

Random forests are a composite algorithm built by fitting many simpler compo-
nent models, decision trees, and then averaging the results of predictions from
these trees. Decision trees are first briefly introduced before the key ‘bagging’
algorithm that composes these trees to a random forest. Woodland terminology
is used throughout this subsection.

Decision Trees Decision trees are a common model class in machine learning
and have the advantage of being (relatively) simple to implement and highly
interpretable. A decision tree takes a set of inputs and a given splitting rule in
order to create a series of splits, or branches, in the tree that culminates in a final
leaf, or terminal node. Each terminal node has a corresponding prediction, which
for regression is usually the sample mean of the training outcome data. This is
made clearer by example, fig. 4 demonstrates a decision tree predicting the miles
per gallon (mpg) of a car from the mtcars [122] dataset. With this tree a new
prediction is made by feeding the input variables from the top to the bottom, for
example given new data, x = {wt = 3, disp = 250}, then in the first split the right
branch is taken as wt = 3 > 2.32 and in the second split the left branch is taken
as disp = 250 ≤ 258, therefore the new data point ‘lands’ in the final leaf and is
predicted to have an mpg of 20.8. This value of 20.8 arises as the sample mean of
mpg for the 11 (which can be seen in the box) observations in the training data
who were sorted into this terminal node. Algorithmically, as splits are always
binary, predictions are simply a series of conditional logical statements.

Splitting Rules Precisely how the splits are derived and which variables are
utilised is determined by the splitting rule.1 In regression, the most common
splitting rule is to select the cut-off for a given variable that minimises the mean
squared error in each hypothetical resultant leaf. The goal is to find the variable
and cutoff that leads to the greatest difference between the two resultant leaves
and thus the maximal homogeneity within each leaf. For all decision tree and ran-
dom forest algorithms going forward, let L denote some leaf, then let Lxy, Lx, Ly
respectively be the set of observations, features, and outcomes in leaf L. Let Ly;i

be the ith outcome in Ly and finally let Lȳ = 1
n

∑n
i=1 Ly;i. To simplify notation,

i ∈ L is taken to be equivalent to i ∈ {i : Xi ∈ LX}, i.e. the indices of the
observations in leaf L.

Let c ∈ R be some cutoff parameter and let Laxy(j, c) := {(Xi, Yi)|Xij < c, i =
1, ..., n}, Lbxy(j, c) = {(Xi, Yi)|Xij ≥ c, i = 1, ..., n} be the two leaves containing
the set of observations resulting from partitioning variable j at cutoff c. Then a
split is determined by finding the arguments, (j∗, c∗) that minimise the sum of

1Other methods for growing trees such as pruning are not discussed here as they are less
relevant to random forests, which are primarily of interest. Instead see (e.g.) Breiman
(1984) [30].



60 3. A Critical Survey of Survival Analysis Models

Figure 4: Demonstrating classification trees using the mtcars [122] dataset and the
party [127] package. Ovals are leaves, which indicate the variable that is being split.
Edges are branches, which indicate the cut-off at which the variable is split. Rectangles
are terminal nodes and include information about the number of training observations
in the node and the terminal node prediction.

the mean squared errors (MSE) in both leaves [145],

(j∗, c∗) = argmin
j,c

∑
y∈Lay(j,c)

(y − LaȲ (j, c))2 +
∑

y∈Lby(j,c)

(y − LbȲ (j, c))2 (3.3.1)

This method is repeated from the first branch of the tree down to the very last
such that observations are included in a given leaf L if they satisfy all condi-
tions from all previous branches; features may be considered multiple times in
the growing process. This is an intuitive method as minimising the above sum
results in the set of observations within each individual leaf being as similar as
possible, thus as an observation is passed down the tree, it becomes more similar
to the subsequent leaves, eventually landing in a leaf containing homogeneous
observations. Controlling how many variables to consider at each split and how
many splits to make are determined by hyper-parameter tuning.

Decision trees are a powerful method for high-dimensional data as only a
small sample of variables will be used for growing a tree, and therefore they are
also useful for variable importance by identifying which variables were utilised
in growth (other importance methods are also available). Decision trees are also
highly interpretable, as demonstrated by fig. 4. The recursive pseudo-algorithm in
algorithm 1 demonstrates the simplicity in growing a decision tree (again methods
such as pruning are omitted).

Stopping Rules The ‘stopping rule’ in algorithm 1 is usually a condition on
the number of observations in each leaf such that leaves will continue to be split
until some minimum number of observations has been reached in a leaf. Other
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Algorithm 1 Fitting a decision tree.
Input Training data, D0. Splitting rule, SR.
Output Fitted decision tree, ĝ.

1: Compute (j∗, c∗) as the optimisers of SR (e.g. eq. (3.3.1)) to create the initial
leaf and branches.

2: Repeat step 1 on all subsequent branches until a stopping rule is reached.
3: Return the fitted tree, ĝ, as the series of branches.

conditions may be on the ‘depth’ of the tree, which corresponds to the number
of levels of splitting, for example the tree in fig. 4 has a depth of 2 (the first level
is not counted).

Random Forests Despite being more interpretable than other machine learn-
ing methods, decision trees usually have poor predictive performance, high vari-
ance and are not robust to changes in the data. As such, random forests are
preferred to improve prediction accuracy and decrease variance. Random forests
utilise bootstrap aggregation, or bagging [31], to aggregate many decision trees.
A pseudo fitting algorithm is given in algorithm 2.

Algorithm 2 Fitting a random forest.
Input Training data, D0. Total number of trees, B ∈ N>0.
Output Fitted random forest, ĝ.

1: for b = 1, ..., B do
2: Create a bootstrapped sample of the data, Db.
3: Grow a decision tree, ĝb, on Db with algorithm 1.
4: end for
5: ĝ ← {ĝb}Bb=1

6: return ĝ

Prediction from a random forest follows by making predictions from the indi-
vidual trees and aggregating the results by some function σ (algorithm 3); σ is
usually the sample mean for regression,

ĝ(X∗) = σ(ĝ1(X∗), ..., ĝB(X∗)) =
1

B

B∑
b=1

ĝb(X
∗) (3.3.2)

where ĝb(X
∗) is the terminal node prediction from the bth tree and B are the

total number of grown trees (‘B’ is commonly used instead of ‘N ’ to note the
relation to bootstrapped data).

Usually many (hundreds or thousands) trees are grown, which makes random
forests robust to changes in data and ‘confident’ about individual predictions.
Other advantages include having several tunable hyper-parameters, including:
the number of trees to grow, the number of variables to include in a single tree,
the splitting rule, and the minimum terminal node size. Machine learning models
with many hyper-parameters, tend to perform better than other models as they
can be fine-tuned to the data, which is why complex deep learning models are
often the best performing. Although as a caveat: too many parameters can lead
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Algorithm 3 Predicting from a random forest.
Input Testing data X∗ ∼ X, fitted forest ĝ with B ∈ N>0 trees, aggregation
method σ.
Output Prediction, Ŷ ∼ Y.

1: for b = 1, ..., B do
2: ‘Drop’ X∗ down the tree ĝb individually to return a prediction ĝb(X

∗).
3: end for
4: Ŷ ← σ(ĝ1(X∗), ..., ĝB(X∗))
5: return Ŷ

to over-fitting and tuning many parameters can take a long time and be highly
intensive. Random forests lose the interpretability of decision trees and are con-
sidered ‘black-box’ models as individual predictions cannot be easily scrutinised.

3.3.2. Random Forests for Survival Analysis

Given time constraints and the scope of this thesis, this survey of random forests
for survival analysis will primarily focus on ‘traditional’ decision trees and ran-
dom forests and will not look at other sub-fields such as causal forests. A com-
prehensive review of random survival forests (RSFs) is provided in Bou-Hamad
(2011) [27], which includes extensions to time-varying covariates and different
censoring types. In order to prevent overlap, this survey will focus primarily
on methods that have off-shelf implementations, their prediction types, and how
successfully these methods handle the problem of censoring. Random forests
and decision trees for survival are termed from here as Random Survival Forests
(RSFs) and Survival Decision Trees (SDTs) respectively.

Unlike other machine learning methods that may require complex changes to
underlying algorithms, individual components of a random forest can be adapted
without altering the fundamental algorithm. The principle random forest algo-
rithm is unchanged for RSFs, the difference is in the choice of splitting rule and
terminal node prediction, which both must be able to handle censoring. There-
fore instead of discussing individual algorithms, the different choices of splitting
rules and terminal node predictions are discussed, then combinations of these are
summarised into five distinct algorithms.

3.3.2.1. Splitting Rules

Survival trees and RSFs have been studied for the past four decades and whilst
the amount of splitting rules to appear could be considered “numerous” [27],
only two broad classes are commonly utilised and implemented [139, 235, 292,
325]. The first class rely on hypothesis tests, and primarily the log-rank test, to
maximise dissimilarity between splits, the second class utilises likelihood-based
measures. The first is discussed in more detail as this is common in practice and
is relatively straightforward to implement and understand, moreover it has been
demonstrated to outperform other splitting rules [27]. Likelihood rules are more
complex and require assumptions that may not be realistic, these are discussed
briefly.



3.3. Random Forests 63

Hypothesis Tests The log-rank test statistic has been widely utilised as the
‘natural’ splitting-rule for survival analysis [52, 138, 189, 269]. The log-rank test
compares the survival distributions of two groups and has the null-hypothesis that
both groups have the same underlying risk of (immediate) death, i.e. identical
hazard functions.

Let LA and LB be two leaves then using the notation above let hA, hB be
the (true) hazard functions derived from the observations in the two leaves re-
spectively. The log-rank hypothesis test is given by H0 : hA = hB with test
statistic [269],

LR(LA) =

∑
τ∈UD(dAτ − eAτ )√∑

τ∈UD v
A
τ

(3.3.3)

where dAτ is the observed number of deaths in leaf A at τ ,

dAτ :=
∑
i∈LA

I(Ti = τ,∆i = 1) (3.3.4)

eAτ is the expected number of deaths in leaf A at τ ,

eAτ :=
nAτ dτ
nτ

(3.3.5)

and vAτ is the variance of the number of deaths in leaf A at τ ,

vAτ := eAτ

(nτ − dτ
nτ

)(nτ − nAτ
nτ − 1

)
(3.3.6)

where UD is the set of unique death times across the data (in both leaves),
nτ =

∑
i I(Ti ≥ τ) is the number of observations at risk at τ in both leaves,

nAτ =
∑

i∈LA I(Ti ≥ τ) is the number of observations at risk at τ in leaf A, and
dτ =

∑
i I(Ti = τ,∆i = 1) is the number of deaths at τ in both leaves.

Intuitively these results follow as the number of deaths in a leaf is distributed
according to Hyper(nAτ , nτ , dτ ). The same statistic results if LB is instead con-
sidered. Algorithm 1 follows for fitting decision trees with the log-rank splitting
rule, SR, to be maximised.

The higher the log-rank statistic, the greater the dissimilarity between the
two groups, thereby making it a sensible splitting rule for survival, moreover
it has been shown that it works well for splitting censored data [189].1 When
censoring is highly dependent on the outcome, the log-rank statistic does not
perform well and is biased [26], which tends to be true of the majority of survival
models. Additionally, the log-rank test requires no knowledge about the shape of
the survival curves or distribution of the outcomes in either group [26], making
it ideal for an automated process that requires no user intervention.

The log-rank score rule [128] is a standardized version of the log-rank rule that
could be considered as a splitting rule, though simulation studies have demon-

1The results of this experiment are actually in LeBlanc’s unpublished 1989 PhD thesis
and therefore it has to be assumed that LeBlanc is accurately conveying its results in this
1993 paper.
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strated non-significant predictive performance when comparing the two [138].

Alternative dissimiliarity measures and tests have also been suggested as split-
ting rules, including modified Kolmogorov-Smirnov test and Gehan-Wilcoxon
tests [53]. Simulation studies have demonstrated that both of these may have
higher power and produce ‘better’ results than the log-rank statistic [81]. De-
spite this, these do not appear to be in common usage and no implementation
could be found that include these.

Likelihood Based Rules Likelihood ratio statistics, or deviance based split-
ting rules, assume a certain model form and thereby an assumption about the
data. This may be viewed as an advantageous strategy, as it could arguably in-
crease interpretability, or a disadvantage as it places restrictions on the data. For
survival models, a full-likelihood can be estimated with a Cox form by estimating
the cumulative hazard function [188]. LeBlanc and Crowley (1992) [188] advocate
for selecting the optimal split by maximising the full PH likelihood, assuming the
cumulative hazard function, H, is known,

L :=
M∏
m=1

∏
i∈Lm

hm(Ti)
∆i exp(−Hm(Ti)) (3.3.7)

where M is the total number of terminal nodes, hm and Hm are the (true) hazard
and cumulative hazard functions in the mth node, and again Lm is the set of
observations in terminal node m. Estimation of hm and Hm are described with
the associated terminal node prediction below.

The primary advantage of this method is that any off-shelf regression software
with a likelihood splitting rule can be utilised without any further adaptation to
model fitting by supplying this likelihood with required estimates. However the
additional costs of computing these estimates may outweigh the benefits once the
likelihood has been calculated, and this could be why only one implementation
of this method has been found [27, 292].

Other Splitting Rules As well as likelihood and log-rank spitting rules, other
papers have studied comparison of residuals [295], scoring rules [139], and distance
metrics [107]. These splitting rules work similarly to the mean squared error in
the regression setting, in which the score should be minimised across both leaves.
The choice of splitting rule is usually data-dependent and can be treated as a
hyper-parameter for tuning. However if there is a clear goal in prediction, then
the choice of splitting rule can be informed by the prediction type. For example,
if the goal is to maximise separation, then a log-rank splitting rule to maximise
homogeneity in terminal nodes is a natural starting point. Whereas if the goal
is to estimate the linear predictor of a Cox PH model, then a likelihood splitting
rule with a Cox form may be more sensible.

3.3.2.2. Terminal Node Prediction

Only two terminal node predictions appear in common usage.
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Predict: Ranking Terminal node ranking predictions for survival trees and
forests have been limited to those that use a likelihood-based splitting rule and
assume a PH model form [140, 188]. In model fitting the likelihood splitting
rule model attempts to fit the (theoretical) PH model hm(τ) = h0(τ)θm for m ∈
1, ...,M where M is the total number of terminal nodes and θm is a parameter to
estimate. The model returns predictions for exp(θ̂m) where θ̂m is the estimate of
θm. This is estimated via an iterative procedure in which in iteration j + 1, θ̂j+1

m

is estimated by

θ̂j+1
m =

∑
i∈Lm ∆i∑

i∈Lm Ĥ
j
0(Ti)

(3.3.8)

where as before Lm is the set of observations in leaf m and

Ĥj
0(τ) =

∑
i:Ti≤τ ∆i∑M

m=1

∑
{i:i∈Rτ∩La} θ̂

j
m

(3.3.9)

which is repeated until some stopping criterion is reached. The same cumulative
hazard is estimated for all nodes however θ̂m varies across nodes. This method
lends itself naturally to a composition to a full distribution (section 5.4.1) as it
assumes a PH form and separately estimates the cumulative hazard and relative
risk (section 3.3.3), though no implementation of this composition could be found.

Predict: Survival Distribution The most common terminal node predic-
tion appears to be predicting the survival distribution by estimating the survival
function, using the Kaplan-Meier or Nelson-Aalen estimators, on the sample in
the terminal node [130, 138, 189, 269]. Estimating a survival function by a non-
parametric estimator is a natural choice for terminal node prediction as these are
natural ‘baselines’ in survival, similarly to taking the sample mean in regression.
The prediction for SDTs is straightforward, the non-parametric estimator is fit
on all observations in each of the terminal nodes. This is adapted to RSFs by
bagging the estimator across all decision trees [130]. Using the Nelson-Aalen es-
timator as an example, let m be a terminal node in an SDT, then the terminal
node prediction is given by,

Ĥm(τ) =
∑

{i:i∈Lm∩Ti≤τ}

di
ni

(3.3.10)

where di and ni are the number of events and observations at risk at time Ti in ter-
minal node m. Ishwaran [138] defined the bootstrapped Nelson-Aalen estimator
as

ĤBoot(τ) =
1

B

B∑
b=1

Ĥm,b(τ), m ∈ 1, ...,M (3.3.11)

where B is the total number of bootstrapped estimators, M is the number of
terminal nodes, and Ĥm,b is the cumulative hazard for the mth terminal node in
the bth tree. The bootstrapped Kaplan-Meier estimator is calculated analogously.
More generally these can be considered as a uniform mixture of B distributions
(section 5.4.4).
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All implemented RSFs can now be summarised into the following five algorithms:

RRT
LeBlanc and Crowley’s (1992) [188] survival decision tree uses a deviance splitting
rule with a terminal node ranking prediction, which assumes a PH model form.
These ‘relative risk trees’ (RRTs) are implemented in the package rpart [292].
This model is considered the least accessible and transparent of all discussed in
this section as: few implementations exist, it requires assumptions that may not
be realistic, and predictions are harder to interpret than other models. Predictive
performance of the model is expected to be worse than RSFs as this is a decision
tree; this is confirmed in chapter 7.

RRF
Ishwaran et al. (2004) [140] proposed a random forest framework for the relative
risk trees, which makes a slight adaptation and applies the iteration of the ter-
minal node prediction after the tree is grown as opposed to during the growing
process. No implementation for these ‘relative risk forests’ (RRFs) could be found
or any usage in the literature. Therefore RRFs are also considered not to be APT
for the same reasons given to the RRTs, except that in this case the predictive
performance of RRFs is simply unknown (though can reasonably be expected to
outperform an RRT).

RSDF-DEV
Hothorn et al. (2004) [130] expanded upon the RRT by introducing a bagging
composition thus creating a random forest with a deviance splitting rule, again
assuming a PH form. However the ranking prediction is altered to be a boot-
strapped Kaplan-Meier prediction in the terminal node. This is implemented in
ipred [238]. This model improves upon the accessibility and transparency of
the RRT by providing a more straightforward and interpretable terminal node
prediction. However, as this is a decision tree, predictive performance is again
expected to be worse than the RSFs.

RSCIFF
Hothorn et al. [131] studied a conditional inference framework in order to predict
log-survival time. In this case the splitting rule is based on an IPC weighted
loss function, which allows implementation by off-shelf classical random forests.
The terminal node predictions are a weighted average of the log-survival times
in the node where weighting is determined by the Kaplan-Meier estimate of the
censoring distribution. This ‘random survival conditional inference framework
forest’ (RSCIFF) is implemented in party [127] and partykit [129], which ad-
ditionally includes a distribution terminal node prediction via the bootstrapped
Kaplan-Meier estimator. The survival tree analogue (SDCIFT) is implemented
in the same packages. Implementation of the RSCIFF is complex, which is likely
why all implementations (in the above packages) are by the same authors. The
complexity of conditional inference forests may also be the reason why several
reviews, including this one, mention (or completely omit) RSCIFFs but do not
include any comprehensive details that explain the fitting procedure [27, 316].
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In this regard, it is hard to claim that RSCIFFs are transparent or accessible.
Moreover the authors of the model state that random conditional inference forests
are for “expert user[s] only and [their] current state is rather experimental” [129].
Finally with respect to model performance, there is evidence that they can out-
perform RSDFs (below) dependent on the data type [225] however no benchmark
experiment could be found that compared them to other models.

RSDF-STAT
Finally Ishwaran et al. (2008) [138] proposed the most general form of RSFs
with a choice of hypothesis tests (log-rank and log-rank score) and survival mea-
sure (Brier, concordance) splitting rules, and a bootstrapped Nelson-Aalen ter-
minal node prediction. These are implemented in randomForestSRC [139]
and ranger [325]. This final class of RSFs are likely the only class that can
be considered APT. There are several implementations of these models across
programming languages, and extensive details for the fitting and predicting pro-
cedures, which makes them very accessible. The models utilise a standard random
forest framework, which makes them transparent and familiar to those without
expert Survival knowledge. Moreover they have been proven to perform well in
benchmark experiments, especially on high-dimensional data [123, 283].

3.3.3. Novel Adaptations

Based on this survey of RSFs, a couple of novel adaptations may be considered
as natural extensions.

Parametric Terminal Node Predictions All probabilistic RSFs make use
of a non-parametric estimator for the terminal node prediction. As an adaptation
one could fit a semi- or fully-parametric model in the terminal nodes. However
this could suffer from the problem of increased complexity/run-time, as well as
overfitting, though is a sensible method worth considering. Alternatively a ran-
dom forest for inference could be designed whereby a theoretical (say Weibull)
survival distribution is assumed and the terminal node predictions are then MLE
(or other inference method) estimates for the distribution parameters.

RRT and RRF Composition As discussed above, Ishwaran’s Relative Risk
Forest makes a relative risk prediction in each terminal node (section 3.3.2.2) by
fitting

Ĥh;b(τ) = Ĥ0;b(τ)θ̂h (3.3.12)

in which Ĥ0;b(τ) and θ̂h are iteratively updated and the final prediction is θ̂h.
A natural alternative would be to return the bootstrapped survival distribution
prediction over Ĥh;b(τ), instead of only returning θ̂. Ishwaran et al. allude to
this prediction type in Section 3.2 of the 2004 paper [140], however this is not
formalised or implemented. It would be natural to first consider this for RRTs
(before extension to RRFs) and implementation would likely be straightforward
as any software must first estimate Ĥ0;b(τ) and θ̂h.
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3.3.4. Conclusions

Random forests are a highly flexible algorithm that allow the various components
to be adapted and altered without major changes to the underlying algorithm.
The result is that relatively few R implementations of RSFs cover almost half a
century’s worth of developments. The only algorithm that does not seem to be
implemented is the relative risk forest.

Of the methods reviewed, only one can be considered APT for survival pre-
dictions. A lack of accessibility, transparency, or proven performance makes RRT
and RSDF-DEV a poor choice for model fitting. RSCIFF is potentially a powerful
method with promising results in benchmark experiments, but even the authors
recognise its complexity prevents it from being accessible. Ishwaran’s RSFs on
the other hand are APT and suitable for model fitting and deployment. Simula-
tion studies have demonstrated that RSFs can perform well even with high levels
of censoring and there is evidence that on some datasets these can outperform
a Cox PH [138]. Despite only one of the five models discussed here being APT,
Ishwaran’s model is highly flexible, and its implementation in software packages
reflects this. Therefore one can still confidently conclude that random forests are
a powerful algorithm in regression, classification, and survival analysis.

3.4. Gradient Boosting Machines

3.4.1. Gradient Boosting Machines for Regression

Boosting is a machine learning strategy that can be applied to any model class.
Similarly to random forests, boosting is an ‘ensemble’ method that creates a
model from a ‘committee’ of learners. The committee is formed of ‘weak’ learners
that make poor predictions individually, which creates a ‘slow learning’ approach
(as opposed to ‘greedy’) that requires many iterations for a model to be a good
fit to the data. Boosting models are similar to random forests in that both make
predictions from a large committee of learners. However the two differ in how
this committee is combined to a prediction. In random forest algorithms, each
decision tree is grown independently and their predictions are combined by a
simple mean calculation. In contrast, weak learners in a boosting model are fit
sequentially and predictions are made by a linear combination of predictions from
each learner. With respect to transparency, it is simpler to inspect 100 trees in a
random forest, than it is to inspect 100 weak learners in a boosted model, though
both are considered black-box models.

The best known boosting algorithm is likely AdaBoost [85], which is more
generally a Forward Stagewise Additive Model (FSAM) with an exponential
loss [118]. Today, the most widely used boosting model is the Gradient Boosting
Machine (GBM) [88].

Training a GBM Pseudo-code for training a componentwise GBM is presented
in algorithm 4. The term ‘componentwise’ is explained fully below, only this
variation of GBM is presented as it is the most common in implementation [110,
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132]. Line 1: the initial function is initialized as g0 = 0;1 Line 2: iterate over
boosting steps m = 1, ...,M and; Line 3: randomly sample the training data, D0,
to a smaller sample, D∗0, this may be ignored if φ = 1; Line 4: for all training
observations in the reduced dataset, i ∈ {i : Xi ∈ D∗0}, compute the negative
gradient, rim, of the differentiable loss function, L, with respect to predictions
from the previous iteration, gm−1(Xi); Line 5: fit one weak learner for each
feature, j = 1, ..., p, in the training data, where the feature, X;j, is the single
covariate and rim are the labels; Line 6: select the optimal weak learner as the one
that minimises the squared error between the prediction and the true gradient;
Line 7: update the fitted model by adding the optimal weak learner with a
shrinkage penalty, ν; Line 9: return the model updated in the final iteration as
the fitted GBM.

Algorithm 4 Training a componentwise Gradient Boosting Machine.

Input Training data, D0 = {(X1, Y1), ..., (Xn, Yn)}, where (Xi, Yi)
i.i.d.∼ (X, Y ).

Differentiable loss, L. Hyper-parameters: sampling fraction, φ ∈ (0, 1]; step-size,
ν ∈ (0, 1]; number of iterations, M ∈ R>0.
Output Boosted model, ĝ.

1: Initialize g0 ← 0
2: for m = 1, ...,M do
3: D∗0 ← Randomly sample D0 w.p. φ

4: rim ← −[∂L(yi,gm−1(Xi))
∂gm−1(Xi)

], i ∈ {i : Xi ∈ D∗0}
5: Fit p weak learners, wj to (Xi, rim), j = 1, .., p
6: j∗ ← argminj=1,..,p

∑
i∈{i:Xi∈D∗0}

(rim − wj(Xi))
2

7: gm ← gm−1 + νwj∗
8: end for
9: ĝ ← gM

10: return ĝ

Predicting with a GBM In general, predictions from a trained GBM are
simple to compute as the fitted model (and all individual weak learners) take
the same inputs, which are passed sequentially to each of the weak learners. In
algorithm 4, the fitted GBM is a single model, which is a linear combination of
weak learners. Instead one could think of the returned model as a collection of the
optimal weak learners, i.e. let wm;j∗ be the optimal weak learner from iteration
m and let the fitted GBM (Line 9 algorithm 4) be ĝ := {wm;j∗}Mm=1.2 With this
formulation, making predictions from the GBM can be demonstrated simply in
algorithm 5.

1Some algorithms may instead initialize g0 by finding the value that minimises the given
loss function, however setting g0 = 0 appears to be the most common practice for
componentwise GBMs.

2This formulation is computationally and mathematically identical to the formulation in
algorithm 4 and is practically more convenient for implementation, indeed this is the
implementation in mboost [132]. Despite this, the formulation in algorithm 4 is common in
the literature, which often conflates model training and predicting.
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Algorithm 5 Predicting from a Gradient Boosting Machine.
Input Fitted GBM, ĝ := {wm;j∗}Mm=1, trained with step-size ν. Testing data
X∗ ∼ X.
Output Prediction, Ŷ ∼ Y.

1: Initialize Ŷ = 0
2: for m = 1, ...,M do
3: Ŷ ← Ŷ + νwm;j∗(X

∗)
4: end for
5: return Ŷ

The biggest advantages of boosting are firstly relatively few hyper-parameters,
which all have a meaningful and intuitive interpretation, and secondly its modular
nature means that, like random forests, relatively few parts need to be updated
to derive a novel model. First the model components will be discussed and then
the hyper-parameters. Once this has been established, deriving survival variants
can be simply presented.

3.4.1.1. Losses and Learners

Losses Building a GBM requires selection of the loss to minimise, L, selection of
weak learners, wj, and a method to compare the weak learners to the loss gradient.
The only constraint in selecting a loss, L, is that it must be differentiable w.r.t.
g(X) [118]. Of course a sensible loss should be chosen (a classification loss should
not be used for regression) and different choices of losses will optimise different
tasks. L2-losses have been demonstrated to be effective for regression boosting,
especially with high-dimensional data [39]; this is referred to as L2-boosting.

Weak Learners Algorithm 4 is specifically a componentwise GBM [39], which
means that each of the p weak learners is fit on a single covariate from the data.
This method simplifies selecting the possible choices for the weak learners to
selecting the class of weak learner (below). Additionally, componentwise GBMs
provide a natural and interpretable feature selection method as selecting the
optimal learner (algorithm 4, line 6) corresponds to selecting the feature that
minimises the chosen loss in iteration m.

Only three weak, or ‘base’, learner classes are commonly used in component-
wise GBMs [132, 319]. These are linear least squares [88], smoothing splines [39],
and decision stumps [39, 88]. Let L be a loss with negative gradient for observa-
tion i in the mth iteration, rim, and let D0 be the usual training data. For linear
least squares, an individual weak learner is fit by [88, 319],

wj(D0) = X;j

∑n
i=1 Xijrim∑n
i=1(Xij)2

(3.4.1)

For smoothing splines, usually cubic splines are implemented, these fit weak learn-
ers as the minimisers of the equation [39],

wj := argmin
g∈G

1

n

n∑
i=1

(rim − g(Xij))
2 + λ

∫
(g′′(u))2du (3.4.2)
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where g′′ is the second derivative of g, G is the set of functions,
G := {g : g is twice continuously differentiable and

∫
(g′′(x))2dx < ∞}, and λ is

a hyper-parameter usually chosen so that the number of degrees of freedom, df,
is small, with df ≈ 4 suggested [39, 264, 319].

Finally for decision stumps (fig. 5), a decision tree, wj, is grown (algorithm 1)
on (X;j, rm) to depth one (equivalently to two terminal nodes) for each of the
j = 1, ..., p covariates [88].

Root

Node 1 Node 2 - Depth 1

- Depth 0

Figure 5: A decision tree of depth one, known as a decision stump. The root layer is
separated at depth 0 from the terminal nodes at depth 1. A decision stump is defined
by a decision tree with a single split at the root node.

3.4.1.2. Hyper-Parameters

The hyper-parameters in 4 are the ‘step-size’, ν, the sampling fraction, φ, and
the number of iterations, M .

Number of iterations, M The number of iterations is often claimed to be
the most important hyper-parameter in GBMs and it has been demonstrated
that as the number of iterations increases, so too does the model performance
(with respect to a given loss on test data) up to a certain point of overfitting [37,
118, 264]. This is an intuitive result as the foundation of boosting rests on the
idea that weak learners can slowly be combined to form a single powerful model.
This is especially true in componentwise GBMs as time is required to learn which
features are important. Finding the optimal value of M is critical as a value
too small will result in poor predictions, whilst a value too large will result in
model overfitting. Two primary methods have been suggested for finding the
optimal value of M . The first is to find the M ∈ N>0 that minimises a given
measure based on the AIC [4], the second is the ‘usual’ empirical selection by
nested cross-validation. In practice the latter method is usually employed.

Step-size, ν The step-size parameter (algorithm 4, line 7), ν, is a shrinkage
parameter that controls the contribution of each weak learner at each iteration.
Several studies have demonstrated that GBMs perform better when shrinkage is
applied and a value of ν = 0.1 is often suggested [38, 118, 88, 192, 264]. The
optimal values of ν and M depend on each other, such that smaller values of ν
require larger values of M , and vice versa. This is intuitive as smaller ν results
in a slower learning algorithm and therefore more iterations are required to fit
the model. Accurately selecting the M parameter is generally considered to be
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of more importance, and therefore a value of ν is often chosen heuristically (e.g.
the common value of 0.1) and then M is tuned by cross-validation and/or early-
stopping.

Sampling Fraction, φ Motivated by the success of bagging in random forests,
stochastic gradient boosting [86] randomly samples the data in each iteration. It
appears that subsampling performs best when also combined with shrinkage [118]
and as with the other hyper-parameters, selection of φ is usually performed by
nested cross-validation.

3.4.2. Gradient Boosting Machines for Survival Analysis

In a componentwise GBM framework, adapting boosting to survival analysis re-
quires only selecting a sensible choice of loss function L. Therefore fitting and pre-
dicting algorithms for componentwise survival GBMs are not discussed as these
are fully described in algorithms 4 and 5 respectively. However, some GBMs
in this section are not componentwise and therefore require some more detailed
consideration. Interestingly, unlike other machine learning algorithms that his-
torically ignored survival analysis, early GBM papers considered boosting in a
survival context [249]; though there appears to be a decade gap before further
considerations were made in the survival setting. After that period, several devel-
opments by Binder, Schmid, and Hothorn, adapted componentwise GBMs to a
framework suitable for survival analysis. Their developments are covered exhaus-
tively in the R packages gbm [110] and mboost [132]. This survey continues
with the predict type taxonomy.

3.4.2.1. Cox Survival Models

All survival GBMs make ranking predictions and none are able to directly predict
survival distributions. However, the GBMs discussed in this section all have nat-
ural compositions to distributions as they are modelled in the semi-parametric
proportional hazards framework (section 5.4.1). The models discussed in the next
section can also be composed to distributions though the choice of composition
is less clear and therefore they are listed as pure ‘ranking’ models.

GBM-COX
The ‘GBM-COX’ aims to predict the distribution of data following the PH as-
sumption by estimating the coefficients of a Cox model in a boosting frame-
work [249]. The model attempts to predict ĝ(X∗) = η̂ := X∗β̂, by minimising a
suitable loss function. As the model assumes a PH specification, the natural loss
to optimise is the Cox partial likelihood [59, 60], more specifically to minimise
the negative partial log-likelihood, −l, where

l(β) =
n∑
i=1

∆i

[
ηi − log

( n∑
j∈Rti

exp(ηi)
)]

(3.4.3)



3.4. Gradient Boosting Machines 73

where Rti is the set of patients at risk at time ti and ηi = Xiβ. The gradient of
−l(β) at iteration m is

rim := ∆i −
n∑
j=1

∆j
I(Ti ≥ Tj) exp(gm−1(Xi))∑

k∈Rtj
exp(gm−1(Xk))

(3.4.4)

where gm−1(Xi) = Xiβm−1.
Algorithm 4 now follows with the loss L := −l(β).1

The GBM-COX is implemented in mboost [132] and has been demonstrated
to perform well even when the data violates the PH assumption [149]. De-
spite being a black-box, GBMs are well-understood and individual weak learners
are highly interpretable, thus making GBMs highly transparent. Several well-
established software packages implement GBM-COX and those that do not tend
to be very flexible with respect to custom implementations. GBM-COX is there-
fore considered an APT survival model.

CoxBoost
The CoxBoost algorithm boosts the Cox PH by optimising the penalized partial-
log likelihood; additionally the algorithm allows for mandatory (or ‘forced’) co-
variates [19]. In medical domains the inclusion of mandatory covariates may
be essential, either for model interpretability, or due to prior expert knowledge.
This is not a feature usually supported by boosting. CoxBoost deviates from
algorithm 4 by instead using an offset-based approach for generalized linear mod-
els [297]. This model has a non-componentwise and componentwise framework
but only the latter is implemented by the authors [20] and discussed here. Let
Imand be the indices of the mandatory covariates to be included in all iterations,
m = 1, ...,M , then for an iteration m the indices to consider for fitting are the
set

Im = {{1} ∪ Imand, ..., {p} ∪ Imand}/{{j} ∪ Imand : j ∈ Imand} (3.4.5)

i.e. in each iteration the algorithm fits a weak learner on the mandatory covariates
and one additional (non-mandatory) covariate (hence still being componentwise).

In addition, a penalty matrix P ∈ Rp×p is considered such that Pii > 0
implies that covariate i is penalized and Pii = 0 means no penalization. In
practice this is usually a diagonal matrix [19] and by setting Pii = 0, i ∈ Imand
and Pii > 0, i 6∈ Imand, only optional (non-mandatory) covariates are penalized.
The penalty matrix can be allowed to vary with each iteration, which allows for
a highly flexible approach, however in implementation a simpler approach is to
either select a single penalty to be applied in each iteration step or to have a
single penalty matrix [20].

At the mth iteration and the kth set of indices to consider (k = 1, ..., p), the

1Early implementations and publications of the GBM algorithm [86, 88] included an
additional step to the algorithm in which a step size is estimated by line search. More recent
research has determined that this additional step is unneccesary [38] and the line search
method does not appear to be used in practice.
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loss to optimize is the penalized partial-log likelihood given by

lpen(γmk) =
n∑
i=1

∆i

[
ηi,m−1 +Xi,Imkγ

T
mk

]
−

∆i log
( n∑
j=1

I(Tj ≤ Ti) exp(ηi,m−1 +Xi,Imkγ
T
mk

)
− λγmkPmkγ

T
mk

(3.4.6)

where ηi,m = Xiβm, γmk are the coefficients corresponding to the covariates
in Imk which is the possible set of candidates for a subset of total candidates
k = 1, ..., p, Pmk is the penalty matrix, and λ is a penalty hyper-parameter to be
tuned or selected.1

In each iteration, all potential candidate sets (the union of mandatory covari-
ates and one other covariate) are updated by

γ̂mk = I−1
pen(0)U(0) (3.4.7)

where U(γ) = ∂l/∂γ(γ) and I−1
pen = ∂2l/∂γ∂γT (γ + λPmk) are the first and

second derivatives of the unpenalized partial-log-likelihood. The optimal set is
then found as

k∗ := argmax
k

lpen(γmk) (3.4.8)

and the estimated coefficients are updated with

β̂m = β̂m−1 + γmk∗ , k∗ ∈ Imk (3.4.9)

The step size, ν, is then one, but this could potentially be altered.

The algorithm deviates from algorithm 4 as lpen is directly optimised and not
its gradient, additionally model coefficients are iteratively updated instead of a
more general model form. The algorithm is implemented in CoxBoost [20].
Experiments suggest that including the ‘correct’ mandatory covariates may in-
crease predictive performance [19]. CoxBoost is less accessible than other boost-
ing methods as it requires a unique boosting algorithm, as such only one off-shelf
implementation appears to exist and even this implementation has been removed
from CRAN as of 2020-11-11. CoxBoost is also less transparent as the underlying
algorithm is more complex, though is well-explained by the authors [19]. There
is good indication that CoxBoost is performant, which is seen in chapter 7. In
a non-medical domain, where performance may be the most important metric,
then perhaps CoxBoost can be recommended as a powerful model. However,
when sensitive predictions are required, CoxBoost is currently not APT. Further
papers studying the model and more off-shelf implementations could change this
in the future.

1On notation, note that Pij refers to the penalty matrix in the ith iteration for the jth set
of indices, whereas Pij is the (i, j)th element in the matrix P.
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3.4.2.2. Ranking Survival Models

The ranking survival models in this section are all unified as they make predic-
tions of the linear predictor, ĝ(X∗) = X∗β̂.1

GBM-AFT
Schmid and Hothorn (2008) [263] published a GBM for accelerated failure time
models in response to PH-boosted models that may not be suitable for non-PH
data. Their model fits into the GBM framework by assuming a fully-parametric
AFT and simultaneously estimating the linear predictor, ĝ(Xi) = η̂, and the
scale parameter, σ̂, controlling the amount of noise in the distribution. The
(fully-parametric) AFT is defined by

log Y = η + σW (3.4.10)

where W is a random variable independent of the covariates that follows a given
distribution and controls the noise in the model. By assuming a distribution on
W , a distribution is assumed for the full parametric model. The full likelihood,
L, is given by

L(D0|µ, σ,W ) =
n∏
i=1

[ 1

σ
fW

( log(Ti)− µ
σ

)]∆i
[
SW

( log(Ti)− µ
σ

)](1−∆i)

(3.4.11)

where fW , SW is the pdf and survival function of W for a given distribution. By
setting µ := g(Xi), σ is then rescaled according to known results depending on the
distribution [164]. The gradient of the negative log-likelihood, −l, is minimised
in the mth iteration where

l(D0|ĝ, σ̂,W ) =
n∑
i=1

∆i

[
− log σ + log fW

( log(Ti)− ĝm−1(Xi)

σ̂m−1

)]
+

(1−∆i)
[

logSW

( log(Ti)− ĝm−1(Xi)

σ̂m−1

)] (3.4.12)

where ĝm−1, σ̂m−1 are the location-scale parameters estimated in the previous
iteration. Note this key difference to other GBM methods in which two estimates
are made in each iteration step. In order to allow for this, algorithm 4 is run as
normal but in addition, after updating ĝm, one then updates σ̂m as

σ̂m := argmin
σ
−l(D0|gm, σ,W ) (3.4.13)

σ0 is initialized at the start of the algorithm with σ0 = 1 suggested [263].

This algorithm provides a ranking prediction without enforcing an often-unrealistic
PH assumption on the data. This model is implemented in mboost and xgboost.

1This is commonly referred to as a ‘linear predictor’ as it directly relates to the boosted
linear model (e.g. Cox PH), however it is more accurately a ‘prognostic index’ as the final
prediction is not the true linear predictor.
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Experiments indicate that this may outperform the Cox PH [263]. Moreover the
model has the same transparency and accessibility as the GBM-COX and is there-
fore also considered APT.

GBM-GEH
The concordance index is likely the most popular measure of discrimination, this
in part due to the fact that it makes little-to-no assumptions about the data
(section 4.4). A less common measure is the Gehan loss, motivated by the semi-
parametric AFT. Johnson and Long proposed the GBM with Gehan loss, here
termed GBM-GEH, to optimise separation within an AFT framework [149].

The semi-parametric AFT is defined by the linear model,

log Y = η + ε (3.4.14)

for some error term, ε.
The D-dimensional Gehan loss to minimise is given by,

GD(D0, ĝ) = − 1

n2

n∑
i=1

n∑
j=1

∆i(êi − êj)I(êi ≤ êj) (3.4.15)

where êi = log Ti − ĝ(Xi). The negative gradient of the loss is,

rim :=

∑n
j=1 ∆jI(êm−1,i ≥ êm−1,j)−∆iI(êm−1,i ≤ êm−1,j)

n
(3.4.16)

where êm−1,i = log Ti − ĝm−1(Xi).

Algorithm 4 then follows naturally substituting the loss and gradient above. The
algorithm is implemented in mboost. Simulation studies on the performance of
the model are inconclusive [149] however the results in chapter 7 indicate strong
predictive performance. Therefore this can tentatively be considered APT but
further benchmark experiments would be preferred.

GBM-BUJAR
GBM-BUJAR is another boosted semi-parametric AFT. However the algorithm
introduced by Wang and Wang (2010) [319] uses Buckley-James imputation and
minimisation. This algorithm is almost identical to a regression GBM (i.e. us-
ing squared loss or similar for L), except with one additional step to iteratively
impute censored survival times. Assuming a semi-parametric AFT model, the
GBM-BUJAR algorithm iteratively updates imputed outcomes with the Buckley-
James estimator [36],

T ∗m,i := ĝm−1(Xi)+em−1,i∆i+(1−∆i)
[
ŜKM(em−1,i)

−1
∑

em−1,j>em−1,i

em−1,j∆j p̂KM(em−1,j)
]

(3.4.17)
where ĝm−1(Xi) = η̂m−1, and ŜKM , p̂KM are Kaplan-Meier estimates of the sur-
vival and probability mass functions respectively fit on some training data, and
em−1,i := log(Ti)− gm−1(Xi). Once T ∗m,i has been updated, algorithm 4 continues
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from with least squares as with any regression model.

GBM-BUJAR is implemented in bujar [318] though without a separated fit/pre-
dict interface, its accessibility is therefore limited. There is no evidence of wide
usage of this algorithm nor simulation studies demonstrating its predictive ability.
Finally, there are many known problems with semi-parametric AFT models and
the Buckey-James procedure [320], hence GBM-BUJAR is also not transparent.

GBM-UNO
Instead of optimising models based on a given model form, Chen et al. [47]
studied direct optimisation of discrimination by Harrell’s C whereas Mayr and
Schmid [212] focused instead on Uno’s C. Only an implementation of the Uno’s C
method could be found, this is therefore discussed here and termed ‘GBM-UNO’.

The GBM-UNO attempts to predict ĝ(X∗) := η̂ by optimising Uno’s C (sec-
tion 4.4.1),

CU(ĝ,D0) =

∑
i 6=j ∆i{ĜKM(Ti)}−2I(Ti < Tj)I(ĝ(Xi) > ĝ(Xj))∑

i 6=j ∆i{ĜKM(Ti)}−2I(Ti < Tj)
(3.4.18)

The GBM algorithm requires that the chosen loss, here CU , be differentiable
w.r.t. ĝ(X), which is not the case here due to the indicator term, I(ĝ(Xi) >
ĝ(Xj)). Therefore a smoothed version is instead considered where the indicator
is approximated by the sigmoid function [205],

K(u|σ) = (1 + exp(−u/σ))−1 (3.4.19)

where σ is a hyper-parameter controlling the smoothness of the approxima-
tion. The measure to optimise is then,

CUSmooth(D0|σ) =
∑
i 6=j

kij

1 + exp
[
(ĝ(Xj)− ĝ(Xi))/σ)

] (3.4.20)

with

kij =
∆i(ĜKM(Ti))

−2I(Ti < Tj)∑n
i 6=j ∆i(ĜKM(Ti))−2I(Ti < Tj)

(3.4.21)

The negative gradient at iteration m for observation i can then be found,

rim := −
n∑
j=1

kij
− exp(

ĝm−1(Xj)−ĝm−1(Xi)

σ
)

σ(1 + exp(
ĝm−1(Xj)−ĝm−1(Xi)

σ
))

(3.4.22)

Algorithm 4 can then be followed exactly by substituting this loss and gra-
dient; this is implemented in mboost. One disadvantage of GBM-UNO is that
C-index boosting is more insensitive to overfitting than other methods [211],
therefore stability selection [214] can be considered for variable selection; this
is possible with mboost. Despite directly optimising discrimination, simulation
studies do not indicate that this model has better separation than other boosted
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or lasso models [212]. GBM-UNO has the same accessibility, transparency, and
performance (chapter 7) as previous APT boosting models and is therefore also
considered APT.

3.4.3. Novel Adaptations

A clear theme emerging throughout this survey is a historical focus on predicting
survival time or ranking, with less interest in direct optimisation of distributional
predictions, which may be due to less off-shelf software for the task. Optimisation
of a distribution is possible by considering a scoring rule (section 4.6) as the
GBM loss. The integrated Graf score (IGS) is discussed below but others are
also possible.

The Integrated Graf Score (IGS) is given by,

LIGS(t, δ, Ŝ|τ ∗) =

∫ τ∗

0

Ŝ(τ)2I(t ≤ τ, δ = 1)

ĜKM(t)
+
F̂ (τ)2I(t > τ)

ĜKM(τ)
dτ (3.4.23)

where τ ∗ is a threshold cut-off but in this case it is assumed τ ∗ = max{Ti : i =
1, .., n}. Differentiating with respect to Ŝ(τ), the negative gradient in the mth
iteration is given by

rim :=

∫ τ∗

0

2f̂(τ)
[ F̂ (τ)I(ti > τ)

ĜKM(τ)
− Ŝ(τ)I(ti ≤ τ, δi = 1)

ĜKM(ti)

]
dτ (3.4.24)

where f̂ is the estimated probability density function.
Algorithm 4 follows with these equations. The package mboost can be

utilised to test these equations as a ‘custom family’.

3.4.4. Conclusions

Componentwise gradient boosting machines are a highly flexible and powerful
machine learning tool. They have proven particularly useful in survival analysis as
minimal adjustments are required to make use of off-shelf software. The flexibility
of the algorithm allows all the models above to be implemented in very few R
(and other programming languages) packages.

Boosting is a method that often relies on intensive computing power and
therefore dedicated packages, such as xgboost [45], exist to push CPU/GPUs
to their limits in order to optimise predictive performance. This can be viewed
as a strong advantage though one should be careful not to focus too much on
predictive performance to the detriment of accessibility and transparency.

Boosting, especially with tree learners, is viewed as a black-box model that
is increasingly difficult to interpret as the number of iterations increase. How-
ever, there are several methods for increasing interpretability, such as variable
importance and SHAPs [202]. There is also evidence that boosting models can
outperform the Cox PH [263] (not something all ML models can claim) and in
general survival GBMs are considered APT.
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3.5. Support Vector Machines

3.5.1. SVMs for Regression

In the simplest explanation, support vector machines (SVMs) [58] fit a hyper-
plane, g, on given training data and make predictions for new values as ĝ(X∗)
for some testing covariate X∗. One may expect the hyperplane to be fit so
that all training covariates would map perfectly to the observed labels (a ‘hard-
boundary’) however this would result in overfitting and instead an acceptable
(‘soft’-)boundary of error, the ‘ε-tube’, dictates how ‘incorrect’ predictions may
be, i.e. how large an underestimate or overestimate. Figure 6 visualises sup-
port vector machines for regression with a linear hyperplane g, and an acceptable
boundary of error within the dashed lines (the ε-tube). SVMs are not limited
to linear boundaries and kernel functions are utilised to specify more complex
hyperplanes. Exact details of the optimization/separating procedure are not dis-
cussed here but many off-shelf ‘solvers’ exist in different programming languages
for fitting SVMs.

In the regression setting, the goal of SVMs is to estimate the function

g : Rp → R; (x) 7→ xβ + β0 (3.5.1)

by estimation of the weights β ∈ Rp, β0 ∈ R via the optimisation problem

min
β,β0,ξ,ξ∗

1

2
‖β‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.


Yi − g(Xi) ≤ ε+ ξi

g(Xi)− Yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(3.5.2)

where C ∈ R is the regularization/cost parameter, ξi, ξ
∗
i are slack parameters and

ε is a margin of error for observations on the wrong side of the hyperplane, and
g is defined in eq. (3.5.1). The effect of the slack parameters is seen in fig. 6 in
which a maximal distance from the ε-tube is dictated by the slack variables.

In fitting, the dual of the optimisation is instead solved and substituting the
optimised parameters into eq. (3.5.1) gives the prediction function,

ĝ(X∗) =
n∑
i=1

(αi − α∗i )K(X∗, Xi) + β0 (3.5.3)

where αi, α
∗
i are Lagrangrian multipliers and K is some kernel function.1 The

Karush-Kuhn-Tucker conditions required to solve the optimisation for α result
in the key property of SVMs, which is that values αi = α∗i = 0 indicate that
observation i is ‘inside’ the ε-tube and if αi 6= 0 or α∗i 6= 0 then i is outside the

1Discussion about the purpose of kernels and sensible choices can be found in [84, 145, 311].
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tube and termed a support vector. It is these ‘support vectors’ that influence the
shape of the separating boundary.

The choice of kernel and its parameters, the regularization parameter C, and the
acceptable error ε, are all tunable hyper-parameters, which makes the support
vector machine a highly adaptable and often well-performing machine learning
method. However the parameters C and ε often have no clear apriori meaning
(especially true when predicting abstract rankings) and thus require extensive
tuning over a great range of values; no tuning will result in a very poor model fit.

Figure 6: Visualising a support vector machine with an ε-tube and slack parameters
ξ and ξ∗. Red circles are values within the ε-tube and blue diamonds are values outside
the tube. x-axis is single covariate, x, and y-axis is g(x) = xβ + β0.

3.5.2. SVMs for Survival Analysis

Similarly to random forests, all research for Survival Support Vector Machines
(SSVMs) can be reduced to very few algorithms, in fact only one unique off-shelf
algorithm is identified in this survey. No SSVM for distribution predictions exist,
instead they either predict survival time, rankings, or a hybrid of the two.

Other reviews and surveys of SSVMs include a short review by Wang et
al. (2017) [317] and some benchmark experiments and short surveys from Van
Belle et al. (2011) [306], Goli et al. (2016) [102] and Fouodo et al. (2018) [84]. All
the benchmark experiments in these papers indicate that the Cox PH performs
as well as, if not better than, the SSVMs.

Initial attempts at developing SSVMs by Shivaswamy et al. (2007) [273] took
the most ‘natural’ course and attempt to treat the problem as a regression one
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with adjustments in the optimisation for censoring. These methods have a nat-
ural interpretation and are intuitive in their construction. Further development
of these by Khan and Zubek (2008) [158] and Land et al. (2011) [177] focused
on different adjustments for censoring in order to best reflect a realistic survival
data set-up. Simultaneously, ranking models were developed in order to directly
optimise a model’s discriminatory power. Developments started with the work
of Evers and Messow (2008) [76] but were primarily made by Van Belle et al.
(2007)-(2011) [302, 303, 304, 305]. These lack the survival time interpretation
but are less restrictive in the optimisation constraints. Finally a hybrid of the
two followed naturally from Van Belle et al. (2011) [306] by combining the con-
straints from both the regression and ranking tasks. This hybrid method allows a
survival time interpretation whilst still optimising discrimination. These hybrid
models have become increasingly popular in not only SSVMs, but also neural
networks (section 3.6). Instead of presenting these models chronologically, the
final hybrid model is defined and then other developments can be more simply
presented as components of this hybrid. One model with an entirely different
formulation is considered after the hybrid.

For all SSVMs defined in this section let: ξi, ξ
∗
i , ξ
′
i be slack variables; β, β0 be

model weights in R; C, µ be regularisation hyper-parameters in R; (Xi, Ti,∆i)
i.i.d.∼

(X,T,∆) be the usual training data; and g(x) = xβ + β0.

SSVM-Hybrid Van Belle et al. published several papers developing SSVMs,
which culminate in the hybrid model here termed ‘SSVM-Hybrid’ [306]. The
model is defined by the optimisation problem,

SSVM-Hybrid

min
β,β0,ξ,ξ′,ξ∗

1

2
‖β‖2 + C

n∑
i=1

ξi + µ
n∑
i=1

(ξ′i + ξ∗i )

s.t.



g(Xi)− g(Xj(i)) ≥ Ti − Tj(i) − ξi,

∆i(g(Xi)− Ti) ≤ ξ∗i

Ti − g(Xi) ≤ ξ′i

ξi, ξ
′
i, ξ
∗
i ≥ 0, ∀i = 1, ..., n

(3.5.4)

where j(i) := argmaxj∈1,...n{Tj : Tj < Ti} is an index discussed further below.
A prediction for test data is given by,

ĝ(X∗) =
n∑
i=1

αi(K(Xi, X
∗)−K(Xj(i), X

∗)) +α∗iK(Xi, X
∗)−∆iα

′
iK(Xi, X

∗) + β0

(3.5.5)
where αi, α

∗
i , α

′
i are Lagrange multipliers and K is a chosen kernel function,

which may have hyper-parameters to select or tune.

SVCR (Regression) Examining the components of the SSVM-Hybrid model
will help identify its relation to previously published SSVMs. First note the
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model’s connection to the regression setting when on setting C = 0, removing the
associated first constraint and ignoring ∆ in the second constraint, the regression
setting is exactly recovered:

min
β,β0,ξ,ξ′

1

2
‖β‖2 + µ

n∑
i=1

(ξi + ξ′i)

s.t.


g(Xi)− Ti ≤ ξi

Ti − g(Xi) ≤ ξ′i

ξi, ξ
′
i ≥ 0, ∀i = 1, ..., n

(3.5.6)

Note a slight difference in the formulation of this optimisation to the original
regression problem, here no error component ε is directly included, instead this
is part of the optimisation and considered as part of the slack parameters ξi, ξ

′
i;

effectively this is the same as setting ε = 0. This formulation removes the ε-tube
symmetry seen previously and therefore distinguishes more clearly between over-
estimates and underestimates, with each being penalised differently. Removing
the ε parameter can lead to model overfitting as all points become support vec-
tors, however careful tuning of other hyper-parameters can effectively control for
this.

This formulation allows for clearer control over left-, right-, and un-censored
observations. Clearly if an observation is uncensored then the true value is known
and should be predicted exactly, hence under- and over-estimates are equally
problematic and should be penalised the same. If an observation is right-censored
then the true death time is greater than the observed time and therefore overesti-
mates should not be heavily penalised but underestimates should be; conversely
for left-censored observations.

This leads to the first SSVM for regression from Shivaswamy et al. (2007) [273].

SVCR

min
β,β0,ξ,ξ∗

1

2
‖β‖2 + µ

(∑
i∈R

ξi +
∑
i∈L

ξ∗i

)

s.t.


g(Xi)− Ti ≤ ξ∗i , ∀i ∈ R

Ti − g(Xi) ≤ ξi, ∀i ∈ L

ξi ≥ 0,∀i ∈ R; ξ∗i ≥ 0,∀i ∈ L

(3.5.7)

where L is the set of observations who are either left- or un-censored, and
R is the set of observations who are either right- or un-censored. Hence an
uncensored observation is constrained on both sides as their true survival time is
known, whereas a left-censored observation is constrained in the amount of ‘over-
prediction’ and a right-censored observation is constrained by ‘under-prediction’.
This is intuitive as the only known for these censoring types are the lower and
upper bounds of the actual survival time respectively.

Reducing this to the thesis scope of right-censoring only results in the opti-
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misation:

min
β,β0,ξ,ξ∗

1

2
‖β‖2 + µ

( n∑
i=1

ξi + ξ∗i

)

s.t.



∆i(g(Xi)− Ti) ≤ ξi

Ti − g(Xi) ≤ ξ∗i

ξi, ξ
∗
i ≥ 0

∀i ∈ 1, ..., n

(3.5.8)

which can be seen to be identical to SSVM-Hybrid when C = 0 and the first
constraint is removed. Predictions are found by,

ĝ(X∗) =
n∑
i=1

α∗iK(Xi, X
∗)−∆iα

′
iK(Xi, X

∗) + β0 (3.5.9)

The advantage of this algorithm is its simplicity. Clearly if no-one is censored
then the optimisation is identical to the regression optimisation in eq. (3.5.2).
As there is no ε hyper-parameter, the run-time complexity is the same as, if not
quicker than, a regression SVM. Both left- and right-censoring are handled and
no assumptions are made about independent censoring. With respect to perfor-
mance, benchmark experiments [84] indicate that the SVCR does not outperform
a näıve SVR (i.e. censoring ignored). The SVCR is implemented in the R package
survivalsvm [84] and is referred to as ‘regression’.

As discussed, the error margin for left- and right- censoring should not neces-
sarily be equal and the penalty for each should not necessarily be equal either.
Hence a natural extension to SVCR is to add further parameters to better sep-
arate the different censoring types, which gives rise to the SVRc [158]. However
this model is only briefly discussed as left-censoring is out of scope of this thesis
and also the model is patented and therefore not easily accessible. The model is
given by the optimisation,

SVRc

min
β,β0,ξ,ξ∗

1

2
‖β‖2 +

n∑
i=1

Ciξi + C∗i ξ
′
i

s.t.


g(Xi)− Ti ≤ ε′i + ξ′i

Ti − g(Xi) ≤ εi + ξi

ξi, ξ
′
i ≥ 0, ∀i = 1, ..., n

(3.5.10)

Where Ci = ∆iCc + (1 − ∆i)Cn, εi = ∆iεc + (1 − ∆i)εn and analogously for
C∗i , C

∗
C , ε

∗, .... The new hyper-parameters Cc, Cn, εc, εn are the penalty for errors
in censored predictions (c) and uncensored predictions (n) for left and right (*)
censoring, and the acceptable margin of errors respectively. The rationale behind
this algorithm is clear, by having asymmetric error margins the algorithm can
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penalise predictions that are clearly wrong whilst allowing predictions that may
be correct (but ultimately unknown due to censoring). Experiments indicate the
model may have superior discrimination than the Cox PH [158] and SVCR [72].
However these conclusions are weak as independent experiments do not have
access to the patented model.

The largest drawback of the algorithm is a need to tune eight parameters.
As the number of hyper-parameters to tune increases, so too does model fitting
time as well as the risk of overfitting. The problem of extra hyper-parameters
is the most common disadvantage of the model given in the literature [84, 177].
Land et al. (2011) [177] present an adaptation to the SVRc to improve model
fitting time, termed the EP-SVRc, which uses Evolutionary Programming to
determine the optimal values for the parameters. No specific model or algorithm
is described, nor any quantitative results presented. No evidence can be found
for this method being used since publication. The number of hyper-parameters
in the SVRc, coupled with its lack of accessibility, outweigh the benefits of the
claimed predictive performance and is therefore clearly not APT and will not be
considered further.

SSVM-Rank The regression components of SSVM-Hybrid (eq. (3.5.4)) have
been fully examined, now turning to the ranking components and setting µ = 0.
In this case the model reduces to

SSVM-Rank

min
β,β0,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi

s.t.

 g(Xi)− g(Xj(i)) ≥ Ti − Tj(i) − ξi,

ξi ≥ 0, ∀i = 1, ..., n

(3.5.11)

with predictions

ĝ(X∗) =
n∑
i=1

αi(K(Xi, X
∗)−K(Xj(i), X

∗)) (3.5.12)

This formulation, termed here ‘SSVM-Rank’, has been considered by numer-
ous authors in different forms, including Evers and Messow [76] and Van Belle
et al. [303, 304, 306]. The primary differences between the various models are in
which observations are compared in order to optimise discrimination; to motivate
why this matters, first observe the intuitive nature of the optimisation constraints.
By example, define k := Ti−Tj(i) and say Ti > Tj(i). Then, in the first constraint,
g(Xi)− g(Xj(i)) ≥ k − ξi. As k > 0 and ξi ≥ 0, it follows that g(Xi) > g(Xj(i)),
hence creating a concordant ranking1 which is the opposite to the between obser-
vations i (ranked higher) and j(i); illustrating why this optimisation results in a
ranking model.

This choice of comparing observations i and j(i) (defined below) stems from a
few years of research in an attempt to optimise the algorithm with respect to both

1Note this ranking has the interpretation ‘higher rank equals lower risk’.
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speed and predictive performance. In the original formulation, RANKSVMC [303],
the model ranks all possible pairs of observations. This is clearly infeasible as
it increases the problem to a O(qn2/2) runtime where q is the proportion of
non-censored observations out of a total sample size n [304]. The problem was
reduced by taking a nearest neighbours approach and only considering the kth
closest observations [304]. Simulation experiments determined that the single
nearest neighbour was sufficient, thus arriving at j(i), the observation with the
largest observed survival time smaller than Ti,

j(i) := argmax
j∈1,...n

{Tj : Tj < Ti} (3.5.13)

This requires that the first observation is taken to be an event, even if it is
actually censored. In practice, sorting observations by survival time then greatly
speeds up the model run-time [84]. The RANKSVMC and SSVM-RANK are
implemented in survivalsvm [84] and referred to as ‘vanbelle1’ and ‘vanbelle2’
respectively.

The hybrid model is repeated below with the ranking components in blue,
the regression components in red, and the common components in black, clearly
highlighting the composite nature of the model.

min
β,β0,ξ,ξ′,ξ∗

1

2
‖β‖2 + C

n∑
i=1

ξi + µ
n∑
i=1

(ξ′i + ξ∗i )

s.t.



g(Xi)− g(Xj(i)) ≥ Ti − Tj(i) − ξi
∆i(g(Xi)− Ti) ≤ ξ∗i

Ti − g(Xi) ≤ ξ′i

ξi, ξ
′
i, ξ
∗
i ≥ 0, ∀i = 1, ..., n

(3.5.14)

and predictions are made with,

ĝ(X∗) =
n∑
i=1

αi(K(Xi, X
∗)−K(Xj(i), X

∗))+α∗iK(Xi, X
∗)−∆iα

′
iK(Xi, X

∗)+β0

(3.5.15)
The regularizer hyper-parameters C and µ now have a clear interpretation. C

is the penalty associated with the regression method and µ is the penalty associ-
ated with the ranking method. By always fitting the hybrid models and tuning
these two parameters, there is never a requirement to separately fit the regres-
sion or ranking methods as these would be automatically identified as superior in
the tuning procedure. Moreover, the hybrid model retains the interpretability of
the regression method and predictions can be interpreted as survival times. The
hybrid method is implemented in survivalsvm as ‘hybrid’. By Van Belle’s own
simulation studies, these models do not outperform the Cox PH with respect to
Harrell’s C.
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SSVR-MRL Not all SSVMs can be considered a variant of the SSVM-Hybrid,
though all prominent and commonly utilised suggestions do seem to have this
formulation. One other algorithm of note is termed here the ‘SSVM-MRL’ [102,
103], which is a regression SSVM. The algorithm is identical to SVCR with one
additional constraint.

SSVR-MRL

min
β,β0,ξ,ξ∗,ξ′

1

2
‖β‖2 + C

n∑
i=1

(ξi + ξ∗i ) + C∗
n∑
i=1

ξ′i

s.t.



Ti − g(Xi) ≤ ξi

∆i(g(Xi)− Ti) ≤ ξ∗i

(1−∆i)(g(Xi)− Ti −MRL(Ti|Ŝ)) ≤ ξ′i

ξi, ξ
∗
i , ξ
′
i ≥ 0

∀i = 1, ..., n

(3.5.16)

where MRL(Ti|Ŝ) is the ‘mean residual lifetime’ function [164]

MRL(τ |Ŝ) =

∫∞
τ
Ŝ(u)du

Ŝ(τ)
(3.5.17)

which is the area under the estimated survival curve (say by Kaplan Meier), Ŝ,
from point τ , weighted by the probability of being alive at point τ . This is in-
terpreted as the expected remaining lifetime from point τ . On setting C∗ = 0
and removing associated constraint three, this reduces exactly to the SVCR and
similarly if there’s no censoring then the standard regression setting is recovered.
Unlike other strategies, no new hyper-parameters are introduced and Kaplan-
Meier estimation should not noticeably impact run-time. There is no evidence
of this model being used in practice, nor of any off-shelf implementation. Theo-
retically, the hybrid model could be expanded to include this extra penalty term
and constraint (discussed below).

3.5.3. Novel Adaptations

Based on the above survey, one novel adaptation is proposed to merge the SSVM-
Hybrid with SSVR-MRL. This is a simple addition in which one extra constraint
(and associated penalty and slack parameter) is added in order to control for
right-censored observations. The SSVM-Hybrid becomes,
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min
β,β0,ξ,ξ′,ξ′′,ξ∗

1

2
‖β‖2 + C

n∑
i=1

ξi + µ

n∑
i=1

(ξ′i + ξ∗i ) + γ

n∑
i=1

ξ′′i

s.t.



g(Xi)− g(Xj(i)) ≥ Ti − Tj(i) − ξi
(1−∆i)(g(Xi)− Ti −MRL(Ti|Ŝ)) ≤ ξ′′i

∆i(g(Xi)− Ti) ≤ ξ∗i

Ti − g(Xi) ≤ ξ′i

ξi, ξ
′
i, ξ
∗
i , ξ
′′
i ≥ 0, ∀i = 1, ..., n

(3.5.18)

Where the ranking (blue) and regression (red) components are unchanged
but the additional MRL (magenta) constraint is added for censored observations.
One additional parameter should not impact upon fitting time or overfitting too
greatly, though this should be tested on large datasets. As with the combination
of hybrid and ranking models, the additional constraint can be automatically
‘tuned out’ of the model, or just manually removed, by setting γ = 0.

3.5.4. Conclusions

Several SSVMs have been proposed for survival analysis. These can generally be
categorised into ‘regression’ models that adapt SVMs to account for censoring and
predict a survival time, ‘ranking’ models that predict a relative ranking in order to
optimise measures of discrimination, and ‘hybrid’ models that optimise measures
of discrimination but make survival time predictions. Other SSVMs that lie
outside of these groupings are not able to solve the survival task (e.g. [272]). Other
SVM-type approaches could be considered, including relevance vector machines
and import vector machines, however less work has been developed in these areas
and further consideration is beyond the scope of this thesis.

The models that have received the most attention are SVCR, SSVM-Rank,
and SSVM-Hybrid; the first two are special cases of SSVM-Hybrid. Judging if
SSVM-Hybrid (and by extension SVCR and SSVM-Rank) is APT is not straight-
forward. On the one hand it could be considered transparent as SVMs have been
studied for decades and the literature for SSVMs, especially from Van Belle, is
extensive. On the other hand, the predictions from SSVM-Hybrid should be in-
terpretable as survival times but first hand experience indicates that this is not
the case (though this may be due to implementation), which calls into question
whether the interpretation they claim to have is actually correct. For accessibil-
ity, there appears to be only one implementation of SSVMs in R [84], and also
only one in Python [235], which may be due to SSVMs being difficult to imple-
ment, even when several optimisation solvers exist off-shelf. Finally, there is no
evidence that SSVMs outperform the Cox PH or baseline models and moreover
they often perform worse [84, 306], which is also seen in chapter 7. Yet one cannot
dismiss SSVMs outright as they often require extensive tuning to perform well,
even in classification settings, and no benchmark experiment has yet to emerge
for testing SSVMs with the required set-up.1 Therefore SSVMs may not be APT

1Though one is in progress as a result of the work in chapter 7.
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for now but future developments will be worth paying attention to.

3.6. Neural Networks

Before starting the survey on neural networks, first a comment about their trans-
parency and accessibility. Neural networks are infamously difficult to interpret
and train, with some calling building and training neural networks an ‘art’ [118].
As discussed in the introduction of this thesis, whilst neural networks are not
transparent with respect to their predictions, they are transparent with respect
to implementation. In fact the simplest form of neural network, as seen below, is
no more complex than a simple linear model. With regard to accessibility, whilst
it is true that defining a custom neural network architecture is complex and highly
subjective, established models are implemented with a default architecture and
are therefore accessible ‘off-shelf’.

3.6.1. Neural Networks for Regression

(Artificial) Neural networks (ANNs) are a class of model that fall within the
greater paradigm of deep learning. The simplest form of ANN, a feed-forward
single-hidden-layer network, is a relatively simple algorithm that relies on linear
models, basic activation functions, and simple derivatives. A short introduction
to feed-forward regression ANNs is provided to motivate the survival models.
This focuses on single-hidden-layer models and increasing this to multiple hidden
layers follows relatively simply.

The single hidden-layer network is defined through three equations

Zm = σ(α0m + αTmXi), m = 1, ...,M (3.6.1)

T = β0k + βTk Z, k = 1, .., K (3.6.2)

gk(Xi) = φk(T ) (3.6.3)

where (X1, ..., Xn)
i.i.d.∼ X are the usual training data, α0m, β0 are bias pa-

rameters, and θ = {αm, β} (m = 1, .., ,M) are model weights where M is the
number of hidden units. K is the number of classes in the output, which for
regression is usually K = 1. The function φ is a ‘link’ or ‘activation function’,
which transforms the predictions in order to provide an outcome of the correct
return type; usually in regression, φ(x) = x. σ is the ‘activation function’, which
transforms outputs from each layer. The αm parameters are often referred to as
‘activations’. Different activation functions may be used in each layer or the same
used throughout, the choice is down to expert knowledge. Common activation
functions seen in this section include the sigmoid function,

σ(v) = (1 + exp(−v))−1 (3.6.4)
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Figure 7: Single-hidden-layer artificial neural network with 13 hidden units fit on the
mtcars [122] dataset using the nnet [222] package, and gamlss.add [286] for plotting.
Left column are input variables, I1-I10, second column are 13 hidden units, H1-H13,
right column is single output variable, O1. B1 and B2 are bias parameters.

tanh function,

σ(v) =
exp(v)− exp(−v)

exp(v) + exp(−v)
(3.6.5)

and ReLU [224]
σ(v) = max(0, v) (3.6.6)

A single-hidden-layer model can also be expressed in a single equation, which
highlights the relative simplicity of what may appear a complex algorithm.

gk(Xi) = σ0(βk0 +
H∑
h=1

(βkhσh(βh0 +
M∑
m=1

βhmXi;m)) (3.6.7)

where H are the number of hidden units, β are the model weights, σh is the
activation function in unit h, also σ0 is the output unit activation, and Xi;m is
the ith observation features in the mth hidden unit.

An example feed-forward single-hidden-layer regression ANN is displayed in
fig. 7. This model has 10 input units, 13 hidden units, and one output unit; two
bias parameters are fit. The model is described as ‘feed-forward’ as there are no
cycles in the node and information is passed forward from the input nodes (left)
to the output node (right).

Back-Propagation The model weights, θ, in this section are commonly fit by
‘back-propagation’ although this method is often considered inefficient compared
to more recent advances. A brief pseudo-algorithm for the process is provided
below.

Let L be a chosen loss function for model fitting, let θ = (α, β) be model
weights, and let J ∈ N>0 be the number of iterations to train the model over.
Then the back-propagation method is given by,
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1. For j = 1, ..., J :

Forward Pass

i. Fix weights θ(j−1).

ii. Compute predictions Ŷ := ĝ
(j)
k (Xi|θ(j−1)) with eq. (3.6.7).

Backward Pass

iii. Calculate the gradients of the loss L(Ŷ |D0).

Update

iv. Update α(r), β(r) with gradient descent.

2. End For

In regression, a common choice for L is the squared loss,

L(ĝ, θ|D0) =
n∑
i=1

(Yi − ĝ(Xi|θ))2 (3.6.8)

which may help illustrate how the training outcome, (Y1, ..., Yn)
i.i.d.∼ Y , is utilised

for model fitting.

Making Predictions Once the model is fitted, predictions for new data follow
by passing the testing data as inputs to the model with fitted weights,

gk(X
∗) = σ0(β̂k0 +

H∑
h=1

(β̂khσh(β̂h0 +
M∑
m=1

β̂hmX
∗
m)) (3.6.9)

Hyper-Parameters In practice, a regularization parameter, λ, is usually added
to the loss function in order to help avoid overfitting. This parameter has the
effect of shrinking model weights towards zero and hence in the context of ANNs
regularization is usually referred to as ‘weight decay’. The value of λ is one of
three important hyper-parameters in all ANNs, the other two are: the range of
values to simulate initial weights from, and the number of hidden units, M .

The range of values for initial weights is usually not tuned but instead a
consistent range is specified and the neural network is trained multiple times to
account for randomness in initialization.

The regularization parameter and number of hidden units, M , depend on each
other and have a similar relationship to the learning rate and number of iterations
in the GBMs (section 3.4). Like the GBMs, it is simplest to set a high number of
hidden units and then tune the regularization parameter [23, 118]. Determining
how many hidden layers to include, and how to connect them, is informed by
expert knowledge and well beyond the scope of this thesis; decades of research
has been required to derive sensible new configurations.

Training Batches ANNs can either be trained using complete data, in batches,
or online. This decision is usually data-driven and will affect the maximum
number of iterations used to train the algorithm; as such this will also often be
chosen by expert-knowledge and not empirical methods such as cross-validation.
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Neural Terminology Neural network terminology often reflects the structures
of the brain. Therefore ANN units are referred to as nodes or neurons and
sometimes the connections between neurons are referred to as synapses. Neurons
are said to be ‘fired’ if they are ‘activated’. The simplest example of activating
a neuron is with the Heaviside activation function with a threshold of 0: σ(v) =
I(v ≥ 0). Then a node is activated and passes its output to the next layer if its
value is positive, otherwise it contributes no value to the next layer.

3.6.2. Neural Networks for Survival Analysis

Surveying neural networks is a non-trivial task as there has been a long history
in machine learning of publishing very specific data-driven neural networks with
limited applications; this is also true in survival analysis. This does mean how-
ever that where limited developments for survival were made in other machine
learning classes, ANN survival adaptations have been around for several decades.
A review in 2000 by Schwarzer et al. surveyed 43 ANNs for diagnosis and prog-
nosis published in the first half of the 90s, however only up to ten of these are
specifically for survival data.1 Of those, Schwarzer et al. deemed three to be
‘näıve applications to survival data’, and recommended for future research mod-
els developed by Liestøl et al. (1994) [197], Faraggi and Simon (1995) [78], and
Biganzoli et al. (1998) [18].

This survey will not be as comprehensive as the 2000 survey, and nor has
any survey since, although there have been several ANN reviews [251, 135, 232,
328, 334]. ANNs are considered to be a black-box model, with interpretabil-
ity decreasing steeply as the number of hidden layers and nodes increases. In
terms of accessibility there have been relatively few open-source packages devel-
oped for survival ANNs; where these are available the focus has historically been
in Python, with no R implementations. The new survivalmodels [275] pack-
age,2 implements these Python models via reticulate [301]. No recurrent neural
netwoks are included in this survey though the survival models SRN [230] and
RNN-Surv [99] are acknowledged.

This survey is made slightly more difficult as neural networks are often proposed
for many different tasks, which are not necessarily clearly advertised in a paper’s
title or abstract. For example, many papers claim to use neural networks for
survival analysis and make comparisons to Cox models, whereas the task tends
to be death at a particular (usually 5-year) time-point (classification) [114, 203,
251, 252, 271], which is often not made clear until mid-way through the paper.
Reviews and surveys have also conflated these different tasks, for example a very
recent review concluded superior performance of ANNs over Cox models, when in
fact this is only in classification [134] (section 5.3.3 (RM2)). To clarify, this form
of classification task does fall into the general field of survival analysis, but not
the survival task (box 3). Therefore this is not a comment on the classification
task but a reason for omitting these models from this survey.

1Schwarzer conflates the prognosis and survival task, therefore it is not clear if all 10 of
these are for time-to-event data (at least five definitely are).

2Created in order to run the experiments in chapter 7.
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Using ANNs for feature selection (often in gene expression data) and com-
puter vision is also very common in survival analysis, and indeed it is in this area
that most success has been seen [10, 46, 61, 185, 213, 250, 270, 331, 335], but
these are again beyond the scope of this survey.

The key difference between neural networks is in their output layer, required
data transformations, the model prediction, and the loss function used to fit the
model. Therefore the following are discussed for each of the surveyed models:
the loss function for training, L, the model prediction type, ĝ, and any required
data transformation. Notation is continued from the previous surveys with the
addition of θ denoting model weights (which will be different for each model).

3.6.2.1. Probabilistic Survival Models

Unlike other classes of machine learning models, the focus in ANNs has been on
probabilistic models. The vast majority make these predictions via reduction to
binary classification (section 5.5.7.6). Whilst almost all of these networks im-
plicitly reduce the problem to classification, most are not transparent in exactly
how they do so and none provide clear or detailed interface points in implemen-
tation allowing for control over this reduction. Most importantly, the majority
of these models do not detail how valid survival predictions are derived from the
binary setting,1 which is not just a theoretical problem as some implementations,
such as the Logistic-Hazard model in pycox [172], have been observed to make
survival predictions outside the range [0, 1]. This is not a statement about the
performance of models in this section but a remark about the lack of transparency
across all probabilistic ANNs.

Many of these algorithms use an approach that formulate the Cox PH as a
non-linear model and minimise the partial likelihood. These are referred to as
‘neural-Cox’ models and the earliest appears to have been developed by Faraggi
and Simon [78]. All these models are technically composites that first predict a
ranking, however they assume a PH form and in implementation they all appear
to return a probabilistic prediction.

ANN-COX
Faraggi and Simon [78] proposed a non-linear PH model

h(τ |Xi, θ) = h0(τ) exp(φ(Xiβ)) (3.6.10)

where φ is the sigmoid function and θ = {β} are model weights. This model,
‘ANN-COX’, estimates the prediction functional, ĝ(X∗) = φ(X∗β̂). The model
is trained with the partial-likelihood function

L(ĝ, θ|D0) =
n∏
i=1

exp(
∑M

m=1 αmĝm(X∗))∑
j∈Rti

exp(
∑M

m=1 αmĝm(X∗))
(3.6.11)

1One could assume they use procedures such as those described in Tutz and Schmid
(2016) [298] but there is rarely transparent writing to confirm this.
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where Rti is the risk group alive at ti; M is the number of hidden units; ĝm(X∗) =

(1 + exp(−X∗β̂m))−1; and θ = {β, α} are model weights.
The authors proposed a single hidden layer network, trained using back-

propagation and weight optimisation with Newton-Raphson. This architecture
did not outerperform a Cox PH [78]. Further adjustments including (now stan-
dard) pre-processing and hyper-parameter tuning did not improve the model
performance [208]. Further independent studies demonstrated worse performance
than the Cox model [78, 327].

COX-NNET
COX-NNET [49] updates the ANN-COX by instead maximising the regularized
partial log-likelihood

L(ĝ, θ|D0, λ) =
n∑
i=1

∆i

[
ĝ(Xi) − log

( ∑
j∈Rti

exp(ĝ(Xj))
)]

+ λ(‖β‖2 + ‖w‖2)

(3.6.12)
with weights θ = (β, w) and where ĝ(Xi) = σ(wXi + b)Tβ for bias term b, and
activation function σ; σ is chosen to be the tanh function (3.6.5). In addition to
weight decay, dropout [285] is employed to prevent overfitting. Dropout can be
thought of as a similar concept to the variable selection in random forests, as each
node is randomly deactivated with probability p, where p is a hyper-parameter
to be tuned.

Independent simulation studies suggest that COX-NNET does not outperform
the Cox PH [96].

DeepSurv
DeepSurv [156] extends these models to deep learning with multiple hidden lay-
ers. The chosen error function is the average negative log-partial-likelihood with
weight decay

L(ĝ, θ|D0, λ) = − 1

n∗

n∑
i=1

∆i

[(
ĝ(Xi)− log

∑
j∈Rti )

exp(ĝ(Xj)
)]

+ λ‖θ‖2
2 (3.6.13)

where n∗ :=
∑n

i=1 I(∆i = 1) is the number of uncensored observations and
ĝ(Xi) = φ(Xi|θ) is the same prediction object as the ANN-COX. State-of-the-art
methods are used for data pre-processing and model training. The model archi-
tecture uses a combination of fully-connected and dropout layers. Benchmark
experiments by the authors indicate that DeepSurv can outperform the Cox PH
in ranking tasks [155, 156] although independent experiments do not confirm
this [332].
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Cox-Time
Kvamme et al. [174] build on these models by allowing time-varying effects. The
loss function to minimise, with regularization, is given by

L(ĝ, θ|D0, λ) =
1

n

∑
i:∆i=1

log
( ∑
j∈Rti

exp[ĝ(Xj, Ti)−ĝ(Xi, Ti)]
)

+λ
∑
i:∆i=1

∑
j∈Rti

|ĝ(Xj, Ti)|

(3.6.14)
where ĝ = ĝ1, ..., ĝn is the same non-linear predictor but with a time interaction
and λ is the regularization parameter. The model is trained with stochastic gra-
dient descent and the risk set, Rti , in the equation above is instead reduced to
batches, as opposed to the complete dataset. ReLU activations [224] and dropout
are employed in training. Benchmark experiments indicate good performance of
Cox-Time, though no formal statistical comparisons are provided and hence no
comment about general performance can be made.

ANN-CDP
One of the earliest ANNs that was noted by Schwarzer et al. [268] was devel-
oped by Liestøl et al. [197] and predicts conditional death probabilities (hence
‘ANN-CDP’). The model first partitions the continuous survival times into dis-
joint intervals Ik, k = 1, ...,m such that Ik is the interval (tk−1, tk]. The model
then studies the logistic Cox model (proportional odds) [59] given by

pk(x)

qk(x)
= exp(η + θk) (3.6.15)

where pk = 1−qk, θk = log(pk(0)/qk(0)) for some baseline probability of survival,
qk(0), to be estimated; η is the usual linear predictor, and qk = P (T ≥ Tk|T ≥
Tk−1) is the conditional survival probability at time Tk given survival at time
Tk−1 for k = 1, ..., K total time intervals. A logistic activation function is used to
predict ĝ(X∗) = φ(η + θk), which provides an estimate for p̂k.

The model is trained on discrete censoring indicators Dki such that Dki = 1
if individual i dies in interval Ik and 0 otherwise. Then with K output nodes
and maximum likelihood estimation to find the model parameters, η̂, the final
prediction provides an estimate for the conditional death probabilities p̂k. The
negative log-likelihood to optimise is given by

L(ĝ, θ|D0) =
n∑
i=1

mi∑
k=1

[Dki log(p̂k(Xi)) + (1−Dki) log(q̂k(Xi))] (3.6.16)

where mi is the number of intervals in which observation i is not censored.
Liestøl et al. discuss different weighting options and how they correspond to

the PH assumption. In the most generalised case, a weight-decay type regular-
ization is applied to the model weights given by

α
∑
l

∑
k

(wkl − wk−1,l)
2 (3.6.17)

where w are weights, and α is a hyper-parameter to be tuned, which can be used
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alongside standard weight decay. This corresponds to penalizing deviations from
proportionality thus creating a model with approximate proportionality. The
authors also suggest the possibility of fixing the weights to be equal in some
nodes and different in others; equal weights strictly enforces the proportionality
assumption. Their simulations found that removing the proportionality assump-
tion completely, or strictly enforcing it, gave inferior results. Comparing their
model to a standard Cox PH resulted in a ‘better’ negative log-likelihood, how-
ever this is not a precise evaluation metric and an independent simulation would
be preferred. Finally Listøl et al. included a warning “The flexibility is, however,
obtained at unquestionable costs: many parameters, difficult interpretation of
the parameters and a slow numerical procedure” [197].

PLANN
Biganzoli et al. (1998) [18] studied the same proportional-odds model as the
ANN-CDP [197]. Their model utilises partial logistic regression [75] with added
hidden nodes, hence ‘PLANN’. Unlike ANN-CDP, PLANN predicts a smoothed
hazard function by using smoothing splines. The continuous time outcome is
again discretised into disjoint intervals tm,m = 1, ...,M . At each time-interval,
tm, the number of events, dm, and number of subjects at risk, nm, can be used to
calculate the discrete hazard function,1

ĥm =
dm
nm

,m = 1, ...,M (3.6.18)

This quantity is used as the target to train the neural network. The survival
function is then estimated by the Kaplan-Meier type estimator,

Ŝ(τ) =
∏

m:tm≤τ

(1− ĥm) (3.6.19)

The model is fit by employing one of the more ‘usual’ survival reduction
strategies in which an observation’s survival time is treated as a covariate in the
model [298]. As this model uses discrete time, the survival time is discretised into
one of theM intervals. This approach removes the proportional odds constraint as
interaction effects between time and covariates can be modelled (as time-updated
covariates). Again the model makes predictions at a given time m, φ(θm + η),
where η is the usual linear predictor, θ is the baseline proportional odds hazard
θm = log(hm(0)/(1 − hm(0)). The logistic activation provides estimates for the
discrete hazard,

hm(Xi) =
exp(θm + η̂)

1 + exp(θm + η̂)
(3.6.20)

which is smoothed with cubic splines [75] that require tuning.

1Derivation of this as a ‘hazard’ estimator follows trivially by comparison to the
Nelson-Aalen estimator.
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A cross-entropy error function is used for training

L(ĥ, θ|D0, a) = −
M∑
m=1

[
ĥm log

(hl(Xi, al)

ĥm

)
+ (1− ĥm) log

(1− hl(Xi, al)

1− ĥm

)]
nm

(3.6.21)
where hl(Xi, al) is the discrete hazard hl with smoothing at mid-points al. Weight
decay can be applied and the authors suggest λ ≈ 0.01 − 0.1 [18], though they
make use of an AIC type criterion instead of cross-validation.

This model makes smoothed hazard predictions at a given time-point, τ , by
including τ in the input covariates Xi. Therefore the model first requires transfor-
mation of the input data by replicating all observations and replacing the single
survival indicator ∆i, with a time-dependent indicator Dik, the same approach
as in ANN-CDP. Further developments have extended the PLANN to Bayesian
modelling, and for competing risks [17].

No formal comparison is made to simpler model classes. The authors rec-
ommend ANNs primarily for exploration, feature selection, and understanding
underlying patterns in the data [17].

Nnet-survival
Aspects of the PLANN algorithm have been generalised into discrete-time sur-
vival algorithms in several papers [96, 173, 206, 288]. Various estimates have been
derived for transforming the input data to a discrete hazard or survival function.
Though only one is considered here as it is the most modern and has a natural
interpretation as the ‘usual’ Kaplan-Meier estimator for the survival function.
Others by Street (1998) [288] and Mani (1999) [206] are acknowledged. The dis-
crete hazard estimator (eq. (3.6.18)), ĥ, is estimated and these values are used as
the targets for the ANN. For the error function, the mean negative log-likelihood
for discrete time [173] is minimised to estimate ĥ,

L(ĥ, θ|D0) = − 1

n

n∑
i=1

k(Ti)∑
j=1

(I(Ti = τj,∆i = 1) log[ĥi(τj)] +

(1− I(Ti = τj,∆i = 1)) log(1− ĥi(τj)))

(3.6.22)

where k(Ti) is the time-interval index in which observation i dies/is censored, τj
is the jth discrete time-interval, and the prediction of ĥ is obtained via

ĥ(τj|D0) = [1 + exp(−ĝj(D0))]−1 (3.6.23)

where ĝj is the jth output for j = 1, ...,m discrete time intervals. The number of
units in the output layer for these models corresponds to the number of discrete-
time intervals. Deciding the width of the time-intervals is an additional hyper-
parameter to consider.

Gensheimer and Narasimhan’s ‘Nnet-survival’ [96] has two different imple-
mentations. The first assumes a PH form and predicts the linear predictor in the
final layer, which can then be composed to a distribution. Their second ‘flexible’
approach instead predicts the log-odds of survival in each node, which are then
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converted to a conditional probability of survival, 1−hj, in a given interval using
the sigmoid activation function. The full survival function can be derived with
eq. (3.6.19). The model has been demonstrated not to outperform the Cox PH
w.r.t. Harrell’s C or the Graf (Brier) score [96].

PC-Hazard
Kvamme and Borgan deviate from nnet-survival in their ‘PC-Hazard’ [173] by
first considering a discrete-time approach with a softmax activation function in-
fluenced by multi-class classification. They expand upon this by studying a piece-
wise constant hazard function in continuous time and defining the mean negative
log-likelihood as

L(ĝ, θ|D0) = − 1

n

n∑
i=1

(
∆iXi log η̃k(Ti) −Xiη̃k(Ti)ρ(Ti)−

k(Ti)−1∑
j=1

η̃jXi

)
(3.6.24)

where k(Ti) and τi is the same as defined above, ρ(t) =
t−τk(t)−1

∆τk(t)
, ∆τj = τj − τj−1,

and η̃j := log(1 + exp(ĝj(Xi)) where again ĝj is the jth output for j = 1, ...,m
discrete time intervals. Once the weights have been estimated, the predicted
survival function is given by

Ŝ(τ,X∗|D0) = exp(−X∗η̃k(τ)ρ(τ))

k(τ)−1∏
j=1

exp(−η̃j(X∗)) (3.6.25)

Benchmark experiments indicate similar performance to nnet-survival [173], an
unsurprising result given their implementations are identical with the exception
of the loss function [173], which is also similar for both models. A key result
found that varying values for interval width lead to significant differences and
therefore should be carefully tuned.

DNNSurv
A very recent (pre-print) approach [332] instead first computes ‘pseudo-survival
probabilities’ and uses these to train a regression ANN with sigmoid activa-
tion and squared error loss. These pseudo-probabilities are computed using a
jackknife-style estimator given by

S̃ij(Tj+1,Rtj) = njŜ(Tj+1|Rtj)− (nj − 1)Ŝ−i(Tj+1|Rtj) (3.6.26)

where Ŝ is the IPCW weighted Kaplan-Meier estimator (defined below) for risk
set Rtj , Ŝ

−i is the Kaplan-Meier estimator for all observations in Rtj excluding
observation i, and nj := |Rtj |. The IPCW weighted KM estimate is found via
the IPCW Nelson-Aalen estimator,

Ĥ(τ |D0) =
n∑
i=1

∫ τ

0

I(Ti ≤ u,∆i = 1)Ŵi(u)∑n
j=1 I(Tj ≥ u)Ŵj(u)

du (3.6.27)

where Ŵi, Ŵj are subject specific IPC weights.
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In their simulation studies, they found no improvement over other proposed
neural networks. Arguably the most interesting outcome of their paper are com-
parisons of multiple survival ANNs at specific time-points, evaluated with C-
index and Brier score. Their results indicate identical performance from all mod-
els. They also provide further evidence of neural networks not outperforming a
Cox PH when the PH assumption is valid. However, in their non-PH dataset,
DNNSurv appears to outperform the Cox model (no formal tests are provided).
Data is replicated similarly to previous models except that no special indicator
separates censoring and death, this is assumed to be handled by the IPCW pseudo
probabilities.

DeepHit
DeepHit [191] was originally built to accommodate competing risks, but only
the non-competing case is discussed here [174]. The model builds on previous
approaches by discretising the continuous time outcome, and makes use of a
composite loss. It has the advantage of making no parametric assumptions and
directly predicts the probability of failure in each time-interval (which again cor-
respond to different terminal nodes), i.e. ĝ(τk|D1) = P̂ (T ∗ = τk|X∗) where again
τk, k = 1, ..., K are the distinct time intervals. The estimated survival function is
found with Ŝ(τK |X∗) = 1 −

∑K
k=1 ĝi(τk|X∗). ReLU activations were used in all

fully connected layers and a softmax activation in the final layer. The losses in
the composite error function are given by

L1(ĝ, θ|D0) = −
N∑
i=1

[∆i log(ĝi(Ti)) + (1−∆i) log(Ŝi(Ti))] (3.6.28)

and
L2(ĝ, θ|D0, σ) =

∑
i 6=j

∆iI(Ti < Tj)σ(Ŝi(Ti), Ŝj(Ti)) (3.6.29)

for some convex loss function σ and where ĝi(t) = ĝ(t|Xi). Again these can
be seen to be a cross-entropy loss and a ranking loss. Benchmark experiments
demonstrate the model outperforming the Cox PH and RSFs [191] with respect to
separation, and an independent experiment supports these findings [174]. How-
ever, the same independent study demonstrated worse performance than a Cox
PH w.r.t. the integrated Brier score [109].

3.6.2.2. Deterministic Survival Models

Whilst the vast majority of survival ANNs have focused on probabilistic predic-
tions (often via ranking), a few have also tackled the deterministic or ‘hybrid’
problem.

RankDeepSurv
Jing et al. [148] observed the past two decades of research in survival ANNs and
then published a completely novel solution, RankDeepSurv, which makes pre-
dictions for the survival time T̂ = (T̂1, ..., T̂n). They proposed a composite loss
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function

L(T̂ , θ|D0, α, γ, λ) = αL1(T̂ , T,∆) + γL2(T̂ , T,∆) + λ‖θ‖2
2 (3.6.30)

where θ are the model weights, α, γ ∈ R>0, λ is the shrinkage parameter, by a
slight abuse of notation T = (T1, ..., Tn) and ∆ = (∆1, ...,∆n), and

L1(T̂ , θ|D0) =
1

n

∑
{i:I(i)=1}

(T̂i − Ti)2; I(i) =

1, ∆i = 1 ∪ (∆i = 0 ∩ T̂i ≤ Ti)

0, otherwise

(3.6.31)

L2(T̂ , θ|D0) =
1

n

n∑
{i,j:I(i,j)=1}

[(Tj−Ti)−(T̂j−T̂i)]2; I(i, j) =

1, Tj − Ti > T̂j − T̂i
0, otherwise

(3.6.32)
where T̂i is the predicted survival time for observation i. A clear contrast can be
made between these loss functions and the constraints used in SSVM-Hybrid [306]
(section 3.5.2). L1 is the squared second constraint in eq. (3.5.4) and L2 is the
squared first constraint in eq. (3.5.4). However L1 in RankDeepSurv discards the
squared error difference for all censored observations when the prediction is lower
than the observed survival time; which is problematic as if someone is censored at
time Ti then it is guaranteed that their true survival time is greater than Ti (this
constraint may be more sensible if the inequality were reversed). An advantage
to this loss is, like the SSVM-Hybrid, it enables a survival time interpretation for
a ranking optimised model; however these ‘survival times’ should be interpreted
with care.

The authors propose a model architecture with several fully connected layers
with the ELU [54] activation function and a single dropout layer. Determining
the success of this model is not straightforward. The authors claim superiority
of RankDeepSurv over Cox PH, DeepSurv, and RSFs however this is an unclear
comparison (section 5.3.3 (RM2)) that requires independent study.

3.6.3. Novel Adaptations

In stark contrast to other model classes, the vast majority of survival ANNs have
focused on optimising probabilistic predictions and not relative risks. There does
not appear to a model that directly optimises separation via some concordance
measure. One simple method could consider RankDeepSurv [148] without L1.
Interestingly, Jing et al. [148] compare RankDeepSurv to a model using L1 only
but not to a model using L2 only, which would be similar to SSVM-Rank [306]
(section 3.5.2). RankDeepSurv also likely suffers from the same computational
problems as RANKSVMC [303]. However this could be resolved by employing the
same nearest-neighbours methodology [304] as in SSVM-Rank. A disadvantage
of RankDeepSurv is that the loss does not compare right-censored observations
to possibly-correct predictions. Two possible methods to resolve this are either
to include a hyper-parameter for ‘mean time alive from censoring’, ε, or an MRL
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imputation method, similarly to SSVR-MRL [102] (section 3.5.2). With these
adaptations, L1 is given by

L1(T̂ , θ|D0, ε) =
1

n

n∑
i=1

∆i(T̂i − Ti)2 + (1−∆i)(T̂i − Ti − εi)2 (3.6.33)

where either εi are hyper-parameters for tuning (all could be set equal to prevent
overfitting) or εi = MRL(Ti). L2 is given by,

L2(T̂ , θ|D0) =
1

n

n∑
{i:I(i)=1}

[(Ti − Tj(i))− (T̂i − T̂j(i))]2;

I(i) =

1, Ti − Tj(i) > T̂i − T̂j(i)
0, otherwise

(3.6.34)

where Tj(i) is the survival time of the nearest non-censored neighbour with the
largest survival time smaller than Ti, the same definition as given by Van Belle
et al. [306]. The adaptation to L1 prevents predictions from being discarded in
the loss and simultaneously increases penalization applied to under-predictions.
The adapted L2 should also have a faster run-time.

3.6.4. Conclusions

There have been many advances in neural networks for survival analysis. It is
not possible to review all proposed survival neural networks without diverting too
far from the thesis scope. This survey of ANNs should demonstrate two points:
firstly that the vast majority (if not all) of survival ANNs are reduction models
that either find a way around censoring via imputation or discretisation of time-
intervals, or by focusing on partial likelihoods only; secondly that no survival
ANN is APT.

Despite ANNs being highly performant in other areas of supervised learning,
there is strong evidence that the survival ANNs above are inferior to a Cox
PH when the data follows the PH assumption or when variables are linearly re-
lated [95, 204, 233, 241, 327, 328, 329, 332]. There are not enough experiments to
make conclusions in the case when the data is non-PH. Experiments in chapter 7
support the finding that survival ANNs are not performant.

There is evidence that many papers introducing neural networks do not utilise
proper methods of comparison or evaluation [161] and in conducting this survey,
these findings are further supported. Many papers made claims of being ‘superior’
to the Cox model based on unfair comparisons (section 5.3.3 (RM2)) or miscom-
municating (or misinterpreting) results (e.g. [82]). At this stage, it does not seem
possible to make any conclusions about the effectiveness of neural networks in
survival analysis. Moreover, even the authors of these models have pointed out
problems with transparency [17, 197], which was further highlighted by Schwarzer
et al. [268].

Finally, accessibility of neural networks is also problematic. Many papers



3.7. Alternative Models 101

do not release their code and instead just state their networks architecture and
available packages. In theory, this is enough to build the models however this
does not guarantee the reproducibility that is usually expected. For users with a
technical background and good coding ability, many of the models above could
be implemented in one of the neural network packages in R, such as nnet [222]
and neuralnet [90]; though in practice the only package that does contain these
models, survivalmodels, does not directly implement the models in R (which
is much slower than Python) but provides a method for interfacing the Python
implementations in pycox [172].

3.7. Alternative Models

This survey has focused on reviewing machine learning models according to the
three key themes of this thesis (section 1.1.1) and within the thesis scope (sec-
tion 2.2). Therefore this survey has not exhaustively covered all machine learning
models and entire model classes have been omitted; this short section briefly dis-
cusses these classes.

Bayesian Models As stated in the thesis scope, only frequentist frameworks
are considered in this thesis. In terms of accessibility, many more off-shelf survival
model implementations exist in the frequentist framework. Despite this, there is
good evidence that Bayesian survival models, such as Bayesian neural networks [9,
79], can perform well [23] and a survey of these models may be explored in future
work.

Gaussian Processes Gaussian Processes (GPs) are a class of model that nat-
urally fit the survival paradigm as they model the joint distribution of random
variables over some continuous domain, often time. The simplest extension from
a standard Cox model to GP is given by the non-linear hazard

h(τ |Xi) = h0(τ)φ(g(τ |Xi)); g(·) ∼ GP(0, k) (3.7.1)

where φ is a non-negative link function, GP is a Gaussian process [247], and k is
a kernel function with parameters to be estimated [159]. Hyper-parameters are
learnt by evaluating the likelihood function [23] and in the context of survival
analysis this is commonly performed by assuming an inhomogeneous Poisson
process [80, 261, 312]. For a comprehensive survey of GPs for survival, see Saul
(2016) [261]. There is evidence of GPs outperforming Cox and ML models [80].
GPs are excluded from this survey due to lack of implementation (thus accessi-
bility) and poorer transparency. Future research could look at increasing off-shelf
accessibility of these models.

Non-Supervised Learning As well as pure supervised learning, there are also
survival models that use active learning [228], transfer learning, or treat survival
analysis as a Markov process. As with GPs, none of these are currently available
off-shelf and all require expert knowledge to be useful. These are not discussed



102 3. A Critical Survey of Survival Analysis Models

t1 t2 ... tk ... tK−1 tK

Dead

Censored

Figure 8: Markov survival process with probabilities suppressed. t1, ..., tK are states
representing time, ‘Censored’ and ‘Death’ are absorbing states corresponding to ob-
served censoring indicator.

in detail here but a very brief introduction to the Markov Process (MP) set-up
is provided to motivate further consideration for the area.

Figure 8 visualises the survival set-up as a Markov chain. In each discrete
time-point t1, ..., tK−1, an individual can either move to the next time-point (and
therefore be alive at that time-point), or move to one of the absorbing states
(‘Dead’ and ‘Censored’). The final time-point, tK , is never visited as an individual
must be dead or censored at the end of a study, and hence are last seen alive at
tK−1. In this set-up, data is assumed sequential and the time of death or censoring
is determined by the last state at which the individual was seen to be alive, plus
one, i.e. if an individual transitions from tk to ‘Death’, then they died at tk+1.
This setting assumes the Markov property, so that the probability of moving to the
‘next’ state only depends on the current one. This method lends itself naturally
to competing risks, which would extend the ‘Dead’ state to multiple absorbing
states for each risk. Additionally, left-censoring can be naturally incorporated
without further assumptions [3].

This set-up has been considered in survival both for Markov models and in the
context of reinforcement learning [62], though the latter case is underdeveloped
and future research could pursue this further.
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3.8. Conclusions

This chapter has surveyed models for survival analysis with an emphasis on ML
models. The survey was not exhaustive but demonstrates the status quo of ac-
cessible ML survival methods. In particular, the survey provides four primary
contributions.

Firstly, the taxonomy by prediction type prevents erroneous comparisons be-
tween incompatible models, which has been seen in prior surveys.

Secondly, by focusing on transparency and accessibility (and not just pre-
dictive performance), the survey highlights how some model classes have seen
extensive development and others less so. This is not a criticism of the research
but a result of a lack of transparency, accessibility, and conflicting terminology.
Unifying notation and terminology allows research to be guided in novel directions
as opposed to focusing on pre-existing methodology.

Thirdly, by presenting a comprehensive overview to each ML class, this survey
highlights how several models can be adapted by utilising research from other
classes. For example, the novel ANN adaptation (section 3.6.3) followed naturally
from the SSVM survey by identifying closely related model forms. This survey
should allow more concise cross-referencing between model classes in order to
guide future developments. Other possible examples for future research include
guiding ANN development towards more concise use of reduction (formalised
in chapter 5) and adapting random forests to more parametric estimators (a
development seen in GBMs).

Finally, novel models are briefly discussed as adaptations to existing methods.
In future research these will be studied further for their theoretical properties and
analytically compared in benchmark experiments. Adaptations that are deemed
‘sensible’ (section 1.1.1) will be added to the package survivalmodels [275].

Previous surveys of ML models for survival analysis demonstrated problems in
proposed methodology. For example in the context of ANNs, Schwarzer et al.
went so far as to conclude “...these obvious deficiencies show that there is some
danger that the fruitful development of statistical methodology for survival data
during the last three decades may be wasted with these naive applications of
neural networks to such data” [268]. Since this 2000 review, there has been more
development in the area and it certainly appears that more robust implementa-
tion and methodology has been proposed; though some of the ‘naive’ applications
discussed by Schwarzer et al. have also been observed.

No benchmark experiment has yet to emerge in the literature that comprehen-
sively compares all these models on predictive performance, this is resolved in
chapter 7.



Chapter 4

Evaluation Measures for Survival

Models

This chapter studies how to evaluate the predictions arising from the surveyed
models in the previous chapter. ‘Model evaluation’ is as vague a phrase as ‘hu-
man evaluation’. A human could be evaluated by a series of exams, physical or
neurological tests, aesthetics, etc. Likewise a model could be evaluated according
to how well it fits to training data, the quality of predictions on new data, the
average prediction, and many more methods. This chapter aims to provide a
nuanced approach to defining, understanding, and examining model evaluation.
Evaluation is defined in further detail in section 4.1 and throughout this chapter
the definition will continue to be refined and specialised to specific sub-types of
evaluation, including discrimination (section 4.4), calibration (section 4.5), and
overall predictive performance (section 4.6).

Evaluation is a surprising source of disagreement in the literature with some
arguing that the process can often be ignored completely [176, 324]. There is a
larger divide in survival analysis as many believe that the primary (possibly only)
goal is risk prediction [44, 227, 237] and thus other forms of evaluation are not
required. These strict views can undermine an integral part of the model build-
ing and deployment process, and create more division than necessary. This thesis
advocates for strict implementation of model evaluation as a critical part of the
model building process as well as in continuous monitoring of deployed models.
Without rigorous evaluation, a model cannot be ‘trusted’ to perform well and
could be as useless as making random guesses for all predictions. This is critical
in survival analysis, which has important applications in healthcare and finance,
in these sectors models that have not been evaluated are potentially dangerous.

An infamous example of evaluation going wrong is the Google Flu Trends
(GFT) model1, which claimed to accurately predict future flu trends but was
in fact deemed by many a complete failure as it significantly overestimated all
predictions, in some cases doubling the true figures [187]. The GFT model was
never utilised (at least openly) in policy and as such no lasting harm was cre-
ated. However it is not hard to imagine the problems that would be caused by

1https://www.google.org/flutrends/about/
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such a model if it was utilised and trusted during the time of COVID-19. On
a more individual level, as machine learning is increasingly deployed in public
sectors, major decisions for patients could become increasingly automated (or at
least machine-assisted). Patients should expect their models to be as trained and
tested as their doctors.

This chapter attempts to highlight the purpose and need of evaluation in sur-
vival analysis by first giving a high-level overview to evaluation as a concept,
then providing a brief review of commonly-used survival measures and finally
extensive treatment to scoring rules for evaluation of probabilistic predictions,
including novel definitions and proofs for properness of scoring rules. The term
measure will be used throughout this chapter to refer to functions or ‘metrics’
that quantify some aspect of model evaluation, this should not be confused with
a mathematical measure.

The APT criteria will be utilised to survey these measures. For transparency
and accessibility, these are straightforward to apply to measures with the same
definitions as for models. For predictive performance this is more complicated as
it depends on the model class. Therefore optimal measure performance definitions
will be covered within each section.

Notation and Terminology The notation introduced in chapter 2 is recapped
for use in this chapter. The generative template is given by (X,T,∆, Y, C) t.v.i. X×
T×{0, 1}×T×T where X ⊆ Rp and T ⊆ R≥0, where C, Y are unobservable, T :=
min{Y,C}, and ∆ = I(Y = T ). Specific survival data is given by training data,

D0 = {(X1, T1,∆1), ..., (Xn, Tn,∆n)} where (Xi, Ti,∆i)
i.i.d.∼ (X,T,∆), and test

data, D1 = {(X∗1 , T ∗1 ,∆∗1), ..., (X∗m, T
∗
m,∆

∗
m)} where (X∗i , T

∗
i ,∆

∗
i )

i.i.d.∼ (X,T,∆).

4.1. Evaluation Overview

4.1.1. What is Evaluation?

Evaluation is the process of examining a model’s relationship to data, which
may refer to the model’s relationship to training data, i.e. how well the model
is ‘fit’ to this data, or the relationship to testing data, i.e. how ‘good’ are the
predictions from the model. In this thesis, only three types of evaluation measure
are considered and qualitative definitions of these are given here; more precise
definitions appear later in the chapter.

• Discrimination – A model’s discriminatory power refers to how well it sep-
arates observations that are at a higher or lower risk of event. Therefore
discrimination is also sometimes referred to as separation. For example, a
model with good discrimination will predict that (at a given time) a dead
patient has a higher probability of being dead than an alive patient. These
measures are the most common in survival and assess relative risk or rank
predictions.
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• Calibration – There is no single agreed upon definition of model calibration,
with definitions varying from paper to paper [56, 117, 246, 308]. Generally,
a model is said to be well-calibrated if the average predicted values from the
model are in some ‘agreement’ (which is specified by the chosen measure)
with the average true observed values.

• Predictive Performance – A model is said to have good predictive perfor-
mance (or sometimes ‘predictive accuracy’) if its predictions for new data
are ‘close to’ the truth.

These are referred to as measures of predictive ability as they draw conclusions
about the ability of the model to make predictions.1

Using these definitions as a primary taxonomy for survival measures is prob-
lematic as without clear definitions there can be significant overlap between model
‘classes’. Instead this thesis advocates for the same taxonomy as in the previous
chapter and categorises measures by the return type that they evaluate: survival
time, ranking, or survival distribution.

Goodness-of-fit measures are very briefly discussed in section 4.2 for complete-
ness, however these are generally out of scope in this thesis as the vast majority
(if any) cannot evaluate machine learning models.

4.1.2. Why are Models Evaluated?

A key element of the scientific method is experiments and validation. In the usual
workflow of the scientific method: i) a hypothesis is proposed; ii) predictions are
made; and iii) experiments are performed to test the hypothesis based on these
predictions. For statistical models the same principles are upheld: i) a model
is proposed (by manual or automated selection with possible tuning); ii) predic-
tions are made either internally (cross-validation) or externally (held-out data);
and iii) validation is performed on these predictions in order to infer something
about the model’s performance. The model can then be considered ‘good’ or ‘bad’
and either deployed, adjusted, or discarded. As these are models that are run
on a computer (as opposed to experiments in the real-world), the process from
fitting to validating is relatively quick and as such multiple proposed models can
be evaluated and compared at the same time. This provides two key use-cases for
evaluation: i) demonstrating model performance; and ii) model comparison/se-
lection.

Resistance to model evaluation can be found in the machine learning commu-
nity. One such example are proponents of inhomogeneous ensemble methods,
which combine predictions from multiple different models into a single predic-
tion. The arguments for these models are that: i) model evaluation can never be
precise enough, or strong enough guarantees cannot be given [146]; and ii) ensem-
ble methods can guarantee a better performance than the individual component
models and therefore evaluation of the components is not required. For example,

1Measures of predictive ability measure a model’s ability to make any form of prediction.
Measures of predictive performance measure the performance of the predictions. In this
section a model’s predictive ability refers to all three of discrimination, calibration, and
predictive performance.
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‘super learners’ [176] are a class of such model and claim1 to guarantee that a
super learner will always perform as well as, if not better, than its component
models: “...the super learner framework allows a researcher to try many predic-
tion algorithms...knowing that the final combined super learner fit will either be
the best fit or near the best fit” [239]. This has three problems, it: i) assumes that
researchers will only fit sensible prediction algorithms; ii) advocates for complex
ensemble models instead of transparent and parsimonious ones; and iii) assumes
that a super learner is guaranteed to be the (near) ‘best fit’, which actively dis-
courages simpler models being tested separately. Each of these problems can be
resolved by researchers only fitting sensible models and opting for an Occam’s
Razor approach where inhomogeneous ensemble methods are used only if they
outperform simpler models, thus requiring validation to test this.

By the parsimony principle, if two models have the same predictive performance
(within some degree of confidence), then the simpler and more transparent model
is preferred. Even a very slight gain in predictive performance could be out-
weighed by a large increase to complexity. All models, whether simple or com-
plex, should be critically compared to many alternatives. At the very least a
model should be compared to a baseline (section 4.6.5.1) as many performance
measures are uninterpretable without a point of comparison [111].

4.1.3. How are Models Evaluated?

The process of evaluation in machine learning is briefly given as a key method in
section 2.4 and relevant parts are repeated here. The evaluation process itself is
a simple application of a suitable mathematical function to predictions and true
data. Let L be some evaluation measure and for now assume L is a measure
evaluating deterministic predictions (the following generalises to other types triv-
ially). A model will either be evaluated on each prediction separately, in which
case L : R×R→ R̄ or the measure is calculated for all predictions simultaneously,
in which case L : Rm × Rm → R̄. Specifically the loss parameters are observed
(true) outcomes, Y , and predictions of this outcome, Ŷ . L is usually referred to
as a loss when L should be minimised for optimal prediction, whereas a score is
the term given when L should be maximised.

All evaluation measures discussed in this thesis are out-of-sample measures
and therefore evaluation takes place after the model makes predictions on held-
out test data.

Specific choices for L are now reviewed.

1Testing this claim is tangential so for now will be assumed true.
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4.2. In-Sample Measures

In-sample measures are not examined in this thesis as no in-sample measures
could be found that are applicable to all machine learning methods and therefore
are out of scope for this thesis. Instead, the interested reader is referred to the
papers and references listed below:

Residuals For discussion about model residuals, refer to texts on survival mod-
elling fitting and goodness-of-fit such as:

• David Collett. Modelling Survival Data in Medical Research. 3rd ed. CRC,
2014. isbn: 978-1584883258

• David W Hosmer Jr, Stanley Lemeshow, and Susanne May. Applied survival
analysis: regression modeling of time-to-event data. Vol. 618. John Wiley
& Sons, 2011. isbn: 1118211588

Both provide a comprehensive overview to model residuals for semi- and fully-
parametric low-complexity survival models.

R2 measures R2 type measures have been the focus of several reviews and
surveys, in particular the following are recommended:

• Babak Choodari-Oskooei, Patrick Royston, and Mahesh K.B. Parmar. “A
simulation study of predictive ability measures in a survival model I: Ex-
plained variation measures”. In: Statistics in Medicine 31.23 (2012), pp. 2627–
2643. issn: 02776715. doi: 10.1002/sim.4242 — For a comprehensive
review and simulation study of R2 type measures

• John T. Kent and John O’Quigley. “Measures of dependence for censored
survival data”. In: Biometrika 75.3 (1988), pp. 525–534. issn: 00063444.
doi: 10.1093/biomet/75.3.525 — Defines the commonly utilised Kent
and O’Quigley R2 measure

• Patrick Royston and Willi Sauerbrei. “A new measure of prognostic separa-
tion in survival data”. In: Statistics in Medicine 23.5 (2004), pp. 723–748.
issn: 02776715. doi: 10.1002/sim.1621 — Defines the commonly utilised
Royston and Sauerbrei R2 measure

Likelihood and Information Criteria Measures of likelihood and informa-
tion criteria (e.g. AIC, BIC) are commonly utilised in in-sample model com-
parison of low-complexity survival models though in general are harder (if not
impossible) to compute on ML alternatives.

These criterion are originally defined in:

• Hirotugu Akaike. “A New Look at the Statistical Model Identification”.
In: IEEE Transactions on Automatic Control 19.6 (1974), pp. 716–723.
issn: 17451337. doi: 10.1093/ietfec/e90-a.12.2762. arXiv: arXiv:

1011.1669v3 — For the introduction of the AIC

https://doi.org/10.1002/sim.4242
https://doi.org/10.1093/biomet/75.3.525
https://doi.org/10.1002/sim.1621
https://doi.org/10.1093/ietfec/e90-a.12.2762
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
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4.3. Evaluating Survival Time

There appears to be little research into measures for evaluating survival time
predictions, which is likely due to this task usually being of less interest than
the others (section 2.3). Common measures in survival analysis for survival time
predictions are the same as regression measures but with an additional indicator
variable to remove censoring. Three common regression measures are the mean
absolute error (MAE), mean squared error (MSE), and root mean squared error
(RMSE). These are respectively defined for survival analysis as

Definition 4.3.1. Let Tm ⊆ Rm
>0, t̂ = t̂1, ..., t̂m, t = t1, ..., tm, δ = δ1, ..., δm, and

d :=
∑m

i=1 δi, then

i) The censoring-adjusted mean absolute error, MAEC is defined by

MAEC : Tm × Tm × {0, 1}m → R≥0; (t̂, t, δ) 7→ 1

d

m∑
i=1

δi|ti − t̂i| (4.3.1)

ii) The censoring-adjusted mean squared error, MSEC is defined by

MSEC : Tm × Tm × {0, 1}m → R≥0; (t̂, t, δ) 7→ 1

d

m∑
i=1

δi(ti − t̂i)2 (4.3.2)
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iii) The censoring-adjusted root mean squared error, RMSEC is defined by

RMSEC : Tm × Tm × {0, 1}m → R≥0; (t̂, t, δ) 7→
√
MSEC(t, t̂, δ) (4.3.3)

These are referred to as ‘distance’ measures as they measure the distance
between the true, (t, δ), and predicted, t̂, values. This approach is not ideal as
the removal of censored observations results in increased bias as the proportion
of censoring increases (section 4.4.1). Furthermore these measures make some
assumptions that are likely not valid in a survival setting. For example these
metrics assume that an over-prediction should be penalised equally as much as
an under-prediction, whereas in survival data it is likely that a model should
be overly-cautious and under-predict survival times, i.e. it is safer to predict a
patient is more at risk and will die sooner rather than less risk and die later.

These measures are clearly transparent and accessible as off-shelf implemen-
tation is straightforward, though mlr3proba [281] was the only R package found
to implement these. For performance, no conclusions can be drawn as no research
could be found into the theoretical properties of these losses; despite this there is
evidence of them being utilised in the literature [317].

4.4. Evaluating Continuous Rankings

The next category of survival measures assess predictive performance via discrim-
ination for the evaluation of continuous ranking predictions. Assessment of con-
tinuous rankings are also possible by measures of calibration however few methods
could be found that generalised to all (not just PH) model forms. Therefore this
section exclusively discusses measures of discrimination. First time-independent
concordance indices (section 4.4.1) are discussed and then time-dependent AUCs
(section 4.4.2).

Measures of discrimination identify how well a model can separate patients
into different risk groups. A model has perfect discrimination if it correctly pre-
dicts that patient i is at higher risk of death than patient j if patient i dies first.
This risk of death is derived from the ranking prediction type. All discrimination
measures are ranking measures, which means that the exact predicted value is
irrelevant, only its relative ordering is required. For example given predictions
{100, 2, 299.3}, only their rankings, {2, 1, 3}, are used by measures of discrimina-
tion.

4.4.1. Concordance Indices

The simplest form of discrimination measures are concordance indices, which in
general measure the proportion of cases in which the model correctly separates a
pair of observations into ‘low’ and ‘high’ risk.
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Definition 4.4.1. Let (i, j) be a pair of observations with outcomes

{(ti, δi), (tj, δj)}
i.i.d.∼ (T,∆) and let yi, yj ∈ R be their respective risk predictions.

Then (i, j) are called [115, 116]:

• Comparable if ti < tj and δi = 1;

• Concordant if yi > yj.
1

A concordance index (C-index) is a weighted proportion of the number of con-
cordant pairs over the number of comparable pairs. As such, a C-index value is
between [0, 1] with 1 indicating perfect separation, 0.5 indicating no separation,
and 0 being separation in the ‘wrong direction’, i.e. all high risk patients being
ranked lower than all low risk patients. Concordance measures may either be
reported as a value in [0, 1], a percentage, or as ‘discriminatory power’. Discrim-
inatory power refers to the percentage improvement of a model’s discrimination
above the baseline value of 0.5. For example if a model has a concordance of 0.8
then its discriminatory power is (0.8 − 0.5)/0.5 = 60%. This representation of
discrimination provides more information by encoding the model’s improvement
over some baseline although is often confused with reporting concordance as a
percentage (e.g. reporting a concordance of 0.8 as 80%).

The most common concordance indices can be expressed as a general measure.

Definition 4.4.2. Let Tm ⊆ Rm
>0, y = y1, ..., ym, t = t1, ..., tm, δ = δ1, ..., δm, and

let W be a weighting function. Then, the survival concordance index is defined
by,

C : Rm × Tm × {0, 1}m × R≥0 → [0, 1];

(y, t, δ|τ) 7→
∑

i 6=jW (ti)I(ti < tj, yi > yj, ti < τ)δi∑
i 6=jW (ti)I(ti < tj, ti < τ)δi

(4.4.1)

for some cut-off time τ .

The choice of W specifies a particular evaluation measure (see below). To
evaluate the discrimination of a prediction functional, ĝ, with predicted rankings
from the model, r = r1, ..., rm, the concordance is calculated as
C(r, (T ∗1 , ..., T

∗
m), (∆∗1, ...,∆

∗
m)|τ) for some choice of τ ∈ R≥0. The use of the cut-

off τ mitigates against decreased sample size over time due to the removal of
censored observations. There are multiple methods for dealing with tied times
but in practice a value of 0.5 is usually taken when ti = tj [293]. The following
weights have been proposed for the concordance index [293]:

• W (ti) = 1 – This is Harrell’s concordance index, CH [115, 116], which is
widely accepted to be the most common survival measure [56, 105, 246].
There is no cut-off in the original definition of CH (τ =∞).

1Recall (section 2.3) this thesis defines the risk ranking such that a higher value implies
higher risk of death and so a pair is concordant if I(ti < tj , yi > yj), whereas this would be
I(ti < tj , yi < yj) if a higher value implied a lower risk of death.
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• W (ti) = [ĜKM(ti)]
−2 – This is Uno’s C, CU [300]. ĜKM is the Kaplan-Meier

estimate of the survival function of the censoring distribution fit on training
data. This is referred to as an Inverse Probability of Censoring Weighted
(IPCW) measure as the estimated censoring distribution is utilised to weight
the measure in order to compensate for removed censored observations.

• W (ti) = [ĜKM(ti)]
−1

• W (ti) = ŜKM(ti). ŜKM is the Kaplan-Meier estimator of the survival dis-
tribution.

• W (ti) = ŜKM(ti)/ĜKM(ti)

All methods assume that censoring is conditionally-independent of the event
given the features (section 2.1.2), otherwise weighting by ŜKM or ĜKM would
not be applicable. It is assumed here that ŜKM and ĜKM are estimated on the
training data and not the testing data (though the latter is often seen in imple-
mentation [291]).

With respect to being APT, all concordance indices are highly transparent and
accessible, with many off-shelf implementations. With respect to performance,
Choodari-Oskooei et al. (2012) [50] define a measure as performant if it is:1 i) in-
dependent of censoring; ii) interpretable; and iii) robust against outliers. This
second property is already covered by ‘transparency’. The third property is guar-
anteed for all measures of concordance, which are ranking measures; all outliers
are removed once ranks are applied to predictions. Therefore the first property,
“a measure that is the least affected by the amount of censoring is generally pre-
ferred” [50], is now considered.

Several papers have shown that CH is affected by the precense of censoring [169,
237, 254, 300] as the measure ignores pairs in which the shorter survival time is
censored. Despite this, CH is still the most widely utilised measure and moreover
if a suitable cut-of τ is chosen, then all these weightings perform very simi-
larly [246, 265].

Measures that utilise other weightings have been demonstrated to be less
affected by censoring than CH [246]. However if a poor choice is selected for
τ then IPCW measures (which include ĜKM in the weighting) can be highly
unstable [246]. For example, the variance of CU has been shown to drastically
increase more than other measures with increased censoring [265].

None of these measures are perfect and all have been shown to be affected
to some extent by censoring [265], which can lead to both under-confidence and
over-confidence in the model’s discriminatory ability. For example, CU has been
observed to report values as low as 0.2 when the ‘true estimate’ was 0.6 [265].
Therefore interpreting a value from these measures can be very difficult, for ex-
ample naively reporting a concordance of 60% when CH = 0.6 would be incorrect
as this value may mean very different things for different amounts of censor-
ing. Whilst intepreting these measures may be difficult, it is not impossible as

1This paper refers specifically to measures of explained variation and therefore only the
properties that generalise to all measures are included here.
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all these estimators tend to produce values around a similar range [246, 265].
Therefore this thesis advocates for multiple concordance indices being reported
alongside expert interpretation that takes into account sample size and censoring
proportions [265] as well as ‘risk profiles’ (how at risk patients are) [246].

For within-study model comparison, instability from censoring is not of con-
cern as the measure will be affected equally across all models; though interpreta-
tion remains difficult. However a concordance from one study cannot be compared
to that from another if the datasets differ greatly in the proportion of censoring.
Future research could consider more robust concordance indices that can provide
greater ease of interpretation.

As well as the concordance indices discussed here, another promiment alterntive
was derived by Gönen and Heller (2005) [105]. However as this is only applicable
to the Cox PH it is out of scope for this thesis, which is primarily concerned with
generalisable measures for model comparison.

In simulation experiments, the concordance indices that tended to perform ‘bet-
ter’ were those based on AUC-type measures, these are now discussed.

4.4.2. AUC Measures

AUC, or AUROC, measures calculate the Area Under the Receiver Operating
Characteristic (ROC) Curve, which is a plot of the sensitivity (or true positive
rate (TPR)) against 1−specificity (or true negative rate (TNR)) at varying thresh-
olds (described below) for the predicted probability (or risk) of event. Figure 9
visualises ROC curves for two classification models. The blue line is a featureless
baseline that has no discrimination. The red line is a decision tree with better
discrimination as it comes closer to the top-left corner.

In a classification setting with no censoring, the AUC has the same interpre-
tation as Harrell’s C [300]. AUC measures for survival analysis have been devel-
oped in order to provide a time-dependent measure of discriminatory ability [120].
The proposed concordance indices described above are time-independent, which
is useful for producing a single statistic. However, in a survival setting it can rea-
sonably be expected for a model to perform differently over time and therefore
time-dependent measures are advantageous. First discussion around computa-
tion of TPR and TNR are provided and then how these are incorporated into the
AUC equation.

The AUC, TPR, and TNR are derived from the confusion matrix in a binary
classification setting. Let b, b̂ ∈ {0, 1} be the true and predicted binary outcomes
respectively. The confusion matrix is

b = 1 b = 0

b̂ = 1 TP FP

b̂ = 0 FN TN

where TN :=
∑

i I(b = 0, b̂ = 0) is the number of (#) true negatives, TP :=∑
i I(b = 1, b̂ = 1) is # true positives, FP :=

∑
i I(b = 0, b̂ = 1) is # false
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Figure 9: ROC Curves for a classification example. Red is a decision tree with good
discrimination as it ‘hugs’ the top-left corner. Blue is a featureless baseline with no
discrimination as it sits on y = x.

positives, and FN :=
∑

i I(b = 1, b̂ = 0) is # false negatives. From these are
derived

TPR :=
TP

TP + FN
(4.4.2)

TNR :=
TN

TN + FP
(4.4.3)

In classification, a probabilistic prediction of an event can simply be thresh-
olded (or ‘binarised’) to obtain a deterministic prediction. For a predicted p̂ :=
P̂ (b = 1), and threshold α, the thresholded binary prediction is given by b̂ :=
I(p̂ > α). In survival analysis, this is complicated as either models only predict a
continuous ranking (and not a probability of death), or a full survival distribution,
which implies that the probability of death changes over time; it is the first of
these that is utilised in AUC measures. Two primary methods for doing so have
emerged, the first is to use an IPCW method to weight the thresholded linear
predictor by an estimated censoring distribution at a given time, the second is to
first classify cases and controls then compute estimators based on these classes.
All measures of TPR, TNR and AUC are in the range [0, 1] with larger values
preferred.

Weighting the linear predictor was proposed by Uno et al. (2007) [299] and pro-
vides a method for estimating TPR and TNR via

TPRU : Rm × Rm
≥0 × {0, 1}m × R≥0 × R→ [0, 1];

(η̂, t, δ|τ, α) 7→
∑m

i=1 δiI(k(η̂i) > α, ti ≤ τ)[ĜKM(ti)]
−1∑m

i=1 δiI(ti ≤ τ)[ĜKM(ti)]−1

(4.4.4)
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and

TNRU : Rm × Rm
≥0 × R≥0 × R→ [0, 1];

(η̂, t|τ, α) 7→
∑m

i=1 I(k(η̂i) ≤ α, ti > τ)∑m
i=1 I(ti > τ)

(4.4.5)

where τ is the time at which to evaluate the measure, α is a cut-off for the linear
predictor, and k is a known, strictly increasing, differentiable function. k is cho-
sen depending on the model choice, for example if the fitted model is PH then
k(x) = 1 − exp(− exp(x)) [299]. Similarities can be drawn between these equa-
tions and Uno’s concordance index, in particular the use of IPCW. Censoring
is again assumed to be at least random once conditioned on features. Plotting
TPRU against 1− TNRU for varying values of α provides the ROC.

The second method, which appears to be more prominent in the literature, is
derived from Heagerty and Zheng (2005) [121]. They define four distinct classes,
in which observations are split into controls and cases.

An observation is a case at a given time-point if they are dead, otherwise
they are a control. These definitions imply that all observations begin as controls
and (hypothetically) become cases over time. Cases are then split into incident
or cumulative and controls are split into static or dynamic. The choice between
modelling static or dynamic controls is dependent on the question of interest.
Modelling static controls implies that a ‘subject does not change disease sta-
tus’ [121], and few methods have been developed for this setting [152], as such
the focus here is on dynamic controls. The incident/cumulative cases choice is
discussed in more detail below.1

The TNR for dynamic cases is defined as

TNRD(y,N |α, τ) = P (yi ≤ α|Ni(τ) = 0) (4.4.6)

where y = (y1, ..., yn) is some deterministic prediction and N(τ) is a count of the
number of events in [0, τ). Heagerty and Zheng further specify y to be the pre-
dicted linear predictor η̂. Cumulative/dynamic and incident/dynamic measures
are available in software packages ‘off-shelf’, these are respectively defined by

TPRC(y,N |α, τ) = P (yi > α|Ni(τ) = 1) (4.4.7)

and
TPRI(y,N |α, τ) = P (yi > α|dNi(τ) = 1) (4.4.8)

where dNi(τ) = Ni(τ) − Ni(τ−). Practical estimation of these quantities is not
discussed here.

1All measures discussed in this section evaluate model discrimination from ‘markers’,
which may be a predictive marker (model predictions) or a prognostic marker (a single
covariate). This section always defines a marker as a ranking prediction, which is valid for all
measures discussed here with the exception of one given at the end.
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The choice between the incident/dynamic (I/D) and cumulative/dynamic (C/D)
measures primarily relates to the use-case. The C/D measures are preferred if a
specific time-point is of interest [121] and is implemented in several applications
for this purpose [152]. The I/D measures are preferred when the true survival
time is known and discrimination is desired at the given event time [121].

Defining a time-specific AUC is now possible with

AUC(y,N |τ) =

∫ 1

0

TPR(y,N |1− TNR−1(p|τ), τ) dp (4.4.9)

Finally, integrating over all time-points produces a time-dependent AUC and
as usual a cut-off is applied for the upper limit,

AUC∗(y,N |τ ∗) =

∫ τ∗

0

AUC(y,N |τ)
2p̂KM(τ)ŜKM(τ)

1− Ŝ2
KM(τ ∗)

dτ (4.4.10)

where ŜKM , p̂KM are survival and mass functions estimated with a Kaplan-Meier
model on training data.

Since Heagerty and Zheng’s paper, other methods for calculating the time-dependent
AUC have been devised, including by Chambless and Diao [42], Song and Zhou [282],
and Hung and Chiang [136]. These either stem from the Heagerty and Zheng
paper or ignore the case/control distinction and derive the AUC via different es-
timation methods of TPR and TNR. Blanche et al. (2012) [25] surveyed these and
concluded “regarding the choice of the retained definition for cases and controls,
no clear guidance has really emerged in the literature”, but agree with Heagerty
and Zeng on the use of C/D for clinical trials and I/D for ‘pure’ evaluation of
the marker. Blanche et al. (2013) [24] published a survey of C/D AUC measures
with an emphasis on non-parametric estimators with marker-dependent censor-
ing, including their own Conditional IPCW (CIPCW) AUC,

AUCB(y, t, δ, Ĝ|τ) =

∑
i 6=j I(yi > yj)I(ti ≤ τ, tj > τ) δi

m2Ĝ(ti|yi)Ĝ(τ |yj)(∑m
i=1 I(ti ≤ τ) δi

mĜ(ti|yi)

)(∑m
j=1 I(tj > τ) 1

mĜ(τ |yj)

)
(4.4.11)

where t = (t1, ..., tm), and Ĝ is the Akritas [5] estimator of the censoring distribu-
tion (section 3.1.1). It can be shown that setting the λ parameter of the Akritas
estimator to 1 results in the IPCW estimators [24]. However unlike the previous
measures in which a deterministic prediction can be substituted for the marker,
this is not valid for this estimator and as such this cannot be used for predictions.
This is clear from the weights, Ĝ(t|y), in the equation which are dependent on
the prediction itself. The purpose of the CIPCW method is to adapt the IPCW
weights to be conditioned on the data covariates, which is not the case when y is
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a predictive marker. Hence the following adaptation is considered instead,

AUC∗B(y, x, t, δ, Ĝ|τ) =

∑
i 6=j I(yi > yj)I(ti ≤ τ, tj > τ) δi

m2Ĝ(ti|xi)Ĝ(τ |xj)(∑m
i=1 I(ti ≤ τ) δi

mĜ(ti|xi)

)(∑m
j=1 I(tj > τ) 1

mĜ(τ |xj)

)
(4.4.12)

where x are random covariates (possibly from a separate training dataset).

AUC measures are less transparent and less accessible than the simpler time-
independent concordance indices, only the survAUC [240] package could be
found that implements these measures. For performance, reviews of these mea-
sures have produced (sometimes markedly) different results [25, 195, 152] with
no clear consensus on how and when these measures should be used. The pri-
mary advantage of these measures is to extend discrimination metrics to be time-
dependent. However it is unclear how to interpret a threshold of a linear predictor
and moreover if this is even the ‘correct’ quantity to threshold, especially when
survival distribution predictions are the more natural object to evaluate over
time. Methods for evaluating these distribution predictions are now discussed.

4.5. Evaluating Distributions by Calibration

The final discussed measures are for evaluating survival distributions. First mea-
sures of calibration are briefly discussed in this section and then extensive treat-
ment is given to scoring rules (section 4.6).

Random Variable and Distribution Notation Throughout these next two
sections, two different notations are utilised for random variables and distribu-
tions. The first is the ‘standard’ notation, for example if ζ is a continuous prob-
ability distribution and X ∼ ζ is a random variable, then fX is the probability
density function of X. The second notation associates distribution functions di-
rectly with the distribution and not the variable. For example if ζ is a continuous
probability distribution then ζ.f is the probability density function of ζ. Analo-
gously for the probability mass, cumulative distribution, hazard, cumulative haz-
ard, and survival functions of X ∼ ζ, pX/ζ.p, FX/ζ.F, hX/ζ.h,HX/ζ.H, SX/ζ.S.
This notation (fully described and motivated in section 6.3.1) provides a clearer
separation of probability distributions and random variables, which in turn allows
for cleaner proofs involving probability distributions.

Measures of Calibration Few measures of calibration exist in survival analy-
sis [246] and this is likely due to the meaning of calibration being unclear in this
context [308]. This is compounded by the fact that calibration is often evaluated
graphically, which can leave room for high subjectivity and thus may be restricted
to expert interpretation. For these reasons, measures of calibration are only con-
sidered in this thesis with respect to accessibility and transparency as there is no
clear meaning for what makes a calibration measure performant. Many methods
of calibration are restricted to calibration and re-calibration of PH models [66,



118 4. Evaluation Measures for Survival Models

308], none of these are considered here as they do not generalise to all (or at least
many) survival models.

Point and Probabilistic Calibration Andres et al. (2018) [8] derived a tax-
onomy for calibration measures to separate measures that only evaluate distribu-
tions at a single time-point (‘1-Calibration’) and measures that evaluate distri-
butions at all time-points (‘distributional-calibration’). This section will use the
same taxonomy but in keeping with machine learning terminology will refer to
‘1-Calibration’ as ‘Point Calibration’ and ‘distributional-calibration’ as ‘Proba-
bilistic Calibration’.

All measures considered previously can be viewed as ‘point’ measures as they
evaluate predictions at a single point, specifically comparing the predicted linear
predictor (more generally relative risk) or survival time to the true time of death.
However calibration measures and scoring rules instead evaluate predicted distri-
butions and specifically functions that vary over time, hence it is often of more
interest to evaluate these functions at multiple (all if discrete) time-points in order
to derive a metric that captures changes over time. For example one may expect
probabilistic predictions to be more accurate in the near-future and to steadily
worsen as uncertainty increases over time (both mathematical (censoring) and
real-world uncertainty), and therefore a measure that only evaluates distribu-
tions at a single (possibly early) time-point cannot assess the true variation in
the prediction.

Mathematically this difference in measures may be considered as follows: Let
P be a set of distributions over T ⊆ R>0, then a point measure for evaluating
distributions is given by,

L1 : P× T × {0, 1} × T → R̄; (ζ, t, δ|τ) 7→ g1(ζ.ρ(τ), t, δ) (4.5.1)

and a probabilistic measure is given by,

LP : P× T × {0, 1} × R>0 → R̄; (ζ, t, δ|τ ∗) 7→
∫ τ∗

0

gP (ζ.ρ(τ), t, δ) dτ (4.5.2)

or

LP : P× T × {0, 1} × R>0 → R̄; (ζ, t, δ|τ ∗) 7→
τ∗∑
τ=0

gP (ζ.ρ(τ), t, δ) (4.5.3)

where τ ∗ is some cut-off for the measure to control uncertainty increasing over
time, ρ is usually the survival function but may be any distribution-defining func-
tion, and g1, gP are functions corresponding to specific measures (some examples
in next two sections). Note that τ is an argument (not a free variable) of L1 as
the fixed choice of τ is measure-dependent; usually τ = t.

Less abstractly, a point-calibration measure will evaluate a function of the
predicted distribution at a single time-point whereas a probabilistic measure eval-
uates the distribution over a range of time-points; in both cases the evaluated
quantity is compared to the observed outcome, (T ∗,∆∗).
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4.5.1. Point Calibration

Point calibration measures can be further divided into metrics that evaluate cali-
bration at a single time-point (by reduction) and measures that evaluate an entire
distribution by only considering the event time. The subtle difference significantly
affects conclusions that can be drawn. In the first case, a calibration measure can
only draw conclusions at that one time-point, whereas the second case can draw
conclusions about the calibration of the entire distribution.

4.5.1.1. Calibration by Reduction

Point calibration measures are implicitly reduction methods as they attempt to
evaluate a full distribution based on a single point only. For example given a pre-
dicted survival function ζ.S, then one could select a time-point τ ∗ and calculate
the survival function at this time, ζ.S(τ ∗), probabilistic classification calibration
measures can then be utilised. Using this approach one may employ common cali-
bration methods such as the Hosmer–Lemeshow test [125]. Calibration at a single
point in this manner is not particularly useful as a model may be well-calibrated
at one time-point and then poorly calibrated at all others [113]. To overcome
this one could perform the Hosmer–Lemeshow test (or any other applicable test)
multiple times at different values of τ ∗ ∈ R≥0. However doing so is inefficient and
can lead to problems with ‘multiple testing’; hence these single-point methods
are not considered further.

4.5.1.2. Houwelingen’s α

Methods that evaluate entire distributions based on a single point may be more
useful as conclusions can be drawn at the distribution level. One such method is
termed here ‘Houwelingen’s α’. van Houwelingen proposed several measures [308]
for calibration but only one generalises to all probabilistic survival models. This
method evaluates the predicted cumulative hazard function, ζi.H (for some pre-
dicted distribution ζi), by comparing ζi.H to the ‘true’ hypothetical cumulative
hazard, H. The test statistic, Hα, is defined by

Hα :=

∑
iHi(T

∗
i )∑

i ζi.H(T ∗i )
≈

∑
i ∆
∗
i∑

i ζi.H(T ∗i )
(4.5.4)

where ζ = (ζ1, ..., ζm) are predicted distributions and {(T ∗1 ,∆∗1), ..., (T ∗m,∆
∗
m)} i.i.d.∼

(T,∆) is some test data. The model is therefore well-calibrated if Hα = 1. This
has standard error SE(Hα) = exp(1/

√
(
∑

i ∆
∗
i )).

The approximate equality is motivated by formulating survival data as a
counting process and noting that in this setting the cumulative hazard func-
tion can estimate the number of events in a time-period [126]. No study could be
found that utilised Hα for model comparison, possibly because graphical meth-
ods are favoured. This method can infer results about the calibration of an entire
model and not just at a single point because the measure is calculated at a mean-
ingful time (the event time) and utilises known results from counting processes
to verify if the expected number of deaths equals the observed number of deaths.
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However, as with the reduction method, the statistic is derived from a single
point (the observed event time) for each individual and thus it is possible that
the model is well-calibrated only for making predictions at the event time, but
not over the full R>0 range.

4.5.2. Probabilistic Calibration

Unlike other areas of evaluation, graphical methods are favoured in calibration
and possibly more so than numerical ones. Graphical methods compare the av-
erage predicted distribution to the expected distribution. As the expected distri-
bution is itself unknown, this is often estimated with the Kaplan-Meier curve.

4.5.2.1. Kaplan-Meier Comparison

The simplest graphical comparison compares the average predicted survival curve
to the Kaplan-Meier curve estimated on the testing data. Formally, let
ζ1.S, ..., ζm.S be predicted survival functions, then the average predicted survival
function is a mixture of these distributions, 1

m

∑m
i=1 ζi.S(τ). Plotting this mixture

and the Kaplan-Meier on τ vs S(τ) allows a visual comparison of how closely
these curves align. An example is given in fig. 10, the Cox model (CPH) is well-
calibrated as it almost perfectly overlaps the Kaplan-Meier estimator, whereas
predictions from the poorly-calibrated support vector machine (SVM) are far
from this line.

Figure 10: Assessing the calibration of a Cox PH (CPH) and SVM (with distribution
composition by PH form and Kaplan-Meier (section 5.4.1)) by comparing the average
survival prediction to a Kaplan-Meier (KM) estimate on the testing dataset. x-axis is
time and y-axis is the predicted survival functions evaluated over time. The CPH (red
line) is said to be well-calibrated as it almost perfectly overlaps the Kaplan-Meier (green
line), whereas the SVM (blue line) is far from this line. Models trained and tested on
randomly simulated data from the simsurv [35] package in mlr3proba (section 6.4).
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This approach is both simple and interpretable. In the example above one
can conclude: on average, the trained Cox PH predicts a distribution just as
well as (or very close to) an unconditional estimator using the real test data.
A major caveat is that conclusions are at an average population level with no
individual-level measurement.

In order to capture finer information on a level closer to inidivduals, calibra-
tion can be applied to the predicted relative risks or linear predictor. One such
approach is to bin the predictions to create different ‘risk groups’ from low-to-
high risk [254]. These groups are then plotted against a stratified Kaplan-Meier
estimator. This allows for a more nuanced approach to calibration and can si-
multaneously visualise a model’s discrimination. However this method is far less
transparent as it adds even more subjectivity around how many risk groups to
create and how to create them [254].

4.5.2.2. D-Calibration

D-Calibration [8, 113] is a very recent method that aims to evaluate a model’s cal-
ibration at all time-points in a predicted survival distribution. The D-calibration
measure is identical to the χ2 test-statistic, which is usually written as follows

χ2 :=
n∑
i=1

(Oi − Ei)2

Ei
(4.5.5)

where O1, ..., On is the observed number of events in n groups and E1, ..., En is the
expected number of events. The statistic is utilised to determine if the underlying
distribution of the observed events follows a theoretical/expected distribution.

The D-Calibration measure tests if predictions (observations) from the sur-
vival functions of predicted distributions, ζ1.S, ..., ζm.S, follow the uniform distri-
bution as expected. The following lemma motivates this test.

Lemma 4.5.1. Let ζ be a continuous probability distribution and let X ∼ ζ be a
random variable. Let SX be the survival function of X. Then SX(X) ∼ U(0, 1).

Proof. Proof, in appendix C, follows by transformation of random variables Y :=
SX(X).

In order to utilise the χ2 test (for categorical variables), the [0, 1] codomain
of ζi.S is cut into B disjoint contiguous intervals (‘bins’) over the full range [0, 1].
Let m be the total number of observations in the test data. Then assuming a
discrete uniform distribution as the theoretical distribution, the expected number
of events is m/B.

The observed number of events in bin i, Oi, is defined as follows: Define
bi as the set of observations that die in the ith bin, formally defined by bi :=
{j ∈ 1, ...,m : dζj.S(T ∗j )Be = i}, where j = 1, ...,m are the indices of the
test observations and ζ = (ζ1, ..., ζm) are predicted distributions.1 Then, Oi =
|bi|,∀i ∈ 1, ..., B.

1This is a slightly simplified procedure which omits handling of censoring, but this is
easily extended in the full algorithm, see Algorithm 2 of Haider et al. (2020) [113].
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The D-Calibration measure, or χ2 statistic, is now defined by,

Dχ2(ζ, T ∗) :=

∑B
i=1(Oi − m

B
)2

m/B
(4.5.6)

This measure has several useful properties. Firstly, a p-value can be derived
from χ2

B−1 to hypothesis test if a single model is ‘D-calibrated’. Secondly, as a
model is increasingly well-calibrated it holds that Dχ2 → 0 (as the number of
observed events approach expected events), which motivates utilising the test for
model comparison. Thirdly, the theory lends itself very nicely to an intuitive
graphical calibration method:

If a model is D-calibrated, i.e. predicted distributions from the model result
in a low D-calibration, then one expects,

p =

∑
i I(T ∗i ≤ ζi.F

−1(p))

|T ∗|
(4.5.7)

where p ∈ [0, 1] and ζi.F
−1 is the inverse cumulative distribution function of the

ith predicted distribution. In words, if a model is D-calibrated then the number of
deaths occurring at or before each quantile should be equal to the quantile itself,
for example 50% of deaths should occur before their predicted median survival
time. Therefore one can graphically test for D-calibration by plotting p on the x-
axis and the RHS of eq. (4.5.7) on the y-axis. A D-calibrated model should result
in a straight line on x = y. This is visualised in fig. 11 for the same models as in
fig. 10. Again the SVM is terribly-calibrated but the CPH is better calibrated. In
this case it is clearer that the D-calibration of the CPH is not perfect, especially
at higher quantiles. Comparison to χ2

9 indicates the CPH is D-calibrated whereas
the SVM is not.

4.5.2.3. Transparency and Accessibility

It has already been stated that performance cannot be considered for calibra-
tion measures however it is unclear if any of these measures are even accessible
or transparent as they often require expert interpretation to prevent erroneous
conclusions. This is demonstrated by example using the same data and models
as in fig. 11. The predictions from these models are evaluated with Harrell’s
C (section 4.4.1), the Integrated Graf Score (section 4.6.3), D-Calibration, and
Houwelingen’s α (table 6). All measures agree that the SVM performs poorly. In
contrast, whilst the Cox PH (CPH) is well-calibrated according to both measures,
its concordance is quite bad (barely above baseline). Haider et al. [113] claimed
that if a model is D-Calibrated then a ‘patient should believe the prediction from
the survival curve’, these results clearly demonstrate otherwise. Measures of cal-
ibration alone are clearly not sufficient to determine if a survival curve prediction
should be ‘believed’ and should therefore be computed alongside measures of
discrimination or scoring rules, discussed next.
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Figure 11: Assessing the D-calibration of the Cox PH (CPH) and SVM from the
same data as fig. 10: models trained and tested on randomly simulated data from the
simsurv [35] package in mlr3proba (section 6.4). x-axis are quantiles in [0, 1] and
y-axis are predicted quantiles from the models. The dashed line is y = x. Again the
SVM is terribly calibrated and the CPH is better calibrated as it is closer to y = x.

4.6. Evaluating Distributions by Scoring Rules

Scoring rules evaluate probabilistic predictions and (attempt to) measure the
overall predictive ability of a model, i.e. both calibration and discrimination [100,
220]. Scoring rules have been gaining in popularity for the past couple of decades
since probabilistic forecasts were recognised to be superior than deterministic
predictions for capturing uncertainity in predictions [63, 64]. Formalisation and
development of scoring rules has primarily been due to Dawid [63, 64, 65] and
Gneiting and Raftery [100]; though the earliest measures promoting “rational”
and “honest” decision making date back to the 1950s [34, 106]. Whilst sev-
eral scoring rules have been proposed for classification problems, fewer exist for
probabilistic regression predictions [100] and even fewer for survival analysis. In
practice, only three continuous scoring rules for regression are employed (though
the last two of these are often conflated), the integrated Brier score [34], the log
loss [106], and the integrated log loss.1 In survival analysis only one scoring rule
was found to be routinely employed. In fact, there is no recognised definition of a
scoring rule in survival analysis, nor definitions for the fundamental scoring rule
properties of (strict) properness. This section attempts to fill these gaps and to
explore the proposed scoring rules for survival analysis.2

1These often appear under many different names. The Brier score is often referred to as
the ‘squared-error loss’, or ‘quadratic score’, and the log loss often appears as the ‘log score’,
‘logarithmic loss’, ‘cross-entropy loss’, or ‘negative log-likelihood’.

2In this section a ‘scoring rule’ refers to the general class of measures that evaluate a
probabilistic prediction and a ‘loss’ refers to the specific function to be minimised. As all
scoring rules are optimally minimised in this survey, the terms are used interchangeably.
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Table 6: Comparison of numerical calibration metrics. Same models and data as in
fig. 10: models trained and tested on randomly simulated data from the simsurv [35]
package in mlr3proba (section 6.4).

Model KM CPH SVM
C1
H 0.5 0.52 0.45

L2
IGS 0.18 0.18 0.52
H3
α 0.99 1.00 15.42

D4
χ2 2.23∗ 7.03∗ 1.02× 1010

1. Harrell’s C (section 4.4.1).
2. Integrated Graf Score (section 4.6.3).
3. Houwelingen’s α (section 4.5.1).
4. D-Calibration statistic. A ‘∗′ indicates the model is D-Calibrated according to a χ2

9 test.

This survey of survival scoring rules covers: i) basic definitions for scoring rules
and properties; ii) proposed scoring rules for survival analysis; iii) proofs for
(strict) properness; and iv) baselines and standard errors for scoring rules. Key
contributions include demonstrating that no commonly-utilised survival scoring
rule is proper and deriving a class of strictly proper outcome-independent scoring
rules with strict assumptions (see section 4.6.2 for definitions and section 4.6.4
for proofs).

Each of these subsections is built up in complexity, starting with binary clas-
sification, then probabilistic regression, and finally survival. This is required to
demonstrate how the survival setting makes use of the other two for scoring rules.

To recap the notation from chapter 2, the three mathematical settings are
defined by the generative processes:

• Regression: (X, Y ) t.v.i. X× Y where X ⊆ Rp and Y ⊆ R.

• Classification: (X, Y ) t.v.i. X× Y where X ⊆ Rp and Y = {0, 1}.

• Survival: (X,T,∆, Y, C) t.v.i. X × T × {0, 1} × T × T where X ⊆ Rp and
T ⊆ R≥0, where C, Y are unobservable, T := min{Y,C}, and ∆ = I(Y =
T ).

As the sections are clearly separated, the overloaded notation will be clear
from context.

4.6.1. Classification and Regression Scoring Rules

Definitions and losses in the classification setting are first discussed and then the
same in the regression setting.

4.6.1.1. Classification

All scoring rules were initially derived from the binary classification setting, in
this case scoring rules are considered to have the form in box 4.
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Box 4 (Binary classification loss). Let P be some family of distributions

over Y = {0, 1} containing at least two elements. Then for a predicted

distribution in P, any real-valued function with the signature L : P× Y→ R̄
will be considered as a binary classification loss.

Any arbitrary function can be a binary classification loss as long as it satisfies
the conditions in box 4, for example L(ζ, y) = 0 is a valid loss for all ζ ∈ P and
all y ∈ Y. Therefore a scoring rule is generally only considered useful if it satisfies
the properties below [100].

Definition 4.6.1. A classification loss L : P× Y→ R̄ is called:

i) Proper if: for any distributions pY , p in P and for any random variables
Y ∼ pY , it holds that

E[L(pY , Y )] ≤ E[L(p, Y )] (4.6.1)

ii) Strictly proper if in addition to being proper it holds, for the same quan-
tification of variables, that

E[L(pY , Y )] = E[L(p, Y )]⇔ p = pY (4.6.2)

Proper scoring rules provide a method of model comparison as, by definition,
predictions closest to the true distribution will result in lower expected losses.1

On the other hand, if a scoring rule is not proper (‘improper’ [100]) then it has
no meaningful comparison as it is unknown if the optimal model would have a
lower or higher loss than any sub-optimal one. A strictly proper scoring rule has
additional important uses such as in model optimisation, i.e. if a loss is strictly
proper then minimisation of the loss will result in the ‘optimum score estimator
based on the scoring rule’ [100]. Whilst properness is usually a minimal acceptable
property for a scoring rule, it is generally not sufficient on its own. For example,
take the following classification loss,

L : P× Y→ R̄; (ζ, y) 7→ 42 (4.6.3)

This is proper as the loss, L, is always equal to 42 and therefore is minimised by
the true distribution of Y but the loss is clearly useless. Properness and strict
properness properties are utilised to determine if a scoring rule is performant and
will be stated (if previously proved/disproved) or proved/disproved for all losses
going forward.

Losses The two most widely used scoring rules for classification are the Brier
score [34] and log loss [106].2

1Further details for model comparison are not provided here as the topic is complex and
with many open questions, see e.g. [67, 69, 223].

2Despite being called a ‘score’, the Brier score is in fact a loss to be minimised.
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The (binary classification) log loss is defined by

LLL : P× Y→ R≥0;

(ζ, y) 7→ −I(y = 1) log(ζ.p(1))− I(y = 0) log(ζ.p(0))
(4.6.4)

or more simply
(ζ, y) 7→ − log ζ.p(y) (4.6.5)

The (binary classification) Brier score is defined by

LBS : P× Y→ [0, 1]; (ζ, y) 7→ (y − ζ.p(y))2 (4.6.6)

These are both strictly proper scoring rules [65] and are visualised in fig. 12
to demonstrate their properties. The figure highlights the ‘honesty’ property
of the scoring rules (i.e. their strict properness) as both losses are shown to
be minimised when the true prediction is made. The plot also demonstrates
baselines for interpretability (section 4.6.5.1). For the Brier score and log loss,
any result below 0.25 and 0.693 respectively indicates a prediction better than a
constant uninformed prediction of ζ.p(1) = 0.5. Therefore classification scoring
rules provide a method to simultaneously encourage honest predictions and have
in-built informative baselines for external reference.

Figure 12: Brier and log loss scoring rules for a binary outcome and varying prob-
abilistic predictions. x-axis is a probabilistic prediction in [0, 1], y-axis is Brier score
(left) and log loss (right). Blue lines are varying Brier score/log loss over different pre-
dicted probabilities when the true outcome is 1. Red lines are varying Brier score/log
loss over different predicted probabilities when the true outcome is 0. Both losses are
minimised with the correct prediction, i.e. if ζ.p(1) = 1 when y = 1 and ζ.p(1) = 0
when y = 0 for a predicted discrete distribution ζ.
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4.6.1.2. Regression

The definition of a probabilistic regression scoring rule follows similarly to the
classification setting after a re-specification of the target domain.

Box 5 (Probabilistic regression loss). Let P be some family of distributions

over Y ⊆ R containing at least two elements. Then for a predicted distribu-

tion in P, any real-valued function with the signature L : P× Y→ R̄ will be

considered as a probabilistic regression loss.

Definition 4.6.2. A probabilistic regression loss L : P× Y→ R̄ is called:

i) Proper if: for any distributions pY , p in P and for any random variables
Y ∼ pY , it holds that

E[L(pY , Y )] ≤ E[L(p, Y )] (4.6.7)

ii) Strictly proper if in addition to being proper it holds, for the same quan-
tification of variables, that

E[L(pY , Y )] = E[L(p, Y )]⇔ p = pY (4.6.8)

Losses In the regression setting, classification scoring rules are extended by in-
stead considering distribution functions and integrating these over Y ⊆ R.

The Integrated Brier Score (IBS) is defined by,1

LIBS : P× Y→ [0, 1]; (ζ, y) 7→
∫
Y

(I(y ≤ τ)− ζ.F (τ))2 dτ (4.6.9)

The extension from the classification Brier score is intuitive, instead of evalu-
ating if the predicted pmf is ‘correct’ at a single point, the predicted cumulative
distribution function is compared with the true event status over the entire dis-
tribution.

The log loss has two adaptations for continuous predictions. The first is
analogous to the IBS and is termed the Integrated Log Loss (ILL)

LILL : P× Y→ R≥0;

(ζ, y) 7→ −
∫
Y

I(y ≤ τ) log[ζ.F (τ)] + I(y > τ) log[ζ.S(τ)] dτ
(4.6.10)

This follows the ‘longer’ form of the binary classification log loss and considers
the cumulative probability of events over all time-points. A second adaptation to
the log loss instead considers the ‘simpler’ form and replaces the probability mass
function with the probability density function. Again this measure is intuitive
as a perfect distributional prediction will assign the highest point of density to

1also known as the Continuous Ranked Probability Score (CRPS).
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the point at which the event occurs. This variant of the log loss does not have a
specific name but it is termed here the ‘density log loss’, LDLL, and is formally
defined by,

LDLL : P× Y→ R≥0; (ζ, y) 7→ − log[ζ.f(y)] (4.6.11)

where P is a family of absolutely continuous distributions over Y with defined
density functions.

All three of these losses are strictly proper [100, 111].

4.6.2. Survival Scoring Rule Definitions

Losses in the survival setting compare predicted survival distributions to the
observed outcome tuple (time and censoring). A large class of survival losses
additionally incorporate an estimator of the unknown censoring distribution, in
order to attempt meaningful comparison. This second group of losses are termed
here as ‘approximate’ losses as the true censoring distribution is never known and
hence an estimate of the loss is approximate at best.

Box 6 (Survival loss). Let T ⊆ R≥0 and let C,P be any two distinct families

of distributions over T, containing at least two elements. Then,

• Any real-valued function with the signature L : P×T×{0, 1} → R̄ will

be considered as a survival loss.

• Any real-valued function with the signature L : P×T×{0, 1}×C→ R̄
will be considered as an approximate survival loss.

Two separate novel definitions for (strict) properness are provided: the first
captures the general case in which no assumptions are made about the cen-
soring distribution; the second assumes that censoring is conditionally event-
independent.

Definition 4.6.3. A survival loss L : P× T × {0, 1} → R̄ is called:

i) Proper if: for any distributions pY , p in P; and for any random variables
Y ∼ pY , and C t.v.i. T; with T := min{Y,C} and ∆ := I(T = Y ); it holds
that,

E[L(pY , T,∆)] ≤ E[L(p, T,∆)] (4.6.12)

ii) Strictly proper if in addition to being proper it holds, for the same quan-
tification of variables, that

E[L(pY , T,∆)] = E[L(p, T,∆)]⇔ p = pY (4.6.13)

iii) Outcome-independent proper if: for any distributions pY , p in P; and for
any random variables Y ∼ pY , and C t.v.i. T, where C ⊥⊥ Y ; with T :=
min{Y,C} and ∆ := I(T = Y ); it holds that,

E[L(pY , T,∆)] ≤ E[L(p, T,∆)] (4.6.14)
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iv) Outcome-independent strictly proper if in addition to being outcome-independent
proper it holds, for the same quantification of variables, that

E[L(pY , T,∆)] = E[L(p, T,∆)]⇔ p = pY (4.6.15)

These final two definitions are ‘weaker’ but provide a term for losses that are
improper in general but are (strictly) proper under common (though possibly
strict) assumptions about the censoring distribution. Note by definition that if a
loss is:

i) (strictly) proper then it is also outcome-independent (strictly) proper;

ii) (outcome-independent) strictly proper then it is also (outcome-independent)
proper

Analogous definitions are now provided for approximate survival losses.

Definition 4.6.4. An approximate survival loss L : P × T × {0, 1} × C → R̄ is
called:

i) Proper if: for any distributions pY , p in P and c ∈ C; and for any random
variables Y ∼ pY and C ∼ c; with T := min{Y,C} and ∆ := I(T = Y ); it
holds that,

E[L(pY , T,∆|c)] ≤ E[L(p, T,∆|c)] (4.6.16)

ii) Strictly proper if in addition to being proper it holds, for the same quan-
tification of variables, that

E[L(pY , T,∆|c)] = E[L(p, T,∆|c)]⇔ p = pY (4.6.17)

iii) Outcome-independent proper if: for any distributions pY , p in P and c ∈ C;
and for any random variables Y ∼ pY and C ∼ c, where C ⊥⊥ Y ; with
T := min{Y,C} and ∆ := I(T = Y ); it holds that,

E[L(pY , T,∆|c)] ≤ E[L(p, T,∆|c)] (4.6.18)

iv) Outcome-independent strictly proper if in addition to being outcome-independent
proper it holds, for the same quantification of variables, that

E[L(pY , T,∆|c)] = E[L(p, T,∆|c)]⇔ p = pY (4.6.19)

As the true censoring distribution, c, can never be known exactly, this defini-
tion allows for approximate losses to be proper in the asymptotic (with infinite
training data) if they include estimators of c that are convergent in distribution.
Proper approximate losses are therefore useful in modern predictive settings in
which ‘big data’ is very common and thus estimators, such as the Kaplan-Meier,
can converge to the true censoring distribution. However approximate losses may
provide misleading results when the sample size is small; future research should
ascertain what ‘small’ means for individual losses.
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4.6.3. Common Survival Scoring Rules

The IBS, ILL, and DLL are now extended to the survival setting by suitably
incorporating censoring and their properness properties are then discussed in
section 4.6.4. Measures are split into ‘classes’, which represent the basic form of
the measure.

4.6.3.1. Squared Survival Losses

The analogue to the IBS for survival analysis is termed here as the Integrated
Graf Score (IGS) as it was extensively discussed and promoted by Graf [108, 109].

Definition 4.6.5. The integrated Graf score (IGS) is defined by

LIGS : P× T × {0, 1} × C→ [0, 1];

(ζ, t, δ|ĜKM) 7→
∫ τ∗

0

ζ.S2(τ)I(t ≤ τ, δ = 1)

ĜKM(t)
+
ζ.F 2(τ)I(t > τ)

ĜKM(τ)
dτ

(4.6.20)

where ζ.S2(τ) = (ζ.S(τ))2, analogously for ζ.F 2, and τ ∗ ∈ T is an upper threshold
to compute the loss up to.

The IGS consistently estimates the mean square error L(t, S|τ ∗) =
∫ τ∗

0
[I(t >

τ)− S(τ)]2dτ , where S is the correctly specified survival function, when censor-
ing is uninformative only [98]. This is intuitive as the IGS utilises the marginal
Kaplan-Meier estimator to estimate the censoring distribution. Therefore CIPCW
estimates such as the Cox model or Akritas estimator could instead be considered
for ĜKM and these have been demonstrated to have less bias when censoring is
informative [98]. However this raises concerns as now separate models have to
be trained and predicted, which could need validation themselves, and therefore
the final measure is even more difficult to interpret. Graf claimed that the IGS
is strictly proper [109] however as no definition of properness was provided this
claim cannot be validated. With the definition of properness provided in this
thesis (definition 4.6.4), the IGS is not even proper (section 4.6.4.4).

One could instead consider extending the IBS by weighting by ĜKM(t) only,
giving the following loss.

Definition 4.6.6. Let P be a family of absolutely continuous distributions over T
with defined density functions. Then the reweighted Integrated Graf score (IGS∗)
is defined by

LIGS∗ : P× T × {0, 1} × C→ R≥0;

(ζ, t, δ|ĜKM) 7→
δ
∫
T
(I(t ≤ τ)− ζ.F (τ))2 dτ

ĜKM(t)

(4.6.21)

IGS∗ is outcome-independent strictly proper (section 4.6.4.3).
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4.6.3.2. Log Survival Losses

The ILL is similarly extended to the Integrated Survival Log Loss (ISLL) [109].

Definition 4.6.7. The integrated survival log loss (ISLL) is defined by

LISLL : P× T × {0, 1} × C→ R≥0;

(ζ, t, δ|ĜKM) 7→ −
∫ τ∗

0

log[ζ.F (τ)]I(t ≤ τ, δ = 1)

ĜKM(t)
+

log[ζ.S(τ)]I(t > τ)

ĜKM(τ)
dτ

where τ ∗ ∈ T is an upper threshold to compute the loss up to.

The ISLL is not a proper approximate survival loss (section 4.6.4.4). Again
one could instead a different weighting in the denominator of the measure to give
the following loss.

Definition 4.6.8. Let P be a family of absolutely continuous distributions over
T with defined density functions. Then the reweighted integrated survival log loss
(ISLL∗) is defined by

LISLL∗ : P× T × {0, 1} × C→ R≥0;

(ζ, t, δ|ĜKM) 7→ −
δ
∫
T
I(t ≤ τ) log[ζ.F (τ)] + I(t > τ) log[ζ.S(τ)] dτ

ĜKM(t)

(4.6.22)

ISLL∗ is an outcome-independent strictly proper scoring rule (section 4.6.4.3).
The DLL can be extended in one of two ways, the first simply removes all

censored observations.

Definition 4.6.9. Let P be a family of absolutely continuous distributions over
T with defined density functions. Then the survival density log loss (SDLL) is
defined by

LSDLL : P× T × {0, 1} → R≥0; (ζ, t, δ) 7→ −δ log[ζ.f(t)] (4.6.23)

The SDLL is not a proper scoring rule (section 4.6.4.2). The second extension
to DLL adds the same IPC weighting as IGS∗ and ISLL∗.

Definition 4.6.10. Let P be a family of absolutely continuous distributions over
T with defined density functions. Then the weighted survival density log loss
(SDLL∗) is defined by

LSDLL∗ : P× T × {0, 1} × C→ R≥0; (ζ, t, δ|ĜKM) 7→ −δ log[ζ.f(t)]

ĜKM(t)
(4.6.24)

SDLL∗ is outcome-independent strictly proper (section 4.6.4.3).

4.6.3.3. Absolute Survival Losses

Whilst the IGS and ISLL appear to be the most common losses in the litera-
ture, there is one other class to briefly mention that is based on absolute error
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functions. For example, the ‘absolute Brier score’ proposed by Schemper and
Henderson [262] which is based on the mean absolute error. This takes a similar
approach to the IGS and weights the loss at different time-points according to
whether an observation is censored. Studies of this loss have demonstrated that
it depends heavily on correct model specification and is biased when this is not
the case [51, 266]. To prevent this bias, Schmid et al. [266] proposed the following
robust approximate loss, termed here the ‘Schmid score’,

L(ζ, t, δ|ĜKM) =

∫ τ∗

0

ζ.S(τ)I(t ≤ τ, δ = 1)

ĜKM(t)
+
ζ.F (τ)I(t > τ)

ĜKM(τ)
dτ (4.6.25)

where ĜKM and τ ∗ are as defined above. Analogously to the IGS, the Schmid
score consistently estimates the mean absolute error when censoring is uninfor-
mative [266]. Both scores tend to yield similar results [266].

4.6.3.4. Comparing Weighting Methods

The IGS and ISLL are well-established survival losses however no discussion about
IGS∗ and ISLL∗ could be found in the literature. On the surface these measures
may look very similar but there are two important differences, which are illus-
trated below with the ISLL and ISLL∗, recall these are defined as:

LISLL∗(ζ, t, δ|ĜKM) = −
∫ τ∗

0

log[ζ.F (τ)]I(t ≤ τ, δ = 1)

ĜKM(t)
+

log[ζ.S(τ)]I(t > τ, δ = 1)

ĜKM(t)
dτ

LISLL(ζ, t, δ|ĜKM) = −
∫ τ∗

0

log[ζ.F (τ)]I(t ≤ τ, δ = 1)

ĜKM(t)
+

log[ζ.S(τ)]I(t > τ)

ĜKM(τ)
dτ

The primary differences are (RHS of equations):

i) Always removing censored observations from LISLL∗ (even when alive) whereas
LISLL includes all observations when alive.

ii) LISLL∗ weights alive and dead observations by ĜKM(t) whereas LISLL weights
dead observations by ĜKM(t) and alive observations by ĜKM(τ)

Analytically the difference between these weighting results has major im-
plications as LISLL∗ (and LIGS∗) is outcome-independent strictly proper (sec-
tion 4.6.4.3) whereas LISLL (and LIGS) is not even proper (section 4.6.4.4). How-
ever whilst it has been demonstrated that the IGS consistently estimates the
mean squared error [98], no theory exists for IGS∗. Similarly no study has been
made on ISLL∗ and SDLL∗.

4.6.3.5. PECs

As well as evaluating probabilistic outcomes with integrated scoring rules, non-
integrated scoring rules can also be utilised for evaluating distributions at a single
point. For example, instead of evaluating a probabilistic prediction with the IGS
over R≥0, instead one could compute the IGS at a single time-point, τ ∈ R≥0,
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Figure 13: Prediction error curves for the CPH and SVM models from section 4.5.
x-axis is time and y-axis is the IGS computed at different time-points. The CPH (red)
performs better than the SVM (blue) as it scores consistently lower. Trained and tested
on randomly simulated data from mlr3proba.

only. Plotting these for varying values of τ results in ‘prediction error curves’
(PECs), which provide a simple visualisation for how predictions vary over the
outcome. PECs are especially useful for survival predictions as they can visualise
the prediction ‘over time’. PECs should only be used as a graphical guide and
never for model comparison as they only provide information at a limited number
of points. An example is provided in fig. 13 for the IGS; the CPH is consistently
better performing than the SVM.

4.6.4. Properness of Survival Scoring Rules

As the IBS, ILL, and DLL are all strictly proper regression losses, one may assume
the analogous survival losses are also strictly proper. No arguments could be
found proving/disproving properness of the survival losses, which may be due
to researchers assuming properness followed from the regression setting. Despite
these estimators being demonstrated to have useful properties and to ‘perform
well’ in simulation experiments [50, 51, 98], it transpires that none are proper.
Key results in this section are collected in the following summary theorem.

Theorem 4.6.1. Let T ⊆ R>0 and let C,P be two distinct families of distributions
over T containing at least two elements and let LR : P × T → R̄ be a regression
scoring rule. Then the following statements are true:

i) LSDLL is not: a) outcome-independent proper; b) outcome-independent strictly
proper; c) proper; d) strictly proper (proposition 4.6.8).
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ii) Define the approximate survival loss,

LS : P× T × {0, 1} × C→ R̄; (ζ, t, δ|ĜKM) 7→ δLR(ζ, t)

ĜKM(t)
(4.6.26)

Then LS is outcome-independent strictly proper if and only if LR is strictly
proper (theorem 4.6.10).

iii) LSDLL∗ , LIGS∗ , LISLL∗ are all outcome-independent strictly proper (proposi-
tion 4.6.11).

iv) LIGS is not: a) outcome-independent proper; b) outcome-independent strictly
proper; c) proper; d) strictly proper (proposition 4.6.12).

v) LISLL is not: a) outcome-independent proper; b) outcome-independent strictly
proper; c) proper; d) strictly proper (proposition 4.6.13).

The following conjectures are also made:

i) No survival loss, L : P×T×{0, 1} → R̄, is: a) outcome-independent strictly
proper; b) strictly proper (conjecture 4.6.9).

ii) No approximate survival loss, L : P×T×{0, 1}×C→ R̄, is strictly proper
(conjecture 4.6.14).

4.6.4.1. Definitions and Lemmas

Important proofs in this subsection follow after these definitions and lemmas.

Lemma 4.6.2. Let L : P × T × {0, 1} → R̄ be a survival loss. Let pY ∈ P, let
Y ∼ pY and C t.v.i. T be random variables where C ⊥⊥ Y . Let T := min{Y,C}
and ∆ := I(T = Y ). Then if ∃p ∈ P, p 6= pY , such that

E[L(pY , T,∆)] > E[L(p, T,∆)] (4.6.27)

Then, L is not:

i) outcome-independent proper;

ii) outcome-independent strictly proper;

iii) proper;

iv) strictly proper.

Proof. Proofs, in appendix C, follow trivially by definition.

Lemma 4.6.3. Let L : P× T × {0, 1} × C→ R̄ be an approximate survival loss.
Let pY ∈ P and let c ∈ C. Let Y ∼ pY and Ct.v.i.T be random variables. Let
T := min{Y,C} and ∆ := I(T = Y ). Then if ∃p ∈ P, p 6= pY , such that

E[L(pY , T,∆|c)] > E[L(p, T,∆|c)] (4.6.28)
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Then: L is not,

i) proper;

ii) strictly proper.

Proof. Proofs, in appendix C, follow trivially by definition.

Definition 4.6.11. Let L : P× T × {0, 1} → R̄ be a proper scoring rule and let
p, pY be distributions in P. Let Y ∼ pY and C t.v.i. T be random variables and
let T := min{Y,C} and ∆ := I(T = Y ). Then, [100]

i) SL(pY , p) := E[L(p, T,∆)] is defined as the expected penalty.

ii) HL(pY ) := SL(pY , pY ) is defined as the (generalised) entropy of pY ∈ P.

iii) DL(pY , p) := SL(pY , p)−HL(pY ) is defined as the discrepancy or divergence
of p ∈ P from pY ∈ P.

Similar definitions follow for the expected penalty, entropy, and divergence for
an approximate survival loss L : P× T × {0, 1} × C→ R̄.

Lemma 4.6.4. Let L : P × T × {0, 1} → R̄ be a survival loss and let pY be
a distribution in P. Let Y ∼ pY and C t.v.i. T be random variables and let
T := min{Y,C} and ∆ := I(T = Y ). Then,

• DL(pY , p) ≥ 0 for all p ∈ P if L is proper

• DL(pY , p) > 0 iff L is strictly proper and p 6= pY

Proof. Proofs, in appendix C, follow trivially by definition.

Definition 4.6.12. Let X be an absolutely continuous random variable and let
Y be a discrete random variable. Then,

i) The mixed joint density of (X, Y ) is defined by

fX,Y (x, y) = fX|Y (x|y)P (Y = y) (4.6.29)

where fX|Y (x|y) is the conditional probability density function of X given
Y = y.

ii) The mixed joint cumulative distribution function of (X, Y ) is given by

FX,Y (x, y) =
∑
z≤y

∫ x

u=−∞
fX,Y (u, z) du (4.6.30)

Lemma 4.6.5. Let X, Y be jointly absolutely continuous random variables sup-
ported on the Reals with joint density function fX,Y (x, y) and let Z = I(X ≤ Y ),
then the mixed joint density of (X,Z) is given by

fX,Z(x, z) =


∫∞
x

fX,Y (x, y) dy, z = 1∫ x
−∞ fX,Y (x, y) dy, z = 0

(4.6.31)
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Proof. Proof, in appendix C, follows by transformation of random variables via
the joint cdf.

Corollary 4.6.6. Let X, Y be jointly absolutely continuous random variables
supported on the Reals with joint density function fX,Y (x, y) and let Z = I(X ≤
Y ). As a direct corollary to lemma 4.6.5, if X and Y are independent then the
mixed joint density of (X,Z) is given by

fX,Z(x, z) =

fX(x)SY (x), z = 1

fX(x)FY (x), z = 0
(4.6.32)

Proof. Proof, in appendix C, follows from the definition of independent random
variables.

Lemma 4.6.7. Let X, Y be jointly absolutely continuous random variables sup-
ported on the Reals with joint density function fX,Y (x, y) and let Z = I(X ≤ Y ),
then the mixed joint density of (Y, Z) is given by

fY,Z(y, z) =


∫ y
−∞ fX,Y (x, y) dx, z = 1∫∞
y

fX,Y (x, y) dx, z = 0
(4.6.33)

In addition if X ⊥⊥ Y , then

fY,Z(y, z) =

fY (y)FX(y), z = 1

fY (y)SX(y), z = 0
(4.6.34)

Proof. Proofs follow analogously to lemma 4.6.5 and corollary 4.6.6; further de-
tails are not provided.

4.6.4.2. No Strictly Proper Survival Loss

First it is proved that the survival density log loss is not outcome-independent
proper and then a conjecture is made on the strict properness of all non-approximate
losses.

Proposition 4.6.8. The survival density log loss is not:

i) outcome-independent proper

ii) outcome-independent strictly proper

iii) proper

iv) strictly proper

Proof.

Proof of (i). Let P be a family of absolutely continuous distributions over the
positive Reals with defined density functions and let ζ, ξ be some distributions
in P. Let Y be some random variable distributed according to ξ and let C be
an r.v. t.v.i. T and let Y and C be independent. Let T := min{Y,C} and
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∆ := I(T = Y ). Let Ŷ be some random variable distributed according to ζ,
independent of Y , C, T , and ∆. Finally define q := P (∆ = 1).

By lemma 4.6.4, the loss is improper if there exists some ζ, ξ such thatDSDLL(ξ, ζ) <
0. Proof follows by demonstrating such ζ, ξ exist and therefore that the loss is
improper. First calculating SSDLL(ξ, ζ),

SSDLL(ξ, ζ) = E{−∆ log[fŶ (T )]}

= qE{−∆ log[fŶ (Y )]|∆ = 1}+ (1− q)E{−∆ log[fŶ (C)]|∆ = 0}

= −q
∫
fY |∆(y|1) log(fŶ (y)) dy

= −
∫
fY,∆(y, 1) log(fŶ (y)) dy

= −
∫

log(fŶ (y))

∫ ∞
y

fY,C(y, c) dc dy

Where the second equality is the law of total expectation and substituting
q = P (∆ = 1), the third is definition of expectation on the LHS and the RHS
follows as ∆ = 0, the fourth follows from definition of conditional probability,
and the final from lemma 4.6.5. By similar reasoning,

HSDLL(ξ) = −
∫

log(fY (y))

∫ ∞
y

fY,C(y, c) dc dy

The loss is improper if there is at least one ζ 6= ξ ∈ P s.t. SSDLL(ξ, ζ) <
HSDLL(ξ). Selecting such a counter-example let ξ = U(0, 3) and let C ∼ ξ so
that fY,C(y, c) = 1

9
, 0 ≤ y, c ≤ 3 and fY (y) = 1

3
, 0 ≤ y ≤ 3. Then,

HSDLL(ξ) = −
∫

log(fY (y))

∫ ∞
y

fY,C(y, c) dc dy

= −
∫ 3

0

log
(1

3

)∫ 3

y

1

9
dc dy

= −
∫ 3

0

log
(1

3

)(1

3
− y

9

)
dy

= −
[y

3
log
(1

3

)
− y2

18
log
(1

3

)]3

0

= − log
(1

3

)
+

1

2
log
(1

3

)
= log(

√
3)

Let ζ = U(0, 2), then
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SSDLL(ξ, ζ) = −
∫

log(fŶ (y))

∫ ∞
y

fY,C(y, c) dc dy

= −
∫ 3

0

log
(1

2

)∫ 3

y

1

9
dc dy

= log(
√

2)

Now computing the divergence of ζ from ξ,

DSDLL(ξ, ζ) = SSDLL(ξ, ζ)−HSDLL(ξ)

= log(
√

2)− log(
√

3)

= −0.20 < 0

By lemma 4.6.4 as DSDLL(ξ, ζ) < 0 it follows that LSDLL is improper. Fur-
thermore, as it was assumed that Y ⊥⊥C, it follows that the loss is not outcome-
independent proper. �

Proofs of (ii)-(iv). Proofs follow from (i) and lemma 4.6.2. �

Not only is the LSDLL not outcome-independent proper but the counter-
example in the proof is not even a rare edge case. Accounting for the censor-
ing distribution is attempted by approximate losses, which are explored after the
following conjecture.

Conjecture 4.6.9. Let L : P× T × {0, 1} → R̄ be a survival loss, then L is not:

i) outcome-independent strictly proper;

ii) strictly proper;

This conjecture is motivated by identifying that as the true censoring distri-
bution is always unknown, a counter-example can likely always be identified to
contradict the loss being strictly proper.1

4.6.4.3. Strictly Proper Approximate Survival Losses

By making strict assumptions about the data, some survival scoring rules can
still be useful, these assumptions are:

i) survival times and censoring times are independent;

ii) the training dataset is large enough to approximate the censoring distribu-
tion

1This conjecture is being explored as part of a theorem in a paper with external
collaborators.
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With these assumptions, a large class of approximate losses can be outcome-
independent strictly proper.

Theorem 4.6.10. Let LR : P × T → R̄ be a regression loss and define the
approximate survival loss

LS : P× T × {0, 1} × C→ R̄; (ζ, t, δ|ĜKM) 7→ δLR(ζ, t)

ĜKM(t)
(4.6.35)

Then LS is outcome-independent strictly proper if and only if LR is strictly proper.

Proof.

Proof LS strictly proper ⇒ LR strictly proper. Let P be a family of absolutely
continuous distributions over the positive Reals and let ζ, ξ be distinct distribu-
tions in P. Let Y be some random variable distributed according to ξ and let
C be an r.v. t.v.i. T with Y ⊥⊥ C. Let T := min{Y,C}, ∆ := I(T = Y ), and
q := P (∆ = 1).

Proof follows by definition of strict properness,

E[LS(ξ, T,∆|ĜKM)] < E[LS(ζ, T,∆|ĜKM)]

⇒ E[
∆LR(ξ, T )

ĜKM(T )
] < E[

∆LR(ζ, T )

ĜKM(T )
]

⇒ qE[
∆LR(ξ, Y )

ĜKM(Y )
|∆ = 1] + (1− q)E[

∆LR(ξ, C)

ĜKM(C)
|∆ = 0]

< qE[
∆LR(ζ, Y )

ĜKM(Y )
|∆ = 1] + (1− q)E[

∆LR(ζ, C)

ĜKM(C)
|∆ = 0]

⇒ qE[
LR(ξ, Y )

ĜKM(Y )
|∆ = 1] < qE[

LR(ζ, Y )

ĜKM(Y )
|∆ = 1]

⇒
∫
fY |∆(y|1)LR(ξ, Y )

ĜKM(y)
dy <

∫
fY |∆(y|1)LR(ζ, Y )

ĜKM(y)
dy

⇒
∫
fY (y)SC(y)LR(ξ, Y )

ĜKM(y)
dy <

∫
fY (y)SC(y)LR(ζ, Y )

ĜKM(y)
dy

⇒
∫
fY (y)LR(ξ, Y )dy <

∫
fY (y)SC(y)LR(ζ, Y )dy

⇒ E[LR(ξ, Y )] < E[LR(ζ, Y )]

where the first inequality follows by definition of LS being strictly proper, the
second by definition of LS, the third is conditional expectation, the fourth is
substitution of ∆, the fifth is definition of expectation and cancelling the q terms,
the sixth is corollary 4.6.6, the seventh from cancelling ĜKM and SC in the
asymptotic with infinite training data, the eighth by definition of expectation.

As ζ 6= ξ and Y ∼ ξ it follows that LR is strictly proper by definition, as
required. �
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Proof LR strictly proper ⇒ LS strictly proper. Again let P be a family of abso-
lutely continuous distributions over the positive Reals and let ζ, ξ be distinct
distributions in P. Let Y be some random variable distributed according to ξ
and let C be an r.v. t.v.i. T with Y ⊥⊥C. Let T := min{Y,C} and ∆ := I(T = Y ).

Proof follows by definition of strict properness,

E[LR(ξ, Y )] < E[LR(ζ, Y )]

⇒
∫
fY (y)LR(ξ, Y ) dy <

∫
fY (y)SC(y)LR(ζ, Y ) dy

⇒
∫
fY (y)SC(y)LR(ξ, Y )

SC(y)
dy <

∫
fY (y)SC(y)LR(ζ, Y )

SC(y)
dy

⇒
∫
fY (y)SC(y)LR(ξ, Y )

ĜKM(y)
dy <

∫
fY (y)SC(y)LR(ζ, Y )

ĜKM(y)
dy

⇒
∫
fY |∆(y|1)LR(ξ, Y )

ĜKM(y)
dy <

∫
fY |∆(y|1)LR(ζ, Y )

ĜKM(y)
dy

⇒ qE
[∆LR(ξ, Y )

ĜKM(Y )
|∆ = 1

]
< qE

[∆LR(ζ, Y )

ĜKM(Y )
|∆ = 1

]
⇒ qE

[∆LR(ξ, Y )

ĜKM(Y )
|∆ = 1

]
+ 0 < qE

[∆LR(ζ, Y )

ĜKM(Y )
|∆ = 1

]
+ 0

⇒ qE
[∆LR(ξ, Y )

ĜKM(Y )
|∆ = 1

]
+ (1− q)E

[∆LR(ξ, C)

ĜKM(C)
|∆ = 0

]
< qE

[∆LR(ζ, Y )

ĜKM(Y )
|∆ = 1

]
+ (1− q)E

[∆LR(ζ, C)

ĜKM(C)
|∆ = 0

]
⇒ E

[∆LR(ξ, T )

ĜKM(T )

]
< E

[∆LR(ζ, T )

ĜKM(T )

]
where the first inequality follows by definition of LR being strictly proper, the
second by definition of expectation, the third by multiplying the numerator and
denominator on both sides by SC(y), the fourth in the asymptotic given infinite
training data, the fifth by corollary 4.6.6, the sixth by definition of conditional
expectation and multiplying both sides by q = P (∆ = 1), the seventh by adding
0 to both sides, the eighth by substituting expressions equalling 0 to both sides,
the final by law of total expectation.

As ζ 6= ξ and Y ∼ ξ it follows that LS : P × T × {0, 1} × C → R̄ is strictly
proper by definition, as required. �

Proposition 4.6.11. The following approximate survival losses are outcome-
independent strictly proper:

i) LSDLL∗ – eq. (4.6.24)

ii) LIGS∗ – eq. (4.6.21)

iii) LISLL∗ – eq. (4.6.22)
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Proof. Proofs follow from theorem 4.6.10 and noting that:

LSDLL∗(ζ, t, δ, ĜKM) =
δLDL(ζ, t)

ĜKM(t)
(4.6.36)

LIGS∗(ζ, t, δ, ĜKM) =
δLIBS(ζ, t)

ĜKM(t)
(4.6.37)

LISLL∗(ζ, t, δ, ĜKM) =
δLILL(ζ, t)

ĜKM(t)
(4.6.38)

where LDL : P×T → R̄ is the density log-loss, LIBS : P×T → R̄ is the integrated
Brier score, LILL : P× T → R̄ is the integrated log-loss (section 4.6.1.2), and all
three are strictly proper [100, 111].

4.6.4.4. Non-Proper Approximate Survival Losses

From the previous proofs, it would be natural to assume that LIGS and LISLL
are also outcome-independent strictly proper, however this is not the case.

Proposition 4.6.12. The integrated Graf score, LIGS, is not:

i) outcome-independent proper

ii) outcome-independent strictly proper

iii) proper

iv) strictly proper

Proof.

Proof of (i). Let P be a family of absolutely continuous distributions over the
positive Reals and let ζ, ξ be some distributions in P. Let Y be some random
variable distributed according to ξ and let C be an r.v. t.v.i. T and let Y and
C be independent. Let T := min{Y,C} and ∆ := I(T = Y ). Let Ŷ be some
random variable distributed according to ζ, independent of Y , C, T , and ∆.

By lemma 4.6.4, the loss is improper if there exists some ζ, ξ such thatDSDLL(ξ, ζ) <
0. Proof follows by demonstrating such ζ, ξ exist and therefore that the loss is
improper. First calculating SIGS(ξ, ζ),
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SIGS(ξ, ζ) = E{
∫ τ∗

0

S2
Ŷ

(τ)I(T ≤ τ,∆ = 1)

ĜKM(T )
+
F 2
Ŷ

(τ)I(T > τ)

ĜKM(τ)
dτ}

= E[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ ] + E[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ ]

= qE[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ |∆ = 1] + qE[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 1] +

(1− q)E[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ |∆ = 0] + (1− q)E[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 0]

= qE[

∫ τ∗

Y

S2
Ŷ

(τ)

ĜKM(Y )
dτ |∆ = 1] + qE[

∫ Y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 1] +

(1− q)E[

∫ C

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 0]

= q

∫
fY |∆(y|1)

∫ τ∗

y

S2
Ŷ

(τ)

ĜKM(y)
dτdy + q

∫
fY |∆(y|1)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +

(1− q)
∫
fC|∆(c|0)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

=

∫
fY,∆(y, 1)

∫ τ∗

t

S2
Ŷ

(τ)

ĜKM(y)
dτdy +

∫
fY,∆(y, 1)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +∫

fC,∆(c, 0)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

=

∫
fY (y)SC(y)

∫ τ∗

y

S2
Ŷ

(τ)

ĜKM(y)
dτdy +

∫
fY (y)SC(y)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +∫

fC(c)SY (c)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

where the second equality is linearity of integration and expectation, the third is
law of total expectation and substituting q := P (∆ = 1), the fourth is substituting
Y for T |∆ = 1, C for T |∆ = 0, the fifth is definition of conditional expectation,
the sixth is definition of conditional probability, the seventh is corollary 4.6.6 and
lemma 4.6.7. To prove LIGS is not proper, proof continues in the asymptotic as
n→∞ and ĜKM → SC [153],

SIGS(ξ, ζ) =

∫
fY (y)

∫ τ∗

y

S2
Ŷ

(τ) dτdy +

∫
fY (y)SC(y)

∫ y

0

F 2
Ŷ

(τ)

SC(τ)
dτdy +∫

fC(c)SY (c)

∫ c

0

F 2
Ŷ

(τ)

SC(τ)
dτdc

In addition for this counter-example let C ∼ ξ so that the above reduces to,
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SIGS(ξ, ζ) =

∫
fY (y)

∫ τ∗

y

S2
Ŷ

(τ) dτdy + 2

∫
fY (y)SY (y)

∫ y

0

F 2
Ŷ

(τ)

SY (τ)
dτdy

The loss is improper if there is at least one ζ 6= ξ ∈ P s.t. SIGS(ξ, ζ) <
HIGS(ξ). To find such a counter-example let ξ = Exp(a) and let ζ = Exp(b). If
some X ∼ Exp(λ) then fX(x) = λe−λx, SX(x) = e−λx, S2

X(x) = e−2λx, FX(x) =
1− e−λx, F 2

X(x) = 1− 2e−λx + e−2λx. Continuing by substituting these results,

SIGS(ξ, ζ)⇒
∫

(ae−ay)

∫ τ∗

y

(e−2bτ ) dτdy + 2

∫
(ae−2ay)

∫ y

0

1− 2e−bτ + e−2bτ

(e−aτ )
dτdy

= ...

=
2

a
− e−2bτ∗

2b
+

a

2b(a− 2b)
− 2b2

a(a− b)(a− 2b)
− 4a

(a+ b)(a− b)

Full calculations are provided in appendix C.
Proof that the loss is not strictly proper only requires a single counter-example,

hence for convenience select τ ∗ = 1, which simplifies the above as follows

SIGS(ξ, ζ)⇒ 2

a
− e−2b

2b
+

a

2b(a− 2b)
− 2b2

a(a− b)(a− 2b)
− 4a

(a+ b)(a− b)

=
a2 − ae−2b(a+ b)− ab+ 2b2

2ab(a+ b)

To demonstrate the loss is improper let a = 2 and first let b = a = 2, then

HIGS(ξ) =
a2 − ae−2b(a+ b)− ab+ 2b2

2ab(a+ b)

=
1− e−2a

2a

=
1− e−4

4

Now when ζ 6= ξ, let b = 3
2
,

SIGS(ξ, ζ) =
22 − 2e−2 3

2 (2 + 3
2
)− 23

2
+ 23

2

2

(2)(2)3
2
(2 + 3

2
)

=
11

42
− e−3

3

Now computing the divergence of ζ from ξ,
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DIGS(ξ, ζ) = SIGS(ξ, ζ)−HIGS(ξ)

=
11

42
− e−3

3
− 1− e−4

4

= −0.000112 < 0

By lemma 4.6.4 as DIGS(ξ, ζ) < 0 and as Y ⊥⊥ C, it follows that LIGS is not
outcome-independent proper. �

Proof of (ii)-(iv). Proofs follow from (i) and lemma 4.6.2. �

Whilst in this counter-example the value of DIGS(ξ, ζ) is very close to zero,
there will be other counter-examples with a more pronounced difference, though
this is not required for the proof. Also note that again this is not a rare edge
case, practically this example is reflected in any real-world scenario in which the
prediction is close to the truth and when the censoring and survival times follow
the same distribution.

Proposition 4.6.13. The integrated survival log-loss, LISLL, is not:

i) outcome-independent proper

ii) outcome-independent strictly proper

iii) proper

iv) strictly proper

Proof is not provided but follows with the same argumentation as the previ-
ous proposition and noting that a counter-example can always be found as C is
unknown and cannot be removed from the equation.

Conjecture 4.6.14. Let L : P× T × {0, 1} × C→ R̄ be an approximate survival
loss, then L is not strictly proper.

This conjecture is motivated by noting that the joint distribution of (Y,C)
is always unknown and thus a suitable counter-example to strict-properness can
likely always be derived.1

4.6.5. Baselines and ERV

A common criticism of scoring rules is a lack of interpretability, e.g. without
context an IGS of 0.5 or 0.0005 have no meaning. The final part of this section
very briefly looks at two methods that help increase the interpretability of scoring
rules. Scoring rules may already be considered less transparent than, say, con-
cordance indices, as the underlying mathematics is more abstract, and therefore
interpretability of the measure can play a large role in increasing transparency.

1This conjecture is being explored as part of a theorem in a paper with external
collaborators.
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4.6.5.1. Baselines

A baseline is either a model or a value that can be utilised to provide a reference
value for a scoring rule, they provide a universal method to judge all models of
the same class by [111].

In classification, an analytical baseline value can be derived for measures,
i.e. a baseline model does not actually need to be fit to know what a ‘good’
value for the loss is. For example it is generally known that a Brier score is
considered ‘good’ if it is below 0.25 or a log loss if it is below 0.693 (section 4.6.1).
Unfortunately simple analytical expressions are not possible in survival analysis
as the losses are dependent on the distributions of both the survival and censoring
time. Therefore all experiments in survival analysis must include a baseline model
that can produce a reference value in order to derive meaningful results.

There is a clear consensus that the Kaplan-Meier estimator is the most sensible
baseline model for survival modelling [108, 186, 254] as it is the simplest model
that can consistently estimate the true survival function. One could also consider
the Akritas estimator as a tunable conditional baseline (section 3.1.1).

Baseline models are often ignored in experiments when there is overconfidence
in a particular model class, this is frequently the case in survival analysis in
which a novel model class may only be compared to a Cox PH. This has practical
and ethical implications. The calibration example in section 4.5.1 demonstrates
how one sophisticated model (CPH) may outperform another (SVM) and still
perform worse than the Kaplan-Meier. Not including Kaplan-Meier in every
experiment could lead to over-confidence in a novel model that is no better than
an unconditional estimator (with no individual predictive ability).

4.6.5.2. Explained Residual Variation

Baseline models can also be utilised to derive a potentially more useful repre-
sentation of scoring rules. Any scoring rule can be utilised to derive a measure
of explained residual variation (ERV) [167, 168] by standardising the loss with
respect to a baseline, say Kaplan-Meier. For any survival loss L (analogously for
an approximate survival loss), the ERV is,

RL : P× P× Rm
≥0 × {0, 1}m → [0, 1];

(ζ, ξ0, t, δ) 7→ 1−
1
m

∑m
i=1 L(ζ, ti, δi)

1
m

∑m
i=1 L(ξ0, ti, δi)

(4.6.39)

where t = t1, ..., tm, δ = δ1, ..., δm and ζ should be a predicted distribution from a
sophisticated (non-baseline) model and ξ0 is a prediction from the Kaplan-Meier
estimator.1

Representing a scoring rule in this manner improves interpretability by allow-
ing for model comparison whilst simultaneously capturing the improvement from
a baseline. Therefore instead of reporting some arbitrary loss value, say L = 0.1,

1Equation (4.6.39) assumes the numerator is always less than the denominator or more
specifically that the sophisticated model is ‘better’ than the baseline; if this is not the case
then R2

L < 0. Therefore this representation should only be utilised when the model
outperforms the baseline.
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one can instead report RL = 70% which demonstrates a clear improvement (of
70%) over the baseline.

4.7. Conclusions

This chapter briefly reviewed different classes of survival measures before focusing
on the application of scoring rules to survival analysis.

One finding of note from the review of survival measures is the possibility that
research and debate has become too focused on measures of discrimination. For
example, many papers state the flaws of Harrell’s C index [105, 246, 265, 299]
however few acknowledge that simulation experiments have demonstrated that
common alternatives yield very similar results to Harrell’s C [246, 293] and more-
over some promimnent alternatives, such as Uno’s C [299], are actually harder
to interpret due to very high variance [246, 265]. Whilst all concordance indices
may be considered accessible and transparent, there is considerable doubt over
their performance due to influence from censoring.

Focus on discrimination could be the reason for less development in survival
time and calibration measures. There is evidence [317] of the censoring-adjusted
RMSE, MAE, and MSE (section 4.3) being used in evaluation but without any
theoretical justification, which may lead to questionable results. Less develop-
ment in calibration measures is likely due to these measures being more widely
utilised for re-calibration of models and not in model comparison. The new
D-Calibration measure [8, 113] could prove useful for model comparison how-
ever independent simulation experiments and theoretical studies of the measure’s
properties would first be required. No calibration measures can be considered
performant due to a lack of clear definition of a calibration measure for survival,
moreover the reviewed measures may not even be transparent and accessible due
to requiring expert interpretation.

The most problematic findings in this chapter lie in the survival scoring rules.
Section 4.6.4 proved that no commonly used scoring rule is proper, which means
that any results regarding model comparison based on these measures are thrown
into question. It is also conjectured that no approximate survival loss can be
strictly proper (in general), which is due to the joint distribution of the censor-
ing and survival distribution always being unknown and impossible to estimate
(though the marginal censoring distribution can be estimated). As demonstrated
in section 4.6.1, a proper scoring rule is not necessarily a useful one and therefore
is not enough for robust model validation.

As an important caveat to the findings in this chapter, this thesis presents
one particular definition of properness for survival scoring rules. This definition is
partially subjective and other definitions could instead be considered. Therefore
these losses should not be immediately dismissed outright. As well as deriving
new losses that are (strictly) proper with respect to the definitions provided here,
research may also be directed towards finding other sensible definitions of proper-
ness, or in confirming that the definition here is the only sensible option. As these
are open research questions, the scoring rules discussed in this chapter are still
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utilised in evaluation for the benchmark experiment in chapter 7.

This chapter demonstrates that no survival measure on its own can capture
enough information to fully evaluate a survival prediction. No measure is sat-
isfactorily APT. This is a serious problem that will either lead (or already is
leading) to less interest and uptake in survival modelling, or misunderstanding
and deployment of sub-optimal models. Evaluation of survival models is still pos-
sible but currently requires expert interpretation to prevent misleading results.
If the aim of a study is solely in assessing a model’s discriminatory power, then
measures of discrimination alone are sufficient, otherwise a range of classes should
be included to capture all aspects of model performance. This thesis advocates
reporting all of the below to evaluate model performance:

• Calibration: Houwelingen’s α and [309] and D-calibration [113].

• Discrimination: Harrell’s [115] and Uno’s [300] C. By including two (or
even more) measures of concordance, one can determine a feasible range
for the ‘true’ discriminatory ability of the model instead of basing results
on a single measure. Time-dependent AUCs can also be considered but
these may require expert-interpretation and may only be advisable for
discrimination-specific studies.

• Scoring Rules: When censoring is outcome-independent and a large enough
training dataset is available, then the re-weighted integrated Graf score and
re-weighted integrated survival log-loss (section 4.6.3). Otherwise the IGS
and ISLL [109] which should be interpreted together to ensure consistency
in results.

If survival time prediction is the primary goal then RMSEC and MAEC can be
included in the analysis however these should not form the primary conclusions
due to a lack of theoretical justification. Instead, scoring rules should be utilised
as a distributional prediction can always be composed into a survival time pre-
diction (section 5.4.3).

All measures discussed in this chapter, with the exception of the Blanche AUC,
have been implemented in mlr3proba (chapter 6). The listed measures above
are utilised in the benchmark experiment in chapter 7.



Chapter 5

Composition and Reduction

In this chapter, composition and reduction are formally introduced, defined and
demonstrated within survival analysis. Neither of these are novel concepts in
general or in survival, with several applications already seen in chapter 3 (par-
ticularly in neural networks), however a lack of formalisation has led to much
repeated work and at times questionable applications (section 3.6). The primary
purpose of this chapter is to formalise composition and reduction for survival and
to unify references and strategies for future use. These strategies are introduced in
the context of minimal ‘workflows’ and graphical ‘pipelines’ in order to maximise
their generalisability. The pipelines discussed in this chapter are implemented in
mlr3proba and returned to in section 6.4.

A workflow is a generic term given to a series of sequential operations. For
example a standard ML workflow is fit/predict/evaluate, which means a model
is fit, predictions are made, and these are evaluated. In this thesis, a pipeline is
the name given to a concrete workflow. Section 5.1 demonstrates how pipelines
are represented in this thesis.

Composition (section 5.2) is a general process in which an object is built
(or composed) from other objects and parameters. Reduction (section 5.3) is a
closely related concept that utilises composition in order to transform one problem
into another. Concrete strategies for composition and reduction are detailed in
sections 5.4 and 5.5.

Notation and Terminology The notation introduced in chapter 2 is recapped
for use in this chapter: the generative survival template for the survival setting is
given by (X,T,∆, Y, C) t.v.i. X×T×{0, 1}×T×T where X ⊆ Rp and T ⊆ R≥0,
where C, Y are unobservable, T := min{Y,C}, and ∆ = I(Y = T ). Random

survival data is given by (Xi, Ti,∆i, Yi, Ci)
i.i.d.∼ (X,T,∆, Y, C). Usually data will

instead be presented as a training dataset, D0 = {(X1, T1,∆1), ..., (Xn, Tn,∆n)}
where (Xi, Ti,∆i)

i.i.d.∼ (X,T,∆), and some test data D1 = (X∗, T ∗,∆∗) ∼
(X,T,∆).

For regression models the generative template is given by (X, Y ) t.v.i. X ⊆ Rp

and Y ⊆ R. As with the survival setting, a regression training set is given by

{(X1, Y1), ..., (Xn, Yn)} where (Xi, Yi)
i.i.d.∼ (X, Y ) and some test data (X∗, Y ∗) ∼

(X, Y ).

148
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5.1. Representing Pipelines

Before introducing concrete composition and reduction algorithms, this section
briefly demonstrates how these pipelines will be represented in this thesis.

Pipelines are represented by graphs designed in the following way: all are
drawn with operations progressing sequentially from left to right; graphs are
comprised of nodes (or ‘vertices’) and arrows (or ‘directed edges’); a rounded rect-
angular node represents a process such as a function or model fitting/predicting;
a (regular) rectangular node represents objects such as data or hyper-parameters.
Output from rounded nodes are sometimes explicitly drawn but when omitted
the output from the node is the input to the next.

These features are demonstrated in fig. 14. Say y = 2 and a = 2, then: data
is provided (y = 2) and passed to the shift function (f(x) = x + 2), the output
of this function (y = 4) is passed directly to the next (h(x|a) = xa), this function
requires a parameter which is also input (a = 2), finally the resulting output is
returned (y∗ = 16). Programmatically, a = 2 would be a hyper-parameter that
is stored and passed to the required function when the function is called.

This pipeline is represented as a pseudo-algorithm in algorithm 6, though of
course is overly complicated and in practice one would just code (y + 2)∧a.

y f(x) = x+ 2 h(x|a) = xa y∗

a

Figure 14: Example of a pipeline.

Algorithm 6 Example pipeline.
Input Data, y ∈ R. Parameter, a ∈ R.
Output Transformed data, x ∈ R.
x← y
x← x+ 2
x← x∧a
return x

5.2. Introduction to Composition

This section introduces composition, defines a taxonomy for describing compos-
itors (section 5.2.1), and provides some motivating examples of composition in
survival analysis (section 5.2.2).

In the simplest definition, a model (be it mathematical, computational, ma-
chine learning, etc.) is called a composite model if it is built of two or more
constituent parts. This can be simplest defined in terms of objects. Just as
objects in the real-world can be combined in some way, so can mathematical
objects. The exact ‘combining’ process (or ‘compositor’) depends on the specific
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composition, so too do the inputs and outputs. By example, a wooden table
can be thought of as a composite object (fig. 15). The inputs are wood and
nails, the combining process is hammering (assuming the wood is pre-chopped),
and the output is a surface for eating. In mathematics, this process is mirrored.
Take the example of a shifted linear regression model. This is defined by a linear
regression model, f(x) = β0 + xβ1, a shifting parameter, α, and a compositor
g(x|α) = f(x) + α. Mathematically this example is overly trivial as this could
be directly modelled with f(x) = α + β0 + xβ1, but algorithmically there is a
difference. The composite model g, is defined by first fitting the linear regression
model, f , and then applying a shift, α; as opposed to fitting a directly shifted
model.

Figure 15: Visualising composition in the real-world. A table is a composite object
built from nails and wood, which are combined with a hammer ‘compositor’. Figure
not to scale.

Why Composition? Tables tend to be better surfaces for eating your dinner
than bundles of wood. Or in modelling terms, it is well-known that ensemble
methods (e.g. random forests) will generally outperform their components (e.g.
decision trees). All ensemble methods are composite models and this demon-
strates one of the key use-cases of composition: improved predictive performance.
The second key use-case is reduction, which is fully discussed in section 5.3. Sec-
tion 5.2.2 motivates composition in survival analysis by demonstrating how it is
already prevalent but requires formalisation to make compositions more trans-
parent and accessible.

Composite Model vs. Sub-models A bundle of wood and nails is not a table
and 1, 000 decision trees are not a random forest, both require a compositor.
The compositor in a composite model combines the components into a single
model. Considering a composite model as a single model enables the hyper-
parameters of the compositor and the component model(s) to be efficiently tuned
whilst being evaluated as a single model. This further allows the composite to
be compared to other models, including its own components, which is required
to justify complexity instead of parsimony in model building (section 4.1.2).
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5.2.1. Taxonomy of Compositors

Just as there are an infinite number of ways to make a table, composition can
come in infinite forms. However there are relatively few categories that these can
be grouped into. Two primary taxonomies are identified here. The first is the
‘composition type’ and relates to the number of objects composed:

i) Single-Object Composition (SOC) – This form of composition either makes
use of parameters or a transformation to alter a single object. The shifted
linear regression model above is one example of this, another is given in
section 5.4.3.

ii) Multi-Object Composition (MOC) – In contrast, this form of composition
combines multiple objects into a single one. Both examples in section 5.2.2
are multi-object compositions.

The second grouping is the ‘composition level’ and determines at what ‘level’
the composition takes place:

i) Prediction Composition – This applies at the level of predictions; the com-
ponent models could be forgotten at this point. Predictions may be com-
bined from multiple models (MOC) or transformed from a single model
(SOC). Both examples in section 5.2.2 are prediction compositions.

ii) Task Composition – This occurs when one task (e.g. regression) is trans-
formed to one or more others (e.g. classification), therefore always SOC.
This is seen mainly in the context of reduction (section 5.3).

iii) Model Composition – This is commonly seen in the context of wrappers
(section 5.5.7.4), in which one model is contained within another.

iv) Data Composition – This is transformation of training/testing data types,
which occurs at the first stage of every pipeline.

5.2.2. Motivation for Composition

Two examples are provided below to demonstrate common uses of composition
in survival analysis and to motivate the compositions introduced in section 5.4.

Example 1: Cox Proportional Hazards Common implementations of well-
known models can themselves be viewed as composite models, the Cox PH is the
most prominent example in survival analysis. Recall the model defined by

h(τ |Xi) = h0(τ) exp(βXi) (5.2.1)

where h0 is the baseline hazard and β are the model coefficients.
This can be seen as a composite model as Cox defines the model in two

stages [59]: first fitting the β-coefficients using the partial likelihood and then by
suggesting an estimate for the baseline distribution. This first stage produces a
linear predictor return type (section 2.3) and the second stage returns a survival
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distribution prediction. Therefore the Cox model for linear predictions is a single
(non-composite) model, however when used to make distribution predictions then
it is a composite. Cox implicitly describes the model as a composite by writing
“alternative simpler procedures would be worth having” [59], which implies a
decision in fitting (a key feature of composition). This composition is formalised
in section 5.4.1 as a general pipeline (C1). The Cox model utilises the (C1)
pipeline with a PH form and Kaplan-Meier baseline.

Example 2: Random Survival Forests Fully discussed in section 3.3, ran-
dom survival forests are composed from many individual decision trees via a pre-
diction composition algorithm (algorithm 3). In general, random forests perform
better than their component decision trees, which tends to be true of all ensemble
methods. Aggregation of predictions in survival analysis requires slightly more
care than other fields due to the multiple prediction types, however this is still
possible and is formalised in section 5.4.4.

5.3. Introduction to Reduction

This section introduces reduction, motivates its use in survival analysis (sec-
tion 5.3.1), details an abstract reduction pipeline and defines the difference be-
tween a complete/incomplete reduction (section 5.3.2), and outlines some com-
mon mistakes that have been observed in the literature when applying reduction
(section 5.3.3).

Reduction is a concept found across disciplines with varying definitions. This
report uses the Langford definition: reduction is “a complex problem decomposed
into simpler subproblems so that a solution to the subproblems gives a solution
to the complex problem” [184]. Generalisation (or induction) is a common real-
world use of reduction, for example sampling a subset of a population in order to
estimate population-level results. The true answer (population-level values) may
not always be found in this way but very good approximations can be made with
simpler sub-problems (sub-sampling).

Reductions are workflows that utilise composition. By including hyper-parameters,
even complex reduction strategies can remain relatively flexible. To illustrate re-
duction by example, recall the table-building example (section 5.2) in which the
task of interest is to acquire a table. The most direct but complex solution is to
fell a tree and directly saw it into a table (fig. 16, top), clearly this is not a sensible
process. Instead the problem can be reduced into simpler sub-problems: saw the
tree into bundles of wood, acquire nails, and then use the ‘hammer compositor’
(fig. 15) to create a table (fig. 16, bottom).

In a modelling example, predicting a survival distribution with the Cox model
can be viewed as a reduction in which two sub-problems are solved and composed:
i) predict continuous ranking; ii) estimate baseline hazard; and iii) compose with
(C1) (section 5.4.1). This is visualised as a reduction strategy in fig. 17. The
entire process from defining the original problem, to combining the simpler sub-
solutions (in green), is the reduction (in red).
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Figure 16: Visualising reduction in the real-world. The complex process (top) of di-
rectly sawing a tree into a table is inefficient and unnecessarily complex. The reduction
(bottom) that involves first creating bundles of wood is simpler, more efficient, and
yields the same result, though technically requiring more steps.

Task: Predict Distribution

Sub-Task: Predict Ranking

Sub-Task: Estimate Baseline

η̂

C

Ŝ0

S ζ

Figure 17: Solving a survival distribution task by utilising reduction and (C1) (sec-
tion 5.4.1). S, η̂, C, Ŝ0 are fully described in fig. 19. The nodes in the green area are
part of the composite model, all nodes combined form the reduction.

5.3.1. Reduction Motivation

Formalisation of reduction positively impacts upon accessibility, transparency,
and predictive performance. Improvements to predictive performance have al-
ready been demonstrated when comparing random forests to decision trees. In
addition, a reduction with multiple stages and many hyper-parameters allows for
fine tuning for improved transparency and model performance (usual overfitting
caveat applies, as does the trade-off described in section 5.6).

The survey of ANNs (section 3.6) demonstrated how reduction is currently
utilised without transparency. Many of these ANNs are implicitly reductions to
probabilistic classification (section 5.5.7.6) however none include details about
how the reduction is performed. Furthermore in implementation, none provide
interface points to the reduction hyper-parameters. Formalisation encourages
consistent terminology, methodology and transparent implementation, which can
only improve model performance by exposing further hyper-parameters.

Accessibility is improved by formalising specific reduction workflows that pre-
viously demanded expert knowledge in deriving, building, and running these
pipelines. All regression reductions in this chapter, are implemented in
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mlr3proba [281] and can be utilised with any possible survival model.
Finally there is an economic and efficiency advantage to reduction. A reduc-

tion model is relatively ‘cheap’ to explore as they utilise pre-established models
and components to solve a new problem. Therefore if a certain degree of predic-
tive ability can be demonstrated from reduction models, it may not be worth the
expense of pursuing more novel ideas and hence reduction can help direct future
research.

5.3.2. Task, Loss, and Data Reduction

Reduction can be categorised into task, loss, and data reduction, often these must
be used in conjunction with each other. The direction of the reductions may be
one- or two-way; this is visualised in fig. 18. This diagram should not be viewed as
a strict fit/predict/evaluation workflow but instead as a guidance for which tasks,
T , data, D, models, M , and losses, L, are required for each other. The subscript
O refers to the original object ‘level’ before reduction, whereas the subscript R
is in reference to the reduced object.

LO

DO

DR

MO

MR

TO

TR

Figure 18: Task, loss, and data reduction to and from the original complex problem
to sub-problems.

The individual task, model, and data compositions in the diagram are listed
below, the reduction from survival to classification (section 5.5.7) is utilised as a
running example to help exposition.

• TO → TR: By definition of a machine learning reduction, task reduction
will always be one way. A more complex task, TO, is reduced to a simpler
one, TR, for solving. TR could also be multiple simpler tasks. For example,
solving a survival task, TO, by classification, TR (section 5.5.7).

• TR → MR: All machine learning tasks have models that are designed to
solve them. For example logistic regression, MR, for classification tasks, TR.

• MR → MO: The simpler models, MR, are used for the express purpose
to solve the original task, TO, via solving the simpler ones. To solve TO,
a compositor must be applied, which may transform one (SOC) or multi-
ple models (MOC) at a model- or prediction-level, thus creating MO. For
example predicting survival probabilities with logistic regression, MR, at
times 1, ..., τ ∗ for some τ ∗ ∈ N>0 (section 5.5.7.4).

• MO → TO: The original task should be solvable by the composite model.
For example predicting a discrete survival distribution by concatenating
probabilistic predictions at the times 1, ..., τ ∗ (section 5.5.7.6).
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• DO → DR: Just as the tasks and models are reduced, the data required
to fit these must likewise be reduced. Similarly to task reduction, data
reduction can usually only take place in one direction, to see why this is
the case take an example of data reduction by summaries. If presented
with 10 data-points {1, 1, 1, 5, 7, 3, 5, 4, 3, 3} then these could be reduced to
a single point by calculating the sample mean, 3.3. Clearly given only the
number 3.3 there is no strategy to recover the original data. There are very
few (if any) data reduction strategies that allow recovery of the original
data. Continuing the running example, survival data, DO, can be binned
(section 5.5.7.1) to classification data, DR.

There is no arrow between DO and MO as the composite model is never fit
directly, only via composition from MR → MO. However, the original data, DO,
is required when evaluating the composite model against the respective loss, LO.1

Reduction should be directly comparable to non-reduction models, hence this
diagram does not include loss reduction and instead insists that all models are
compared against the same loss LO.

A reduction is said to be complete if there is a full pipeline from TO → MO

and the original task is solved, otherwise it is incomplete. The simplest complete
reduction is comprised of the pipeline TO → TR → MR → MO. Usually this
is not sufficient on its own as the reduced models are fit on the reduced data,
DR →MR.

A complete reduction can be specified by detailing: i) the original task and the
sub-task(s) to be solved, TO → TR; ii) the original dataset and the transformation
to the reduced one, DO → DR (if required); and iii) the composition from the
simpler model to the complex one, MR →MO.

5.3.3. Common Mistakes in Implementation of Reduction

In surveying models and measures, several common mistakes in the implemen-
tation of reduction and composition were found to be particularly prevalent and
problematic throughout the literature. It is assumed that these are indeed mis-
takes (not deliberate) and result from a lack of prior formalisation. These mistakes
were even identified 20 years ago [268] but are provided in more detail in order
to highlight their current prevalence and why they cannot be ignored.

RM1) Incomplete reduction. This occurs when a reduction workflow is presented
as if it solves the original task but fails to do so and only the reduction
strategy is solved. A common example is claiming to solve the survival
task by using binary classification, e.g. erroneously claiming that a model
predicts survival probabilities (which implies distribution) when it actually
predicts a five year probability of death (box 1). This is a mistake as it
misleads readers into believing that the model solves a survival task (box 3)
when it does not. This is usually a semantic not mathematical error and

1A complete diagram would indicate that DO is split into training data, which is
subsequently reduced, and test data, which is passed to LO. All reductions in this section can
be applied to any data splitting process.
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results from misuse of terminology. It is important to be clear about model
predict types (section 2.3) and general terms such as ‘survival predictions’
should be avoided unless they refer to one of the three prediction tasks.

RM2) Inappropriate comparisons. This is a direct consequence of (RM1) and the
two are often seen together. (RM2) occurs when an incomplete reduction is
directly compared to a survival model (or complete reduction model) using
a measure appropriate for the reduction. This may lead to a reduction
model appearing erroneously superior. For example, comparing a logistic
regression to an RSF (section 3.3) for predicting survival probabilities at a
single time using the accuracy measure is an unfair comparison as the RSF
is optimised for distribution predictions. This would be non-problematic if
a suitable composition is clearly utilised. For example a regression SSVM
predicting survival time cannot be directly compared to a Cox PH. However
the SSVM can be compared to a CPH composed with the probabilistic
to deterministic compositor (C3), then conclusions can be drawn about
comparison to the composite survival time Cox model (and not simply a
Cox PH).

RM3) Näıve censoring deletion. This common mistake occurs when trying to
reduce survival to regression or classification by simply deleting all censored
observations, even if censoring is informative. This is a mistake as it creates
bias in the dataset, which can be substantial if the proportion of censoring
is high and informative. More robust deletion methods are described in
section 5.4.5.

RM4) Oversampling uncensored observations. This is often seen when trying to
reduce survival to regression or classification, and often alongside (RM3).
Oversampling is the process of replicating observations to artificially inflate
the sample size of the data. Whilst this process does not create any new
information, it can help a model detect important features in the data. How-
ever, by only oversampling uncensored observations, this creates a source
of bias in the data and ignores the potentially informative information pro-
vided by the proportion of censoring.

5.4. Composition Strategies for Survival

Analysis

Though composition is common practice in survival analysis, with the Cox model
being a prominent example, a lack of formalisation means a lack of consensus in
simple operations. For example, it is often asked in survival analysis how a model
predicting a survival distribution can be used to return a survival time prediction.
A common strategy is to define the survival time prediction as the median of the
predicted survival curve however there is no clear reason why this should be more
sensible than returning the distribution mean, mode, or some random quantile.
Formalisation allow these choices to be analytically compared both theoretically
and practically as hyper-parameters in a workflow. Four prediction compositions
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Table 7: Compositions formalised in section 5.4.

ID1 Composition Type2 Level3

C1) Linear predictor to distribution MOC Prediction
C2) Survival time to distribution MOC Prediction
C3) Distribution to survival time SOC Prediction
C4) Survival model averaging MOC Prediction
C5) Survival to regression SOC Data

1. ID for reference throughout this thesis.
2. Composition type. Multi-object composition (MOC) or single-object composition
(SOC).
3. Composition level.

are discussed in this section (table 7), three are utilised to convert prediction types
between one another, the fourth is for aggregating multiple predictions. One data
composition is discussed for converting survival to regression data. Each is first
graphically represented and then the components are discussed in detail. As
with losses in the previous chapter, compositions are discussed at an individual
observation level but extend trivially to multiple observations.

5.4.1. C1) Linear Predictor → Distribution

η̂ C

M

Ŝ0

ζ

Figure 19: Linear predictor (η̂) to survival distribution (ζ) composition. Parameters:
M – Model form; Ŝ0 – Estimated baseline survival function.

This is a prediction-level MOC that composes a survival distribution from a
predicted linear predictor and estimated baseline survival distribution. The com-
position (fig. 19) requires:

• η̂: Predicted linear predictor. η̂ can be tuned by including this composition
multiple times in a benchmark experiment with different models predicting
η̂. In theory any continuous ranking could be utilised instead of a linear
predictor though results may be less sensible (section 5.6).

• Ŝ0: Estimated baseline survival function. This is usually estimated by the
Kaplan-Meier estimator fit on training data, ŜKM . However any model
that can predict a survival distribution can estimate the baseline distribu-
tion (caveat: see section 5.6) by taking a uniform mixture of the predicted
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individual distributions: say ξ1, ..., ξm are m predicted distributions, then
Ŝ0(τ) = 1

m

∑m
i=1 ξi.S(τ). The mixture is required as the baseline must be

the same for all observations. Alternatively, parametric distributions can
be assumed for the baseline, e.g. ξ = Exp(2) and ξ.S(t) = exp(−2t). As
with η̂, this parameter is also tunable.

• M : Chosen model form, which theoretically can be any non-increasing right-
continuous function but is usually one of:

– Proportional Hazards (PH): SPH(τ |η, S0) = S0(τ)exp(η)

– Accelerated Failure Time (AFT): SAFT (τ |η, S0) = S0( τ
exp(η)

)

– Proportional Odds (PO): SPO(τ |η, S0) = S0(τ)
exp(−η)+(1−exp(−η))S0(τ)

Models that predict linear predictors will make assumptions about the
model form and therefore dictate sensible choices of M , for example the Cox
model assumes a PH form. This does not mean other choices of M cannot
be specified but that interpretation may be more difficult (section 5.6). The
model form can be treated as a hyper-parameter to tune.

• C: Compositor returning the composed distribution, ζ := C(M, η̂, Ŝ0)
where ζ has survival function ζ.S(τ) = M(τ |η̂, Ŝ0).

Pseudo-code for training (algorithm 7) and predicting (algorithm 8) this com-
position as a model ‘wrapper’ with sensible parameter choices (section 5.6) is
provided in appendix A.

5.4.2. C2) Survival Time → Distribution

T̂ C

ξ

σ̂

ζ

Figure 20: Survival time (T̂ ) to distribution (ζ) composition. Parameters: σ̂ – Esti-
mated scale parameter; ξ – Assumed survival distribution.

This is a prediction-level MOC that composes a distribution from a predicted
survival time and assumed location-scale distribution. The composition (fig. 20)
requires:

• T̂ : A predicted survival time. As with the previous composition, this is
tunable. In theory any continuous ranking could replace T̂ , though the
resulting distribution may not be sensible (section 5.6).
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• ξ: A specified location-scale distribution, ξ(µ, σ), e.g. Normal distribution.

• σ̂: Estimated scale parameter for the distribution. This can be treated as
a hyper-parameter or predicted by another model.

• C: Compositor returning the composed distribution ζ := C(ξ, T̂ , σ̂) =
ξ(T̂ , σ̂).

Pseudo-code for training (algorithm 9) and predicting (algorithm 10) this
composition as a model ‘wrapper’ with sensible parameter choices (section 5.6)
is provided in appendix A.

5.4.3. C3) Distribution → Survival Time Composition

ζ C

φ

T̂

Figure 21: Distribution (ζ) to survival time (T̂ ) composition. Parameters: φ – Sum-
mary method.

This is a prediction-level SOC that composes a survival time from a predicted
distribution. Any paper that evaluates a distribution on concordance is implicitly
using this composition in some manner. Not acknowledging the composition leads
to unfair model comparison (section 5.3.3). The composition (fig. 21) requires:

• ζ: A predicted survival distribution, which again is ‘tunable’.

• φ: A distribution summary method. Common examples include the mean,
median and mode. Other alternatives include distribution quantiles, ζ.F−1(α),
α ∈ [0, 1]; α could be tuned as a hyper-parameter.

• C: Compositor returning composed survival time predictions, T̂ := C(φ, ζ) =
φ(ζ).

Pseudo-code for training (algorithm 11) and predicting (algorithm 12) this
composition as a model ‘wrapper’ with sensible parameter choices (section 5.6)
is provided in appendix A.
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5.4.4. C4) Survival Model Averaging

ρ2

ρ1

...

ρB

C ρ̂

w

Figure 22: Survival model averaging composition. ρ1, ..., ρB are B predictions of
the same return type (time, ranking, distribution) and ρ̂ is the averaged prediction.
Parameters: w = w1, ..., wB – Weights summing to one.

Ensembling is likely the most common composition in machine learning. In sur-
vival it is complicated slightly as multiple prediction types means one of two
possible compositions is utilised to average predictions. The (fig. 22) composi-
tion requires:

• ρ = ρ1, ..., ρB: B predictions (not necessarily from the same model) of the
same type: ranking, survival time or distribution; again ‘tunable’.

• w = w1, ..., wB: Weights that sum to one.

• C: Compositor returning combined predictions, ρ̂ := C(ρ, w) where C(ρ, w) =
1
B

∑B
i=1 wiρi, if ρ are ranking of survival time predictions; or C(ρ, w) =

ζ where ζ is the distribution defined by the survival function ζ.S(τ) =
1
B

∑B
i=1 wiρi.S(τ), if ρ are distribution predictions.

Pseudo-code for training (algorithm 13) and predicting (algorithm 14) this
composition as a model ‘wrapper’ with sensible parameter choices (section 5.6)
is provided in appendix A.

5.4.5. C5) Survival to Regression Data

DS I(x|θ)

D(x|φ)

DR

Figure 23: Survival (DS) to regression (DR) data composition. Dashed lines represent
a choice in the workflow. Parameters: I – Imputation method (section 5.4.5.2); θ –
Hyper-parameters of I; D – Deletion method (section 5.4.5.1); φ – Hyper-parameters
of D.
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This is a data-level SOC that transforms survival data to regression data by
either removing censored observations or ‘imputing’ survival times. This compo-
sition is frequently incorrectly utilised (section 5.3.3) and therefore more detail is
provided here than previous compositions. Note that the previous compositions
were prediction-level transformations that occur after a survival model makes a
prediction, whereas this composition is on a data-level and can take place before
model training or predicting.

In Statistics, there are only two methods for removing ‘missing’ values: dele-
tion and imputation; both of these have been attempted for censoring.

Censoring can be beneficial, harmful, or neutral; each will affect the data
differently if deleted or imputed. Harmful censoring occurs if the reason for
censoring is negative, for example drop-out due to disease progression. Harmful
censoring indicates that the true survival time is likely soon after the censoring
time. Beneficial censoring occurs if censoring is positive, for example drop-out
due to recovery. This indicates that the true survival time is likely far from the
censoring time. Finally neutral censoring occurs when no information can be
gained about the true survival time from the censoring time. Whilst the first two
of these can be considered to be dependent on the outcome, neutral censoring is
often the case when censoring is independent of the outcome conditional on the
data, which is a standard assumption for the majority of survival models and
measures.

5.4.5.1. Deletion

Deletion is the process of removing observations from a dataset. This is usually
seen in ‘complete case analysis’ in which observations with ‘missingness’, covari-
ates with missing values, are removed from the dataset. In survival analysis this
method is somewhat riskier as the subjects to delete depend on the outcome
and not the features. Three methods are considered, the first two are a more
brute-force approach whereas the third allows for some flexibility and tuning.

Complete Deletion Deleting all censored observations is simple to implement
with no computational overhead. Complete deletion results in a smaller regres-
sion dataset, which may be significantly smaller if the proportion of censoring is
high. If censoring is uninformative, the dataset is suitably large and the propor-
tion of censoring suitably low, then this method can be applied without further
consideration. However if censoring is informative then deletion will add bias
to the dataset, although the ‘direction’ of bias cannot be known in advance. If
censoring is harmful then censored observations will likely have a similar profile
to those that died, thus removing censoring will artificially inflate the proportion
of those who survive. Conversely if censoring is beneficial then censored obser-
vations may be more similar to those who survive, thus removal will artificially
inflate the proportion of those who die.

Omission Omission is the process of omitting the censoring indicator from
the dataset, thus resulting in a regression dataset that assumes all observations
experienced the event. Complete deletion results in a smaller dataset of dead
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patients, omission results in no sample size reduction but the outcome may be
incorrect. This reduction strategy is likely only justified for harmful censoring. In
this case the true survival time is likely close to the censoring time and therefore
treating censored observations as dead may be a fair assumption.

IPCW If censoring is conditionally-outcome independent then deletion of cen-
sored events is possible by using Inverse Probability of Censoring Weights (IPCW).
This method has been seen several times throughout this thesis in the context
of models and measures. It has been formalised as a composition technique
by Vock et al. (2016) [314] although their method is limited to binary classifi-
cation. Their method weights the survival time of uncensored observations by
wi = 1/ĜKM(Ti) and deletes censored observations, where ĜKM is the Kaplan-
Meier estimate of the censoring distribution fit on training data. As previously
discussed, one could instead consider the Akritas (or any other) estimator for
ĜKM .

Whilst this method does provide a ‘safer’ way to delete censored observations,
there is not a necessity to do so. Instead consider the following weights

wi =
∆i + α(1−∆i)

ĜKM(Ti)
(5.4.1)

where α ∈ [0, 1] is a hyper-parameter to tune. Setting α = 1 equally weights
censored and uncensored observations and setting α = 0 recovers the setting in
which censored observations are deleted. It is assumed ĜKM is set to some very
small ε when ĜKM(Ti) = 0. When α 6= 0 this becomes an imputation method,
other imputation methods are now discussed.

5.4.5.2. Imputation

Imputation methods estimate the values of missing data conditional on non-
missing data and other covariates. Whilst the true value of the missing data
can never be known, by carefully conditioning on the ‘correct’ covariates, good
estimates for the missing value can be obtained to help prevent a loss of data. Im-
puting outcome data is more difficult than imputing covariate data as models are
then trained on ‘fake’ data. However a poor imputation should still be clear when
evaluating a model as testing data remains un-imputed. By imputing censoring
times with estimated survival times, the censoring indicator can be removed and
the dataset becomes a regression dataset.

Gamma Imputation Gamma imputation [142] incorporates information about
whether censoring is harmful, beneficial, or neutral. The method imputes survival
times by generating times from a shifted proportional hazards model

h(τ) = h0(τ) exp(η + γ) (5.4.2)

where η is the usual linear predictor and γ ∈ R is a hyper-parameter deter-
mining the ‘type’ of censoring such that γ > 0 indicates harmful censoring, γ < 0
indicates beneficial censoring, and γ = 0 is neutral censoring. This imputation



5.4. Composition Strategies for Survival Analysis 163

method has the benefit of being tunable as γ is a hyper-parameter and there is a
choice of variables to condition the imputation. No independent experiments exist
studying how well this method performs, nor discussing the theoretical properties
of the method.

MRL The Mean Residual Lifetime (MRL) estimator has been previously dis-
cussed in the context of SVMs (section 3.5.2). Here the estimator is extended
to serve as an imputation method. Recall the MRL function, MRL(τ |Ŝ) =∫∞
τ
Ŝ(u) du/Ŝ(τ), where Ŝ is an estimate of the survival function of the under-

lying survival distribution (e.g. ŜKM). The MRL is interpreted as the expected
remaining survival time after the time-point τ . This serves as a natural imputa-
tion strategy where given the survival outcome (Ti,∆i), the new imputed time
T ′i is given by

T ′i = Ti + (1−∆i)MRL(Ti|Ŝ) (5.4.3)

where Ŝ would be fit on the training data and could be an unconditional estimator,
such as Kaplan-Meier, or conditional, such as Akritas. The resulting survival
times are interpreted as the true times for those who died and the expected
survival times for those who were censored.

Buckley-James Buckley-James [36] is another imputation method discussed
earlier (section 3.4). The Buckley-James method uses an iterative procedure to
impute censored survival times by the conditional expectation given censoring
times and covariates [319]. Given the survival tuple for an outcome (Ti,∆i), the
new imputed time T ′i is

T ′i =

Ti, ∆i = 1

Xiβ̂ + 1

ŜKM (ei)

∑
ei<ek

p̂KM(ek)ek ∆i = 0
(5.4.4)

where ŜKM is the Kaplan-Meier estimator of the survival distribution estimated
on training data and with associated pmf p̂KM and ei = Ti − Xiβ̂ where β̂ are
estimated coefficients of a linear regression model fit on (Xi, Ti). Given the least
squares approach, more parametric assumptions are made than other imputa-
tion methods and it is more complex to separate model fitting from imputation.
Hence, this imputation may only be appropriate on a limited number of data
types.

Alternative Methods Other methods have been proposed for ‘imputing’ cen-
sored survival times though with either less clear discussion or to no benefit.
Multiple imputation by chained equations (MICE) has been demonstrated to per-
form well with covariate data and even outcome data (in a non-survival setting).
However no adaptations have been developed to incorporate censoring times into
the imputation and therefore is less informative than Gamma imputation.

Re-calibration of censored survival times [313] uses an iterative update proce-
dure to ‘re-calibrate’ censoring times however the motivation behind the method
is not sufficiently clear to be of interest in general survival modelling tasks outside
of the authors’ specific pipelines.
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Finally parametric imputation is defined by making random draws from trun-
cated probability distributions and adding these to the censoring time [253, 255].
Whilst this method is arguably the simplest method and will lead to a sufficiently
random sample, i.e. not one skewed by the imputation process, in practice the
randomness leads to unrealistic results, with some imputed times being very far
from the original censoring times and some being very close.

5.4.5.3. The Decision to Impute or Delete

Deletion methods are simple to implement and fast to compute however they
can lead to biasing the data or a significant sample reduction if used incorrectly.
Imputation methods can incorporate tuning and have more relaxed assumptions
about the censoring mechanism, though they may lead to over-confidence in the
resulting outcome and therefore add bias into the dataset. In some cases, the
decision to impute or delete is straightforward, for example if censoring is un-
informative and only few observations are censored then complete deletion is
appropriate. If it is unknown if censoring is informative then this can crudely
be estimated by a benchmark experiment. Classification models can be fit on
{(X1,∆1), ..., (Xn,∆n)} where (Xi,∆i) ∈ D0. Whilst not an exact test, if any
model significantly outperforms a baseline, then this may indicate censoring is
informative. This is demonstrated in table 8, in which a logistic regression out-
performs a featureless baseline in correctly predicting if an observation is censored
when censoring is informative, but is no better than the baseline when censoring
is uninformative.

Table 8: Estimating censoring dependence by prediction. The datasets are defined
in section 7.2.6.2, Sim1 is informative censoring and Sim7 is uninformative. Logistic
regression is compared to a featureless baseline with the Brier score with standard
errors. Censoring can be significantly predicted to 95% confidence when informative
(Sim1) but not when uninformative (Sim7).

Data Baseline Logistic Regression

Sim1 0.20 (0.14, 0.26) 0.02 (0.01, 0.03)
Sim7 0.19 (0.14, 0.24) 0.16 (0.13, 0.19)

5.5. Novel Survival Reductions

This section collects the various strategies and settings discussed previously into
complete reduction workflows. Table 9 lists the reductions discussed in this sec-
tion with IDs for future reference. All strategies are described by visualising a
graphical pipeline and then listing the composition steps required in fitting and
predicting.

This section only includes novel reduction strategies and does not provide a
survey of pre-existing strategies. This limitation is primarily due to time (and
page) constraints as every method has very distinct workflows that require com-
plex exposition. Well-established strategies are briefly mentioned below and fu-
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ture research is planned to survey and compare all strategies with respect to
empirical performance (i.e. in benchmark experiments).

Two prominent reductions are ‘landmarking’ [309] and piecewise exponential
models [89]. Both are reductions for time-varying covariates and hence outside the
scope of this thesis. Relevant to this thesis scope is a large class of strategies that
utilise ‘discrete time survival analysis’ [298]; these strategies include reductions
(R7) and (R8). Methodology for discrete time survival analysis has been seen in
the literature for the past three decades [197]. The primary reduction strategy for
discrete time survival analysis is implemented in the R package discSurv [321];
this is very similar to (R7) except that it enforces stricter constraints in the
composition procedures and forces a ‘discrete-hazard’ instead of ‘discrete-survival’
representation (section 5.5.7.2).

Table 9: Survival reductions in section 5.5. First column is a unique identifier for
the strategy, second column is the original suvival task of interest, third column is the
reduced task that will be solved as a surrogate in the workflow.

ID Original Survival Task Reduced Task

R1) Probabilistic Probabilistic Regression
R2) Probabilistic Deterministic Regression
R3) Deterministic Deterministic Regression
R4) Deterministic Probabilistic Distribution
R5) Probabilistic Deterministic Regression
R6) Ranking Deterministic Regression
R7) Probabilistic Probabilistic Classification
R8) Deterministic Probabilistic Classification

5.5.1. R1) Probabilistic Survival → Probabilistic

Regression

D0 (C5) DR g(DR|φ) ĝ

D1 ĝ(D1|φ) ζ

Figure 24: Probabilistic survival to probabilistic regression reduction. Top row is
fitting step and bottom is predicting. Key: training data, D0; survival to regression
data composition (section 5.4.5), (C5); transformed data, DR; probabilistic regression
model, g; model hyper-parameters, φ; fitted model, ĝ; testing data, D1; distribution
predictions, ζ.

This is perhaps the most natural reduction strategy as the survival task can be
thought of as probabilistic regression with censoring. Steps and compositions of
the reduction (fig. 24):
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Fit

F1) A survival dataset, D0, is composed with (C5) to a regression dataset, DR.

F2) A probabilistic regression model, g, with hyper-parameters, φ, is fit on the
composed regression data. It is important to select a model that will only
predict distributions supported over R≥0 in order to reflect the survival
setting.

Predict

P1) Testing survival data, D1, is passed to the trained regression model, ĝ,
without further data composition, and distributions are predicted, ζ =
ζ1, ..., ζm.

5.5.2. R2) Probabilistic Survival → Deterministic

Regression

D0 (C5) DR g(DR|φ) ĝ

D1 ĝ(D1|φ) T̂ (C2) ζ

Figure 25: Probabilistic survival to deterministic regression reduction. Top row is fit-
ting step and bottom row is predicting. Key: training data, D0; survival to regression
data composition (section 5.4.5), (C5); transformed data, DR; deterministic regres-
sion model, g; model hyper-parameters, φ; fitted model, ĝ; testing data, D1; survival
time predictions, T̂ ; time to distribution composition (section 5.4.2), (C2); distribution
predictions, ζ.

This is almost identical to the previous reduction but utilises deterministic regres-
sion models and composition to distribution predictions. Steps and compositions
of the reduction (fig. 25):

Fit

F1) A survival dataset, D0, is composed with (C5) to a regression dataset, DR.

F2) A deterministic regression model, g, with hyper-parameters, φ, is fit on the
composed regression data. It is important to select a model that will only
predict positive values in order to reflect the survival setting.

Predict

P1) Testing survival data, D1, is passed to the trained regression model, ĝ,
without further data composition, and survival times are predicted, T̂ =
T̂1, ..., T̂m.

P2) Survival times are composed with (C2) to distribution predictions ζ =
ζ1, ..., ζm.
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5.5.3. R3) Deterministic Survival → Deterministic

Regression

D0 (C5) DR g(DR|φ) ĝ

D1 ĝ(D1|φ) T̂

Figure 26: Deterministic survival to deterministic regression reduction. Top row is
fitting step and bottom row is predicting. Key: training data, D0; survival to regression
data composition (section 5.4.5), (C5); transformed data, DR; deterministic regression
model, g; model hyper-parameters, φ; fitted model, ĝ; testing data, D1; survival time
predictions, T̂ .

This reduction is identical to (R2) except (P2) is omitted.

5.5.4. R4) Deterministic Survival → Probabilistic

Regression

D0 (C5) DR g(DR|φ) ĝ

D1 ĝ(D1|φ) ζ (C3) T̂

Figure 27: Deterministic survival to probabilistic regression reduction. Top row
is fitting step and bottom row is predicting. Key: training data, D0; survival to
regression data composition (section 5.4.5), (C5); transformed data, DR; probabilistic
regression model, g; model parameters, φ; fitted model, ĝ; testing data, D1; distribution
predictions, ζ; distribution to survival time composition (section 5.4.3), (C3); survival
time predictions, T̂

This is identical to (R1) with an additional composition to survival time. Steps
and compositions of the reduction (fig. 27):

Fit

F) Same as (R1).

Predict

P1) Testing survival data, D1, is passed to the trained regression model, ĝ,
without further data composition, and distributions are predicted, ζ =
ζ1, ..., ζm.

P2) Distributions are composed with (C3) to survival times T̂ = T̂1, ..., T̂m.
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5.5.5. R5) Probabilistic Survival → Deterministic

Regression (II)

D0 g0(D0|θ) η g1(D0|φ) ĝ1

D1 ĝ1(D1|φ) η̂ (C1) ζ

Figure 28: Probabilistic survival to deterministic regression reduction (II). Top row is
fitting step and bottom row is predicting. Key: training data, D0; linear survival model
g0 with parameters θ; fitted linear predictor from g0, η; deterministic regression model,
g1, with parameters, φ; fitted model, ĝ1; testing data, D1; linear predictor predic-
tions, η̂; linear predictor to distribution composition (section 5.4.1), (C1); distribution
prediction, ζ.

These next two reductions utilise deterministic regression to predict linear pre-
dictors. This first reduction additionally composes the linear predictor to a dis-
tribution prediction. Steps and compositions of the reduction (fig. 28):

Fit

F1) A survival model, g0, with a linear predictor prediction type is fit on a
survival dataset, D0.

F2) The model is inspected and the fitted linear predictors, η, are returned.

F3) A deterministic regression model, g, is fit on (Xi, ηi) with ηi as the target.

Predict

P1) Testing survival data, D1, is passed to the trained regression model, ĝ, and
linear predictors are predicted, η̂ = η̂1, ..., η̂m.

P2) Linear predictors are composed with (C1) to survival distributions ζ =
ζ1, ..., ζm. The most sensible choice of model form for the (C1) composition
will be dictated by g0, e.g. does it have an underlying PH form?
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5.5.6. R6) Ranking Survival → Deterministic Regression

D0 g0(D0|θ) η g1(D0|φ) ĝ1

D1 ĝ1(D1|φ) η̂

Figure 29: Ranking survival to deterministic regression reduction. Top row is fitting
step and bottom row is predicting. Key: training data, D0; linear survival model g0

with parameters θ; fitted linear predictor from g0, η; deterministic regression model,
g1, with parameters, φ; testing data, D1; linear predictor predictions, η̂.

This reduction is identical to (R5) except (P2) is omitted. Whilst this is cate-
gorised as solving a ranking task, the predicted quantities can be interpreted as
linear predictors (given the model form specified by g0).

5.5.7. R7-R8) Survival → Probabilistic Classification

D0 B(D0|w) DB

CC gC(DB|φ)

CB gB(DB|ϕ)

gL(DB|θ) ĝ

D1 ĝ(D1|Θ) S̃ T1(S̃)

T2(S̃)

ζ

T̂

Figure 30: Survival to classification reduction. Top row is fitting and bottom row is
predicting. Dashed lines represent a choice in the reduction (alternative compositions).
Red dotted lines complete the probabilistic survival reduction (R7) and the blue dash-
dotted lines complete the deterministic survival reduction (R8). Key: training data,
D0; binning function, B, with weights, w; binned data, DB; composition to binary-class
classification, CB; composition to multi-class classification, CC ; binary-class classifier,
gB, with parameters, ϕ; multi-label classifier, gL, with parameters, θ; multi-class clas-
sifier, gC , with parameters φ; trained classifier, ĝ with parameters Θ; testing data, D1;
pseudo-survival probabilities, S̃; composition, T1, to distribution, ζ; composition, T2,
to survival time, T̂ .
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Two separate reductions are presented in fig. 30 however as both are reductions
to probabilistic classification and are only different in the very last step, both are
presented in this section. Steps and compositions of the reduction (fig. 30):

Fit

F1) A survival dataset, D0, is binned, B, with a continuous to discrete data
composition (section 5.5.7.1).

F2) A multi-label classification model, with adaptations for censoring, gL(DB|θ),
is fit on the transformed dataset, DB. Optionally, gL could be further re-
duced to binary, gB, or multi-class classification, gc, (section 5.5.7.4).

Predict

P1) Testing survival data, D1, is passed to the trained classification model,
ĝ, to predict pseudo-survival probabilities S̃ (or optionally hazards (sec-
tion 5.5.7.2)).

P2a) Predictions can be composed, T1, into a survival distribution prediction,
ζ = ζ1, ..., ζm (section 5.5.7.6); or,

P2b) Predictions can be composed, T2, to survival time predictions, T̂ = T̂1, ..., T̂m
(section 5.5.7.7).

Further details for binning, multi-label classification, and transformation of
pseudo-survival probabilities are now provided.

5.5.7.1. Composition: Binning Survival Times

An essential part of the reduction is the transformation from a survival dataset
to a classification dataset, which requires two separate compositions. The first
(discussed here) is to discretise the survival times (B(D0|w) in fig. 30) and the
second is to merge the survival time and censoring indicator into a single outcome
(section 5.5.7.2).

Discretising survival times is achieved by the common ‘binning’ composition,
in which a continuous outcome is discretised into ‘bins’ according to specified
thresholds. These thresholds are usually determined by specifying the width
of the bins as a hyper-parameter w.1 This is a common transformation and
therefore further discussion is not provided here. An example is given below with
the original survival data on the left and the binned data on the right (w = 1).

X Time (Cont.) Died
1 1.56 0
2 2 1
3 3.3 1
4 3.6 0
5 4 0

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

1Binning is described here with equal widths but generalises to unequal widths trivially.
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5.5.7.2. Composition: Survival to Classification Outcome

The binned dataset still has the unique survival data format of utilising two
outcomes for training (time and status) but only making a prediction for one
outcome (distribution). In order for this to be compatible with classification, the
two outcome variables are composed into a single variable.1 This is achieved by
casting the survival times into a ‘wide’ format and creating a new outcome indi-
cator.2 Two outcome transformations are possible, the first represents a discrete
survival function and the second represents a discrete hazard function.3

Discrete Survival Function Composition In this composition, the data
in the transformed dataset represents the discrete survival function. The new
indicator is defined as follows,

Yi;τ :=


1, Ti > τ

0, Ti ≤ τ ∩∆i = 1

−1, Ti ≤ τ ∩∆i = 0

(5.5.1)

At a given discrete time τ , an observation, i, is either alive (Yi;τ = 1), dead

(Yi;τ = 0), or censored (Yi;τ = −1). Therefore P̂ (Yi;τ = 1) = Ŝi(τ), motivating
this particular choice of representation.

This composition is demonstrated below with the binned data (left) and the
composed classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

X [1,2) [2,3) [3,4) [4,5)
1 -1 -1 -1 -1
2 1 0 0 0
3 1 1 0 0
4 1 1 -1 -1
5 1 1 -1 -1

Discrete Hazard Function Composition In this composition, the data in
the transformed dataset represents the discrete hazard function. The new indi-
cator is defined as follows,

Y ∗i;τ :=


1, Ti = τ ∩∆i = 1

−1, Ti = τ ∩∆i = 0

0, otherwise

(5.5.2)

1This is the first key divergence from other discrete-time classification strategies, which
use the censoring indicator as the outcome and the time outcome as a feature.

2This is the second key divergence from other discrete-time classification strategies, which
keep the data in a ‘long’ format.

3This is the final key divergence from other discrete-time classification strategies, which
enforce the discrete hazard representation.
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At a given discrete time τ , an observation, i, either experiences the event (Y ∗i;τ =
1), experiences censoring (Yi;τ = −1), or neither (Yi;τ = 0). Utilising sequen-
tial multi-label classification problem transformation methods (section 5.5.7.4)
results in P̂ (Y ∗i;τ = 1) = ĥi(τ). If methods are utilised that do not ‘look back’ at

predictions then P̂ (Y ∗i;τ = 1) = p̂i(τ) (section 5.5.7.4).1

This composition is demonstrated below with the binned data (left) and the
composed classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

X [1,2) [2,3) [3,4) [4,5)
1 -1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 -1 0
5 0 0 0 -1

Multi-Label Classification Data In both compositions, survival data t.v.i.
Rp × R≥0 × {0, 1} is transformed to multi-label classification data t.v.i. Rp ×
{−1, 0, 1}K for K binned time-intervals. The multi-label classification task is
defined in section 5.5.7.4 with possible algorithms.

The discrete survival representation has a slightly more natural interpretation
and is ‘easier’ for classifiers to use for training as there are more positive events
(i.e. more observations alive) to train on, whereas the discrete hazard represen-
tation will have relatively few events in each time-point. However the hazard
representation leads to more natural predictions (section 5.5.7.6).

A particular bias that may easily result from the composition of survival to
classification data is now discussed.

5.5.7.3. Reduction to Classification Bias

The reduction to classification bias is commonly known [333] but is reiterated
briefly here as it must be accounted for in any automated reduction to classifi-
cation workflow. This bias occurs when making classification predictions about
survival at a given time and incorrectly censoring patients who have not been
observed long enough, instead of removing them.

By example, say the prediction of interest is five-year survival probabilities
after a particular diagnosis, clearly a patient who has only been diagnosed for
three years cannot inform this prediction. The bias is introduced if this patient
is censored at five-years instead of being removed from the dataset. The result of
this bias is to artificially inflate the probability of survival at each time-point as
an unknown outcome is treated as censored and therefore alive.

This bias is simply dealt with by removing patients who have not been alive
‘long enough’.2 Paradoxically, even if a patient is observed to die before the time-
point of interest, they should still be removed if they have not been in the dataset

1This important distinction is not required in other discrete-time reduction strategies that
automatically condition the prediction by including time as a feature.

2Accounting for this bias is only possible if the study start and end dates are known, as
well as the date the patient entered the study.
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‘long enough’ as failing to do so will result in a bias in the opposite direction,
thus over-inflating the proportion of dead observations.

Accounting for this bias is particularly important in the multi-label reduction
as the number of observable patients will decrease over time due to censoring.

5.5.7.4. Multi-Label Classification Algorithms

As the work in this section is completely out of the thesis scope, the full text is
in appendix B. The most important contributions from this section are:

• Reviewing problem transformation methods [296] for multi-label classifica-
tion;

• Identifying that only binary relevance, nested stacking, and classifier chains
are appropriate in this reduction; and

• Generalising these methods into a single wrapper for any binary classifier,
the ‘LWrapper’.

5.5.7.5. Censoring in Classification

Classification algorithms cannot natively handle the censoring that is included in
the survival reduction, but this can be incorporated using one of two approaches.

Multi-Class Classification All multi-label datasets can also handle multi-
class data, hence the simplest way in which to handle censoring is to make multi-
class predictions in each label for the outcome Yτ t.v.i.{−1, 0, 1}. Many off-shelf
classification learners can make multi-class predictions natively and simple reduc-
tions exist for those that cannot. As a disadvantage to this method, classifiers
would then predict if an individual is dead or alive or censored (each mutually
exclusive), and not simply alive or dead. Though this could be perceived as an
advantage when censoring is informative as this will accurately reflect a real-world
competing-risks set-up.

Subsetting/Hurdle Models For this approach, the multi-class task is reduced
to two binary class tasks: first predict if a subject is censored or not (dead or
alive) and only if the prediction for censoring is below some threshold, α ∈ [0, 1],
then predict if the subject is alive or not (dead or censored). If the probability of
censoring is high in the first task then the probability of being alive is automati-
cally set to zero in the final prediction, otherwise the prediction from the second
task is used. Any classifier can utilise this approach and it has a meaningful
interpretation, additionally α is a tunable hyper-parameter. The main disadvan-
tage is increases to storage and run-time requirements as double the number of
models may be fit.

Once the datasets have been composed to classification datasets and censoring
is suitably incorporated by either approach, then any probabilistic classification
model can be fit on the data. Predictions from these models can either be com-
posed to a distribution prediction (R7) or a survival time prediction (R8).
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5.5.7.6. R7) Probabilistic Survival → Probabilistic Classification

D0 B(D0|w) DB

CC gC(DB|φ)

CB gB(DB|ϕ)

gL(DB|θ) ĝ

D1 ĝ(D1|Θ) S̃ T1(S̃) ζ

Figure 31: Probabilistic survival to probabilistic reduction. See fig. 30 for key.

This final part of the (R7) reduction is described separately for discrete hazard
and survival representations of the data (section 5.5.7.2).

Discrete Hazard Representation In this representation recall that predic-
tions of the positive class, P (Yτ = 1), are estimating the quantity h(τ). These
predictions provide a natural and efficient transformation from predicted haz-
ards to survival probabilities. Let ĥi be a predicted hazard function for some
observation i, then the survival function for that observation can be found with
a Kaplan-Meier type estimator,

S̃i(τ
∗) =

∏
τ

1− ĥi(τ) (5.5.3)

Now predictions are for a pseudo-survival function, which is ‘pseudo’ as it is not
right-continuous. Resolving this is discussed below.

Discrete Survival Representation In this representation, P (Yτ = 1) is esti-
mating S(τ), which means that predictions from a classification model result in
discrete point predictions and not a right-continuous function. More importantly,
there is no guarantee that a non-increasing function will be predicted, i.e. there
is no guarantee that P (Yj = 1) < P (Yi = 1), for time-points j > i.

Unfortunately there is no optimal way of dealing with predictions of this sort
and ‘mistakes’ of this kind have been observed in some software implementation.
One point to note is that in practice these are quite rare as the probability of
survival will always decrease over time. Therefore the ‘usual’ approach is quite
‘hacky’ and involves imputing increasing predictions with the previous prediction,
formally,

S̃(i+ 1) := min{P (Yi+1 = 1), P (Yi = 1)},∀i = R≥0 (5.5.4)

assuming S̃(0) = 1. Future research should seek more robust alternatives.
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Right-Continuous Survival Function From either representation, a
non-increasing but non-continuous pseudo-survival function, S̃, is now predicted.
Creating a right-continuous function (‘T1(S̃)’ in fig. 31) from these point pre-
dictions (fig. 32 (a)) is relatively simple and well-known with accessible off-shelf
software. At the very least, one can assume a constant hazard rate between pre-
dictions and cast them into a step function (fig. 32 (b)). This is a fairly common
assumption and is usually valid as bin-width decreases. Alternatively, the point
predictions can be smoothed into a continuous function with off-shelf software, for
example with polynomial local regression smoothing (fig. 32 (c)) or generalised
linear smoothing (fig. 32 (d)). Whichever method is chosen, the survival function
is now non-increasing right-continuous and the (R7) reduction is complete.

(a) Point Predictions (b) Survival Step Function

(c) Local polynomial regression smoothing (d) Generalised linear smoothing

Figure 32: Survival function as a: point prediction (a), step function assuming con-
stant risk (b), local polynomial regression smoothing (c), and generalised linear smooth-
ing (d). (c) and (d) computed with ggplot2 [322].
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5.5.7.7. R8) Deterministic Survival → Probabilistic Classification

D0 B(D0|w) DB

CC gC(DB|φ)

CB gB(DB|ϕ)

gL(DB|θ) ĝ

D1 ĝ(D1|Θ) S̃ T2(S̃) T̂

Figure 33: Deterministic survival to probabilistic reduction. See fig. 30 for key.

Predicting a deterministic survival time from the multi-label classification pre-
dictions is relatively straightforward and can be viewed as a discrete analogue
to (C3) (section 5.4.3). For the discrete hazard representation, one can simply
take the predicted time-point for an individual to be time at which the predicted
hazard probability is highest however this could easily be problematic as there
may be multiple time-points at which the predicted hazard equals 1. Instead it is
cleaner to first cast the hazard to a pseudo-survival probability (section 5.5.7.6)
and then treat both representations the same.

Let S̃i be the predicted multi-label survival probabilities for an observation
i s.t. S̃i(τ) corresponds with P̂ (Yi;τ = 1) for label τ ∈ K where Yi;τ is defined
in section 5.5.7.2 and K = {1, ..., K} is the set of labels for which to make
predictions. Then the survival time transformation is defined by

T2(S̃i) = inf{τ ∈ K : S̃i(τ) ≤ β} (5.5.5)

for some β ∈ [0, 1].
This is interpreted as defining the predicted survival time as the first time-

point in which the predicted probability of being alive drops below a certain
threshold β. Usually β = 0.5, though this can be treated as a hyper-parameter
for tuning. This composition can be utilised even if predictions are not non-
increasing, as only the first time the predicted survival probability drops below
the threshold is considered. With this composition the (R8) reduction is now
complete.
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5.6. Choices and Defaults

Before concluding the chapter, this brief section describes a common problem that
occurs when programming pipelines and how this thesis (and implementation in
mlr3proba) addresses this.

Many Choices Implementation of any of these pipelines leads to an impor-
tant trade-off between user-choice and sensible decisions. When programming
any software, the more choice that is given to the user, the higher the potential
to make less sensible decisions; in the extreme as the number of user possibilities
tends to infinity, the probability of a user selecting a sensible decision will tend
to zero. On the other hand, if decisions are fully-restricted to sensible decisions
then the user’s choice is also fully-restricted by the subjective concept of ‘sensible’.

To illustrate the problem, below are three possible choices that could be made
with the compositors in section 5.4:

• A linear predictor predicted by a CPH could be composed with a PH-ANN-
predicted baseline and AFT model form to a full distribution.

• A survival time predicted by a regression SSVM could be composed with a
Gompertz baseline and PO model form to a full distribution.

• A survival time could be composed by taking the 42nd quantile from a
survival distribution predicted by a random survival forest.

Each choice lacks a meaningful interpretation however there is no apriori rea-
son why they should yield ‘bad’ predictions and all could be considered in a
benchmark experiment. Dismissing these examples as ‘not sensible’ may lead to
dismissing the optimal model with respect to predictive performance.

Sensible Defaults It has been demonstrated that the choice of defaults vastly
influences human decision making [150], which is known as the ‘(endogenous)
default effect’. This effect extends to computer science and parameter defaults.
Setting sensible defaults for parameters encourages users towards using these
defaults in their code and this ‘sensible defaults’ design principle is routinely
used in programming software.1

This thesis advocates for a slight adaptation to the ‘sensible defaults’ design
principle: non-proprietary open-source software should apply the sensible defaults
principle whilst allowing users to make any choice that is possible (even if not
sensible); whereas proprietary software should only allow sensible choices. This
distinction is important from an ethical standpoint: in the latter case users may
not be domain-experts and therefore the developer could be considered liable for
negative consequences of building models from non-sensible choices.

1No specific reference for the ‘sensible defaults’ principle could be found, though it is often
seen as a direct consequence of the ‘convention over configuration’ principle.
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5.7. Conclusions

This chapter introduced composition and reduction to survival analysis and for-
malised specific strategies. Formalising these concepts allows for better quality of
research and most importantly improved transparency. Clear interface points for
hyper-parameters and compositions allow for reproducibility that was previously
obfuscated by unclear workflows and imprecise documentation for pipelines.

Additionally, composition and reduction improves accessibility. Reduction
workflows vastly increase the number of machine learning models that can be
utilised in survival analysis, thus opening the field to those whose experience
is limited to regression or classification. Formalisation of workflows allows for
precise implementation of model-agnostic pipelines as computational objects, as
opposed to functions that are built directly into an algorithm without external
interface points.

Finally, predictive performance is also increased by these methods, which is
most prominently the case for the survival model averaging compositor (C4) (as
demonstrated by RSFs).

All compositions in this chapter, as well as (R1)-(R6), have been implemented in
mlr3proba (section 6.4) with the mlr3pipelines [21] interface. The reductions
to classification will be implemented in a near-future update. Additionally the
discSurv package [321] will be interfaced as a mlr3proba pipeline to incorpo-
rate further discrete-time strategies.

The compositions (C1) and (C3) are included in the benchmark experiment in
chapter 7 so that every tested model can make probabilistic survival distribution
predictions as well as deterministic survival time predictions. Future research will
benchmark all the pipelines in this chapter and will cover algorithm and model
selection, tuning, and comparison of performance. Strategies from other papers
will also be explored. The best performing models from these experiments will
then be analytically compared to the best-performing models from chapter 7.



Chapter 6

Software Packages

The work in the previous chapters of this thesis are now consolidated for practical
use in R [245] software packages. Several packages (table 10) have been developed
over the course of this PhD, all of which are open source and freely available over
CRAN and/or GitHub. This chapter begins with providing a setting for the
most important of these packages and detailing why they were required, next the
three primary packages are detailed in individual sections, each of which has been
submitted for publication.

6.1. Introduction

This chapter introduces three software packages, or ‘toolboxes’. The term ‘tool-
box’ is often used synonymously with ‘software package’, here the term specifically
identifies a package with a suite of functions, or ‘tools’, for use in a specific pur-
pose. These three toolboxes are set6 [278], distr6 [277], and mlr3proba [281],
respectively designed to solve the problems of: constructing and manipulating
mathematical sets; constructing and manipulating probability distributions; and
probabilistic supervised machine learning. As well as these three packages, a
fourth, R62S3 [274], was developed in order to further the R6 [43] object-oriented
paradigm, this is briefly discussed in section 6.1.3.1. All packages developed for
this thesis are listed with their GitHub organisation for reference and their de-
pendencies on each other in table 10.

6.1.1. Overview to Packages and Their Relationships

mlr3proba (section 6.4) is a machine learning interface for probabilistic super-
vised learning and contains models and measures for survival analysis. The name
mlr3proba is derived from ‘mlr3’, the universe in which it lives, and ‘proba’, for
probabilistic (supervised learning). All models in mlr3proba solve probabilis-
tic tasks that predict (or estimate) a probability distribution. As mlr3proba
makes use of the R6 object-oriented paradigm (section 6.1.2), it was sensible to
introduce R6 object-oriented probability distributions.

The ‘dpqr’ functions are the primary methods for interacting with probability
distributions in R. An alternative was provided by distr [258], which implements

179
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Table 10: Published packages, respective GitHub organisation, and dependencies on
each other.

Package Org Dependencies
R62S3 xoopR None
set6 xoopR None

param6 [276] xoopR set6
distr6 alan-turing-institute R62S3, set6, param6

mlr3proba mlr-org distr6
mlr3extralearners [280] mlr-org mlr3proba, survivalmodels
mlr3benchmark [279] mlr-org None
survivalmodels [275] RaphaelS1 None

distributions via the object-oriented programming (OOP) paradigm, S4. Utilising
distr in mlr3proba would lead to a clash of paradigms, which is poor practice
in OOP toolboxes. distr6 (section 6.3) introduces probability distributions as
R6 objects and allows construction, manipulation, and composition of probability
distributions. Models in mlr3proba return predictions of probability distribu-
tions as distr6 objects. distr6 was designed to be modular and therefore not to
cater to extraneous tasks, such as defining distribution and parameter domains
and supports, which are naturally handled by mathematical sets. The parameter
set interface is currently in the process of being transitioned to param6, which
is not discussed further as it is still very new and requires further user-testing.
Similarly to mlr3proba requiring an R6 implementation of distributions, distr6
required an R6 implementation of mathematical sets.

distr6 required an R6 interface that could handle complex sets, such as multi-
dimensional Cartesian products, which prior packages could not handle satisfac-
torily (section 6.2.2). set6 (section 6.2) uses R6 to implement a scalable interface
with lazy-evaluation and symbolic-representation, which allows handling of infi-
nite (or very large) sets. The package supports finite and infinite sets, composition
of sets, and set operations. In addition, set6 includes methods for validation and
containedness checks, which improves efficiency in distr6 for setting parameter
values.

All three packages utilise the relatively new R6 object-oriented paradigm,
which introduces new syntax, structures, and important object-oriented concepts
to R. As probability distributions and mathematical sets are such foundational
concepts in mathematics and statistics, R62S3 (section 6.1.3.1) was created to
lessen the R6 learning curve. R62S3 makes R6 packages more accessible by
converting R6 class methods to S3 or S4 dispatch functions, thus providing new
users with a familiar interface but maintaining an object-oriented structure.

6.1.2. R and R6

All of the implemented packages depend on the R6 object-oriented (OO) paradigm,
this is a relatively new OO paradigm and is quite different from its predecessors
S3 and S4. It is therefore important to demonstrate why OOP and R are chosen
as well as why R6 is preferred to S3 and S4.

https://github.com/xoopR
https://github.com/xoopR
https://github.com/xoopR
https://github.com/alan-turing-institute
https://github.com/mlr-org
https://github.com/mlr-org
https://github.com/mlr-org
https://github.com/RaphaelS1
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Why Object-Oriented Programming? There are several programming
paradigms, but the most common in machine learning are procedural, object-
oriented, and functional programming.1 Object-oriented programming (OOP)
requires users to define classes with fields and methods that mutate them. These
classes may relate to each other in some way (e.g. composition, inheritance) and
may change depending on the other’s state. Functional programming (FP) treats
every line (or group) of code as independent variables/functions with inputs and
outputs. Listings 1 and 2 demonstrate programming two ‘animals’ to ‘shout’ in
Python and R respectively. In the object-oriented Python code two classes are
created, Duck and Dog, which could even inherit from a common Animal class. In
the functional R code, there is no concept of a class or object, instead there is a
shout function that is independent of the other defined variables; variables are
then assigned values and passed to this function.

Listing 1 Python code for constructing two classes with one method and calling
these methods. First two classes are defined, then a method with the same name
within these, finally the method is called on the constructed objects.

1 >>> class Duck:

2 ... def shout(self):

3 ... print("QUACK!")

4 ...

5 >>> class Dog:

6 ... def shout(self):

7 ... print("BARK!")

8 ...

9 >>> Duck().shout()

10 >>> Dog().shout()

Listing 2 R code using ‘base’ functionality (no OOP) for making two ‘animals’
‘shout’. Without a concept of an object or class, a ‘method’ is assigned directly
to a variable and then passed to a function.

1 > duck <- "QUACK!"

2 > dog <- "BARK!"

3 > shout <- function(x) cat(x)

4 > shout(duck)

5 > shout(dog)

In this small example, there may not be a clear advantage of OOP over FP, so
instead take the example of something more complex like a probability distribu-
tion. Probability distributions can have methods, such as density and cumulative
distribution functions, but they also have fields, such as parameter sets and their
support. Fully representing a probability distribution via functions would require

1https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
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one function for every field and method of every distribution. For 30 distri-
butions with 10 fields and methods, that would mean 300 functions, each with
different names and attributes; here lies the clear OOP advantage. Listings 3 and
4 contrast evaluating the pdf, mean, and variance of a Binomial distribution in
distr6 and ‘base’ package stats [245] respectively. The OOP approach of distr6
involves constructing an object of a given class and then calling the respective
method; the functional approach of stats requires first defining the function and
then passing variables into this.

Listing 3 Evaluating the pdf, mean, and variance of a Binom(5, 0.42) distribution
in distr6.

1 > size = 5; prob = 0.42;

2 > x <- Binomial$new(size = size, prob = prob)

3 > x$pdf(1:2)

4 > x$mean()

5 > x$variance()

Listing 4 Evaluating the pdf, mean, and variance of a Binom(5, 0.42) distribution
in stats.

1 > size = 5; prob = 0.42;

2 > b_mean <- function(prob, size) prob * size

3 > b_var <- function(prob, size) size * prob * (1-prob)

4 > dbinom(1:2, prob = prob, size = size)

5 > b_mean(prob, size)

6 > b_var(prob, size)

Even if pre-defined functions existed for the mean and variance of the Binomial
distribution in stats, these would still require unique names for all these functions,
instead of a single method name and unified approach taken in a object-oriented
setting.

Why R6? Once OOP has been established as the way forward with these
packages, there is a secondary question about why R and R6 are chosen. The
first of these questions is simply due to personal preference and availability of
statistical software in R. To answer the second question, R ships with three object-
oriented paradigms: S3, S4, and R6 and a full technical comparison of these is
provided in section 6.3.5.1. For now this can be summarised by stating that R6 is
the first class-object-oriented-programming paradigm (section 6.1.3.1) in R and
has many advantages over S3 and S4 including mutable classes, storage efficiency,
and a clear OOP structure.

6.1.3. Package Ecosystem

This subsection provides more technical detail about the two ‘ecosystems’ that are
required for the packages discussed in this chapter. Section 6.1.3.1 discusses the
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xoop family of packages, which encompasses R62S3, set6, and distr6, and sec-
tion 6.1.3.2 introduces the mlr3verse, in which mlr3proba lives. Section 6.1.3.3
demonstrates the dependencies between these package ‘universes’.

6.1.3.1. FOOP, COOP, and Now xoop

A relatively new OOP taxonomy has been introduced as a result of functional
languages, such as R and Julia, increasing their OO capability. This taxonomy
separates Functional Object-Oriented Programming (FOOP) and Class Object-
Oriented Programming (COOP) [41]. COOP is also sometimes referred to as
encapsulated OOP. This is discussed in more detail as part of the distr6 paper
in section 6.3.5.1, in summary:

i) FOOP is a modern adaptation to COOP that is utilised by functional pro-
gramming languages. COOP is the more classical setting that is found in
OO languages such as Java and Python.

ii) The S3 and S4 paradigms are implicitly using FOOP whereas R6 uses
COOP.

iii) R6/COOP is preferred for large-scale interfaces that are required to model
complex objects, such as probability distributions or machine learning al-
gorithms.

The xoop Universe Just as programmers will have their preference in pro-
gramming languages, there will also be those with a preference for different OOP
paradigms. R6 is relatively new in R and utilises a novel interface for calling meth-
ods and fields. Whilst in its relative infancy, support for R6 in the R community
is relatively small. Therefore the xoop universe of packages was created to make
R6 more accessible and to help further OOP in R. The name xoop was chosen to
represent a cross between FOOP and COOP. The packages in the ‘universe’ can
be split into: i) software engineering packages that contribute to R6; and ii) tool-
boxes for handling mathematical objects in R6. R62S3 is an example of one of
the packages that contributes to R6 by enabling coders familiar with FOOP to
interface the paradigm without a steep learning curve. Listing 5 demonstrates
the use of R62S3 to convert an R6 class method into an S3 dispatch function. If
a package automatically utilises R62S3 on loading, then from a user perspective
only lines 4 and 6 are required.

R62S3 is not discussed in further detail in this paper nor are more abstract
contributions to R6. These contributions include implementation of OOP con-
cepts such as abstract classes and decorators, as well as R6-specific helper func-
tions. The next two sections will discuss the xoop packages set6 and distr6,
but first the ‘mlr3verse’ is introduced.
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Listing 5 Demonstrating the use of R62S3 for S3 dispatch on R6 objects. First
an R6 class, printMachine, is created and then R62S3 is utilised to create S3
dispatch methods. An object is then constructed, the method print is called in
the ‘usual’ R6 way and then with the newly created S3 dispatch method.

1 > printMachine <- R6::R6Class("printMachine",

2 + public = list(printer = function(...) cat(...)))

3 > R62S3(printMachine, assignEnvir = .GlobalEnv)

4 > x <- printMachine$new()

5 > x$printer("Hello World!")

6 > printer(x, "Hello World!")

6.1.3.2. The mlr3verse

mlr3proba depends on all the packages in xoop but lives in the mlr3 family of
packages, which is termed the ‘mlr3verse’. mlr3 [182] is the official upgrade to
mlr [22], written by the same developers. It makes use of R6 and thus COOP
programming principles. Whereas mlr contained all functionality within one
package, mlr3 modularises the code into small, distinct packages, with clear
individual use-cases. Table 11 gives a short description of the packages in the
mlr3verse that mlr3proba depends on.

6.1.3.3. Dependencies and Relationships

Figure 34 visualises the dependency structure of all the packages described above.
The structure of the xoop family is relatively simple and the mlr3 family is more
complex with each package depending on each other. mlr3proba links the two
families together with a one-way relationship, so that mlr3proba depends on
xoop but this does not hold in reverse. The next sections will attempt to make
a strong case for why the xoop packages can be a strong dependency for not just
the mlr3verse but any R6 interface.

6.2. set6: An Object-Oriented Mathematical

Sets Interface in R

6.2.1. Introduction

1set6 makes use of the R6 object-oriented paradigm to introduce classes for
important mathematical objects, including sets, tuples, and intervals (finite and
infinite). Until now, the R programming language has traditionally supported
mathematical sets in one of two ways: 1. via the five set operation functions:
union, intersect, setdiff, setequal, is.element; and 2. via the sets [216]
package; a full comparison to these solutions is given in section 6.2.2. set6 uses R6

1Parts of this section have been published as part of a paper in the Journal of Open
Source Software [278].



6.2. set6: An Object-Oriented Mathematical Sets Interface in R 185

Table 11: mlr3proba dependencies in the mlr3verse. Descriptions copied from
package descriptions.

Package Description Use in mlr3proba
mlr3 [182] Implements core ML

features including tasks,
measures, and resampling
methods.

All core features.

mlr3pipelines [21] Dataflow programming
toolbox that implements
pipelining operators such
as data preprocessing and
ensembling.

Composition and re-
duction pipelines.

mlr3tuning [180] Implements methods for
hyperparameter tuning in-
cluding grid search and
random search with vari-
ous termination criteria.

Model tuning.

paradox [181] Defines parameter spaces
and constraints to pro-
gram on such spaces.

Parameter sets for
models, tuning and
pipelines.

mlr3misc [179] Helper functions for use in
the mlr3verse.

Time and computa-
tional efficiency.

mlr3learners [183]
mlr3extralearners [280]

Additional learners are
stored in these packages.

Constructing survival,
density, and prob-
abilistic regression
learners.

Figure 34: Dependency structure of the xoop and mlr3 family of packages.
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and has a clear class interface with minimal dependencies, which makes it a robust
and flexible dependency for any package that requires mathematical data types as
R6 objects. Making use of design patterns [91], such as wrappers and compositors,
set6 allows for symbolic representation of sets to ensure maximum efficiency,
and to provide neat and clear print methods. The package utilises Rcpp [74]
for improved speed, R6 for efficiency and scalability, and design patterns for a
clean and intuitive interface. An emphasis on symbolic representation and lazy
evaluation allows the package to handle infinite and very large sets with minimal
computational overhead.

The example in listing 6 demonstrates construction of a set and interval,
comparisons of these, the set complement operator, and printing of the final
result.

Listing 6 Example code for constructing, printing, and subtracting sets.
1 > a <- Set$new(1, 2, 3)

2 > a$print()

3 {1, 2, 3}

4 > a$contains(list(1, "a"))

5 [1] TRUE FALSE

6 > b <- Interval$new(1, Inf, class = "numeric")

7 > b$isSubset(a)

8 [1] TRUE

9 > c <- b - a

10 > c$print()

11 (1,2) ∪ (2,3) ∪ (3,+∞]

Overview to set6 Features A detailed overview of the set6 API is given in
section 6.2.5, below is a list of the most important features.

• Construction of finite mathematical sets

1 > Set$new("a", 2, 3i)

2 {a, 2, 3i}

• Construction of finite and infinite intervals

1 > Interval$new(1, 10, class = "integer")

2 {1,...,10}

3 > Interval$new()

4 [−∞,+∞]

• Construction of multi-dimensional sets

1 > Set$new(Tuple$new(1,1), Tuple$new(1,2), Tuple$new(2,1))

2 {(1, 1), (1, 2), (2, 1)}

• Explicit set operations
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1 > Set$new(1,2,3) - Set$new(3,4,5)

2 {1, 2}

3 > Set$new("a") + Set$new("b")

4 {a, b}

• Symbolic set operations and lazy evaluation

1 > Interval$new(1,5) * Interval$new(1,10)

2 [1,5] × [1,10]

3 > powerset(Interval$new())

4 ℘([−∞,+∞])

• Set comparisons

1 # subsets

2 > Set$new(1,2) < Set$new(1,2,3)

3 # supersets

4 > Set$new(1,2) > Set$new(1)

5 # equality

6 > Set$new(1,2,3) == Set$new(1,2,3)

7 > Set$new(1,2,3) != Set$new(1,2)

• Membership/containedness checks

1 > Set$new(1,2,3)$contains(2)

2 [1] TRUE

3 > Set$new(1) %inset% Set$new(2,3,Set$new(1))

4 [1] TRUE

6.2.2. Comparison to Other Software

Only sets [216] provides a full sets interface in R. Base R (base) [245] supports
a few set operations, but does not contain any concrete set objects. Below are
comparisons between set6, sets, and base, with respect to representation, speed,
and efficiency.

Representation of Sets base does not contain an object for sets but uses
lists and set operation functions. For example to combine two lists in R via a
set union,

1 > x = list("Apples")

2 > y = 1:2

3 > union(x, y)

4 [[1]]

5 [1] "Apples"

6 [[2]]
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7 [1] 1

8 [[3]]

9 [1] 2

Elements are printed individually, which is problematic for large lists. Lists
are finite only and vectors in R can only hold around 108 elements before crashing,
which makes them unsuitable for infinite or very large intervals.

sets supports sets as objects and has set operations that can be called on these,
however as the example below demonstrates, there is no way to identify which
intervals are contained in the product.

1 > set_cartesian(reals(), reals(), reals())

2 > print(z)

3 {(<<interval>>, <<interval>>, <<interval>>)}

Sets in set6 are symbolically represented and use lazy-evaluation to prevent
the system crashing.

1 > Reals$new() * Reals$new()

2 R^2
3 > Interval$new(1,100) - Set$new(1,10)

4 (1,10) ∪ (10,100]

Speed and Performance The three packages are now compared with respect
to speed. Three experiments are conducted, firstly to compare how quickly each
can construct a set, secondly to compare how quickly each can perform set union
and thirdly to compare set complement. The full results are given in table 12. As
expected base is much quicker than the other two packages. set6 outperforms
sets in construction but is currently slower in set operations, this is due to known
bottlenecks that are currently being resolved.

Table 12: Benchmark experiment comparing set6, sets, and base speed.

Package Operation Mean (s) cld1

base Construction 3.3e-5 a
sets Construction 3.6e-3 c
set6 Construction 1.5e-3 b
base Complement 5.3e-3 a
sets Complement 5.8e-2 b
set6 Complement 1.3e-1 c
base Union 1.5e-4 a
sets Union 2.8e-2 b
set6 Union 2.3e-1 c

1. Significance test for run-time of each method where ‘a’ is fastest and ‘c’ is slowest.
The experiment is conducted on R version 3.6.1; Platform: x86 64-apple-darwin15.6.0 (64-
bit); Running under: macOS Mojave 10.14.4 with microbenchmark v1.4-7 [215], sets
v1.0.18, and set6 v0.1.1.
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Table 13 gives a high-level overview to advantages and disadvantages of each
of the packages. In summary base is the most efficient for performing simple set
operations on lists, however lacks functionality for sets as classes, infinite sets,
or anything more complex than a list to hold elements. sets uses S3 to define
classes and has support for infinite sets, as well as some symbolic representation;
however it lacks a concise class-infrastructure and is poorly documented. set6
makes use of the relatively new R6 paradigm, which enables a precise object-
oriented interface. It includes finite and infinite sets, as well as clear user-options
for symbolic representation of sets; however set6 may be overly-complicated as
a dependency if only list manipulation is required.

Table 13: Comparing advantages and disadvantages of set operations in base, sets,
and set6.

Package Advantages Disadvantages

base
Very fast operations on finite sets.
Very efficient for lists.

Union, complement, and
intersection only.
No set object.
No symbolic representation.
No support for infinite (or very
large) sets.

sets

Classes for sets, tuples, and
intervals.
Some symbolic representation.
Support for infinite sets.

Slow object construction.
Inconsistent symbolic
representation.
Several bugs in functionality.
Limited support for composing
classes.

set6

R6 classes for sets, tuples and
intervals.
Flexibility in representation and
evaluation.
Supports infinite sets.

Slower than base for atomic
classes.
Operations relatively slow.

6.2.3. Use-Cases and Requirements

6.2.3.1. Use-Cases

set6 allows users to clearly navigate the following key use-cases:

U1) Constructing and querying mathematical sets Many mathematical
Set-like objects can be constructed including sets, tuples, intervals, and
fuzzy variants. Sets and tuples can contain objects of any R type (atomic
or otherwise).

1 > Set$new("a", 2, TRUE)

2 {a, 2, TRUE}

3 > Set$new(Set$new(), Set$new(1), Set$new(1,2))

4 {{1}, {1, 2}}
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U2) Containedness checks Public methods allow all objects inheriting from
Set to check if elements are contained within them. This provides a pow-
erful mechanism for use with parameter or distribution supports for other
packages as it can be viewed as a ‘type check’, i.e. checks if a value fits
within a specified mathematical type. A C++ implementation of these
checks in Rcpp [74] means that the computations are incredibly quick for
sets and intervals of any size.

1 > Set$new(1, 2, 3)$contains(c(1, 5))

2 [1] TRUE FALSE

3 # Tests if all elements in the list are in the special set of

4 # the Reals.

5 > Reals$new()$contains(list(1, "a", 2.5), all = TRUE)

6 [1] FALSE

U3) Representation of infinite sets Symbolic representation and lazy eval-
uation allows infinite (or very large) sets and intervals to be constructed.
This also allows operations such as powerset to be used without crashing
the system.

1 > Interval$new()

2 [−∞,+∞]

3 > Reals$new()

4 R

U4) Comparison of, possibly infinite, sets Two Set objects can be com-
pared to check if they are equal or (proper) sub/supersets. Infix operators
allow quick and neat comparison.

1 > x <- Set$new(1, 2, 3)

2 # subset

3 > x <= Integers$new()

4 [1] TRUE

5 # equality

6 > x == x

7 [1] TRUE

8 # proper superset

9 > x > x

10 [1] FALSE

U5) Creation of composite sets from simpler classes Common set opera-
tions, such as unions and complements are implemented, as well as products
and exponents. These make use of S3 dispatch to allow quick calculation
of composite sets. Lazy evaluation with symbolic representation allow for
composite sets to be created, inspected, and printed, without ever needing
to be evaluated themselves.
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1 > Set$new(Tuple$new(1,1), Tuple$new(1,2))

2 {(1, 1), (1, 2)}

3 > Set$new(1,2) * Set$new(3,4)

4 {1, 2} × {3, 4}

5 > Reals$new() - Set$new(6)

6 (−∞, 6) ∪ (6,+∞)

6.2.3.2. Requirements

set6 fulfils the following requirements:

R1) Minimal number of dependencies required in order to serve as a base de-
pendency for any OOP R interface.

R2) User control over symbolic representation, which allows neat printing and
a choice in lazy evaluation.

1 > setunion(Set$new(1,2), Set$new(3,4), simplify = TRUE)

2 {1, 2, 3, 4}

3 > setunion(Set$new(1,2), Set$new(3,4), simplify = FALSE)

4 {1, 2} ∪ {3, 4}

R3) Wrappers for composite sets for symbolic representation.

1 > p <- Set$new(1,2) * Set$new(3,4)

2 {1, 2} × {3, 4}

3 > class(p)

4 [1] "ProductSet" "SetWrapper" "Set" "R6"

R4) Minimal number of classes with a clear purpose for each one.

1 # sets for unique objects

2 > Set$new(1, 2, "a", 2)

3 {1, 2, a}

4 # Tuples when ordering matters and duplicates allowed

5 > Tuple$new(1, 1)

6 (1, 1)

7 # Intervals for infinite sets

8 > Interval$new(1, Inf)

9 [1, +∞]

10 # ConditionalSets for complex set-builder defined sets

11 > ConditionalSet$new(function(x, y) x + y == 2 & x == 0)

12 {x+ y == 2 & x == 0 : x ∈ R, y ∈ R}



192 6. Software Packages

6.2.4. Design Principles

The design principles of set6 are directly built upon the use-cases and require-
ments identified in section 6.2.3, these are:

D1) Maximum user-control over set operations, including choice of associativity,
lazy evaluation, and unicode printing. It is vital that users are allowed full
control over how complicated sets are built out of simpler ones. Where
possible, users can decide:

(a) Whether associativity and commutativity properties of sets should be
respected or not (section 6.2.5.1).

(b) If set operations should be evaluated immediately or if a wrapper for
lazy-evaluation should be used.

(c) If unicode should be used for printing.

D2) Minimal dependencies to allow sets to be a good base class in any R6
package. This is given in (R1) and re-iterated here for emphasis. A depen-
dency in set6 should only be added with a very good and clear argument.
set6 is intended to serve as the base class to any object-oriented interface,
therefore it is imperative that it cannot run into problems due to an over-
reliance on other dependencies. Currently it only depends on, utils [245],
R6, Rcpp [74], checkmate [178]; the first two of which are developed by
the R core team and the last two by developers who are close to the set6
project.

D3) A clear use-case over lists. This design principle is important in order to
ensure that every set6 class is created with a purpose. In general, a parsi-
monious solution is always preferred to a complex one. In this case, it should
be clear why a list cannot be used in place of a Set, Interval, or other
set6 object. Section 6.2.5 provides clear reasoning for each implemented
object.

D4) Inspectability and reactive user interface. set6 prioritises symbolic repre-
sentation and lazy evaluation to allow for the package to be scalable and
to fit into any other package. However it is ensured that this does not de-
tract from a clear user interface, i.e. at all times it should be clear what an
object contains both externally (how it prints) and internally (inspection
methods). set6 allows sets to be queried in many different ways, including
calling the elements in the set (if finite), finding the bounds of the set (if
numeric), and listing properties and traits.

1 > I <- Interval$new(10, Inf, type = "[)")

2 > print(I)

3 [10, ∞)

4 > I$contains(9:11)

5 [1] FALSE TRUE TRUE
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D5) Combination of lazy and greedy evaluation. By default, ‘multiplying’ oper-
ations such as products and powersets are evaluated lazily, whereas ‘adding’
operations such as unions and differences are evaluated greedily. These pre-
vent system crashes from trying to evaluate sets of very large cardinality.
In all cases, the user can override defaults. Symbolic representation is used
with lazy evaluation so that large sets can be printed neatly without the
individual elements ever being evaluated.

1 # Lazy evaluation allows very large sets to be queried without

2 # explicit evaluation

3 > p <- powerset(powerset(powerset(Set$new(1, 2, 3))))

4 > print(p)

5 ℘(℘(℘({1, 2, 3})))

6 > p$properties$cardinality

7 [1] 1.157921e+77

8 > p$contains(Set$new(Set$new(Set$new(1), Set$new(1, 2, 3))))

9 [1] TRUE

6.2.5. Overview to Functionality and API

The UML diagram in fig. 35 visualises the key class structure of set6; all classes
written in R6. The key components are:

• Set parent class

• SetWrapper for composite sets built from operations

• FuzzySet for fuzzy logic

• Interval for continuous sets

This section will focus firstly on the Set class as this is the ‘parent’ to all
other classes in the package. Then the use-cases of the mid-level classes (rows
2-3 of fig. 35) are compared. Finally implementation of set operations and their
respective classes (rows 4-5 of fig. 35) is discussed.

6.2.5.1. Sets

Figure 36 details the public fields and methods in the Set class. Sets can be
initialized by one of:

1 > Set$new(..., universe = UniversalSet$new(), class = NULL)

2 > Set$new(elements, universe = UniversalSet$new(), class = NULL)

The first constructor allows (theoretically) infinite elements to passed to the
first ... argument, whereas the second requires a list of elements to be passed
to the elements argument. In most use-cases the first constructor will be used,
however internally they represent an important difference as use of the second
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set6

Set

ConditionalSetFuzzySet

FuzzyTuple

Interval

SpecialSet

Tuple SetWrapper

ComplementSet UnionSet ProductSet

ExponentSet

PowersetSet

Figure 35: Simplified set6 class diagram.

bypasses some list-validation checks and therefore slightly improves efficiency for
larger sets. The universe argument specifies the universe in which the set lives,
i.e. the range of possible values that could be added to the set. By default this
is the Universal set, which is the set of all possible elements. Finally the class

argument can create ‘typed’ sets. A typed set is one in which all elements must
be of the same type. A ‘type’ refers to an R class, such as ‘numeric’, or ‘integer’,
though non-atomic classes are also allowed. For example specifying class = Set

would coerce every element using as.Set on construction (it is assumed a coercion
method exists).

Returning to the Set class diagram, the public methods are classified into repre-
sentation methods and membership methods.

Representation Methods The first group of methods refers to the print and
summary methods that all objects in R should include. The print method has
one argument, n, which allows the user to control how many elements in the set
to display. The useUnicode function controls if unicode should be used when
printing sets.

1 > s <- Set$new(1,2,3,4,5,6)

2 # default, n = 2

3 > print(s)

4 {1, 2,...,5, 6}

5 > s$print(n = 6)

6 {1, 2, 3, 4, 5, 6}

7 > i <- Interval$new()

8 # useUnicode is TRUE by default

9 > print(i)
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Set

+ class : string
+ elements : list
+ length : numeric
+ lower : numeric
+ upper : numeric
+ max : numeric
+ min : numeric
+ properties : Properties
+ traits : list
+ type : string
+ universe : Set

+ representationMethods()
+ membershipMethods()

Figure 36: High-level overview of Set class.

10 [−∞,+∞]

11 > useUnicode(FALSE)

12 > print(i)

13 [-Inf, Inf]

The summary method additionally lists the properties and traits of the set.

1 > summary(Set$new(1,2,3,4,5,6))

2 Set

3 {1, 2,...,5, 6}

4 Traits:

5 Crisp

6 Properties:

7 Cardinality = 6 - countably finite

8 Closed

9 > summary(Reals$new())

10 Reals

11 R
12 Traits:

13 Crisp

14 Properties:

15 Cardinality = Beth1 - uncountable

16 Open

Breaking this down there is: i) the name of the class; ii) the symbolic repre-
sentation of the class; iii) list of class traits; and iv) list of class properties. In
object-oriented programming, properties and traits describe objects and classes
respectively. In this case, the only trait is whether a class is fuzzy or crisp. The
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properties are stored in a Properties class, which efficiently calculates all the set
properties in construction, these include the set cardinality, its countability, and
its closure. The set cardinality and countability are primarily informative, whilst
the set closure is used in the various membership methods.

Membership Methods Whilst the representation methods are responsible for
making sure that set6 looks good, the membership methods are responsible for
making sure the classes function as expected. This group is comprised by three
methods: contains, isSubset, and equals. The design decision was made for
these to be public methods, and not S3 functions as is the case with set operations.
This is due to the fact that contains and isSubset are not associative and both
require a clear point of reference. Whilst equals is associative, it was cleaner to
implement this in the same group as the other two. Infix operators simplify the
calling of these functions:

1 > Set$new(1,2,3)$equals(Set$new(1,2,3))

2 > Set$new(1,2,3) == Set$new(1,2,3) # equal to

3 > Set$new(1,2,3) != Set$new(1,2) # not equal to

4 > Set$new(1,2,3)$isSubset(Set$new(1,2,3), proper = FALSE)

5 > Set$new(1,2) < Set$new(1,2,3) # proper subset

6 > Set$new(1,2,3,4) >= Set$new(1,2,3) # superset

7 > Set$new(1,2,3)$contains(1)

8 > 1 %inset% Set$new(1,2,3) # contains

For testing set equality, there were three methods considered for implementing
equals: computational equality, mathematical equality, and membership equal-
ity. The latter was chosen in implementation. The difference is illustrated by
considering if Set$new(1,2,3) and Tuple$new(1,2,3) are equal. Computational
equality would check to see if all objects are of the same class and have the same
methods and fields, this would be FALSE in this example as both inherit from a
different class. Mathematical equality compares the mathematical object, in this
example a tuple contains more information than a set as it also encompasses in-
formation about ordering and uniqueness of elements, hence these objects are not
mathematically equal. Finally membership equality tests if each object contains
the same elements, this is the case here and hence both are equal in set6.

Checking if an element is a member of a finite (crisp) set is straightforward
to implement, as an element is either in a set, or not. For open intervals, there
is the option to decide whether elements on the bounds of the interval should
be included. By definition these should not strictly be included, however there
are several cases where this may aid in quick construction of important sets. An
example of this is given below by making the set of positive Reals act as the set
of non-negative Reals, using the bound argument.

1 # Positive reals

2 > PosReals$new()$contains(0, bound = FALSE)

3 [1] FALSE
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4 # Non-negative reals

5 > PosReals$new()$contains(0, bound = TRUE)

6 [1] TRUE

Finally the isSubset method determines if one set is a subset of another. In
this package, a set A is considered a subset of a set B if all the elements in A are
contained in B. However, additional properties are required if B is a tuple:

1 # This Tuple is a subset of the Set as it is fully contained in the Set.

2 # Additional properties of the Tuple (e.g. ordering) are ignored.

3 > Set$new(1,2,3)$isSubset(Tuple$new(2,1))

4 [1] TRUE

5 # But, this Set is not a subset of the Tuple as the ordering is different.

6 > Tuple$new(1,2,3)$isSubset(Set$new(2,1))

7 FALSE

The reference set, i.e. the set on which the method is being called, determines
the properties that are required by the method. So a FuzzySet requires the subset
to be fuzzy, and a Tuple requires ordering.

6.2.5.2. Intervals, Tuples, and Conditionals

Now returning to fig. 35 and looking at the second and third rows of the diagram.
Fuzzy sets are not discussed here as they are less common, and were added to
the package for completeness. Instead a more detailed look is taken at intervals,
tuples, and ‘conditional sets’. A formal introduction to each with clear use-cases
for each class is given below, in keeping with (D3) and (R4).

Tuples Tuples are similar to sets except that they are ordered, always finite,
and allow duplicated elements. Hence the Tuple class is almost identical to its
parent class (Set) and only the equals and isSubset methods are overloaded. In
printing, parentheses are used to distinguish a tuple from a set.

1 > Tuple$new(1:5)

2 (1, 2,...,4, 5)

3 # tuples preserve ordering

4 > Tuple$new(1,2,3) == Tuple$new(2,3,1)

5 [1] FALSE

6 # sets ignore ordering

7 > Set$new(1,2,3) == Set$new(2,3,1)

8 [1] TRUE

9 # tuples preserve duplicated elements

10 > Tuple$new(1,2,2,3) == Tuple$new(1,2,3)

11 [1] FALSE

12 # sets remove duplicates

13 > Set$new(1,2,2,3) == Set$new(1,2,3)

14 [1] TRUE
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There is an argument that the Tuple class is very similar to lists in base
R. There are two main reasons for including a separate class for tuples, and not
relying on lists. Firstly, to inherit from the Set parent-class, thereby copying all
methods and fields. Secondly, so they can be incorporated neatly into other set6
objects including other Sets and wrappers. The code below gives an example of
a common use-case: multi-dimensional sets.

1 > s <- Set$new(Tuple$new(1,2), Tuple$new(2,1), Tuple$new(1,1),

2 + Tuple$new(1,3))

3 > print(s)

4 {(1, 2), (2, 1), (1, 1), (1, 3)}

5 > s$contains(list(Tuple$new(1,1), Tuple$new(3,1)))

6 [1] TRUE FALSE

Intervals Intervals have been discussed a few times earlier and the concept is
likely familiar to most. In general, an interval is a set on a given number line
between two bounds and without breaks. A ‘number line’ usually refers to the
set of Reals, but could be any mathematical set. Intervals are initialized in set6
with the constructor

1 > Interval$new(lower = -Inf, upper = Inf,

2 + type = c("[]","(]","[)","()"), class = "numeric",

3 + universe = Reals$new())

The first two arguments, lower and upper, specify the bounds of the interval,
i.e. the range of values that are included. The third argument, type, determines
the interval closure. The closure of an interval defines the boundary types. The
options correspond to closed, left-open, right-open, and open respectively, the
default is ‘closed’. The difference can be demonstrated with the contains method.

1 > Interval$new(lower = 1, upper = 10, type = "[]")$contains(c(1,10))

2 [1] TRUE TRUE

3 > Interval$new(lower = 1, upper = 10, type = "(]")$contains(c(1,10))

4 [1] FALSE TRUE

5 > Interval$new(lower = 1, upper = 10, type = "[)")$contains(c(1,10))

6 [1] TRUE FALSE

7 > Interval$new(lower = 1, upper = 10, type = "()")$contains(c(1,10))

8 [1] FALSE FALSE

The class argument specifies if the interval should be constructed on the
Reals, class = "numeric", or Integers, class = "integer". Intervals are con-
structed by default on the Reals as this appears to be the more common use-case.

1 > Interval$new(class = "numeric")

2 [−∞,+∞]

3 > Interval$new(class = "integer")

4 {−∞, ...,+∞}
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Intervals on the Reals are denoted by brackets indicating the closure of the
interval and the interval bounds, whereas intervals on the Integers are denoted by
the bounds, separated by an ellipsis, between curly brackets. Unfortunately this
results in a clash of notation between open intervals and tuples, which is a known
problem in the literature. set6 resolves this by using spacing when printing sets
and tuples, but no spacing in intervals; this is not an ideal solution but it stays
true to common notation whilst distinguishing the two objects.

1 > Tuple$new(1, 2)

2 (1, 2)

3 > Interval$new(1, 2, type = "()")

4 (1,2)

Intervals include an extra public method for determining if one interval is a
‘subinterval’ of another. The difference between a subset and a subinterval can
be demonstrated by example

1 > Reals$new()$isSubset(Integers$new())

2 [1] TRUE

3 > Reals$new()$isSubinterval(Integers$new())

4 [1] FALSE

The first method demonstrates that the set of Integers is a subset of the set
of Reals. This is intuitive as all elements in the Integers can also be found in
the Reals. However, the second shows that the Integers are not a subinterval of
the Reals. Formally an interval J = [c, d] (or J = {c, ..., d}) is a subinterval of
interval I = [a, b] (or I = {a, ..., b}) if a ≤ c ∩ b ≥ d. J is a proper subinterval if
the inequality is strict. If I is a subinterval of J then it must also be a subset of
J, but the reverse does not generally hold. Returning to the above example, the
Integers are not a subinterval of the Reals as whilst the boundary condition is
satisfied, the Integers is a set of discrete numbers whilst the Reals are continuous.
Similarly the set {1, 3} is a subset of the Integers but not a subinterval as ‘2’ is
missing. {1, 2, 3} is both a subset and subinterval of the Integers.

The clearest use-case for intervals in R is to symbolically represent and query
infinite sets without causing a system error. For example any interval defined by
Interval$new is a relatively small object in R that contains very basic information
including the bounds and closure type of the interval. The methods of the object
allow querying to determine which elements live in the interval. This is vastly
more efficient than trying to create a very long (possibly-infinite) vector and
then using the %in% method. Another advantage of set6 is the quick construc-
tion of ‘special’ mathematical sets, which are of class SpecialSet inheriting from
Interval. These are essentially intervals but with efficient construction. These
special constructors exist for the set of Naturals, Integers, and Reals, as well as the
positive and negative variants of each (where sensible). Where appropriate these
have an argument to determine if zero should be included in the interval. For ex-
ample: the set of positive Reals is defined by PosReals$new(), the set of negative
Reals by NegReals$new(), the non-negative Reals by PosReals$new(zero = TRUE),
and analogously for the non-positive Reals.
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Conditional Sets Finally, the ConditionalSet class can be constructed for
finite or infinite sets using set-builder notation for one or more logical conditions.

1 > ConditionalSet$new(condition, argclass = NULL)

The constructor takes a boolean-valued function, condition, that defines the
ConditionalSet, and an optional list, argclass, giving the Set that the formal
arguments of the condition live in.

By combining the two arguments in the constructor, any possible set can be
built. For example the simplest ConditionalSet is the Universal set, which con-
tains all elements. By default argclass is the Universal set. The Universal set is
denoted here with ‘V’ to prevent confusion with union (denoted by ‘∪’).

1 > universal <- ConditionalSet$new()

2 > print(universal)

3 {x ∈ V}
4 > universal$contains(list("apple", 5i, FALSE))

5 [1] TRUE TRUE TRUE

An element is a member of a ConditionalSet if it: a) satisfies the condition
given by the function passed to the constructor; and b) is a member of the given
argclass. Therefore, the set of Integers can be constructed by specifying the
argclass.

1 > integers <- ConditionalSet$new(argclass = list(x = Integers$new()))

2 > integers$print()

3 {x ∈ Z}
4 > integers$contains(c(1, 1.5))

5 [1] TRUE FALSE

Or the Integers within certain bounds:

1 > integers <- ConditionalSet$new(function(x) x > 2 & x < 4,

2 + argclass = list(x = Integers$new()))

3 > integers$print()

4 {x ∈ Z : x > 2 & x < 4}

5 > integers$contains(2:4)

6 [1] FALSE TRUE FALSE

These are overly-simple examples to demonstrate that this class can construct
any set but the real power of this class lies in the R6 reference semantics. This
is best demonstrated by example

1 > yellow_set <- Set$new("sun", "lemons", "yellowpages")

2 > fruit_set <- Set$new("tomato", "apple", "lemons", "pineapple")

3 > yellow_fruit <- ConditionalSet$new(function(x)
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4 + yellow_set$contains(x) & fruit_set$contains(x))

5 > yellow_fruit$contains("pineapple")

6 [1] FALSE

7 > yellow_set$add("pineapple")

8 > yellow_fruit$contains("pineapple")

9 [1] TRUE

This example demonstrates how R6 objects reference other R6 objects, and
do not copy them. This means that the contains method of a ConditionalSet

retrieves the internal elements in their current state and not their state when the
conditional set was created. This powerful feature means that complex assertions
and checks can be utilised with set-builder notation for any number of R6 (or
other paradigm) objects. Cloning can be specified if reference semantics are not
required in conditional sets.1

6.2.5.3. Operations and Wrappers

The final part of the API discussed here are the set operators and their corre-
sponding wrappers. Table 14 gives the seven set operations, their infix operator,
corresponding wrapper, and a brief description of their function. A wrapper is a
class that contains (or wraps) another one. In set6, each wrapper corresponds
to an operation in order to provide a symbolic representation of the set. Ev-
ery wrapper inherits from the SetWrapper class, which in turn inherits from Set

(fig. 35). The SetWrapper class adds the additional field wrappedSets, which al-
lows internally wrapped sets to be accessed. The operation/wrapper interface is
exemplified below.

1 > P = setproduct(Set$new(1,2), Set$new(3,4))

2 > class(P)

3 [1] "ProductSet" "SetWrapper" "Set" "R6"

4 > print(P)

5 {1, 2} × {3, 4}

6 > P$wrappedSets

7 [[1]]

8 {1, 2}

9 [[2]]

10 {3, 4}

This example demonstrates how: a) two constructed sets are combined via a
set operation; b) a wrapper is created to provide a symbolic representation of the
Cartesian product; and c) the original sets are accessible via wrappedSets.

The power of the wrappers lies in their symbolic representation of sets, which
has the aesthetic benefit of pretty printing, and the important computational
benefit of preventing the system crashing via lazy evaluation. For example, pow-
ersets can ‘blow-up’ very quickly even with small sets. In the example below, the

1For more details see (e.g.) Hadley’s R6 tutorials
https://adv-r.hadley.nz/r6.html#r6-semantics.

https://adv-r.hadley.nz/r6.html#r6-semantics
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Table 14: Set operations and corresponding wrappers in set6.

Operation Infix Wrapper Description
powerset None PowersetSet Powerset of a given set.
setunion + or | UnionSet Union of two or more sets.

setcomplement - ComplementSet Relative or absolute complement.
setsymdiff %-% - Symmetric difference of two sets.
setproduct * ProductSet (n-ary) Cartesian product of two or

more sets.
setpower ^ ExponentSet (n-ary) Cartesian product of a set

with itself.
setintersect & - Intersection of two sets.

simplify argument tells the powerset function to return the result as a Set and
not a SetWrapper, overriding the default.

1 # Crashes - Do not try!

2 > powerset(powerset(powerset(Set$new(1,2,3),

3 + simplify = TRUE), TRUE), TRUE)

4

5 # Works very well

6 > ps <- powerset(powerset(powerset(Set$new(1,2,3))))

7 > print(ps)

8 ℘(℘(℘({1, 2, 3})))

9 > ps$properties$cardinality

10 [1] 1.157921e+77

To minimise the risk of crashing, the simplify argument is set to FALSE by
default for all ‘product’ methods (setproduct, powerset, setpower), which can
result in sets of large cardinality. The default for ‘adding’ methods (setunion,
setcomplement, setsymdiff, setintersect) is TRUE as a simpler object is always
preferred where possible.

The connection between symbolic representation and lazy evaluation is demon-
strated in the code below.

1 # A single Set is created by explicit calculation of the Set

2 # elements at run-time

3 > a <- setunion(Set$new(1), Set$new(2), simplify = TRUE)

4 > class(a)

5 [1] "Set" "R6"

6 > a$print()

7 {1, 2}

8 # Lazy evaluation and symbolic representation via wrappers

9 > b <- setunion(Set$new(1), Set$new(2), simplify = FALSE)
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10 > class(b)

11 [1] "UnionSet" "SetWrapper" "Set" "R6"

12 > b$print()

13 {1} ∪ {2}

14 # The individual elements are only calculated if called

15 > b$elements

16 [1] 1 2

Cartesian Product and Associativity There appears to be confusion in
implementation surrounding associativity in set operations, particularly with re-
gards to the Cartesian product. An operation, (·), is said to be associative if
(A · B) · C = A · (B · C), for any objects A,B,C. In computing, addition and
multiplication are both associative, e.g. (1+2)+3 = 1+(2+3), but exponentiation
is not, e.g. (2^3)^4 = 4096 but 2^(3^4) = 2.4e+24. The R language favours left-
or right- associativity, depending on the operator. Right-associativity is used for
exponents, i.e. x^y^z = x^(y^z), but for most other operators, left-associativity
is the default, e.g. x+y+z = (x+y)+z.

The Cartesian product of two sets is not associative, despite often being coded
this way. A commonly found example of this is in the representation of coordi-
nate (or matrix) spaces, e.g. the three-dimensional Reals R3 = {(1,1,1), (1,1,2),
(1,2,1),...,(2,1,1),(2,1,2),(2,2,2),...}. This is the n-ary Cartesian product, which is
often implied by (but not a property of) the exponent of a set. This difference is
often overlooked, despite being two different operations. This is highlighted by
looking at the definitions for three sets, A,B,C.

The Cartesian product is a binary operator and is therefore defined in two
parts:

A×B× C = (A×B)× C

= {(a, b) : a ∈ A, b ∈ B} × C

= {((a, b), c) : a ∈ A, b ∈ B, c ∈ C}

where left-associativity is assumed. It can be seen that the Cartesian product
is not associative as A× (B× C) = {(a, (b, c)) : a ∈ A, b ∈ B, c ∈ C}. In contrast
the n-ary Cartesian product is associative as

A×B× C = A× (B× C) = (A×B)× C

= {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

In order to maximise user-flexibility but minimise the number of functions, the
difference highlighted above is controlled with the nest argument in setproduct

and setpower. It is called nest as the (non-n-ary) Cartesian product can be
thought of as nesting sets within each other. The default is nest = FALSE as this
appears to be the more common use-case in practice. A few examples are given
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below to conclude this section.

1 # nest = FALSE - Associative n-ary Cartesian product

2 > setproduct(Set$new(1,2), Set$new(1,3), Set$new(1,4),

3 + simplify = TRUE, nest = FALSE)

4 {(1, 1, 1), (2, 1, 1),...,(1, 3, 4), (2, 3, 4)}

5 # nest = TRUE - Non-associative Cartesian product

6 > setproduct(Set$new(1,2), Set$new(1,3), Set$new(1,4),

7 + simplify = TRUE, nest = TRUE)

8 {((1, 1), 1), ((2, 1), 1),...,((1, 3), 4), ((2, 3), 4)}

9 # nest = FALSE - Associative n-ary Exponentiation

10 > setpower(Set$new(1,2), power = 3, simplify = TRUE, nest = FALSE)

11 {(1, 1, 1), (2, 1, 1),...,(1, 2, 2), (2, 2, 2)}

12 # nest = TRUE - Non-associative Exponentation

13 > setpower(Set$new(1,2), power = 3, simplify = TRUE, nest = TRUE)

14 {((1, 1), 1), ((2, 1), 1),...,((1, 2), 2), ((2, 2), 2)}

6.2.6. Conclusion and Availability

set6 introduces the first R6 object-oriented mathematical sets interface in R,
and the first interface that allows full user-control over symbolic representation
and evaluation of sets. The goal of set6 is not to be a large package with a
lot of functionality, but instead to be an efficient base that any R6 interface can
depend on. Future development plans are primarily focused on maintenance and
optimisation with an emphasis on improving construction and operation speeds.

set6 is released under an MIT licence on GitHub and CRAN. Extended doc-
umentation, tutorials, and examples are available on the project website1. Code
quality is monitored and maintained by an extensive suite of unit tests with
GitHub Actions on multiple operating systems.

6.3. distr6: An Object-Oriented Probability

Distributions Interface in R

6.3.1. Introduction

2Probability distributions are an essential part of data science, underpinning mod-
els, simulations, and inference. Hence, they are central to computational data
science. With the advent of modern machine learning and AI, it has become
increasingly common to adopt a conceptual model where distributions are con-
sidered objects in their own right, as opposed to primarily represented through
distribution defining functions (e.g., cdf, pdf), or random samples. distr6 is

1https://xoopR.github.io/set6/
2This section has been accepted for publication in The R Journal [277].

https://github.com/xoopR/set6
https://CRAN.R-project.org/package=set6
https://xoopR.github.io/set6/
https://xoopR.github.io/set6/
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an object oriented implementation of these conceptual models, and allows ma-
nipulation, combination, and inspection of distributions as objects with defined
properties and methods.

To appreciate the object oriented conceptual model for distributions in more
detail, it is important to conceptualize and distinguish some mathematical con-
cepts which are similar and thus often conflated:

• A random variable, distributed according to a certain distribution, e.g.,
X ∼ N(0, 1).

• The cdf of that random variable X, usually denoted by FX , a function
FX : R→ [0, 1].

• The pdf of that random variable X, often denoted by fX , a function fX :
R→ [0,∞).

• The distribution, d, according to which X is distributed – often called ‘the
law of’ X. This can be represented by multiple mathematical objects, such
as the cdf FX or the pdf of X. Note that d is not identical to either these
representation functions.

A full mathematical definition of the conceptual model is given in the next
section.

Critically, random variables and distributions are neither identical objects nor
concepts. A random variable X has distribution d, and multiple random variables
may be distributed according to d. Further, random variables are sampled from,
while the distribution is only a description of probabilities for X. Thus, X and
d are not identical objects. Figure 37 visually summarizes these differences.

As a possible logical consequence of the above, the conceptual model is adopted
where a distribution is an abstract object, which:

i) Has multiple defining representations, for example through cdf and possibly
through pdf, but is not identical with any of these representations.

ii) Possesses traits, such as being absolutely continuous over the Reals, and
properties, such as skewness and symmetry.

iii) Can be used to define sampling laws of random variables, but is not con-
ceptually identical with a random variable.

Abstracting distributions as objects from multiple, non-identical, represen-
tations (random variables), introduces major consequences for the conceptual
model:

i) It lends itself naturally to a class-object representation, in the computer
scientific sense of object oriented programming. Abstract distributions be-
come classes, concrete distributions are objects, and distribution defining
functions are methods of these classes. Random variables are a separate
type of object.
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ii) It strongly suggests adoption of mathematical conceptualization and nota-
tion which cleanly separates distributions from random variables and distri-
bution defining functions – in contrast to common convention where random
variables or random sampling takes conceptual primacy above all.

iii) It allows clean formulation of algorithmic manipulations involving distribu-
tions, especially higher-order constructs (truncation, huberization, etc.), as
well as clean mathematical definitions.

(a) Discrete Uniform Random Variable

(b) Discrete Uniform Probability Distribution

Figure 37: (a) A random variable following a Discrete Uniform distribution. (b) A
Discrete Uniform distribution representing a random variable.

6.3.1.1. Distributions as Software and Mathematical Objects

In distr6, distributions are first-class objects subject to an object oriented class-
object representation. For example, a discrete uniform distribution (fig. 37b)
is a ‘class’ with traits such as type (Naturals), and variate form (univariate).
With a given parametrisation, this becomes an ‘object’ with properties including
symmetry and support. An alternative definition to the conceptual model of dis-
tributions is now provided.

On the mathematical level, distributions are considered as objects in their own
right, not being identical with a cdf, pdf, or measure, but instead ‘having’ these
as properties.

For a set Y (endowed with suitable topology), define Distr(Y) as a set contain-
ing formal objects d which are in bijection to (but not identical with) probability
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measures over Y. Elements of Distr(Y) are called distributions over Y. Further
define formal symbols which, in case of existence, denote ‘aspects’ that such ele-
ments have, in the following way: the symbol d.F , for example, denotes the cdf of
d, which is to be read as the ‘F ’ of d, with F in this case to be read as a modifier
to a standard symbol d, rather than a fixed, bound, or variable symbol. In this
way, define:

i) d.F for the cdf of d. This typically exists if Y ⊆ Rn for some n, in which
case d.F is a function of type d.F : Rn → [0, 1].

ii) d.f for the pdf of d. This exists if Y ⊆ Rn, and the distribution d is
absolutely continuous over Y. In this case, d.f is a function of type d.f :
Rn → [0,∞).

iii) d.P for the probability measure that is in bijection with d. This is a function
d.P : F → [0, 1] where F is the set of measurable sub-sets of Y.

The above is indeed a full formal mathematical definition of this notion of
distribution. While distributions, defined this way, are not identical with any of
the conventional mathematical objects that define them (cdf, pdf, measures), they
are conceptually, formally, and notationally well-defined. Similarly, the aspects
(d.F , d.f , etc) are also well-defined, since they refer to one of the conventional
mathematical objects which are well-specified in dependence of the distribution
(in case of existence).

This notation provides a more natural and clearer separation of distribution
and random variables and allows us to talk about and denote concepts such as
‘the cdf of any random variable following the distribution d’ with ease (d.F ),
unlike classical notation that would see one define X ∼ d and then write FX .
This notation more clearly follows the software implementation of distributions.

For example, in distr6, the code counterpart to defining a distribution d
which is Normal with mean 1 and variance 2 is

1 > d <- Normal$new(1, 2)

The pdf and cdf of this Normal distribution evaluated at 2 are obtained in code
as

1 > d$pdf(2)

2 > d$cdf(2)

which evaluates to ‘numerics’ that represent the real numbers d.f(2) and d.F (2).

The consideration of distributions as objects, and their separation from random
variables as objects, is notably distinct from R stats, which implements both
distribution and random variable methods by the ‘dpqr’ functions. Whilst this
may allow very fast generation of probabilities and values, there is no support for
querying and inspection of distributions as objects. By instead treating the dpqr

functions as methods that belong to a distribution object, distr6 encapsulates
all the information in R stats as well as distribution properties, traits, and other
important mathematical methods. The object orientation principle that defines
the architecture of distr6 is further discussed throughout this manuscript.
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Treating distributions as objects is not unique to this package. Possibly the
first instance of the object oriented conceptualization is the distr [258] family
of packages, of which distr6 is the ‘official’ upgrade. distr6 is the first such
package to use the full object orientation paradigm R6, with other distribution
related packages using S3 or S4. The choice of R6 over S3 and S4 is discussed in
detail in section 6.3.5.1. This choice allows distr6 to fully leverage the conceptual
model, and make use of core R6 functionality. As well as introducing fundamental
object-oriented programming (OOP) principles such as abstract classes, and tried
and tested design patterns [91] including decorators, wrappers, and compositors
(see section 6.3.5.3).

Besides an overview to distr6’s novel approach to probability distributions in
R, this paper also presents a formal comparison of the different OOP paradigms,
while detailing the use of relevant design patterns.

6.3.1.2. Motivating Example: Higher-Order Distribution Constructs

The strength of the object oriented approach, both on the algorithmic and math-
ematical side, lies in its ability to efficiently express higher-order constructs
and operations: actions between distributions, resulting in new distributions.
One such example is mixture distributions. In the distr6 software interface, a
MixtureDistribution is a higher-order distribution depending on two or more
other distributions. For example take a uniform mixture of two distributions
distr1 and distr2:

1 > my_mixt <- MixtureDistribution$new(list(distr1, distr2))

Internally, the dependency of the constructs on the components is remem-
bered so that my_mixt is not only evaluable for cdf (and other methods), but
also carries a symbolic representation of its construction and definition history in
terms of distr1 and distr2.

On the mathematical side, the object oriented formalism allows clean definitions
of otherwise more obscure concepts, for example the mixture distribution is now
defined by:

For distributions d1, . . . , dm over Rn and weights w1, . . . , wm, define the mix-
ture of d1, . . . , dm with weights w1, . . . , wm to be the unique distribution d̃ such
that d̃.F (x) =

∑m
i=1wi · di.F (x) for any x ∈ Rn. Note the added clarity by

defining the mixture on the distribution di, i.e., a first-order concept in terms of
distributions.

6.3.2. Related software

This section provides a review to other related software that implement proba-
bility distributions, this is focused on, but not limited to, software in R.

R stats, actuar, and extraDistr The core R programming language consists
of packages for basic coding and maths as well as the stats package for sta-
tistical functions. stats contains 17 common probability distributions and four
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lesser-known distributions. Each distribution consists of (at most) four functions:
dX, pX, qX, rX where X represents the distribution name. These correspond to
the probability density/mass, cumulative distribution, quantile (inverse cumula-
tive distribution) and simulation functions respectively. Each is implemented as
a separate function, written in C, with both inputs and outputs as numerics. The
strength of these functions lies in their speed and efficiency, there is no quicker
way to find, say, the pdf of a Normal distribution than to run the dnorm function
from stats. However, this is the limit of the package in terms of probability dis-
tributions. As there is no physical distribution object, there is no way to query
results from the distributions outside of the ‘dpqr’ functions.

Several R packages implement dpqr functions for extra probability distributions.
Of particular note are the extraDistr [323] and actuar [73] packages that add
over 60 distributions between them. Both of these packages are limited to dpqr

functions and therefore have the same limits as R stats.

distr distr was the first package in R to implement an object-oriented inter-
face for distributions, using the S4 object-oriented paradigm. distr tackles the
two fundamental problems of stats by introducing distributions as objects that
can be stored and queried. These objects include important statistical results,
for example the expectation, variance and moment generating functions of a dis-
tribution. The distr family of packages includes a total of five packages for
object-oriented distributions in R. distr has two major weaknesses caused by
using the S4 paradigm, these are related to inheritance and object size and are
given full consideration in section 6.3.5.1.

distributions3 distributions3 [119] defines distributions as objects using the
S3 paradigm. However, whilst distributions3 treats probability distributions as
S3 objects, it does not add any properties, traits, or methods and instead uses the
objects solely for dpqr dispatch. In terms of comparison to distr, distributions3
removes features and ‘downgrades’ the paradigm from S4 to S3.

mistr mistr [259] is another recent distributions package, which is also influ-
enced by distr. The sole focus of mistr is to add a comprehensive and flexible
framework for composite models and mixed distributions. Similarly to distribu-
tions3, the package uses an S3 framework and also implements distributions as
objects, an overlap in the packages.

Distributions.jl Despite not being a package written in R, the Julia Distribu-
tions.jl [198] package provided inspiration for distr6. Distributions.jl imple-
ments distributions as objects with statistical properties including expectation,
variance, moment generating and characteristic functions, and many more. This
package uses multiple inheritance for ‘valueSupport’ (discrete/continuous) and
‘variateForm’ (univariate/multivariate/matrixvariate). Every distribution inher-
its from both of these, e.g. a distribution can be ‘discrete-univariate’, ‘continuous-
multivariate’, ‘continuous-matrixvariate’, etc. The package provides a unified and
user-friendly OOP interface.
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6.3.3. Design Principles

distr6 was designed and built around the following principles.

D1) Unified interface The package is designed such that all distributions, no
matter how complex, have an identical user-facing interface. This helps
make the package easy to navigate and the documentation simple to read.
Moreover it minimises any confusion resulting from using multiple distribu-
tions. A clear inheritance structure also allows wrappers and decorators to
have the same methods as distributions, which means even complex com-
posite distributions should be intuitive to use. Whether a user constructs a
simple Uniform distribution, or a mixture of 100 Normal distributions, the
same methods and fields are seen in both objects.

D2) Separation of core/exotic and numerical/analytic Via abstraction
and encapsulation, core statistical results (common methods such as mean
and variance) are separated from ‘exotic’ ones (less common methods such
as anti-derivatives and p-norms). Similarly, implemented distributions only
contain analytic results; users can impute numerical results using decora-
tors. This separation has two benefits: 1) a less-technical user can guarantee
precision of results as they are unlikely to use numerical decorators; 2) a
user has access to the most important distribution methods immediately
after construction but is not overwhelmed by many ‘exotic’ methods that
they may never want to use. Use of decorators and wrappers allow the
user to manually expand the interface at any time. For example a user
can choose between an undecorated Binomial distribution, with common
methods such as mean and variance, or they can decorate the distribution
to additionally gain access to survival and hazard functions.

D3) Inheritance without over-inheritance The class structure stems from a
series of a few abstract classes with concrete child classes, which allows for
a sensible, but not over-complicated, inheritance structure. For example all
implement distributions inherit from a single parent class (Distribution)
in order that common methods can be unified and only coded once. By
allowing extension of classes by decorators and wrappers, and not solely
inheritance, the interface is highly scalable and extensible. All decorators
and wrappers in distr6 stem from abstract classes, which in turn inherit
from the Distribution super-class. In doing so, any method of expanding
an object’s interface in distr6 (i.e. via decorators, wrappers or inheritance)
will automatically lead to an interface that inherits from the top-level class,
maintaining the principle of a unified interface (D1).

D4) Inspection and manipulation of multiple parameterisations The de-
sign process identified that use of distributions in R stats is inflexible as
in the majority of cases, only one parameterisation of each distribution is
allowed. This can lead to isolating users who may only be familiar with one
parameterisation. For example the use of the precision parameter in the
Normal distribution is typically more common in Bayesian statistics whereas
using the variance or standard deviation parameters are more common in



6.3. distr6: An Object-Oriented Probability Distributions Interface in R 211

frequentist statistics. distr6 allows the user to choose from multiple pa-
rameterisations for all distributions (where more than one parameterisation
is possible/known). Furthermore, querying and updating of any parameter
in the distribution is allowed, even if it was not specified in construction
(section 6.3.4). This allows for a flexible parameter interface that can be
fully queried and modified at any time.

D5) Flexible interfacing for technical and non-technical users Through-
out the design process, it was required that distr6 be accessible to all R
users. This was a challenge as R6 is a very different paradigm from S3 and
S4. To reduce the learning curve, the interface is designed to be as user-
friendly and flexible as possible. This includes: 1) a ‘sensible default princi-
ple’ such that all distributions have justified default values; 2) an ‘inspection
principle’ with functions to list all distributions, wrappers, and decorators.
As discussed in (D2), abstraction and encapsulation allow technical users
to expand any distribution’s interface to be as arbitrarily complex as they
like, whilst maintaining a minimal representation by default. Where pos-
sible defaults are ‘standard’ distributions, i.e. with location 0 and scale 1,
otherwise sensible defaults are identified as realistic scenarios, for example
Binomial(n = 10, p = 0.5).

D6) Flexible OO paradigms Following from (D5), R6 is still relatively new in
R with only 314 out of 16, 050 packages depending on it (as of July 2020).
Therefore this was acknowledged and taken into account when building
the package. R6 is also the first paradigm in R with the dollar-sign nota-
tion (though S4 uses ‘@’ notation) and with a proper construction method.
Whilst new users are advised to learn the basics of R6, S3 compatibility
is available for all common methods via R62S3. Users can therefore de-
cide on calling a method via dollar-sign notation or dispatch, the example
below demonstrates ‘piping’ and S3. As the core package is built on R6,
the thin-wrappers provided by R62S3 do not compromise the above design
principles.

1 > library(magrittr)

2 > N <- Normal$new(mean = 2)

3 > N %>%

4 + setParameterValue(mean = 1) %>%

5 + getParameterValue("mean")

6 [1] 1

7 > pdf(N, 1:4)

8 [1] 0.398942280 0.241970725 0.053990967 0.004431848

6.3.4. Overview to Functionality and API

distr6 1.4.3 implements 56 probability distributions, including 11 probability
kernels. Individual distributions are modelled via classes that inherit from a com-
mon interface, implemented in the Distribution parent class. The Distribution

class specifies the distribution interface for parameter access, properties, traits,
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and methods, such as a distribution’s pdf or cdf. The most important interface
points are described in Section 6.3.4.1

Distribution

+ name : string
+ short name : string
+ description : string
- .properties : list
- .traits : list

+ public accessors()
+ dpqr methods()
+ generic math stat methods()
+ ParameterSet getters setters()
+ validation methods()

Concrete distributions, kernels, and wrappers are the grandchildren of
Distribution, and children of one of the mid-layer abstract classes:

• SDistribution, which models abstract, generic distributions. Concrete dis-
tributions, such as Normal which models the normal distribution, inherit
from SDistribution.

• Kernel, which models probability kernels, such as Triangular and Epanechnikov.
Probability kernels are absolutely continuous distributions over the Reals,
with assumed mean 0 and variance 1.

• DistributionWrapper, which is an abstract parent for higher-order opera-
tions on distributions, including compositions, that is, operations that cre-
ate distributions from other distributions, such as truncation or mixture.

• DistributionDecorator, whose purpose is supplementing methods to dis-
tributions in the form of a decorator design pattern, this includes methods
such as integrated cdf or squared integrals of distribution defining functions.

distr6

Distribution

SDistributionKernelDistributionDecorator DistributionWrapper

SDistributionXKernelXDecoratorX WrapperX

The UML diagram above visualises the key class structure of distr6 including
the concrete Distribution parent class, from which all other classes in the package
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inherit from (with the exception of the ParameterSet). These abstract classes
allow simple extensibility for concrete sub-classes.

6.3.4.1. The Distribution Interface

The base, or top-level, class in distr6 is the Distribution class. Its primary
function is to act as a parent class for the implemented probability distributions
and higher-order compositions, it is also utilised for creation of custom distribu-
tions. By design, any distribution already implemented in distr6 will have the
same interface as a user-specified custom distribution, ensuring (D1) is upheld. A
table of the most important methods for a distribution are in table 15 alongside
their meaning and definitions (mathematical if possible). The two use-cases for
the Distribution class are discussed separately.

Table 15: Common methods available to all classes inheriting from Distribution.
Horizontal lines separate mathematical, property, parameter, and representation meth-
ods.

Method Description/Definition1

pdf/cdf/quantile/rand dpqr functions.
mean d.µ = E[X] ∗

variance d.σ2 = E[(X − d.µ)2] ∗

traits List including value support (discrete/con-
tinuous/mixed); variate form (uni-/multi-
/matrixvariate); type (mathematical domain).

properties List including skewness (E[((X − d.µ)/d.σ)3]) and
symmetry (boolean).

get/setParameterValue Getters and setters for parameter values.
parameters Returns the internal parameterisation set.
print/summary Representation functions, summary includes dis-

tribution properties and traits.

1. Mathematical definition (if available) or description of method.
∗ – d.µ and d.σ are the mean and standard deviation associated with distribution d and
d.σ2 = (d.σ)2. X is a random variable following distribution d.

Distribution for Inheritance It is anticipated that the majority of distr6
users will be using the package for the implemented distributions and kernels.
With this in mind, the Distribution class defines all variables and methods com-
mon to all child classes. The most important of these are the common analytical
expressions and the dpqr public methods. Every concrete implemented distribu-
tion/kernel has identical public dpqr methods that internally call private dpqr

methods. This accounts for inconsistencies occurring from packages returning
functions in different formats and handling errors differently; a problem most
prominent in multivariate distributions. Another example is handling of non-
integer values for discrete distributions, in some packages this returns 0, in others
the value is rounded down, and in others an error is returned. The dpqr functions
for all distributions have unified validation checks and return types (numeric or
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data.table). In line with base R and other distribution packages, distr6 im-
plements a single pdf function to cover both probability mass and probability
density functions.

1 > Normal$new()$pdf(1:2)

2 [1] 0.24197072 0.05399097

3 > Binomial$new()$cdf(1:2, lower.tail = FALSE, log.p = TRUE,

4 + simplify = FALSE)

5 Binom

6 1: -0.01080030

7 2: -0.05623972

A key design principle in the package is separation of analytical and numer-
ical results (D2), which is ensured by only including analytical results in imple-
mented distributions. Missing methods in a distribution therefore signify that no
closed-form expression for the method is available, however all can be numeri-
cally estimated with the CoreStatistics decorator (see section 6.3.4.2). Ideally,
all distributions will include analytical methods for the following: probability
density/mass function (pdf), cumulative distribution function (cdf), inverse cu-
mulative distribution function/quantile function (quantile), simulation function
(rand), mean, variance, skewness, (excess) kurtosis, and entropy of the distri-
bution (mean, variance, skewness, kurtosis, entropy), as well as the moment
generating function (mgf), characteristic function (cf), and probability generating
function (pgf). Speed is currently a limitation in distr6 but the use of Rcpp [74]
in all dpqr functions helps mitigate against this.

The fourth design principle of distr6 ensures that multiple parameterisations
of a given distribution can be both provided and inspected at all times. For exam-
ple the Normal distribution can be parametrised in terms of variance, standard
deviation, or precision. Its constructor takes this into account:

1 > Normal$new(mean = 0, var = 1, sd = NULL, prec = NULL,

2 + decorators = NULL)

To avoid conflicting parameterisations, all distributions have a ‘right-to-left’
priority when multiple parameterisations are possible. This is best demonstrated
by example:

1 # 'prec' has priority

2 > Normal$new(var = 1, sd = 2, prec = 1/3)$getParameterValue("var")

3 [1] 3

4 # 'prec' is not supplied so 'sd' has priority

5 > Normal$new(var = 1, sd = 2)$getParameterValue("var")

6 [1] 4

7 # only 'var' supplied

8 > Normal$new(var = 1)$getParameterValue("var")

9 [1] 1
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The same principle is used for parameter setting with setParameterValue.
Possible parameterisations and their prioritisation are carefully documented and
also can be seen from parameters. The example above utilised the getParameterValue
and setParameterValue methods for getting and setting parameter values respec-
tively. The former takes a single argument, the parameter name, and the second
a named list of arguments corresponding to the parameter name and the value to
set. The example below demonstrates this for a Gamma distribution. Here the
distribution is constructed, the shape parameter is queried, both shape and rate
parameters are updated and the latter queried, finally the scale parameter is set
which auto-updates the rate parameter.

1 > G <- Gamma$new(shape = 1, rate = 1)

2 > G$getParameterValue("shape")

3 [1] 1

4 > G$setParameterValue(shape = 2, rate = 2)

5 > G$getParameterValue("rate")

6 [1] 2

7 > G$setParameterValue(scale = 2)

8 > G$getParameterValue("rate")

9 [1] 0.5

Distribution and parameter domains and types are represented by mathemat-
ical sets, implemented in set6. This allows for clear representation of infinite sets
and most importantly for internal containedness checks. For example all public
dpqr methods first call the contains method in their respective type and return
an error if any points are outside the distribution’s domain. As set6 uses Rcpp
for this method, these come at minimal cost to speed.

1 > B <- Binomial$new()

2 > B$pdf(-1)

3 Error in B$pdf(-1) :

4 Not all points in {-1} lie in the distribution domain (N0).

These domains and types are returned along with other important properties
and traits in a call to properties and traits respectively, this is demonstrated
below for the Arcsine distribution.

1 > A <- Arcsine$new()

2 > A$properties

3 $support

4 [0,1]

5

6

7 $symmetry

8 [1] "symmetric"

9
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10 > A$traits

11 $valueSupport

12 [1] "continuous"

13

14 $variateForm

15 [1] "univariate"

16

17 $type

18 R

Extending distr6 with Custom Distributions Users of distr6 can create
temporary custom distributions using the constructor of the Distribution class
directly. Permanent extensions, e.g., as part of an R package, should create a new
concrete distribution as a child of the SDistribution class.

The Distribution constructor is given by

1 > Distribution$new(name = NULL, short_name = NULL, type = NULL,

2 + support = NULL, symmetric = FALSE, pdf = NULL, cdf = NULL,

3 + quantile = NULL, rand = NULL, parameters = NULL,

4 + decorators = NULL, valueSupport = NULL, variateForm = NULL,

5 + description = NULL)

The name and short_name arguments are identification for the custom distri-
bution used for printing. type is a trait corresponding to scientific type (e.g.
Reals, Integers,...) and support is the property of the distribution support. Dis-
tribution parameters are passed as a ParameterSet object, this defines each pa-
rameter in the distribution including the parameter default value and support.
The pdf/cdf/quantile/rand arguments define the corresponding methods and
are passed to the private
.pdf/.cdf/.quantile/.rand methods, as above the public methods are already
defined and ensure consistency in each function. At a minimum users have to
supply the distribution name, type and either pdf or cdf, all other information
can be numerically estimated with decorators (see section 6.3.4.2).

1 > d <- Distribution$new(name = "Custom Distribution",

2 + type = Integers$new(), support = Set$new(1:10),

3 + pdf = function(x) rep(1/10, length(x)))

4 > d$pdf(1:3)

5 [1] 0.1 0.1 0.1

6.3.4.2. DistributionDecorator

Decorators add functionality to classes in object-oriented programming. These
are not natively implemented in R6 and this novel implementation is therefore
discussed further in section 6.3.5.3. Decorators in distr6 are only ‘allowed’ if
they have have at least three methods and cover a clear use-case, this prevents
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too many decorators bloating the interface. However by their nature, they are
lightweight classes that will only increase the methods in a distribution if explic-
itly requested by a user. Decorators can be applied to a distribution in one of
three ways:

In construction:

1 > N <- Normal$new(decorators = c("CoreStatistics",

2 + "ExoticStatistics"))

Using the decorate() function:

1 > N <- Normal$new()

2 > decorate(N, c("CoreStatistics", "ExoticStatistics"))

Using the decorate method inherited from the DistributionDecorator super-
class:

1 > N <- Normal$new()

2 > ExoticStatistics$new()$decorate(N)

The first option is the quickest if decorators are required immediately. The
second is the most efficient once a distribution is already constructed. The third
is the closest method to true OOP but does not allow adding multiple decorators
simultaneously.

Three decorators are currently implemented in distr6, these are briefly described.

CoreStatistics This decorator imputes numerical functions for common sta-
tistical results that could be considered core to a distribution, e.g. the mean or
variance. The decorator additionally adds generalised expectation (genExp) and
moments (kthmoment) functions, which allow numerical results for functions of the
form E[f(X)] and for crude/raw/central K moments. The example below demon-
strates how the decorate function exposes methods from the CoreStatistics

decorator to the Normal distribution object.

1 > n <- Normal$new(mean = 2, var = 4)

2 > n$kthmoment(3, type = "raw")

3 Error: attempt to apply non-function

4 > decorate(n, CoreStatistics)

5 > n$kthmoment(3, type = "raw")

6 [1] 32

ExoticStatistics This decorator adds more ‘exotic’ methods to distributions,
i.e. those that are unlikely to be called by the majority of users. For example this
includes methods for the p-norm of survival and cdf functions, as well as anti-
derivatives for these functions. Where possible, analytic results are exploited.
For example, this decorator can implement the survival function in one of two
ways: either as: i) 1 minus the distribution cdf, if an analytic expression for the
cdf is available; or ii) via numerical integration of the distribution.
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FunctionImputation This decorator imputes numerical expressions for the
dpqr methods. This is most useful for custom distributions in which only the pdf

or cdf is provided. Numerical imputation is implemented via Rcpp.

6.3.4.3. Composite Distributions

Composite distributions – that is, distributions created from other distributions
– are common in advanced usage. Examples for composites are truncation, mix-
ture, or transformation of domain. In distr6, a number of such composites are
supported. Implementation-wise, this uses the wrapper OOP pattern, which is
not native to R6 but part of the extensions to R6 discussed in section 6.3.5.3.

As discussed above, wrapped distributions inherit from Distribution thus
have an identical interface to any child of SDistribution, with the following
minor differences:

• The wrappedModels method provides a unified interface to access any com-
ponent distribution.

• Parameters are still accessed via the same method but stored in a
ParameterSetCollection object instead of a ParameterSet, thus allowing
efficient representation of composite and nested parameter sets.

Composition can be iterated and nested any number of times, consider the
following example where a mixture distribution is created from two distributions
that are in turn composites – a truncated Student T, and a huberized Exponential
– note too the parameter inspection and automatic prefixing of distribution ‘short
names’ to the parameters for identification:

1 > M <- MixtureDistribution$new(list(

2 + truncate(StudentT$new(), lower = -1, upper = 1),

3 + huberize(Exponential$new(), upper = 4)

4 + ))

5 > M$parameters()

6 id value support

7 1: mix_T_df 1 R+

8 2: mix_trunc_lower -1 R U {-Inf, +Inf}

9 3: mix_trunc_upper 1 R U {-Inf +Inf}

10 4: mix_Exp_rate 1 R+

11 5: mix_Exp_scale 1 R+

12 6: mix_hub_lower 0 R U {-Inf, +Inf}

13 7: mix_hub_upper 4 R U {-Inf, +Inf}

14 8: mix_weights uniform {uniform} U [0,1]

Implemented Compositors Tables 16 and 17 summarise some important im-
plemented compositors in order to illustrate the way composition is handled and
implemented.
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Table 16: Examples of common compositors implemented in distr6 with parameters
and type.

Class Parameters1 Type2 Components3

TruncatedDistribution a, b ∈ R R d′, type R
HuberizedDistribution a, b ∈ R R, mixed d′, type R
MixtureDistribution wi ∈ R,

∑n
i=1wi = 1 Rn d′i, type Rn

ProductDistribution - RN , N =
∑n

i=1 ni d′i type Rni

1. Parameters that the composite has.
2. Type of the resultant distribution d that is created when the class is constructed; this
states the formal domain.
3. Number, names, and assumptions on the components, if any.

Table 17: Common compositors implemented in distr6 with mathematical definitions.

Class d.F (x)1 d.f(x)2

TruncatedDistribution3 d′.F (x)−d′.F (a)
d′.F (b)−d′.F (a)

d′.f(x)
d′.P ([a,b])

HuberizedDistribution d′.F (x) + 1[x = b] · d′.P (b) -∗

MixtureDistribution
∑N

i=1 wi · d′i.F (x)
∑N

i=1 wi · d′i.f(x) ∗∗

ProductDistribution
∏N

i=1 d
′
i.F (x)

∏N
i=1 d

′
i.f(x) ∗∗

1. The resultant cdf, d.F , in terms of the component cdf, as implemented in the cdf
method of the compositor in the same row.
2. The resultant pdf, d.f , in terms of the component pdf, as implemented in the pdf
method of the compositor in the same row.
3. Truncation is currently only implemented for the left-open interval (a, b].
∗ – After Huberization, the resultant distribution is in general not absolutely continuous
and hence the pdf does not exist.
∗∗ – If exists.
d′ is defined in table 16.

Example code to obtain a truncated or huberized distribution is below. First
a truncated Normal distribution is constructed with truncation parameters -1 and
1, and a huberized Binomial with bounding parameters 2 and 5.

1 > TN <- truncate(Normal$new(), lower = -1, upper = 1)

2 > TN$cdf(-2:2)

3 [1] 0.0 0.0 0.5 1.0 1.0

4 > class(TN)

5 [1] "TruncatedDistribution" "DistributionWrapper" "Distribution"

6 [4] "R6"

7

8 > HB <- huberize(Binomial$new(), lower = 2, upper = 5)

9 > HB$cdf(1:6)

10 [1] 0.0000000 0.0546875 0.1718750 0.3769531 1.0000000 1.0000000

11 > HB$median()

12 [1] 5
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Vectorization of Distributions A special feature of distr6 is that it allows
vectorization of distributions, i.e. vectorized representation of multiple distribu-
tions in an array-like structure. This is primarily done for computational effi-
ciency with general best R practice of vectorisation. Vectorisation of distr6 dis-
tributions is implemented via the VectorDistribution which is logically treated
as a compositor.

Mathematically, a VectorDistribution is simply a vector of component dis-
tributions d1, . . . , dN that allows vectorized evaluation. Two kinds of vectorized
evaluation are supported – paired and product vectorization – which are illus-
trated below in the case of cdfs.

• Paired vectorized evaluation of the cdfs d1.F, . . . , dN .F at numbers x1, . . . , xN ,
yields a real vector (d1.F (x1), . . . , dN .F (xN)) via the cdf method.

• Product vectorized evaluation of the cdfs d1.F, . . . , dN .F at numbers x1, . . . , xM ,
yields a real (N ×M) matrix, with (i, j)-th entry di.F (xj).

VectorDistribution allows for efficient vectorisation across both the distribu-
tions and points to evaluate, which is a feature unique to distr6 among distri-
bution frameworks in R.

Example code for vectorization via VectorDistribution is below. The first
pdf call shows how to create a vector of two Normal distributions evaluated at
different points (product mode), and the second demonstrates evaluation at the
same points (paired mode).

1 > V <- VectorDistribution$new(distribution = "Normal",

2 + params = data.frame(mean = 1:2))

3 > V$pdf(1:2, 3:4)

4 Norm1 Norm2

5 1: 0.3989423 0.24197072

6 2: 0.2419707 0.05399097

7

8 > V$pdf(5:6)

9 Norm1 Norm2

10 1: 1.338302e-04 0.0044318484

11 2: 1.486720e-06 0.0001338302

Further, common composites such as ProductDistribution and
MixtureDistribution inherit from VectorDistribution, allowing for efficient vec-
tor dispatch of pdf and cdf methods. Inheriting from
VectorDistribution results in identical constructor and methods. Thus a minor
caveat is that users could evaluate a product or mixture at different points for
each distribution, which is not a usual use-case in practice.

Two different choices of constructors are provided, the first ‘distlist’ con-
structor passes distribution objects into the constructor, whereas the second
passes a reference to the distribution class along with the parameterisations.
Therefore the first allows different types of distributions but is vastly slowly as
the various methods have to be calculated individually, whereas the second only
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allows a single class of distribution at a time, but is much quicker in evaluation.
In the example below, the mixture uses the second constructor and the product
uses the first.

1 > M <- MixtureDistribution$new(distribution = "Degenerate",

2 + params = data.frame(mean = 1:10))

3 > M$cdf(1:5)

4 [1] 0.1 0.2 0.3 0.4 0.5

5 > class(M)

6 [1] "MixtureDistribution" "VectorDistribution"

7 [3] "DistributionWrapper" "Distribution" "R6"

8

9 > P <- ProductDistribution$new(list(Normal$new(),

10 + Exponential$new(), Gamma$new()))

11 > P$cdf(1:5)

12 [1] 0.3361815 0.7306360 0.9016858 0.9636737 0.9865692

6.3.5. Design Patterns and Object-Oriented Programming

This paper has so far discussed the API and functionality in distr6. This section
discusses object-oriented programming (OOP), firstly a brief introduction to OOP
and OOP in R and then the package’s contributions to the field.

6.3.5.1. S3, S4, and R6

R has four major paradigms for object-oriented programming: S3, S4, reference
classes (R5), and most recently, R6. S3 and S4 are known as functional object-
oriented programming (FOOP) paradigms whereas R5 and R6 move towards class
object-oriented programming (COOP) paradigms (R6) [41]. One of the main
differences (from a user-perspective) is that methods in COOP are associated
with a class whereas in FOOP, methods are associated with generic functions. In
the first case methods are called by first specifying the object and in the second,
a dispatch registry is utilised to find the correct method to associate with a given
object.

S3 introduces objects as typed lists in R, which can hold functions or variables.
The functions are called via the dispatch system and every function comprises
both a generic and a method for each object. Without a formal definition of a
class, S3 does not have a clear concept of object construction. S3 is embedded
deep in the infrastructure of R and single dispatch is behind a vast majority of
the base functionality and it is part of the main reason why R is easily readable.
However, S3 is not a formal OOP language1 and lacks the concept of classes,
constructors and thereby inheritance (although this is possible it isn’t well for-
malised).

1http://adv-r.had.co.nz/OO-essentials.html

http://adv-r.had.co.nz/OO-essentials.html
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S4 formalises S3 by introducing the basics of object-oriented programming
including the distinction between classes and objects as well as multiple inheri-
tance. S4 formalises class-object separation by constructor functions that exist
independently from the class definition. S4 has more syntax for the user to learn
and a few more steps in class and method definitions. S4 syntax is quite clunky
and not overly user-friendly. In practice, S3 is used vastly more than S4 [41].

There is a big jump from S3 and S4 to R6 as they transition from functional- to
class-object-oriented programming. This means new notation, semantics, syntax,
and conventions. The key changes are: 1) introducing methods and fields that
are associated with classes not functions; 2) mutable objects with copy-on-modify
semantics; and 3) new dollar-sign notation. In the first case this means that when
a class is defined, all the methods are defined as existing within the class, and these
can be accessed at any time after construction. Methods are further split into
public and private, as well as active bindings ; which incorporates the abstraction
part of OOP. The mutability of objects and change to copy-on-modify means that
to create an independent copy of an object, the new method clone(deep = TRUE)

has to be used, which would be familiar to users who know more classical OOP
but very different to most R users. Finally methods are accessed via the dollar-
sign, and not by calling a function on an object.

Contrasting the three paradigms with a toy example to create a ‘duck’ class
with a method ‘quack’:

S3

1 > quack <- function(x) UseMethod("quack", x)

2 > duck <- function(name) return(structure(list(name = name),

3 + class = "duck"))

4 > quack.duck <- function(x) cat(x$name, "QUACK!")

5 > quack(duck("Arthur"))

6 Arthur QUACK!

S4

1 > setClass("duck", slots = c(name = "character"))

2 > setGeneric("quack", function(x) {

3 + standardGeneric("quack")

4 + })

5 > setGeneric("duck", function(name) {

6 + standardGeneric("duck")

7 + })

8 > setMethod("duck", signature(name = "character"),

9 + definition = function(name){

10 + new("duck", name = name)

11 + })
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12 > setMethod("quack",

13 + definition = function(x) {

14 + cat(x@name, "QUACK!")

15 + })

16 > quack(duck("Ford"))

17 Ford QUACK!

R6

1 > duck <- R6::R6Class("duck", public = list(

2 + initialize = function(name) private$.name = name,

3 + quack = function() cat(private$.name, "QUACK!")),

4 + private = list(.name = character(0)))

5 > duck$new("Zaphod")$quack()

6 Zaphod QUACK!

The example clearly highlights the extra code introduced by S4 and the dif-
ference between the S3 dispatch and R6 method system.

Comparing the Paradigms There is no doubt that R6 is the furthest paradigm
from conventional R usage and as such there is a steep learning curve for the ma-
jority of R users. However R6 will be most natural for users coming to R from
more traditional OOP languages. In contrast, S3 is a natural FOOP paradigm
that will be familiar to all R users (even if they are not aware that S3 is be-
ing used). S4 is an unfortunate midpoint between the two, which whilst being
very useful, is not particularly user-friendly in terms of programming classes and
objects. distr was developed soon after S4 was released and is arguably one of
the best case-studies for how well S4 performs. Whilst S4 formalises S3 to allow
for a fully OO interface to be developed, its dependence on inheritance forces
design decisions that quickly become problematic. This is seen in the large in-
heritance trees in distr in which one implemented distribution can be nested five
child classes deep. This is compounded by the fact that S4 does not use pointer
objects but instead nests objects internally. Therefore distr has problems with
composite distributions in that they quickly become very large in size, for exam-
ple a mixture of two distributions can easily be around 0.5Mb, which is relatively
large. In contrast, R6 introduces pointers, which means that a wrapped object
simply points to its wrapped component and does not copy it needlessly. Whilst a
fully object-oriented interface can be developed in S3 and S4, they do not have the
flexibility of R6, which means that in the long run, extensibility and scalability
can be problematic. R6 forces R users to learn a paradigm that they may not be
familiar with but packages like R62S3 allow users to become acquainted with R6
on a slightly shallower learning curve. Speed differences for the three paradigms
are formally compared on the example above using microbenchmark [215], the
results are in table 18. The R6 example is compared both including construction
of the class, duck$new("Zaphod")$quack(), and without construction, d$quack(),
where d is the object constructed before comparison. A significant ‘bottleneck’ is
noted when construction is included in the comparison but despite this S4 is still
significantly the slowest.
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Table 18: Comparing S3, S4, and R6 in calling a method. R6 is tested both including
object construction (R6) and without (R6*).

Paradigm mean (µs) cld1

S3 73.44 a
S4 276.17 c
R6 187.70 b
R6* 38.32 a

1. Significance test for run-time of each method where ‘a’ is fastest and ‘c’ is slowest.
The experiment is conducted on R v4.0.2 (2020-06-22); Platform: x86 64-apple-darwin17.0
(64-bit); Running under: macOS Catalina 10.15.3 with R6 v2.4.1 and microbenchmark
v1.4.7.

6.3.5.2. Design Patterns

In the simplest definition, ‘design patterns’ are abstract solutions to common
coding problems. They are probably most widely known due to the book ‘Design
Patterns Elements of Reusable Object-Oriented Software’ (Design Patterns) [91].
distr6 primarily makes use of the following design patterns

• Abstract Factory

• Decorator

• Composite

• Strategy

Strategy The strategy pattern is common in modelling toolboxes, in which
multiple algorithms can be used to solve a problem. This pattern defines an
abstract class for a given problem and concrete classes that each implement dif-
ferent strategies, or algorithms, to solve the problem. For example in the context
of mathematical integration (a common problem in R), one could use Simpson’s
rule, Kronrod’s, or many others. These can be specified by an integrate abstract
class with concrete sub-classes simpson and kronrod.

integrate

simpson kronrod

Composite The composite pattern defines a collection of classes that have an
identical interface when treated independently or when composed into a single
class with constituent parts. To the user, this means that only one interface needs
to be learnt in order to interact with composite or individual classes. A well-built
composite pattern allows users to construct complex classes with several layers of
composition, and yet still be able to make use of a single interface. By inheriting
from a parent class, each class and composite share a common interface.
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Decorator Decorators add additional responsibilities to an object without mak-
ing any other changes to the interface. An object that has been decorated will be
identical to its un-decorated counter-part except with additional methods. This
provides a useful alternative to inheritance. Whereas inheritance can lead to large
tree structures in which each sub-class inherits from the previous and contains all
previous methods, decorators allow the user to pick and choose with responsibil-
ities to add. The figure below demonstrates how this is useful in a shopping cart
example. The top of the figure demonstrates using inheritance, in which each
sub-class adds methods to the Cart parent class. By the Tax child class there are
a total of five methods in the interface. In the bottom of the figure, the decorator
pattern demonstrates how the functionality for adding items and tax is separated
and can be added separately.

Cart

Total()

Add

AddFruit()
AddVegetables()

Tax

CalculateVAT()
addVAT()

Cart

Total()

AbstractDecorator

AddDecorator

AddFruit()
AddVegetables()

TaxDecorator

CalculateVAT()
addVAT()

6.3.5.3. Contributions to R6

In order to implement distr6, several contributions were made to the R6 paradigm,
to extend its abilities and to implement the design patterns discussed above.

Abstract Classes R6 did not have a concept of abstract classes, which meant
that patterns such as adapters, composites, and decorators, could not be directly
implemented without problems. This is produced in distr6 with the abstract

function, which is placed in the first line of all abstract classes. In the example
below, obj expects the self argument from R6 classes, and class is the name of
the class, getR6Class is a custom function for returning the name of the class of
the given object.

1 > abstract <- function(obj, class) {

2 + if (getR6Class(obj) == class) {

3 + stop(sprintf("%s is an abstract class that can't be initialized.",

4 + class))
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5 + }

6 + }

For example in decorators the following line is placed at the top of the
initialize function:

1 > abstract(self, "DistributionDecorator")

Decorators The typical implementation of decorators is to have an abstract
decorator class with concrete decorators inheriting from this, each with their
own added responsibilities. In distr6 this is made possible by defining the
DistributionDecorator abstract class (see above) with a public decorate method.
Concrete decorators are simply R6 classes where the public methods are the ones
to ‘copy’ to the decorated object.

1 > DistributionDecorator

2 <DistributionDecorator> object generator

3 Public:

4 packages: NULL

5 initialize: function ()

6 decorate: function (distribution, ...)

7 clone: function (deep = FALSE)

8

9 > CoreStatistics

10 <CoreStatistics> object generator

11 Inherits from: <DistributionDecorator>

12 Public:

13 mgf: function (t)

14 cf: function (t)

15 pgf: function (z)

When the decorate method from a constructed decorator object is called,
the methods are simply copied from the decorator environment to the object
environment. The decorate() function simplifies this for the user.

Composite and Wrappers The composite pattern is made use of in what
distr6 calls ‘wrappers’. Again this is implemented via an abstract class
(DistributionWrapper) with concrete sub-classes.

1 > DistributionWrapper

2 <DistributionWrapper> object generator

3 Inherits from: <Distribution>

4 Public:

5 initialize: function (distlist = NULL, name, short_name,

6 wrappedModels: function (model = NULL)
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7 setParameterValue: function (..., lst = NULL, error = "warn")

8 Private:

9 .wrappedModels: list

10

11 > TruncatedDistribution

12 <TruncatedDistribution> object generator

13 Inherits from: <DistributionWrapper>

14 Public:

15 initialize: function (distribution, lower = NULL, upper = NULL)

16 setParameterValue: function (..., lst = NULL, error = "warn")

17 Private:

18 .pdf: function (x, log = FALSE)

19 .cdf: function (x, lower.tail = TRUE, log.p = FALSE)

20 .quantile: function (p, lower.tail = TRUE, log.p = FALSE)

21 .rand: function (n)

Wrappers in distr6 alter objects by modifying either their public or private
methods. Therefore an ‘unwrapped’ distribution looks identical to a ‘wrapped’
one, despite inheriting from different classes. This is possible via two key im-
plementation strategies: 1) on construction of a wrapper, parameters are pre-
fixed with a unique ID, meaning that all parameters can be accessed at any
time; 2) the wrappedModels public field allows access to the original wrapped
distributions. These two factors allow any new method to be called either by
reference to wrappedModels or by using getParameterValue with the newly pre-
fixed parameter ID. This is demonstrated in the .pdf private method of the
TruncatedDistribution wrapper (slightly abridged):

1 > .pdf = function(x, log = FALSE) {

2 + dist <- self$wrappedModels()[[1]]

3 + lower <- self$getParameterValue("trunc_lower")

4 + upper <- self$getParameterValue("trunc_upper")

5 +

6 + pdf <- numeric(length(x))

7 + pdf[x > lower & x <= upper] <- dist$pdf(x[x > lower & x <= upper]) /

8 + (dist$cdf(upper) - dist$cdf(lower))

9 +

10 + return(pdf)

11 + }

As the public pdf is the same for all distributions, and this is inherited by
wrappers, only the private .pdf method needs to be altered.

6.3.6. Examples

This final section looks at concrete short examples for four key use-cases. The
output figures from the examples are in appendix D.
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6.3.6.1. Constructing and Querying Distributions

The primary use-case for the majority of users will be in constructing distribu-
tions in order to query their results and visualise their shape.

Below, a Binomial distribution is constructed and queried for its distribution-
specific traits and parameterisation-specific properties.

1 > b <- Binomial$new(prob = 0.1, size = 5)

2 > b$setParameterValue(size = 6)

3 > b$getParameterValue("size")

4 > b$parameters()

5 > b$properties

6 > b$traits

Specific methods from the distribution are queried as well.

1 > b$mean()

2 > b$entropy()

3 > b$skewness()

4 > b$kurtosis()

5 > b$cdf(1:5)

The distribution is visualised by plotting its density, distribution, inverse dis-
tribution, hazard, cumulative hazard, and survival function.

1 > plot(b, fun = "all")

6.3.6.2. Analysis of Empirical Data

distr6 can also serve as a toolbox for analysis of empirical data by making use of
the three ‘empirical’ distributions: Empirical, EmpricalMV, and WeightedDiscrete.

First an empirical distribution is constructed with samples from a standard ex-
ponential distribution.

1 > E <- Empirical$new(samples = rexp(10000))

The summary function is used to quickly obtain key information about the
empirical distribution.

1 > summary(E)

2

3 Empirical Probability Distribution.

4

5 Quick Statistics

6 Mean: 0.9983612
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7 Variance: 1.031437

8 Skewness: 2.066763

9 Ex. Kurtosis: 6.236536

10

11 Support: (0.00,...,9.18) Scientific Type: R
12

13 Traits: discrete; univariate

14 Properties: asymmetric; leptokurtic; positive skew

The distribution is compared to a (standard) Normal distribution and then
(standard) Exponential distribution.

1 > qqplot(E, Normal$new(), xlab = "Empirical", ylab = "Normal")

2 > qqplot(E, Exponential$new(), xlab = "Empirical", ylab = "Exponential")

The CDF of a bivariate empirical distribution is visualised.

1 > plot(EmpiricalMV$new(data.frame(rnorm(100, mean = 3), rnorm(100))),

2 + fun = "cdf")

6.3.6.3. Learning from Custom Distributions

Whilst empirical distributions are useful when data samples have been generated,
custom distributions can be used to build an entirely new probability distribution
– though this example uses a simple discrete uniform distribution. This example
highlights the power of decorators to estimate distribution results without manual
computation of every possible method. The output demonstrates the precision
and accuracy of these results.

Below, a custom distribution is created and, by including the decorators argu-
ment, all further methods are imputed numerically. The distribution is sum-
marised for properties, traits and common results (this is possible with the
‘CoreStatistics’ decorator). The summary is identical to the analytic
DiscreteUniform distribution.

1 > U <- Distribution$new(

2 + name = "Discrete Uniform",

3 + type = set6::Integers$new(), support = set6::Set$new(1:10),

4 + pdf = function(x) ifelse(x < 1 | x > 10, 0, rep(1/10,length(x))),

5 + decorators = c("CoreStatistics",

6 + "ExoticStatistics", "FunctionImputation"))

7 > summary(U)

8

9 Discrete Uniform

10

11 Quick Statistics
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12 Mean: 5.5

13 Variance: 8.25

14 Skewness: 0

15 Ex. Kurtosis: -1.224242

16

17 Support: {1,...,10} Type: Z
18

19 Traits: discrete; univariate

20 Properties: asymmetric; platykurtic; no skew

21

22 Decorated with: CoreStatistics, ExoticStatistics, FunctionImputation

The CDF and simulation functions are called (numerically imputed with the
FunctionImputation decorator), the hazard function from the ExoticStatistics

decorator, and the kthmoment function from the
CoreStatistics decorator.

1 > U$cdf(1:10)

2 [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3 > U$rand(10)

4 [1] 8 10 5 8 5 10 6 7 1 4

5 > U$hazard(2)

6 [1] 0.125

7 > U$kthmoment(2)

8 [1] 8.25

6.3.6.4. Composite Distribution Modelling

Composite distributions are an essential part of any distribution software, the
following example demonstrates two types of composites: composition via distri-
bution transformation (truncation), and composition via mixtures and vectors.

First, a Binomial distribution is constructed and truncated between 1 and 5,
the CDF of the new distribution is queried.

1 > TB <- truncate(

2 + Binomial$new(size = 20, prob = 0.5),

3 + lower = 1,

4 + upper = 5

5 + )

6 > round(TB$cdf(0:6), 4)

7 [1] 0.0000 0.0000 0.0088 0.0613 0.2848 1.0000 1.0000

Next, a vector distribution is constructed of two Normal distributions, with re-
spective means 1 and 2 and unit standard deviation. The parameters are queried
(some columns suppressed).
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1 > V <- VectorDistribution$new(distribution = "Normal",

2 + params = data.frame(mean = 1:2))

3 > V$parameters()

4 id value support

5 1: Norm1_mean 1 R

6 2: Norm1_var 1 R+

7 3: Norm1_sd 1 R+

8 4: Norm1_prec 1 R+

9 5: Norm2_mean 2 R

10 6: Norm2_var 1 R+

11 7: Norm2_sd 1 R+

12 8: Norm2_prec 1 R+

Vectorisation is possible across distributions, samples, and both. In the exam-
ple below, the first call to pdf evaluates both distributions at (1, 2), the second
call evaluates the first at (1) and the second at (2), and the third call evaluates
the first at (1, 2) and the second at (3, 4).

1 > V$pdf(1:2)

2 Norm1 Norm2

3 1: 0.3989423 0.2419707

4 2: 0.2419707 0.3989423

5 > V$pdf(1, 2)

6 Norm1 Norm2

7 1: 0.3989423 0.3989423

8 > V$pdf(1:2, 3:4)

9 Norm1 Norm2

10 1: 0.3989423 0.24197072

11 2: 0.2419707 0.05399097

Finally a mixture distribution with uniform weights is constructed from a
N(2, 1) and Exp(1).

1 > MD <- MixtureDistribution$new(

2 + list(Normal$new(mean = 2, sd = 1), Exponential$new(rate = 1))

3 + )

4 > MD$pdf(1:5)

5 [1] 0.304925083 0.267138782 0.145878896 0.036153303 0.005584898

6 > MD$cdf(1:5)

7 [1] 0.3953879 0.6823324 0.8957788 0.9794671 0.9959561

8 > MD$rand(5)

9 [1] 3.6664473 0.1055126 0.6092939 0.8880799 3.4517465
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6.3.7. Conclusion and Availability

distr6 introduces a robust and scalable object-oriented interface for probability
distributions to R. It officially upgrades the distr family of packages and aims to
be the first-stop for object-oriented probability distributions in R. By making use
of R6, every implemented distribution is clearly defined with properties, traits,
and analytic results. Whilst R stats is limited to very basic dpqr functions for
representing evaluated distributions, distr6 ensures that probability distributions
are treated as complex mathematical objects.

Future updates of the package will include adding further numerical approxi-
mation strategies in the decorators to allow users to choose different methods
(instead of being forced to use one). Additionally, the extensions to R6 could be
abstracted into an independent package in order to better benefit the R commu-
nity.

distr6 is released under an MIT licence on GitHub and CRAN. Extended doc-
umentation, tutorials, and examples are available on the project website1. Code
quality is monitored and maintained by an extensive suite of unit tests with
GitHub Actions on multiple operating systems.

6.4. mlr3proba: Machine Learning Survival

Analysis in R

6.4.1. Introduction

2mlr3proba is part of the mlr3 family of packages, the ‘mlr3verse’. mlr3 [182]
is the official upgrade to mlr [22], both developed by the mlr-org core team3.
Whilst mlr included an interface for classification and regression, with many
learners and measures, there was less support for survival analysis. mlr3 has been
designed with modularisation in mind, this means that instead of all functionality
being grouped into one large package, there are instead many smaller packages.
mlr3proba’s place in this universe (fig. 38) is to add probabilistic supervised
learning, which includes survival analysis, density estimation, and probabilistic
regression.

To-date work on mlr3proba has primarily focused on survival analysis though
support is also available for density estimation and probabilistic regression. For
time and scope of this thesis, only the survival analysis aspects will be discussed
here.

Motivating Example Listing 7 gives an example of how to benchmark three
survival models, set hyper-parameter values, and make use of the distribution
compositor. Line 1: Essential packages are loaded, mlr3proba always requires

1https://alan-turing-institute.github.io/distr6/
2Parts of this section have been published as part of a paper in Bioinformatics [281].
3https://github.com/mlr-org

https://github.com/alan-turing-institute/distr6
https://CRAN.R-project.org/package=distr6
https://alan-turing-institute.github.io/distr6/
https://alan-turing-institute.github.io/distr6/
https://github.com/mlr-org
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Figure 38: The mlr3verse. mlr3proba sits in the bottom-right with Tasks. Image
copied from https://mlr3.mlr-org.com.

mlr3. Line 2: Extra packages are loaded, mlr3extralearners is required for
the GBM learner and mlr3pipelines is required for the distribution composi-
tion. Lines 3-4: Kaplan-Meier and Cox PH learners are constructed with default
parameters. Lines 5-6: The GBM learner is wrapped in the distrcompositor

pipeline to transform its ranking prediction to a probabilistic prediction. Line
7: Learners are combined into a list for use in the benchmark function. Line
8: The pre-specified rats task is selected for the experiment. Line 9: Three-
fold cross-validation is specified. Line 10: The infrastructure for the experiment
is automatically determined by supplying the task(s), learners, and resampling
method. Line 11: Learners are resampled according to the chosen scheme and
benchmarked. Line 12: Predictions are aggregated over all folds and scored with
the IGS to provide a final comparison.

Listing 7 Example code for constructing, benchmarking, and evaluating survival
models.
1 > library(mlr3); library(mlr3proba)

2 > library(mlr3extralearners); library(mlr3pipelines)

3 > kaplan = lrn("surv.kaplan")

4 > cox = lrn("surv.coxph")

5 > gbm = ppl("distrcompositor", learner = lrn("surv.gbm"),

6 + estimator = "kaplan", form = "ph")

7 > learns = list(cox, kaplan, gbm)

8 > task = tsk("rats")

9 > resample = rsmp("cv", folds = 3)

10 > design = benchmark_grid(task, learns, resample)

11 > bm = benchmark(design)

12 > bm$aggregate(msr("surv.graf"))
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6.4.2. Related Software

There are an increasing number of machine learning packages across program-
ming languages, including caret [170], mlr [22], tidymodels [171], and scikit-
learn [236]. However, functionality for survival analysis has been mostly limited
to ‘classical’ statistical models with relatively few packages supporting a machine
learning framework.

R ships with the package survival [291], which supports left-,
interval-,and right-censoring, competing risks, time-dependent models, stratifica-
tion, and model evaluation. However the package is limited to classical statistical
models, with no support for machine learning and limited support for formal
comparison or non-linear models.

pec [217] implements no models itself but instead interfaces with many dif-
ferent survival packages to create survival probability predictions. The package’s
main focus is on model evaluation via prediction error curves (‘pec’s) with little
support for model building/training and predicting.

skpro [111] is a probabilistic supervised learning interface in Python. skpro
extends the scikit-learn interface to probabilistic models and appears to be
the only package (in any language) dedicated to domain-agnostic probabilistic
supervised learning. The interface provides an infrastructure for machine learning
based survival analysis with design choices influencing mlr3proba, but skpro
does not currently support survival models.

pysurvival [83] is another Python package, which implements classical and
machine learning survival analysis models. The package has the advantage of
being able to natively leverage neural network survival models, which are al-
most exclusively implemented in Python. Whilst not directly interfacing the
scikit-learn interface, the package introduces unified functions for model fitting,
predicting, and evaluation.

scikit-survival [235] builds directly on scikit-learn to implement a few sur-
vival models and measures in a machine learning framework. Unlike pysurvival,
no neural networks are included, thus the two packages complement each other
well.

6.4.3. Use-Cases and Requirements

The use-cases, requirements, and design principles of this package were primarily
dictated by mlr3, however there were a few that are important to mlr3proba
in its own right.

Use-Cases mlr3proba serves the following use-cases:

U1) Fitting and predicting survival models This is the first and foremost
use-case of the survival framework in the package. By making use of the
mlr3 train/predict methods, users can treat classical survival models just
like machine learning ones. In the example below: a Cox model and random
forest are constructed (Lines 1-2), a pre-specified task is requested (Line 3),
and the two models are trained and tested on different observations (Lines
4-7).
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1 > cox = lrn("surv.coxph")

2 > ranfor = lrn("surv.rfsrc")

3 > task = tsk("rats")

4 > train = sample(300, 150)

5 > test = setdiff(seq(300), train)

6 > cox$train(task, row_ids = train)$predict(task, row_ids = test)

7 > ranfor$train(task, row_ids = train)$predict(task, row_ids = test)

U2) Inspection of fitted survival models Whilst many machine learning
models are a ‘black-box’ and cannot be inspected, there are several in-
terpretable classical survival models, such as GLMs; inspecting these is
informative for exploration and prediction. Different packages in R have
different ways of inspecting fitted models, this is unified by the model field,
which is exemplified below.

1 > lrn("surv.coxph")$train(tsk("rats"))$model

U3) Tuning of machine leaning models Users can make use of mlr3tuning [180]
with any of the implemented survival models in order to tune and improve
the available ML models.

U4) Evaluation of survival models with transparent measures Whilst
several packages exist in R for the evaluation of survival models (section 6.4.2),
each has a different API that must be learnt and interfaced. This is stream-
lined with mlr3’s measure objects.

Requirements mlr3proba fulfils the following requirements:

R1) Part of the mlr3verse The primary requirement of mlr3proba is to fit
into the mlr3 ecosystem. This means that all classes should inherit from
classes in mlr3 where possible, documentation should be written in the
same manner, and paradox [181] should be used to define learner parameter
sets.

R2) Transparency in measures Derived from (U4), mlr3proba requires that
all models should be evaluated only by measures that have been tried and
tested. Slightly worse approximations are preferred if they are more trans-
parent in their functionality (and on the assumption they will be improved).
Transparency requires that all implemented measures are well-documented
with clear maths to define them.

R3) Transparency in compositions Several toolboxes implement
methods to compose distributions from predictions of linear predictors, how-
ever there is a lack of consistency in how these compositions are performed
and little-to-no user control or documentation. mlr3proba abstracts com-
position to separated functions in order to ensure that the user is always
clear what each package returns and how this can be transformed between
prediction types.
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R4) Transparency in return types This relates to (R3). Most packages im-
plement models with a predict function that returns a survival prediction,
however poor documentation means that it is often unclear what exactly
is predicted. Some return a linear predictor (e.g. survival::coxph), some
will return a full distribution (e.g. ranger::ranger), and some will return
a continuous ranking (e.g. survivalsvm::survivalsvm). However the docu-
mentation for each of these does not make clear: i) which is returned; ii) how
one can be derived from the other; and iii) how they should be interpreted.
mlr3proba requires that this distinction is made clear in documentation,
as well as how to derive each return type from one another, and how to
interpret them.

6.4.4. Overview to Functionality and API

Many of the methods and fields are implemented via the mlr3 package and thus
to avoid any overlap in writing, core methods and objects will not be discussed in
detail here, instead see the various documentation that are provided for mlr31.
Figure 39 provides a reference of the main classes in mlr3proba, with their mlr3
dependencies. The classes in the top row of the diagram all live in mlr3, all others
in mlr3proba. The classes ‘LearnerSurvX’ and ‘MeasureSurvX’ indicate the
implemented learners (table 19) and measures (table 20). Below is an overview
to the API specific to mlr3proba.

mlr3proba

Learner

LearnerSurv

LearnerSurvX

Measure

MeasureSurv

MeasureSurvX

Prediction

PredictionSurv

Task

TaskSurv

Figure 39: Simplified mlr3proba class diagram. The classes in the top row all live
in mlr3, the others live in mlr3proba. Abstract classes are in italics, concrete class
are in bold.

6.4.4.1. Task

In all mlr3 packages, the Task object is the central point of reference for all
measures, learners, and other classes. TaskSurv is constructed to initialize a
survival task.

1The mlr3book is a good place to start https://mlr3book.mlr-org.com/.

https://mlr3book.mlr-org.com/
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1 > TaskSurv$new(id, backend, time, event, time2,

2 + type = c("right","left","counting","interval","interval2","mstate"))

The survival task has three arguments that correspond to the ‘target’. These
are time, time2, and event, which are passed directly to a Surv object from
survival. time is a string pointing to the columns in the data, backend, which
identify the survival times, time2 is additionally used for interval censoring. event

is a string pointing to the column in the data with the censoring indicator. The
event argument corresponds to the type of censoring, the default is right censor-
ing. As of mlr3proba v0.2.2, no models are implemented that can handle left-
or interval-censoring, this is a general problem with survival models implemented
in R.

Tasks can either be constructed using the backend argument to supply the
data, constructed from pre-specified tasks in the mlr3 registry, or simulated;
each of the three is demonstrated below.

1 # Constructing a new task

2 > data("rats", package = "survival")

3 > TaskSurv$new(id = "rats", backend = rats, time = "time",

4 + event = "status", type = "right")

5 +

6 # Using 'tsk' for a pre-specified task

7 > tsk("lung")

8 +

9 # Using 'tgen' to simulate a task from the package `simsurv`

10 > tgen("simsurv")$generate(200)

Meta-analysis is automatically performed on tasks to identify useful proper-
ties.

1 > tsk("rats")

2 <TaskSurv:rats> (300 x 5)

3 * Target: time, status

4 * Properties: -

5 * Features (3):

6 - int (1): litter

7 - dbl (1): rx

8 - chr (1): sex

6.4.4.2. Learners

LearnerSurv All fields and methods of the learners in the package inherit from
the LearnerSurv class, which in turn inherits from Learner in mlr3. Survival
learners have their ‘task_type’ set to ‘surv’. Their ‘predict_type’ must be one
or more of: crank, lp, distr, response (see below). The code below demonstrates
three methods of initializing the same learner.
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1 > lrn("surv.coxph")

2 > LearnerSurvCoxPH$new()

3 > mlr_learners$get("surv.coxph")

Fit, Predict, Inspect Learners are trained, predicted, and inspected using
inherited methods from mlr3.

1 > task = tsk("rats")

2 > learn = lrn("surv.coxph")

3 # Train a model

4 > learn$train(task)

5 # In a real example, models would not be trained

6 # and tested on the same data.

7 > learn$predict(task)

8 # inspection is available for the fitted model and more meta-data

9 > learn$model

10 > learn$state

Return Types A key advantage of mlr3proba, is a clear distinction between
model prediction types. Survival models can be used to produce a variety of
different prediction types but implementation has historically not reflected this.
In other supervised learning fields this is not a problem as regression always
predicts a continuous value for the outcome, and classification either predicts
a category or a probability (the two can immediately be seen to be different).
However in survival analysis there are several different possible predictions that
could be made and without clear documentation, these can look very similar. For
example, if a user wanted to compare predictions from Cox PH and survival tree
models without mlr3proba, this would require the following steps: i) Train and
predict from the models using two separate packages; ii) identify that the model
predictions are not directly comparable; iii) use a third package to transform
the predictions into a compatible form (for example combining a relative risk
prediction with a baseline hazard estimation); iv) identify which measures can be
used to evaluate this form; and v) find the package that includes these measures
and potentially write functions to interface with the package.

In mlr3proba, this distinction is made clear by defining four distinct predic-
tion types: i) response, which returns the predicted survival time (expected time
until the event occurs); ii) lp, which returns a prediction for the linear predictor
of a linear model; iii) crank, a continuous ranking for comparing the relative risk
between observations in the test sample; iv) distr, a survival distribution imple-
mented via distr6, which includes functionality for evaluating the survival and
hazard function.

The crank, ‘continuous rank’, return type was introduced as part of this pack-
age and is non-standard beyond this, however it neatly ties together predictions
from multiple models. crank represents a relative risk, therefore a higher pre-
dicted value indicates that the individual is more likely to experience the event
than someone with a lower predicted value. All models return a relative risk
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either implicitly or explicitly. If a model predicts an abstract ranking (such as
surv.svm) then crank is this ranking, if the model predicts a linear predictor
then crank = lp, if a model returns a response then crank = response, or if the
model only returns distr then crank = -distr$mean(), the negative mean of the
predicted distribution. As a consequence, the crank is always returned and at a
minimum all models can be compared with discrimination measures. The choice
of imputation of crank by -distr$mean() is a natural default for a relative ranking
as it has a natural interpretation as a survival time prediction, note that users
can also override this with the crankcompositor pipeline (section 6.4.4.4).

One of the advantages of the crank return type is to provide a unified inter-
pretation of predicted linear predictors. By convention, fitted linear predictors
are usually coded such that higher values signify higher risk for PH models but
lower risk for all other model forms; this is seen in packages survival [291] and
mboost [132] amongst others. The crank return type in mlr3proba guarantees
the ‘higher value higher risk’ interpretation and as such users will know exactly
how to interpret these values, even if unfamiliar with the above convention.

This problem of return types is important as different types are not comparable
and historically this has not been successfully managed, leading to impractical
benchmark experiments. By defining these prediction types as different objects
in mlr3proba, incompatible benchmark experiments are avoided by internal val-
idation checks. By making use of mlr3pipelines [21], transformations between
prediction types can be made, with clear documentation and parameters that
ensure a simple interface for the user (section 6.4.4.4).

Implemented Learners 30+ learners are interfaced in mlr3proba 0.2.2, these
are shown, with their respective packages, in table 19. A few of these learners are
implemented directly in mlr3extralearners or survivalmodels [275] either to
improve performance or because no other implementation could be found in R.
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Table 19: Learners implemented in mlr3proba along with mlr3proba key and unique ID from table 5.

mlr3proba key1 ID/Name2 Package3

surv.akritasE Akritas Estimator survivalmodels [275]

surv.blackboostE GBM-COX/AFT/GEH/UNO mboost [132]

surv.cforestE RSCIFF partykit [129]

surv.coxboostE CoxBoost CoxBoost [20]

surv.coxphP Cox PH survival [291]

surv.coxtimeE Cox-Time survivalmodels

surv.ctreeE SDCIFT partykit

surv.cv coxboostE Cross-Validated CoxBoost CoxBoost

surv.cv glmnetL Cross-Validated Regularized GLM glmnet [87]

surv.deephitE DeepHit survivalmodels

surv.deepsurvE DeepSurv survivalmodels

surv.dnnE DNNSurv survivalmodels

surv.flexibleE Flexible Parametric Splines flexsurv [141]

surv.gamboostE GBM-COX/AFT/GEH/UNO mboost

surv.gbmE GBM-COX gbm [110]

surv.glmboostE GBM-COX/AFT/GEH/UNO mboost

surv.glmnetL Regularized GLM glmnet

surv.kaplanP Kaplan-Meier Estimator survival

Continued on next page...



6.4.
m
lr3p

rob
a:

M
ach

in
e
L
earn

in
g
S
u
rv
ival

A
n
aly

sis
in

R
241

Table 19: (continued)

mlr3proba key1 ID/Name2 Package3

surv.loghazE Nnet-Survival survivalmodels

surv.mboostE GBM-COX/AFT/GEH/UNO mboost

surv.nelsonE Nelson-Aalen Estimator survival

surv.obliqueRSFE Oblique Random Survival Forest obliqueRSF [143]

surv.parametricE Fully Parametric Survival Models survival

surv.pchazardE PC-Hazard survivalmodels

surv.penalizedE L1 and L2 Penalized GLMs penalized [101]

surv.rangerL RSDF-STAT ranger [325]

surv.rfsrcE RSDF-STAT randomForestSRC [139]

surv.rpartP RRT rpart [292]

surv.svmE SVCR/RANKSVMC/SSVMVB1/SSVMVB2 survivalsvm [84]

surv.xgboostL GBM-COX xgboost [45]

1. Key passed to lrn in order to construct the learner. Learners marked with ‘E’ are implemented in mlr3extralearners [280], with ‘L’ are implemented

in mlr3learners [183], and with ‘P ’ in mlr3proba.

2. Either ID from table 5 (if included) or name of the model. Slashes indicate that multiple models can be run with this learner.

3. Package in which the algorithm is implemented.
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6.4.4.3. Measures

MeasureSurv All fields and methods of the measures in the package inherit
from the MeasureSurv class, which in turn inherits from Measure in mlr3. Survival
measures have their ‘task_type’ set to ‘surv’. Measures can evaluate one of:
crank, lp, distr, and response. The code below demonstrates three methods of
initializing the same measure.

1 > msr("surv.logloss")

2 > MeasureSurvLogloss$new()

3 > mlr_measures$get("surv.logloss")

As all learners return crank, the default measure is Harrell’s Concordance
index [116].

1 > task = tsk("rats")

2 > pred = lrn("surv.coxph")$train(task)$predict(task)

3 > pred$score()

4 surv.harrellC

5 0.7780967

Alternatively, measures can be specified by passing the constructed measure
to one of the scoring methods.

1 > pred$score(msr("surv.intlogloss"))

2 surv.intlogloss

3 0.03045892

Some measures will have parameters that can be set in construction. For
example the time-points for which the integrated Graf score should be integrated
over can be provided via the times argument.

1 > # integrated over times 0-60

2 > meas1 = msr("surv.graf", times = 0:60, id = "Graf60")

3 > # integrated over all times

4 > meas2 = msr("surv.graf", id = "GrafAll")

5 > pred$score(c(meas1, meas2))

6 Graf60 GrafAll

7 0.008550876 0.045674017

Implemented Measures Over 20 measures are implemented in mlr3proba
0.2.2, either via survAUC [240] or implemented directly in mlr3proba, these
are listed in table 20.

To maximise user-control over how measures are calculated, all integrated
scores implemented in mlr3proba have a method argument to determine how the
approximation to integration should be calculated. Currently two methods are
implemented, these are to either approximate integration by taking the sample
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Table 20: Measures implemented in mlr3proba.

ID1 Measure Package2

surv.calib alpha∗ van Houwelingen’s Alpha mlr3proba
surv.calib beta∗ van Houwelingen’s Beta mlr3proba

surv.chambless auc Chambless and Diao’s AUC survAUC
surv.cindex† Concordance Indices mlr3proba
surv.graf∗ Integrated Graf Score mlr3proba

surv.hungAUC Hung and Chiang’s AUC survAUC
surv.intlogloss∗ Integrated Log Loss mlr3proba

surv.logloss∗ Log Loss mlr3proba
surv.mae∗ Mean Absolute Error mlr3proba
surv.mse∗ Mean Square Error mlr3proba

surv.nagelk r2 Nagelkerke’s R2 survAUC
surv.oquigley r2 O’Quigley, Xu, and Stare’s R2 survAUC

surv.rmse∗ Root Mean Square Error mlr3proba
surv.schmid Schmid Absolute Score mlr3proba

surv.song auc Song and Zhou’s AUC survAUC
surv.song tnr Song and Zhou’s TNR survAUC
surv.song tpr Song and Zhou’s TPR survAUC
surv.uno auc Uno’s AUC survAUC
surv.uno tnr Uno’s TNR survAUC
surv.uno tpr Uno’s TPR survAUC
surv.xu r2 Xu and O’Quigley’s R2 survAUC

1. Key passed to msr to construct the measure.
2. Package in which the measure is implemented.
∗ – These measures have an additional se argument that can be used to request the standard
error is returned.
† – This is six different concordance measures, which can be specified with the
weight_meth argument.

mean over all time-points, or to take the mean weighted by the difference in
time-points. Mathematically, let N be the number of observations and M be the
number of time-points, then let L be a matrix of losses, L = Li,j, i = 1, ..., N, j =
1, ...,M . Both methods first take the sample mean over all N observations

Lj =
1

N

N∑
i=1

Li,j, j = 1, ...,M (6.4.1)

Method 1 calculates the integrated score via

1

M

M∑
j=1

Lj (6.4.2)



244 6. Software Packages

Whereas for Method 2,

M∑
j=2

(Tj − Tj−1)(Lj + Lj−1)

2(TM − T1)
(6.4.3)

where T1, ..., TM are the unique time-points.

Neither of these is necessarily ‘better’ than the other and so the method argu-
ment provides the freedom to choose. The second method is the default to be
consistent with other packages.

1 > meas1 = msr("surv.graf", method = 1, id = "Graf.M1")

2 > meas2 = msr("surv.graf",method = 2, id = "Graf.M2")

3 > learn$score(c(meas1, meas2))

4 Graf.M1 Graf.M2

5 0.06495095 0.04567402

Standard Errors For the measures directly implemented in the package, stan-
dard errors can also be computed. For non-integrated measures, or measures that
are only requested for a single time-point, the standard error can be approximated
with

se(L) =
sd(L)√
N

(6.4.4)

where L = L1, ..., LN is the loss-vector over all N observations and sd(L) is the
sample standard deviation of L.

However for measures that are integrated over time, this approximation can-
not be used as the loss between time-points is not-independent and the above
estimator would therefore be ‘over-confident’. Instead the standard error is ap-
proximated with √∑M

i=1

∑M
j=1 Σi,j

NM2
(6.4.5)

where Σi,j, i = 1, ...,M, j = 1, ...,M is the sample covariance matrix over the M
time-points.

Note that this approximation is suitable for losses generated by discrete sur-
vival models, however it may be less accurate for continuous models. Future
updates will see this improved.

Standard errors of measures can be requested with the se argument:

1 > m = msr("surv.graf")

2 > se = msr("surv.graf", se = TRUE)

3 > learn$score(c(m, se))

4 surv.graf surv.graf_se

5 0.04567402 0.01024113
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Future updates will simplify this process by returning both the score and its
standard error together when se = TRUE, and not requiring two separate objects.

6.4.4.4. Compositors and Pipelines

Almost all (not (R4)) the compositors and reduction workflows discussed in
chapter 5 are implemented in mlr3proba with PipeOp and Graph objects from
mlr3pipelines. Full details and tutorials for mlr3pipelines are provided in the
package website1.

Of particular note are the distrcompositor (section 5.4.1) and the
crankcompositor (section 5.4.3). These compositors are implemented as PipeOp

objects from mlr3pipelines however pipeline implementations are also provided
for simpler construction. The example below demonstrates manually creating
a composition pipeline, and then making use of the ppl pipeline constructor.
Whilst the first method is more coding-heavy, it is required for manual creation
of complex graphs.

1 > library(mlr3); library(mlr3learners); library(mlr3pipelines)

2 +

3 # manual creation

4 > Graph$new()$

5 + add_pipeop(po("compose_distr", form = "ph"))$

6 + add_pipeop(po("learner", lrn("surv.kaplan")))$

7 + add_pipeop(po("learner", lrn("surv.glmnet")))$

8 + add_edge("surv.kaplan", "compose_distr", dst_channel = "base")$

9 + add_edge("surv.glmnet", "compose_distr", dst_channel = "pred")

10 # ppl pipeline

11 > ppl("distrcompositor", lrn("surv.glmnet"), form = "ph",

12 + estimator = "kaplan")

With either method, the resultant learner is now capable of predicting a dis-
tribution.

1 > task = tgen("simsurv")$generate(20)

2 > learn = ppl("distrcompositor", lrn("surv.glmnet"), form = "ph",

3 + estimator = "kaplan")

4 > learn$train(task)

5 > learn$predict(task)[[1]]$distr

6 WeightDisc1 WeightDisc2 ... WeightDisc19 WeightDisc20

The example below demonstrates the crankcompositor which allows compo-
sition from a distr prediction to a crank or response prediction, which is partic-
ularly important if predicting the deterministic time until event.

1https://mlr3pipelines.mlr-org.com/articles/introduction.html

https://mlr3pipelines.mlr-org.com/articles/introduction.html
https://mlr3pipelines.mlr-org.com/articles/introduction.html
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1 > learn = ppl("crankcompositor", lrn("surv.kaplan"), response = TRUE)

2 > learn$train(tgen("simsurv")$generate(1000))

3 > p = learn$predict(tgen("simsurv")$generate(100))[[1]]

4 > p$score(c(msr("surv.rmse"), msr("surv.rmse", se = TRUE)))

5 surv.rmse surv.rmse_se

6 1.65823788 0.08313664

6.4.5. Conclusion and Availability

mlr3proba extends the mlr3 family of packages to survival analysis, with a long-
term goal of being a complete probabilistic supervised learning toolbox that in-
cludes density estimation and probabilistic regression. Future updates will there-
fore be primarily focused on finalising the designs of the density and probabilistic
regression tasks, before implementing respective learners and measures.

mlr3proba is released under an LGPL-3 licence on GitHub and CRAN. Ex-
tended documentation, tutorials, and examples are available on the project web-
site1. Extra survival learners are available from mlr3learners and
mlr3extralearners. Code quality is monitored and maintained by an extensive
suite of unit tests with GitHub Actions on multiple operating systems.

6.5. Conclusions

This chapter presented R packages that pull together all the work in this thesis
in order to improve accessibility, transparency, and performance in survival mod-
elling.

mlr3proba implements many of the models and measures discussed in chapters
3 and 4, and almost all the compositions and reductions described in chapter 5.
The survival analysis framework in mlr3proba is stable and has many imple-
mented learners, measures, and pipelines. The density estimation framework
is still maturing and whilst many models have been implemented, future work
will add further measures as well as updating the prediction objects. Probabilis-
tic regression is currently in development with the current framework limited to
interfacing deterministic regression models and transforming them to probabilis-
tic predictions via compositors. Future work will include adding functionality
for interfacing Bayesian simulation packages (e.g. JAGS and Stan), implement-
ing analytical Bayesian models (e.g. Bayesian linear regression), and extending
the task to interval regression. Designs for this will first look at the work of
skpro [111].

Software development is never complete and all three packages will require con-
stant maintenance and optimisation. distr6 optimisation will focus on improving
numerical results as well as run-time performance. Its current strengths lie in a
C++ implementation of many distributions, though this does not extend to com-
posite distributions and future updates will prioritise these shortcomings. set6

1https://mlr3proba.mlr-org.com/

https://github.com/mlr-org/mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/
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is an important dependency of distr6 and mlr3proba and as such will continue
to be a vital part of future developments. The various benchmark experiments
in section 6.2 demonstrate that whilst set6 outperforms sets in construction, it
is slower in operations, and is significantly slower than base by several orders
of magnitude. set6 will be optimized to prevent ‘bottlenecks’ in downstream
dependencies.

The power and performance of these three packages is demonstrated in the next
chapter, in which mlr3proba is utilised to run a large-scale benchmark experi-
ment that had previously not been possible (or at least too difficult with smaller
packages).



Chapter 7

A Benchmark Experiment of

Survival Models

This thesis culminates in two benchmark experiments comparing the performance
of a large number of classical and machine learning survival models (chapter 3)
across a comprehensive range of measures (chapter 4) using mlr3proba (chap-
ter 6). Whilst benchmark experiments for survival analysis have been undertaken
before, there has been a well-documented lack of large-scale experiments covering
a large range of survival models (section 7.1.2) on many datasets. Here ‘large-
scale’ refers to a large number of models, datasets, and measures. This chapter
includes two experiments. The first studies survival models on 30 real-world
datasets in order to make generalisations about performance of models on real-
world data in the right-censoring setting. The second investigates survival model
performance on 36 simulated datasets in order to make generalisations about
model performance given different outcome conditions. The design of the exper-
iment is first described in section 7.2 and then results are presented (section 7.3)
and discussed (section 7.4).

7.1. Introduction

This chapter introduces what is believed to be (section 7.1.2) the first large-scale
benchmark study for right-censored, non-competing risks survival analysis. The
term ‘large-scale’ refers to the comprehensive nature of the experiment, which
includes 30 real-world datasets and 36 simulated datasets, thus allowing more
robust conclusions about model performance than previous studies (section 7.1.2).
This chapter will use the term ‘large-scale’ to refer to experiments that include at
least 15 datasets, 5 models, and 2 measures. The primary motivation to determine
if a study is ‘large-scale’ is in ensuring that conclusions can be generalised to
datasets that are representative of those included in the study [123].

As this is the first experiment of its kind, not only does it provide a com-
prehensive overview of the performance of different survival models, but it also
provides researchers with easy access to survival datasets for future studies and
sets a performance baseline for future experiments.

248
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Notation and Terminology Relevant notation introduced in chapter 2 is re-
capped for use in this chapter: the generative template for the survival setting is
given by (X,T,∆, Y, C) t.v.i. X×T×{0, 1}×T×T where X ⊆ Rp and T ⊆ R≥0,
where C, Y are unobservable, T := min{Y,C}, and ∆ = I(Y = T ). Random

survival data is given by (Xi, Ti,∆i, Yi, Ci)
i.i.d.∼ (X,T,∆, Y, C).

7.1.1. Research Questions

This study has two primary research questions:

RQ1) What survival model or models perform best on right-censored time-to-
event datasets without competing risks?

RQ2) How does performance of survival models vary with different simulated
time-to-event dataset conditions including censoring proportion, underlying
survival time distributions, and type of censoring?

Determining if one model is ‘better’ than another for (RQ1) is answered by
generalising model performance over 30 representative real-world datasets. Simi-
larly for (RQ2) model performance is generalised over 36 simulated datasets cov-
ering a range of values in the conditions of interest. The conditions of interest for
(RQ2) were determined from reviewing the literature presented throughout this
thesis, in particular papers that included simulation experiments, and identifying
which criteria were most frequently discussed with respect to model performance.

As well as answering these questions, this study provides future researchers
with a public repository that contains the code for selecting and tuning models,1

as well as loading the real-world datasets and simulating the others. Finally,
successfully answering these questions additionally demonstrates that large-scale
survival experiments can be run off-shelf with open-source software, which was
not previously possible.

7.1.2. Literature Review

The experiments described in this paper provide a neutral comparison (sec-
tion 7.2.1) of both classical and machine learning survival models. This exper-
iment is called ‘large-scale’ due to the number and range of datasets (30 real
and 36 simulated), models (24) and measures (7); it is believed this is the first
experiment of its kind that includes a comprehensive range of these components
and the literature review below supports this claim.

Historically, surveys, reviews, and analytical comparisons of survival models
can be grouped into: i) comparison of models with limited scope (section 7.1.2.1);
and ii) qualitative surveys without benchmark experiments (section 7.1.2.2).

7.1.2.1. Comparison of Survival Models

Papers that compare survival models are further separated into comparisons:
i) of multiple ML and classical model classes; ii) on high-dimensional data; iii) of

1https://github.com/RaphaelS1/thesis_supplementary

https://github.com/RaphaelS1/thesis_supplementary
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‘classical’ models only; and iv) of one novel model (or class) to a single CPH or
AFT baseline. Whilst no specific number of features can be provided to determine
if a dataset is high-dimensional, this review conservatively terms a dataset ‘high-
dimensional’ if the number of features exceeds the number of observations.

Comparisons of ML and Classical Models The experiments run in this
chapter fall into this category. Only one prior experiment could be found that
benchmarked more than one ML model class on low-dimensional data. Though
the scope is still limited to a few model classes and only three datasets.

Kattan (2003) [154] benchmarked tree-based models, ANNs and Cox models
with Harrell’s C-index across three datasets with varying censoring proportions.
The models are compared for significant differences by repeating the experiments
many (up to 50) times with different seeds thus allowing for different hyper-
parameter configurations and folds in cross-validation. Boxplots across all repli-
cations indicate no machine learning model outperformed the Cox PH.

Comparisons on High-Dimensional Data Herrmann et al. (2020) [123] per-
formed a large-scale benchmark experiment of survival models on multi-omics
high-dimensional (60,000+ variables) data. Models fall into the following groups:
penalized regression; boosting; and random forests. Comparisons are made with
Uno’s C and the IGS. The IGS for all models overlapped with the Kaplan-Meier
baseline though all C indices were significantly higher than the baseline – however
it is not stated how the standard errors for the confidence intervals were derived
and nor is it stated in the paper if multiple testing correction is applied.

Spooner et al. (2020) [283] also compared machine learning models on high-
dimensional data. In this study GBMs, RSFs, Cox PH, and some extensions to
the Cox PH were compared. Models were evaluated by Harrell’s C only. The
results indicated that all models outperformed the Cox PH when no additional
feature selection was used but that there were no significant differences when fea-
ture selection was applied to the Cox model. There were few significant statistical
differences between models.

Comparisons of Classical Models Moghimi-dehkordi et al. (2008) [218] com-
pare Cox PH to parametric survival models with various distributions. Out-of-
sample measures for comparison are not provided though the AIC produced by
the Cox PH is far higher (and therefore inferior) than those of the parametric
models. Model inspection demonstrated that all models provided similar (non-
significantly different) confidence intervals for hazard ratios.

Georgousopoulou et al. (2015) [97] compared the Cox PH to a Weibull and Ex-
ponential parametric model. Again no out-of-sample measures were utilised, mod-
els were compared by the Cox-Snell residuals and the BIC. Similarly to Moghimi-
dehkordi et al., hazard ratios produced from all three models were nearly identical.
The authors claim the Cox PH is inferior to the parametric models though only
graphical comparisons are included.

Zare et al. (2015) [330] provide another comparison of the Cox PH to AFT
models, utilising Cox-Snell residuals and AIC as their measures of comparison.
Similarly to the previous studies the Cox model has the highest AIC though
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the plotted Cox-Snell residuals are very similar. The authors acknowledge no
significant differences between the model classes and instead conclude that AFT
is a useful and more interpretable alternative. No significant differences were
found between the different AFT parameterisations.

Dirick et al. (2017) [70] make use of a financial setting to compare the Cox
PH, AFT, flexible Cox models with splines modelling the hazard, and mixture
cure models. The authors compare the models using a time-dependent AUC,
the MSE, and the MAE. Survival times are generated from the Cox PH with a
deterministic composition using quantiles chosen to minimise the MSE and MAE,
it is not clear if this is performed in an unbiased nested resampling manner or
after predictions are made. By averaging the ranking of model performance the
authors conclude that Cox PH with penalized splines outperformed the other
models with respect to the chosen metrics.

Habibi et al. (2018) [112] performed another experiment on PH and AFT
models. Models were again compared exclusively by the AIC with the PH hav-
ing the highest result and log-normal AFT the lowest; differences between AFT
models were non-significant. Confidence intervals for hazard ratios were similar
(non-significantly different) for all models.

Comparisons of a Novel Model Class Luxhoj and Shyur (1997) [204] bench-
marked neural networks against the Cox PH in the engineering field of reliability
analysis. The baseline hazard of the Cox model is modelled by splines with a
single knot. The models are compared using the mean squared error on a valida-
tion set of sample size 40, of these 40 there are only 9 unique failure times that
are used for model testing. Insufficient information is provided to determine the
architecture or training procedure of the neural networks compared. This review
suffers from (RM2) (section 5.3.3) which here refers to the Cox model being used
for time-to-event predictions without indicating how these predictions were com-
posed. Moreover the MSE difference between the Cox and ANN was 0.003; on a
utilised test set of only nine observations, this is highly unlikely to be a significant
difference.

Ohno-Machado (1997) [233] also compared the Cox PH to ANNs. Several Cox
models were fit with automated variable selection by backwards elimination. For
each, survival curves were predicted and for a given patient they were considered
dead at a particular time point if the predicted survival curve at the time is less
than the ‘arbitrary’ [233] probability of 0.5. The Cox models were compared
to a single hidden layer neural network, fit with backpropagation. This model
made probabilistic predictions of death in four time-intervals that were within
the predicted time of the Cox models. The probabilistic predictions from both
models were compared with the AUC and its corresponding ROC. No significant
differences in performance were found between the two models.

Puddu and Menotti (2012) [241] again compared the Cox PH to ANNs how-
ever in this setting the outcome was 45-year all-cause mortality, which is a clas-
sification outcome. Therefore this also suffers from (RM2) (section 5.3.3) as a
classification neural network is being compared to a survival model on a classifi-
cation task. Despite this, the authors found no statistical difference between the
compared models.

Goli et al. (2016) [102] provide a comprehensive comparison of support vec-
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tor machine models with the Cox PH as a reference class (Kaplan-Meier is not
included). Models are compared against the C-index and log-rank test, though it
is unstated which C-index is utilised. No model outperformed the Cox PH with
respect to the chosen C-index.

7.1.2.2. Surveys of Survival Models

The final class of papers do not perform analytical benchmark experiments but
instead survey/review available survival models (including ML). These are there-
fore only discussed very briefly.

Ohno-Machado (2001) [231] provide an overview to models available for sur-
vival analysis from non-parametric estimators and classical models to neural net-
works. The review highlights useful applications of the models and their re-
spective limitations. In particular their Table 1 clearly states advantages and
disadvantages of Cox models versus ANNs.

Patel et al. (2006) [234] compare proportional hazards and accelerated failure
time models. This comparison is primarily theoretical and based on model prop-
erties, no analytical comparison with measures is provided though comparisons
of predicted median survival times are compared to those from a Kaplan-Meier
estimator. The authors conclude that AFT models should be considered more
often due to simpler interpretation.

Wang et al. (2017) [317] provide a review of survival analysis models and
measures that is strongly recommended here as a precise and comprehensive
introduction to the field of machine learning in survival analysis. The authors
provide strong arguments for comparing classical models against one another,
though this is not extended to the machine learning setting. More mathematical
detail is provided to the classical setting however a clear and detailed overview
is still provided for machine learning models. Some attention is also given to the
more complex cases of competing risks and multiple events.

Lee and Lim (2019) [193] provide a short but concise overview to survival
analysis models with an emphasis on genetic data and implementation in R. Their
review covers classical models, penalization, and many machine learning models.
They provide a clear, practical illustration (but not full benchmark experiment)
comparing the models on a real dataset against Harrell’s C. No model outperforms
the Cox PH.

7.2. Benchmark Experiments

7.2.1. Study Design

The experiments in this study are designed to assess the status quo of survival
models, both machine learning and classical (chapter 3). In order to achieve this
objective, this study aims to be a ‘neutral comparison study’ [28]. Following the
guidelines put forward by Boulesteix et al.:

Focus on model comparison The focus of this study is on model comparison
and not examining a novel model. Therefore the novel models suggested in this
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thesis (chapter 3), as well as the reductions and compositions (chapter 5) are not
included in these experiments.

The author is neutral The author has no involvement in the development of
any of the compared models, with the exception of providing an R interface for the
ANNs. This interface does not affect neutrality as the underlying implementation
is independent of the author and there is no personal gain in these models being
found superior (no papers published for the survivalmodels [275] package in
which these models are implemented).

Measures, methods and data are chosen in a rational way Details of
chosen methods, models, and evaluation measures are provided in full detail in the
next three sub-sections. The study is designed to assess the status quo, which does
not include novel models, methods, or measures. Therefore, common measures
of evaluation are utilised, despite the flaws identified in chapter 4; this allows
comparison to previous studies. Given these flaws, extra care is taken in drawing
conclusions and a full range of evaluation measures is provided. Limitations in
the experiments (section 7.4.3), which are primarily due to resource limitations,
mean that methods such as tuning, are constrained by computational power.
This still results in a ‘rational’ selection of methods as the study mimics real-
world settings that have similar constraints on computing power. The inclusion
criteria for real datasets were: datasets in R that include at least two features,
100 observations, a right-censoring indicator, and a survival time. The first 30
datasets to select this criteria, that were found by online searches, were selected
for analysis. No quota was specified to obtain a certain number of datasets
with different censoring proportions, instead the random search was assumed to
yield enough variation in proportion of censoring and this was confirmed once all
datasets were selected. Careful selection of these datasets allows conclusions to be
drawn on (RQ1) (section 7.1.1), namely generalisation of model performance to
right-censored time-to-event datasets. For the 36 simulated datasets, a group of
conditions was identified by reviewing previous studies and real-world datasets.
The range of simulations allows conclusions to be drawn on how models may
perform on different right-censored time-to-event datasets.

The present limitations (section 7.4.3) mean that this study serves best as a
pilot study. Conclusions are limited to understanding how these models compare
in a real-world setting limited by computational resources; therefore models that
do not require extensive tuning may be expected to perform better.

7.2.2. Implementation and Accessibility

Platform All experiments were conducted on UCL’s ‘Myriad’ high-performance
cluster [221] with multicore parallelisation via future v1.20.1 [14].

Reproducibility and Accessibility For generation of simulated data and
running of experiments, L’Ecuyer’s random number generator [190] was utilised
to ensure reproducibility of parallelised code. All code required to run the exper-
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iments, as well as the results, are freely available in a public GitHub repository1.
Software, packages, and version numbers that were utilised to run the code are
listed below.

Packages All code is written and implemented in R v4.0.2 [245]. Models and
measures are implemented in mlr3proba v0.2.4.9000 [281], tuning is imple-
mented in mlr3tuning v0.2.0 [180], benchmark functionality is implemented in
mlr3 v0.8.0.9000 [182], and compositions are implemented through mlr3pipelines
v0.2.1.9000 [21]. Helper functions are made use of from mlr3misc v0.5.0 [179],
paradox v0.5.0.9000 [181], checkmate v2.0.0 [178], and survival v3.2.3 [291].
Python datasets and models are interfaced via reticulate v1.16 [301]. Simula-
tions utilise distr6 v1.4.7 [277]. The packages and versions for the tested models
are given in table 21, all measures are directly implemented in mlr3proba.

7.2.3. Methods

Subsampling In order for the models to be successfully trained, very large
datasets had to be subsampled. After prior exploration, any dataset with over
4000 observations was sampled uniformly at random without replacement to a
maximum of 4000 observations. The cluster required all jobs to run within 48
hours, in order to achieve this jobs were first split by dataset and then if these were
not able to complete in time, then by model class. When experiments by model
class took longer than 48 hours then the dataset was reduced by 500 observations
at a time until the job could finish within the allotted period. Subsampling the
dataset is considered to be part of a model’s pipeline (and therefore related to
model performance) as the requirement to subsample is a disadvantage of some of
the more complex models (classical models never required further subsampling).

Resampling For the real datasets, K-fold cross-validation (section 2.4.1) is per-
formed with five folds except when this leads to folds of less than 30 observations,
in this case the number of folds is decreased until a minimum number of 30 ob-
servations is reached for each fold. For simulated datasets, models are trained on
1,000 draws from the chosen data generating process and subsequently tested on
another 1,000 draws from the same process.

Tuning For learners with 60 or less possible configurations, tuning (section 2.4.1)
is performed over all possible combinations by grid search; for learners with more
than 60 configurations, random search is employed with 60 iterations [16]. In both
experiments, three fold nested cross-validation is performed for model tuning.

Prediction Types mlr3proba compositors are utilised in order for models
to be compared on their predictive ability for deterministic, ranking, and prob-
abilistic prediction types. Where models only predict a probabilistic prediction,
the response and crank prediction types are estimated as the mean and nega-
tive mean of the predicted distribution (section 5.4.3) respectively. When models
predict only crank or lp then the prediction distribution is composed with a

1https://github.com/RaphaelS1/thesis_supplementary

https://github.com/RaphaelS1/thesis_supplementary
https://github.com/RaphaelS1/thesis_supplementary
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Kaplan-Meier baseline and a PH model form, chosen as this is a common model
assumption (section 5.4.1).

Pre-Processing Pre-processing is applied only when required by models. This
may include standardization of covariates to unit variance and zero mean, and/or
treatment encoding via the model.matrix function. Pre-processing data is con-
sidered to be part of the model’s pipeline (and therefore related to model perfor-
mance). Pre-processing is performed with mlr3pipelines. Appendix G lists the
pre-processing requirements of all models.

p-values To avoid ‘p-hacking’ and reporting of erroneous significant results,
multiple-testing correction is applied twice to all test results. In the first instance,
Benjamini-Hochberg correction is applied to all post-hoc methods that do not
already correct for multiple-testing. Then after running and reporting the results
of all tests, a conservative Bonferonni correction is applied by multiplying all
reported p-values by the total number of reported tests (i.e. tests relating directly
to the results of interest). After correction, a significant result is taken to be one
in which (adjusted) p ≤ 0.05.

7.2.4. Models and Configurations

The models compared in this experiment were chosen as a result of the literature
review and survey in chapter 3. Table 21 lists all the compared models, along
with their software, version numbers, and prediction types. The horizontal lines
separate the models into different groups (chapter 3): classical, random survival
forests (RSFs), gradient boosting machines (GBMs), support vector machines
(SVMs), and artificial neural networks (ANNs).

The Kaplan-Meier and Nelson-Aalen models are treated as unconditional
baselines (section 3.1) and the Akritas estimator as a conditional baseline. Note
that in general the Kaplan-Meier and Nelson-Aalen will give very similar (if not
identical) results and the Akritas estimator may also perform similarly (sec-
tion 3.1). Appendix G lists the models’ hyper-parameter and pre-processing
configurations.

7.2.5. Performance Evaluation

Evaluation Measures The chosen range of measures are those suggested in
section 4.7, which are summarised in table 22. Models are optimised with respect
to Harrell’s C. Houwelingen’s α, which can be arbitrarily large, is upper-truncated
at 10 (no primary conclusions are drawn from this measure).

Evaluation of Real Data Experiments Following Demšar [67], Friedman
rank sum tests are initially performed for all measures, where the ‘groups’ are the
models and the ‘blocks’ are the (independent) datasets. The corresponding post-
hoc (multiple-testing corrected) Friedman-Nemenyi tests are conducted as critical
difference diagrams if the global tests are significant. Post-hoc tests are restricted
only to Uno’s C and IGS; other results are reported to support findings but are not



Table 21: Models for testing with packages and versions.

Model Name1 Learner2 Package3 distr4 crank5 lp6 response7

Kaplan Meier (KM) kaplanP survival v3.2.3 3 mean 5 mean

Nelson Aalen (Nel) nelson survival v3.2.3 3 mean 5 mean

Akritas Estimator (AE) akritas survivalmodels v0.1.0 3 mean 5 mean

Cox PH (CPH) coxphP survival v3.2.3 3 η 3 mean

CV Regularized Cox PH (GLM) cv glmnetL glmnet v4.0.2 PH η 3 mean

Penalized (Pen) penalized penalized v0.9.51 3 mean 5 mean

Parametric (Par) parametric survival v3.2.3 3 η 3 mean

Flexible Splines (Flex) flexible flexsurv v1.1.1 3 η 3 mean

RSDF-STAT (RFB/RFL)∗∗ rfsrc randomForestSRC v2.9.3 3 mean 5 mean

RSDF-STAT (RFC) rangerL ranger v0.12.1 3 mean 5 mean

RSCIFF (RFCIF) cforest partykit v1.2.9 3 mean 5 mean

RRT∗ rpartP rpart v4.1.15 3 mean 5 mean

GBM∗∗∗ (GBC/GBG/GBU) mboost mboost v.2.9.3 3 η 3 mean

CoxBoost (COXB) cv coxboost CoxBoost v1.4 3 η 3 mean

SSVM-Hybrid (SVM) svm survivalsvm v0.0.5 PH 3 5 3

Cox-Time (CoxT) coxtime survivalmodels v0.1.0 3 mean 5 mean

DeepHit (DH) deephit survivalmodels v0.1.0 -3 mean 5 mean

DeepSurv (DS) deepsurv survivalmodels v0.1.0 3 mean 5 mean

Continued on next page...



7.2.
B
en
ch
m
ark

E
x
p
erim

en
ts

257

Table 21: (continued)

Model Name1 Learner2 Package3 distr4 crank5 lp6 response7

Nnet-Survival (LH) loghaz survivalmodels v0.1.0 3 mean 5 mean

PC-Hazard (PCH) pchazard survivalmodels v0.1.0 3 mean 5 mean

DNNSurv (DNN) dnn survivalmodels v0.1.0 3 mean 5 mean

1. Name of algorithm given in chapter 3. Horizontal lines separate model classes: classical, RSFs, GBMs, SSVMs, ANNs. Model abbreviations in parentheses

are used in results. Abbreviations in parantheses are used in plots but the unique model ID from chapter 3 is used in text.

2. Learner ID in mlr3. All learners are implemented in mlr3extralearners v0.1.1.9000 unless indicated with a P for mlr3proba v0.2.4.9000 or an L for

mlr3learners v0.4.2.9000.

3. Package in which the learner is implemented with version used in experiment.

4. distr predict type in mlr3proba is the probabilistic prediction. A check (3) represents the distribution being predicted directly by the package. ‘PH’

represents distribution composition with PH form and Kaplan-Meier baseline.

5. crank predict type in mlr3proba is the continuous ranking prediction. A check (3) represents the ranking being predicted directly by the package.

‘η’ represents the ranking being identical to the predicted linear predictor. Finally ‘mean’ represents probabilistic to deterministic composition with the

distribution mean.

6. lp predict type in mlr3proba is the linear predictor prediction. A check (3) represents the linear predictor being predicted directly by the package

whereas a cross (5) means the prediction is not available (and cannot be composed).

7. response predict type in mlr3proba is the deterministic survival time prediction. A check (3) represents the survival time being predicted directly by

the package. ‘mean’ represents probabilistic to deterministic composition with the distribution mean.

∗ – Ideally this would be bagged to Relative Risk Forests but current implementation does not allow for this.

∗∗ – The RSDF-STAT is included twice once for a Brier splitting rule and one for log-rank, Both utilise the rfsrc learner (with different hyper-parameters).

∗ ∗ ∗ – The GBM model is included three times separately as GBM-GEH (GBG), GBM-UNO (GBU), and GBM-COX (GBC).
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used to form conclusions. All analysis is conducted with mlr3benchmark [279]
v0.1.0.

Evaluation of Simulated Data Experiments As datasets are non-independent,
analysis is performed with ANOVA tests where the dependent variables are the
measures and the blocks are the conditions of interest. The initial analysis fits two
ANOVA models, one for Uno’s C and one for IGS, to test the different conditions
across all models and measures. Post-hoc Tukey HSD’s are run on significant
effects and interactions. A secondary analysis is conducted regressing one of the
two measures on the model type (not model group), this is more exploratory and
does not inform the final results (the real experiments are for drawing conclusions
about overall model performance). Results for other measures are reported in the
appendices.

Table 22: Measures for evaluating models in benchmark experiments.

Measure Type1 Evaluates2

van Houwelingen’s α Calibration Ranking
Harrell’s C Discrimination Ranking

Uno’s C Discrimination Ranking
Integrated Graf Score Scoring Rule Distribution
Integrated Log Loss Scoring Rule Distribution

MAE Distance Survival Time
RMSE Distance Survival Time

1. Type of measure.
2. Which survival prediction type the measure evaluates.

7.2.6. Datasets

In total 66 datasets are used in these experiments, 30 real datasets and 36 sim-
ulated ones. These numbers are chosen in order to provide generalisations to
future datasets via asymptotic approximations. The real datasets reflect real-
life scenarios and allow conclusions to be drawn about the models compared to
one another, for example to determine which models perform well or poorly on
right-censored datasets. The simulated datasets allow the models to be tested
against different conditions that they may experience in reality, including differ-
ent censoring proportions and types, and different survival distributions. As this
thesis is focused on right-censoring, all datasets are either simulated, collected,
or modified to reflect this. Similarly, this paper is not concerned with a model’s
abilities to handle or impute missing covariate data, hence any missing data is
removed from real-world datasets. This could potentially introduce bias if miss-
ingness is dependent on the feature or outcome, however as the end-goal is model
comparison and not interpretability, this should not affect the conclusions.

7.2.6.1. Real Datasets

Real datasets are taken from packages in R and Python. All datasets model the
time until an event (not necessarily guaranteed) takes place with possible right-
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censoring. Datasets were chosen so that each has a minimum of 100 observations
and two covariates. High-level summaries of the datasets in terms of number of
observations and covariates (after any modification) are given in table 23 along
with citations detailing the complete dataset details. Minor changes are made to
variable names, recoding of factor levels, and deletion of non-informative covari-
ates (e.g. id)1. Complete case analysis is performed to remove observations with
any missing data. Observations are deleted if their event time is equal to zero
(this was very rare). A few datasets had their outcome altered, these include:

• diabetic – Original: Visual loss in both eyes. Modified: Visual loss in the
left eye only. This prevents non i.i.d. observations in the dataset.

• pbc – Original: Death, transplant, or censored. Modified: Death or censored
(including informative censoring due to transplant).

• transplant – Original: Death, transplant, censored, withdrawn. Modified:
Death or censored (including informative censoring due to transplant or
withdrawal).

• melanoma – Original: Death from melanoma, death from other causes, cen-
sored. Modified: Death by melanoma or censored (including informative
censoring due to death by other causes).

• prostateSurvival – Original: Death from prostate cancer, death from other
causes, or censored. Modified: Death by prostate cancer or censored (in-
cluding informative censoring due to death by other causes).

7.2.6.2. Simulated Datasets

Simulated datasets follow closely the recommendations of Burton et al. [40].
Datasets are defined in order to draw meaningful conclusions from models by
directly comparing the conditions that define the simulated datasets. 36 different
generating procedures are defined (appendix E), one for each dataset, from all
combinations of

i) Survival distribution: Cox-Weibull, Weibull, Gompertz, Log-normal.

ii) Censoring type: Type I, informative right, uninformative.

iii) Censoring proportion: 20%, 50%, 80%.

The covariates for each dataset are drawn from the same generating process,
the only differences are in the outcome data. The datasets are primarily split by
survival distribution, each block of datasets with the same survival distribution
have identical (in value) covariates and survival times, Y , only the censoring
mechanism, C is different, and therefore by extension (T,∆). Datasets with
different survival distributions generate new covariates and survival times. For
each dataset, 2,000 observations are drawn and split for training and testing
(50/50). Details for generating features, X, and survival outcomes (T,∆) are
provided below. Each simulated dataset is generated only once and not repeated
(section 7.4.3).

1https://github.com/RaphaelS1/thesis_supplementary/blob/main/code/c7_bench/

real_jobs/create_survival_data.R

https://github.com/RaphaelS1/thesis_supplementary/blob/main/code/c7_bench/real_jobs/create_survival_data.R
https://github.com/RaphaelS1/thesis_supplementary/blob/main/code/c7_bench/real_jobs/create_survival_data.R
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Table 23: Real-world datasets used in benchmark experiment.

Dataset1 Cens %2 n3
C n4

D n5 p6 Package7

Aids2 [222] 38 1 3 2814 4 MASS [222]
ALL [133] 63 0 4 2279 4 dynpred [242]
bmt [164] 41 4 13 137 17 KMsurv [165]
channing [164] 62 1 1 458 2 KMsurv
diabetic [290] 65 1 3 197 4 survival [291]
flchain [71] 72 4 3 7871 7 survival
gbsg [156] 43 3 4 2232 7 pycox [172]
grace [126] 68 4 2 1000 6 mlr3proba [281]
hepatoCellular [194] 55 30 12 101 42 asaur [77]
kidtran [164] 84 1 3 863 4 KMsurv
lung [200] 28 5 3 167 8 survival
melanoma [7] 72 2 3 205 5 MASS
metabric [156] 42 5 4 1903 9 pycox
mgus [175] 6 6 1 176 7 survival
nafld1 [6] 92 4 1 12588 5 survival
nki [307] 73 5 5 295 10 dynpred
nwtco [33] 86 1 2 4028 3 survival
ova [310] 26 1 4 358 5 dynpred
patient [12] 79 2 5 1985 7 pammtools [11]
pbc [294] 60 10 7 276 17 survival
pharmacoSmoking [287] 29 4 5 113 9 asaur
prostateSurvival [201] 94 0 3 14065 3 asaur
rats [207] 86 0 3 300 3 survival
support [156] 32 10 4 8873 14 pycox
transplant [160] 92 2 2 793 6 survival
tumor [11] 52 1 6 776 7 pammtools
udca1 [199] 57 2 2 169 4 survival
veteran [151] 7 3 3 137 6 survival
wbc1 [289] 43 2 0 190 4 dynpred
whas [126] 48 3 6 481 9 mlr3proba

1. Dataset ID and citation.
2. Proportion of censoring in the (modified) dataset.
3-4. Number of continuous and discrete features respectively before recoding.
5-6. Total number of observations and features respectively after alterations described
above but before sub-sampling.
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Features All simulated datasets use the same feature generation process and
furthermore datasets with the same survival distribution use identical feature
values, i.e. only one draw is made for each of the nine datasets with the same
survival distribution for a total of four draws. This ensures that conclusions can
be drawn about the outcome data as the feature data is held constant.

To mimic real-world data, the simulated data includes three variables with a
real-world interpretation that are jointly i.i.d., and 10 variables with random de-
pendence on each other; the ‘real’ features are mutually independent of the other
10 features. The variables include two discrete features, Xsex, Xtrt, one continu-
ous feature, Xage, and 10 features drawn from a multivariate normal distribution,
Xx; these are generated as follows

Xage
i.i.d.∼ DiscreteUniform[20, 50]

Xsex
i.i.d.∼ Bern(0.5)

Xtrt
i.i.d.∼ Bern(0.7)

Xx
i.i.d.∼ MultivariateNormal(µ,Σ)

The distribution parameters were chosen arbitrarily. For the Xx covariates, µ is
a vector of 0s and Σ is chosen such that all variables have zero correlation except,
ρ1,2 = 0.5, ρ1,3 = 0.8, ρ2,3 = 0.8, ρ8,9 = 0.4, ρ8,10 = 0.4, ρ9,10 = 0.2, where ρi,j is the
sample correlation between the ith and jth variables in Xx. The demographic
variables are independent of each other and the Xx variables. The covariates are
visualised in appendix F for a single seed.

Survival Times Four distributions are modelled for survival times: Cox-Weibull,
Weibull, Gompertz, and Log-normal. The distribution choices are informed by
prior experiments [13, 40] and their reflection of real-world data. The Cox-
Weibull [13] is a Cox PH with a Weibull baseline hazard. Inclusion of Cox-Weibull
allows conclusions about how models handle PH data, Weibull is a standard dis-
tribution included in all survival experiments, Gompertz models human mortality,
and Log-normal allows a non-monotonic hazard. The distribution parameterisa-
tions were found by prior exploration in order to create different hazard shapes
of interest. Depending on the survival distribution condition of the dataset of
interest (appendix E), the true survival times, Y , are drawn from one of

Y
i.i.d.∼ Weibull(k = 2(Xtrt + 1) + 1.5(Xsex + 1)) + 2Xage, λ = 1 +

Xxβ

100
)

Y
i.i.d.∼ Gompertz(k = 2Xage +

Xxβ

100
, λ = 2(Xtrt + 1) + 1.5(Xsex + 1))

Y
i.i.d.∼ Lognormal(µ = log(2Xage +Xxβ), σ = (Xtrt +Xsex)/2)

(7.2.1)

where k is the shape parameter, λ is the scale parameter, µ is the log-mean pa-
rameter and σ is log-standard deviation. Or if the survival distribution condition
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is Cox-Weibull [13], then

Y =
(
− log(U)

5 exp(3(Xtrt + 3) + 2(Xsex + 2) + 2Xage + Xxβ
100

)

)1/20

(7.2.2)

where β is a vector of coefficients randomly drawn from U(−1, 1), and U is a
draw from U(0, 1).

All values are mean/variance scaled after simulation with the scale function
and then shifted by +4 and lower-truncated at 1, which allows meaningful com-
parison between experiments whilst still preserving distribution shapes (appendix
F). These parameterisations result in survival times that are primarily dependent
on the three ‘real-world’ covariates with random dependence on the other 10
variables.

As no clear concensus exists in the literature on how to generate survival time
data, the ‘usual’ approach is to iterate in prior exploration to find parameters that
produce the hazard and survival curves of interest and that ensure the survival
time can be predicted by features [40, 50]; this is the approach taken above.

Censoring Outcome Three separate methods are chosen for generating the
censoring distribution: Type I, informative right [40, 50], and random uninforma-
tive. Each censoring outcome type is repeated three times for each survival dis-
tribution so that there are datasets with p = 20%, 50% and 80% censoring [225].

Type I censoring times follow the degenerate Delta distribution C ∼ δ(α) which
has total mass at point α. Intuitively this means an observation experiences the
event if T ≤ α or are censored at C = α if T > α. The value of α is given
by α := F−1

Y (p), where p ∈ {0.2, 0.5, 0.8} and F−1
Y is the inverse empirical cdf

(quantile) of the survival time distribution Y .
Informative right-censoring times are identically and independently drawn six

times from the same distribution of the corresponding survival distribution and
the minimum value is taken for each draw. This process preserves the conditional
censoring time distribution up to a linear shift. The desired proportion of cen-
soring is then achieved by ‘thinning’ the resulting simulations by multiplying C
by

B :=

∞, Bp = 1

1, otherwise
(7.2.3)

where Bp is an independent draw from Bern(1− p) and p ∈ {0.2, 0.5, 0.8}.
Uninformative censoring times are simulated by taking the minimum of six

independent draws from Weibull(10, 5) and then multiplying C by B (eq. (7.2.3)).
For each outcome Y is not independent of X. C is independent of X (and

Y ) for uninformative censoring and C is dependent on X (and conditionally
independent of Y given X) in the other cases.

The outcomes for all three types are visualised in appendix F for a single seed.
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7.3. Results

The results of the experiments are now presented, first for the real data experi-
ments and then the simulated data experiments. Discussion about the results is
provided in the next section (section 7.4).

7.3.1. Real Data Experiments

The full table of raw results is freely available online1. Global Friedman tests
were significant (p < 0.01) for all measures.

Critical difference (CD) plots for discrimination (fig. 40) indicate that all mod-
els outperform the baselines except for DNNSurv, DeepHit, CoxTime and RRTs.
The GBMs are the top-performing models however they do not significantly out-
perform the Cox PH. The ANNs are outperformed by almost all RSFs (except
RSFCIF), GBMs (except GBM-UNO), and SSVM. These results are supported
by the CD plot for Harrell’s C (appendix H).

CD plots for overall performance (fig. 41) indicate that only half the mod-
els significantly outperform the unconditional baselines however only CoxBoost
outperforms the conditional Akritas baseline. The Cox PH is significantly bet-
ter performing than several ML methods, including most of the neural networks,
the SSVM, and the RRTs. Only CoxBoost outperforms the Cox PH but again
non-significantly. The non-ML penalized and flexible splines methods are also
amongst the best performing.

Further visualisations for all measures are in appendix H. The best calibrated
(non-baseline) models were flexible splines, RSFs with C-index split, CoxBoost,
GBM-UNO, and DeepSurv.

Figure 40: Critical difference plots comparing models on Uno’s C. Superior plots
(lower rank) are on the left with decreasing performance (higher rank) moving right.
Models connected by a thick horizontal black line are not significantly different in
performance.

1https:

//github.com/RaphaelS1/thesis_supplementary/blob/main/results/real_results.csv

https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/real_results.csv
https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/real_results.csv
https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/real_results.csv
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Figure 41: Critical difference plots comparing models on IGS. Superior plots (lower
rank) are on the left with decreasing performance (higher rank) moving right. Models
connected by a thick horizontal black line are not significantly different in performance.

7.3.2. Simulated Data Experiments

The full table of raw results is freely available online1.

Global ANOVAs Initial ANOVAs over all datasets for Uno’s C found signif-
icant effects for model group, survival distribution, and the interaction of the
two; no significant effect of censoring proportion or type (all p < 0.01). For
IGS, the same conditions were significant and additionally the censoring type (all
p ≤ 0.01).

For measuring effects of censoring type with IGS, initial analysis found out-
comes with Type I censoring were ‘harder’ to predict than right (table 24). Once
broken down by model group, significant differences between censoring types for
IGS were only observed in RSFs between independent and Type I (p < 0.01) and
in ANNs where Type I was ‘harder’ to predict than both other types (p < 0.01).

Table 24: Tukey HSD computed on different censoring types for IGS. First column
is censoring types being compared, second column is their estimated difference, third
and fourth are lower and upper confidence intervals for the estimate, fifth is adjusted
p-value.

groups diff lwr upr p
Right − Type I −0.05 −0.07 −0.02 < 0.01

Independent − Type I −0.07 −0.09 −0.04 < 0.01
Independent − Right −0.02 −0.05 0.00 0.19

Post-hoc tests on the model group for Uno’s C (fig. 42 (I)) reveal all ML
models significantly outperform classical models (p < 0.04) and GBMs signifi-
cantly outperform ANNs (p < 0.01), all other results are non-significant. For
IGS (fig. 42 (II)), SVMs are significantly worse than all other groups (p < 0.01)
as are ANNs (with the exception of being ‘better’ than SVMs) (p < 0.01), all other
results non-significant. The effects of survival distribution type are again slightly

1https:

//github.com/RaphaelS1/thesis_supplementary/blob/main/results/sim_results.csv

https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/sim_results.csv
https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/sim_results.csv
https://github.com/RaphaelS1/thesis_supplementary/blob/main/results/sim_results.csv
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contradictory between Uno’s C and IGS. For Uno’s C (fig. 42 (III)), Gompertz
and Log-normal are both significantly harder to predict than Cox-Weibull and
Weibull (p < 0.01), and Log-normal is significantly easier to predict than Gom-
pertz (p < 0.01). For IGS (fig. 42 (IV)), Weibull and Log-normal are significantly
easier to predict than Cox-Weibull (p < 0.01), Gompertz is significantly harder
than Weibull (p < 0.01), and Gompertz is significantly easier than Log-normal
(p < 0.01). These are visualised as boxplots in fig. 43 combining all models.

Figure 42: Tukey HSD for model group and survival distribution. Left column are
results for Uno’s C, right column is IGS. Top row are post-hoc tests on model group,
bottom row is survival distributions. Blue squares indicate that the model on the y-axis
outperforms the one on the x-axis, and the reverse for red squares. Red ‘x’s indicate
no significant difference.

Comparison Between Survival Distributions The model group had a sig-
nificant effect within all four survival distributions, and in addition the type
of censoring had a significant effect within the Log-normal survival distribution
datasets. All p < 0.01 except the effect size of the Group block within the Cox-
Weibull distribution for IGS, with p = 0.02, and the Group block within Weibull
for Uno’s C, with p = 0.01. Post-hoc tests on the censoring type for the Log-
normal distribution yield conflicting results with datasets with Type I censoring
being ‘easier’ to predict for discrimination than right and independent censoring
(both p < 0.01) however with respect to IGS, Type I is ‘harder’ to predict than
the other types (p < 0.01). Post-hoc tests examining the group effects again re-
veal different results for Uno’s C and IGS. For Uno’s C (fig. 44, left column), all
models outperform the classical models for Cox-Weibull, and GBMs outperform
the classical models in all cases. In addition, ANNs outperform classical mod-
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Figure 43: Survival distribution effects across all models. x-axis is the dataset (ap-
pendix E) and y-axis is boxplots of Uno’s C (left) and IGS (right) for all models.
Colours of boxes highlights the type of survival distribution simulated for the dataset.

els for Weibull distribution and RSFs outperform for Log-normal. The ANNs
perform particularly badly for the Log-normal distribution, inferior to all other
classes. For IGS (fig. 44, right column), only RSF outperforms the classical mod-
els and this is for Cox-Weibull only. In almost all cases, the SVM is inferior to all
other models and in several cases the ANNs are inferior to most other models.

Comparison of Models ANOVAs regressing the model type on the measure
found significant results for Uno’s C and IGS (p < 0.01). Tukey HSD’s on Uno’s
C found all sophisticated (non-baseline) models were significantly better than the
baselines (KM, Nel, AE) however no sophisticated model was significantly better
than another across all datasets, this is clearly visualised in fig. 45. More nuanced
results are seen for the IGS (fig. 46), in which GLM, SVM, and LH all perform
significantly worse than the majority of models. In fact, most models outperform
the ANNs.
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Figure 44: Tukey’s HSD for within group effects by distribution. Blue squares indicate
that the model on the y-axis outperforms the one on the x-axis, and the reverse for red
squares. Red ‘x’s indicate no significant difference.

Figure 45: Boxplots of Uno’s C across all simulated datasets for all models, coloured
by model group. x-axis are the models and y-axis is Uno’s C; boxplots constructed
from calculation of Uno’s C across all datasets.
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Figure 46: Tukey HSD on IGS for all simulated datasets. Blue squares indicate the
model on the y-axis is significantly better than the model on the x-axis, and the reverse
for red squares. Red ‘x’s indicate no significant difference.

7.4. Discussion

Similarly to how results were presented, first the real data experiments are dis-
cussed and then the simulated data experiments. Limitations of the experiments
are then discussed in section 7.4.3 and conclusions are finally presented in sec-
tion 7.4.4.

7.4.1. Real Data Experiments

The experiments on the real datasets are designed to determine which survival
models are the best-performing on right-censored datasets with variable amounts
of censoring. Results on individual datasets are not discussed as these cannot
answer the research questions (section 7.1.1). The findings are limited to discrim-
ination and overall performance, though calibration and distance is very briefly
discussed.

Discrimination The critical difference plots indicate that GBMs and RSFs
were among the best performing methods, however so too were non-ML models
including Cox PH, parametric AFTs, and penalized Cox. Poor performance from
all the neural networks was likely due to insufficient tuning, which is a problem
in general with neural networks. The strong performance from the boosting
models should be highlighted as they required more sub-sampling of the data than
other models, yet despite this they were among the best performing. This may
indicate that with less time-constraints, the boosted models could significantly
outperform other methods. Non-significant differences between GBM models
indicates that it is worth including all GBM ‘types’ (i.e. different underlying
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losses) in benchmark experiments when these can be simply tuned as hyper-
parameters (such as with mboost). Similarly the concordance-optimised RSF
did not significantly outperform the other RSFs, again highlighting the benefit of
including the splitting rule choice as a hyper-parameter.

Overall Performance Overall performance is judged by the IGS and should
capture both a model’s discrimination and calibration (though properness of the
loss is in question). The Cox PH was the second best ranked model and signif-
icantly outperformed many neural networks and all the baselines. The slightly
better performance from CoxBoost meant that in addition to the models out-
performed by Cox PH, CoxBoost also outperformed the log-rank and Brier score
splitting rule RSFs, as well as GBM-UNO. The poor performance from the SVM,
the lowest ranked model, is likely due to the composition method used to trans-
form the ranking prediction to a distribution. In fact, almost all the best perform-
ing models were those that directly predicted distributions and did not require
compositions. Some models improved significantly in rankings compared to their
evaluation on discrimination only, these include DeepSurv, Cox-Time, and flexible
splines. This is likely due to calibration and is expanded on below.

Calibration and Distance For Houwelingen’s α, the baselines, flexible splines,
RSF-C, GBM-Uno, CoxBoost, and DeepSurv were all consistently well-calibrated
across all datasets. This supports the hypothesis that RSF-C, GBM-Uno, and
DeepSurv were all consistently better ranked with respect to IGS than Uno’s C,
due to their calibration. In stark contrast to previous results, RRTs performed the
best with respect to distance measures, significantly outperforming some neural
networks, all baselines, and the SSVM. It should be noted that only the SSVM
directly predicted the survival time, all other models were via composition, despite
this the SSVM did not significantly outperform the baselines.

7.4.2. Simulated Data Experiments

The simulation experiments are designed to test how classical and machine learn-
ing survival models differ in performance against different conditions: proportion
of censoring, type of censoring, and survival time distribution.

Censoring Proportion In all tests with IPCW measures (i.e. the primary
measures of IGS and Uno’s C), the proportion of censoring had no significant
impact upon model performance. This is a slightly surprising result as it could
reasonably be expected that datasets with 80% censoring should be harder to
make predictions for than datasets with 20% censoring. This finding is unlikely
to be due to the chosen measures as both account for censoring with IPCW.
Results were affected by the proportion of censoring when considering the distance
measures, however this is likely an artefact of the measures removing censored
observations in the test-set for evaluation without further weighting.

Censoring Type Determining the effect of censoring type on model perfor-
mance is a more complex problem as the results changed significantly within
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different model groups and underlying survival distributions. It is possible that
these differences within models were due to the underlying assumptions on the
censoring mechanism made by the models, but this cannot be definitively con-
cluded without further study and model-specific investigation. It is worth noting
that the typical usage of Type I censoring in simulation experiments (e.g. [50])
and packages for survival simulation (e.g. [35]), is not reflective of the real world.
In the real world, Type I censoring does not occur in isolation of other censoring
types. For example, if a study is conducted on patients within a set time pe-
riod then Type I censoring occurs at the study end. However, right-informative
censoring will also occur due to drop-out during the study period. As the ‘pure’
Type I censoring found in simulation studies only incorporates a single censoring
mechanism, it may not even be representative of real-world data. Therefore, it is
questionable if any results comparing censoring types with this pure Type I can
be extrapolated to real settings.

Survival Distribution The most significant differences in performances were
seen as a result of the survival time distribution (fig. 43), with models consis-
tently performing worse on the Gompertz and Log-normal distributions. There
is a strong possibility that this is a result of Cox-Weibull and Weibull having the
PH property, whereas Gompertz and Log-normal do not.1 Therefore it can be
hypothesized that increased model performance was due to the majority of mod-
els assuming a PH form, especially as the majority of models in the experiment
are derived from the Cox model. Conversely inferior performance would be due
to model misspecification in the presence of non-PH data. It is possible that fur-
ther analysis would indicate that models without an underlying PH assumption
would see more equal performance spread across the four survival distribution
types, however this is slightly tangential to this experiment design. For now we
can tentatively conclude that survival models will in general perform better on
datasets with the PH property. The post-hoc analysis within survival distribu-
tions closely follows the analysis with all distributions combined. For Uno’s C,
most ML models outperform the classical ones in all distributions whereas for
IGS, the only strong conclusion is inferior performance by the SVMs and ANNs.
Results between distributions for each measure are all concordant, e.g. model
groups outperform each other in the ‘same’ direction (no reversal of which is
superior/inferior).

Model Groups Comparing the model groups directly is not of primary in-
terest in the simulation experiments as this is covered more extensively by the
real experiments, however the results are still interesting and briefly discussed.
The post-hoc analysis provides slightly contradictory results between Uno’s C
and IGS. This may highlight differences in calibration between the fitted mod-
els. This is hypothesised as the IGS can be decomposed into discrimination and
calibration [109], thus any discrepancies between Uno’s C and IGS may be due
to model calibration. Post-hoc analysis on Uno’s C indicates all models out-
perform the classical models, which is a promising finding that demonstrates
machine learning has at least been successful in improving the discrimination of

1Gompertz distribution does have the PH property but post-hoc analysis of simulated
data failed PH tests.
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survival models. Conclusions should not be drawn on discrimination measures
alone, as highlighted by the IGS results. For this measure the only strong con-
clusion is poor performance from the SVM and ANNs (as with real experiments),
all other comparisons are non-significant. As above, perhaps this is due to poor
model calibration, which could be identified given more widely utilised calibration
measures. In this experiment only Houwelingen’s α was computed; exploratory
analysis identified no significant differences with respect to this measure.

7.4.3. Limitations

Primarily due to time and resource constraints, these experiments had several
limitations. As the experiments were carried out on a high-performance cluster,
the ‘jobs’ were limited to a maximum run-time of 48 hours, thus placing physical
limitations on the size of the experiments. Many of these limitations accurately
reflect real-world modelling and can thus be viewed not as limitations on the data
but as a realistic comparison of models on real-world data. These are expanded
on below.

In order to derive confidence intervals constructed from the standard error of
the observed measures – which would enable model performance guarantees not
just on the tested simulated datasets but on any similar dataset with the same
conditions – the simulated experiments should have been repeated 30 times with
varying seeds.

All models were originally intended to be tuned and optimised with 100 itera-
tion random search, this was downgraded to 60. In some (though few) cases grid
search with a small number of configurations was instead utilised, when this was
the case hyper-parameter configurations were carefully chosen either by compar-
ing default values from different packages or by researching previous experiment
configurations.

Whilst some models were tuned using only a small grid of configurations,
others utilised random search over a large range. This may be seen as an ‘unfair
advantage’ to the models tuned with random search as there is more chance to
find the optimal configuration for the given dataset [16].

Models were tuned with respect to Harrell’s concordance index and therefore
optimised for discrimination. This could explain why the results indicated a
discrepancy between a model’s calibration and discriminatory ability. A better
choice would be to repeat the experiments in order to tune with respect to each
measure separately.

Finally, some real datasets were sub-sampled considerably to ensure the mod-
els could finish within the set times. Again this can be viewed as a realistic
limitation as resources are usually limited, however a full experiment should at-
tempt to run all models with complete data where physically possible.

7.4.4. Conclusions and Future Work

Two research questions were asked in this study:
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RQ1) What survival model or models perform best on right-censored time-to-
event datasets without competing risks?

RQ2) How do performance of survival models vary with different simulated time-
to-event dataset conditions including censoring proportion, underlying sur-
vival time distributions, and type of censoring?

(RQ1) is answered by considering measures of discrimination and overall per-
formance (scoring rules) separately, as a secondary investigation measures of cal-
ibration and distance were briefly considered.

Results for the discrimination measure Uno’s C, indicated that the top per-
forming models came from a combination of all model groups, except ANNs. By
the principle of parsimony, the Cox PH can still be considered an optimal model
as it ranked amongst the top best performing and requires no model tuning. For
overall performance, at least one model from all groups appeared amongst the
best performing. Once again, the Cox PH is the most parsimonious model in the
best performing group. The calibration measures further suggest that problems
with model calibration may lead the discrepancy between model rankings between
Uno’s C and IGS. These results indicate that it is still worthwhile including a
range of machine learning models in experiments on right-censored time-to-event
datasets and most importantly that one should not be dismissive of implementing
more parsimonious solutions such as the Cox PH.

(RQ2) is simpler to answer as the results of each condition can be broken
down and addressed separately. The most important conditions were identified
from a range of prior simulation studies, which leads one to naturally assume
that large differences may be expected in predictive performance between these
conditions. However the results indicate that there were no significant differences
between the proportion of censoring between datasets and that any significant
differences in the type of censoring can likely be explained by underlying model
assumptions. The results further demonstrate that, on average, models are more
likely to perform well on datasets that have the PH assumptions however this
does not mean that this is true of all models, and it is worthwhile conducting
similar experiments only on models that do not assume a PH form. In support
of (RQ1), tests comparing model groups demonstrated inferior performance from
ANNs and SVMs, though as noted above this may be due to study limitations.

Future Work These experiments can be considered a preliminary study and
a larger version is already in progress that will address all the limitations above
before being submitted for publication in the near-future.

As well as this experiment, three others are planned as part of a series of
comprehensive experiments of survival models. The next experiment will look
at the novel models proposed in chapter 3, which will be benchmarked against
baselines (Kaplan-Meier) and classical models (Cox PH). The second experiment
will look at the reductions and compositions proposed in chapter 5, in particular
to assess the affects of tuning different hyper-parameters and also to practically
establish sensible defaults and guidelines for future use. A final experiment will
benchmark the most successful models from the prior three experiments.



Chapter 8

Conclusion and Future Research

Survival analysis is pervasive throughout the real-world with applications in pub-
lic health, policy, engineering, and more. Machine learning is at the cutting-edge
of Statistics with ‘machine learning’, ‘artificial intelligence’, and ‘big data’ being
in the Zeitgeist. Correctly incorporating machine learning is a critical step in
the evolution of survival analysis. This thesis surveys the efforts made to unify
‘machine learning survival analysis’, identifies how these could be improved, and
addresses some of the open problems.

Contributions

This thesis attempted to achieve unification of machine learning survival analy-
sis by presenting a theoretical and methodological framework. This framework
consists of: i) the APT criteria for judging survival models and measures; ii) a
unified nomenclature and taxonomy for survival analysis and machine learning;
iii) models for survival predictions; iv) measures for evaluation; v) composition
and reduction techniques for improved model performance and transparency; and
vi) software for model accessibility. The title of this thesis claims to enable ‘trans-
parent and accessible predictive modelling’ for machine learning survival analysis.
This has been achieved by: i) reviewing and surveying existing models; ii) crit-
ically surveying measures to identify the pitfalls in current evaluation practices;
and iii) implementing software packages in R to increase accessibility.

Chapter 2 introduced notation and terminology for use with survival analysis
and machine learning, in particular clear definitions for the ‘survival problem’ or
‘survival task’. This was especially important as it was noted in the survey of
machine learning models and measures that conflicting terminology has often lead
to repeated work, confusion in discussion between publications, or incompatible
model and/or measure comparisons.

Chapter 3 surveyed and reviewed models for survival analysis, both in the
classical and machine learning settings. The findings demonstrate that for model
building, while there appears a large body of work in some areas, in others there
is a distinct lack. For example, the survey of support vector machines reduced all
proposals to a single ‘hybrid’ model. On the other hand whilst there have been
many neural networks proposed for survival analysis, experiments in this paper
identify that these do not outperform the classical Cox PH (chapter 7). There is

273
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also evidence of a lack of transparency, and perhaps honesty, in model evaluation.
Many proposed novel algorithms have either been presented: i) with measures
that have been proven to lack robustness in the presence of censoring; ii) with
non-proper scoring rules; iii) without comparison to simpler models or baselines;
or iv) with unfair comparison to incomplete reductions.

As well as reviewing measures of discrimination and calibration, chapter 4
presented an in-depth look at survival scoring rules. The proofs in the chapter
demonstrated that no commonly-utilised survival scoring rules are proper, which
makes model comparison very difficult, if not impossible. A small class of mea-
sures were found to be strictly proper, however these require assumptions that
are rarely realistic in real-world data.

Chapter 5 formalised the concepts of composition and reduction in survival
analysis and presented workflows for both pre-existing and novel reduction pipelines.
In doing so, non-survival (e.g. regression) models may be utilised to improve pre-
dictive performance in a survival setting. Formalisation allows more transparent
implementation of these strategies.

In chapter 6, software packages and contributions to object-oriented program-
ming in R were discussed. Most importantly, mlr3proba for machine learning in
survival analysis was presented. This package has been well-received thus far and
its accessibility will hopefully contribute to further interest in survival analysis
within the machine learning community.

Finally, chapter 7 presented the first large-scale benchmark experiments for
survival analysis. This was made possible by mlr3proba and the prior work in
this thesis. The experiments highlight how much work remains in machine learn-
ing for survival analysis as there was significant evidence of machine learning
models performing worse than classical counterparts. The experiments highlight
the necessary research and further study required for machine learning survival
analysis and should create engagement and interest in establishing more advanced
techniques and technology in this area.

Future academic contributions resulting from this thesis will include: i) releasing
chapters 3 and 4 as part of a (free) online book on machine learning survival
analysis; ii) submitting chapter 5 for publication to collate and formalise com-
position and reduction workflows in survival; and iii) running and submitting a
larger benchmark experiment using the code and setup provided in chapter 7.

Future Research

The research in this thesis will not finish here and years of future work remains.
There are some sensible next steps that are immediately present, whilst others
will emerge over time. Potential next steps include: i) studying the theoretical
properties of the novel adaptations proposed in chapter 3 and if deemed sensible,
implementing them in R and including them in future benchmark experiments;
ii) studying the reduction strategies in chapter 5 with an emphasis on under-
standing when they perform well and also determining sensible defaults for their
many hyper-parameters; iii) researching survival scoring rules further in order to
establish best practice techniques for survival model evaluation; and iv) extending
the reviews and surveys to Bayesian methods.
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Concluding Thoughts

When I started writing this thesis, I was motivated by the lack of curiosity in
machine learning survival analysis and frequent use of improper technique. In
other fields of statistics, researchers (and data scientists in general) will often
only train machine learning models without classical alternatives, the reverse is
seen in survival analysis.

As I finish writing, two years later and in the middle of a global pandemic, I,
alongside many others, am concerned and at times angry about how a lack of
formalisation and rigour is leading to the development and promotion of poor
survival models, even in top journals. At the time of writing, the BMJ ‘living
systematic review’ [326] concluded that none of the 145 reviewed prediction mod-
els for COVID-19 could be recommended ‘for use in current practice’.1 One of
their top reasons for dismissing a model was poor evaluation technique, a problem
that is also highlighted throughout this thesis.

If I have achieved a single goal by writing this thesis, I hope that it will be an in-
creased awareness of machine learning methods for survival analysis with proper
techniques for model building and evaluation. Survival analysis and machine
learning are two major fields in Statistics with a real-world benefit that cannot
be understated. It is critical, now more than ever, that this is understood.

1It is unclear how many of these solve the survival task, at least 91 are classifiers.
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[214] Nicolai Meinshausen and Peter Bühlmann. “Stability selection”. In: Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology) 72.4

(2010), pp. 417–473. issn: 1369-7412. doi: 10.1111/j.1467-9868.2010.

00740.x. url: https://doi.org/10.1111/j.1467-9868.2010.00740.x.

[215] Olaf Mersmann. microbenchmark: Accurate Timing Functions. 2019. url:

https://cran.r-project.org/package=microbenchmark.

[216] David Meyer and Kurt Hornik. “Generalized and Customizable Sets in R”.

In: Journal of Statistical Software 31.2 (2009), pp. 1–27. doi: 10.18637/

jss.v031.i02.

[217] Ulla B Mogensen, Hemant Ishwaran, and Thomas A Gerds. Evaluating

Random Forests for Survival Analysis using Prediction Error Curves. 2014.

https://doi.org/10.1111/j.1740-9713.2019.01336.x
https://doi.org/10.1111/j.1740-9713.2019.01336.x
https://doi.org/10.1111/j.1740-9713.2019.01336.x
https://doi.org/10.1111/j.1740-9713.2019.01336.x
https://doi.org/https://doi.org/10.1111/jnp.12239
https://doi.org/10.1111/jnp.12239
https://doi.org/10.1111/jnp.12239
https://doi.org/10.1186/s12859-016-1149-8
https://doi.org/10.1186/s12859-016-1149-8
https://doi.org/10.1371/journal.pone.0084483
https://pubmed.ncbi.nlm.nih.gov/24400093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882229/
https://pubmed.ncbi.nlm.nih.gov/24400093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882229/
https://pubmed.ncbi.nlm.nih.gov/24400093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882229/
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://cran.r-project.org/package=microbenchmark
https://doi.org/10.18637/jss.v031.i02
https://doi.org/10.18637/jss.v031.i02


298 Bibliography

[218] Bijan Moghimi-dehkordi et al. “Statistical Comparison of Survival Models

for Analysis of Cancer Data”. In: Asian Pacific Journal of Cancer Pre-

vention 9 (2008), pp. 417–420. issn: 1513-7368.

[219] Christoph Molnar. Interpretable Machine Learning. 2019. url: https:

//christophm.github.io/interpretable-ml-book/.

[220] Allan H Murphy. “A New Vector Partition of the Probability Score”. En-

glish. In: Journal of Applied Meteorology and Climatology 12.4 (1973),

pp. 595–600. doi: 10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.

CO;2. url: https://journals.ametsoc.org/view/journals/apme/

12/4/1520-0450{\_}1973{\_}012{\_}0595{\_}anvpot{\_}2{\_}0{\_

}co{\_}2.xml.

[221] Myriad technical specs. url: http : / / wiki . rc . ucl . ac . uk / index .

php/RC{\_}Systems{\#}Myriad{\_}technical{\_}specs (visited on

03/07/2021).

[222] W N. Venables and B D. Ripley. Modern Applied Statistics with S. Springer,

2002. url: http://www.stats.ox.ac.uk/pub/MASS4.

[223] Claude Nadeau and Yoshua Bengio. “Inference for the Generalization Er-

ror”. In: Machine Learning 52.3 (2003), pp. 239–281. issn: 1573-0565.

doi: 10.1023/A:1024068626366. url: https://doi.org/10.1023/A:

1024068626366.

[224] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-

stricted boltzmann machines”. In: Proceedings of the 27th international

conference on machine learning (ICML-10). 2010, pp. 807–814.

[225] Justine B Nasejje et al. “A comparison of the conditional inference sur-

vival forest model to random survival forests based on a simulation study

as well as on two applications with time-to-event data”. eng. In: BMC

medical research methodology 17.1 (2017), p. 115. issn: 1471-2288. doi:

10.1186/s12874-017-0383-8. url: https://www.ncbi.nlm.nih.gov/

pubmed/28754093https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5534080/.

[226] Wayne Nelson. “Theory and Applications of Hazard Plotting for Censored

Failure Data”. In: Technometrics 14.4 (1972), pp. 945–966.

[227] Roger B Newson. “Comparing the predictive power of survival models

using Harrell’s c or Somers’ D”. In: The Stata Journal ii (1983), pp. 1–19.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://journals.ametsoc.org/view/journals/apme/12/4/1520-0450{\_}1973{\_}012{\_}0595{\_}anvpot{\_}2{\_}0{\_}co{\_}2.xml
https://journals.ametsoc.org/view/journals/apme/12/4/1520-0450{\_}1973{\_}012{\_}0595{\_}anvpot{\_}2{\_}0{\_}co{\_}2.xml
https://journals.ametsoc.org/view/journals/apme/12/4/1520-0450{\_}1973{\_}012{\_}0595{\_}anvpot{\_}2{\_}0{\_}co{\_}2.xml
http://wiki.rc.ucl.ac.uk/index.php/RC{\_}Systems{\#}Myriad{\_}technical{\_}specs
http://wiki.rc.ucl.ac.uk/index.php/RC{\_}Systems{\#}Myriad{\_}technical{\_}specs
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1186/s12874-017-0383-8
https://www.ncbi.nlm.nih.gov/pubmed/28754093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534080/
https://www.ncbi.nlm.nih.gov/pubmed/28754093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534080/
https://www.ncbi.nlm.nih.gov/pubmed/28754093 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534080/


Bibliography 299

[228] Milad Zafar Nezhad et al. “A Deep Active Survival Analysis approach for

precision treatment recommendations: Application of prostate cancer”. In:

Expert Systems with Applications 115 (2019), pp. 16–26. issn: 0957-4174.

doi: https://doi.org/10.1016/j.eswa.2018.07.070. url: http://

www.sciencedirect.com/science/article/pii/S0957417418304949.

[229] Ryan Ng et al. “The current application of the Royston-Parmar model for

prognostic modeling in health research: a scoping review”. In: Diagnostic

and Prognostic Research 2.1 (2018), p. 4. issn: 2397-7523. doi: 10.1186/

s41512-018-0026-5. url: https://diagnprognres.biomedcentral.

com/articles/10.1186/s41512-018-0026-5.

[230] Sung Eun Oh et al. “Prediction of Overall Survival and Novel Classification

of Patients with Gastric Cancer Using the Survival Recurrent Network”.

In: Annals of Surgical Oncology 25.5 (2018), pp. 1153–1159. issn: 1534-

4681. doi: 10.1245/s10434-018-6343-7. url: https://doi.org/10.

1245/s10434-018-6343-7.

[231] L Ohno-Machado. “Modeling medical prognosis: survival analysis tech-

niques.” eng. In: Journal of biomedical informatics 34.6 (2001), pp. 428–

439. issn: 1532-0464 (Print). doi: 10.1006/jbin.2002.1038.

[232] Lucila Ohno-Machado. Medical applications of artificial neural networks:

connectionist models of survival. 1996.

[233] Lucila Ohno-Machado. “A COMPARISON OF COX PROPORTIONAL

HAZARDS AND ARTIFICIAL NEURAL NETWORK MODELS FOR

MEDICAL PROGNOSIS The theoretical advantages and disadvantages

of using different methods for predicting survival have seldom been tested

in real data sets [ 1 , 2 ]. Althou”. In: Comput. Biol. Med 27.1 (1997),

pp. 55–65.

[234] Katie Patel, Richard Kay, and Lucy Rowell. “Comparing proportional

hazards and accelerated failure time models: An application in influenza”.

In: Pharmaceutical Statistics 5.3 (2006), pp. 213–224. issn: 15391604. doi:

10.1002/pst.213.

[235] Sebastian P\”olsterl. “scikit-survival: A Library for Time-to-Event Anal-

ysis Built on Top of scikit-learn”. In: Journal of Machine Learning Re-

search 21.212 (2020), pp. 1–6. url: http://jmlr.org/papers/v21/20-

729.html.

[236] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

https://doi.org/https://doi.org/10.1016/j.eswa.2018.07.070
http://www.sciencedirect.com/science/article/pii/S0957417418304949
http://www.sciencedirect.com/science/article/pii/S0957417418304949
https://doi.org/10.1186/s41512-018-0026-5
https://doi.org/10.1186/s41512-018-0026-5
https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0026-5
https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0026-5
https://doi.org/10.1245/s10434-018-6343-7
https://doi.org/10.1245/s10434-018-6343-7
https://doi.org/10.1245/s10434-018-6343-7
https://doi.org/10.1006/jbin.2002.1038
https://doi.org/10.1002/pst.213
http://jmlr.org/papers/v21/20-729.html
http://jmlr.org/papers/v21/20-729.html


300 Bibliography

[237] Michael J. Pencina, Ralph B. D’Agostino, and Linye Song. “Quantify-

ing discrimination of Framingham risk functions with different survival C

statistics”. In: Statistics in Medicine 31.15 (2012), pp. 1543–1553. issn:

02776715. doi: 10.1002/sim.4508. arXiv: NIHMS150003.

[238] Andrea Peters and Torsten Hothorn. ipred: Improved Predictors. 2019.

url: https://cran.r-project.org/package=ipred.

[239] Eric C Polley and Mark J Van Der Laan. “Super learner in prediction”.

In: (2010).

[240] Sergej Potapov, Werner Adler, and Matthias Schmid. survAUC: Estima-

tors of prediction accuracy for time-to-event data. 2012.

[241] Paolo Emilio Puddu and Alessandro Menotti. “Artificial neural networks

versus proportional hazards Cox models to predict 45-year all-cause mor-

tality in the Italian Rural Areas of the Seven Countries Study”. In: BMC

Medical Research Methodology 12.1 (2012), p. 100. issn: 1471-2288. doi:

10.1186/1471- 2288- 12- 100. url: https://bmcmedresmethodol.

biomedcentral.com/articles/10.1186/1471-2288-12-100.

[242] Hein Putter. dynpred: Companion Package to ”Dynamic Prediction in

Clinical Survival Analysis”. 2015. url: https://cran.r-project.org/

package=dynpred.

[243] Jiezhi Qi. “Comparison of Proportional Hazards and Accelerated Failure

Time Models”. PhD thesis. 2009.

[244] Cox R. and Snell J. “A General Definition of Residuals”. In: Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 30.2 (1968),

pp. 248–275.

[245] R Core Team. R: A Language and Environment for Statistical Computing.

Vienna, 2017.

[246] M. Shafiqur Rahman et al. “Review and evaluation of performance mea-

sures for survival prediction models in external validation settings”. In:

BMC Medical Research Methodology 17.1 (2017), pp. 1–15. issn: 14712288.

doi: 10.1186/s12874-017-0336-2.

[247] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine

learning. Vol. 14. 2. 2004, pp. 69–106. isbn: 026218253X. doi: 10.1142/

S0129065704001899. arXiv: 026218253X.

https://doi.org/10.1002/sim.4508
http://arxiv.org/abs/NIHMS150003
https://cran.r-project.org/package=ipred
https://doi.org/10.1186/1471-2288-12-100
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-100
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-100
https://cran.r-project.org/package=dynpred
https://cran.r-project.org/package=dynpred
https://doi.org/10.1186/s12874-017-0336-2
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1142/S0129065704001899
http://arxiv.org/abs/026218253X


Bibliography 301

[248] Nancy Reid. “A Conversation with Sir David Cox”. In: Statistical Science

9.3 (1994), pp. 439–455. issn: 00905364. doi: 10.1214/aos/1176348654.

arXiv: arXiv:1011.1669v3. url: http://www.jstor.org/stable/

2238700{\%}5Cnhttp://projecteuclid.org/euclid.aoms/1177705148.

[249] Greg Ridgeway. “The state of boosting”. In: Computing Science and Statis-

tics 31 (1999), pp. 172–181.

[250] Carl Rietschel, Jinsung Yoon, and Mihaela van der Schaar. “Feature Se-

lection for Survival Analysis with Competing Risks using Deep Learning”.

In: arXiv preprint arXiv:1811.09317 (2018).

[251] Brian D Ripley and Ruth M Ripley. “Neural networks as statistical meth-

ods in survival analysis”. In: Clinical Applications of Artificial Neural

Networks. Ed. by Richard Dybowski and Vanya Gant. Cambridge: Cam-

bridge University Press, 2001, pp. 237–255. isbn: 9780521662710. doi:

DOI:10.1017/CBO9780511543494.011. url: https://www.cambridge.

org/core/books/clinical-applications-of-artificial-neural-

networks/neural-networks-as-statistical-methods-in-survival-

analysis/6AC01B644586FE2EF1D34B6A59CC183E.

[252] R M Ripley, A L Harris, and L Tarassenko. “Neural network models for

breast cancer prognosis”. In: Neural Computing & Applications 7.4 (1998),

pp. 367–375. issn: 1433-3058. doi: 10.1007/BF01428127. url: https:

//doi.org/10.1007/BF01428127.

[253] P Royston. “The Lognormal Distribution as a Model for Survival Time

in Cancer, With an Emphasis on Prognostic Factors”. In: Statistica Neer-

landica 55.1 (2001), pp. 89–104. issn: 0039-0402. doi: 10.1111/1467-

9574.00158. url: https://doi.org/10.1111/1467-9574.00158.

[254] Patrick Royston and Douglas G. Altman. “External validation of a Cox

prognostic model: Principles and methods”. In: BMC Medical Research

Methodology 13.1 (2013). issn: 14712288. doi: 10.1186/1471-2288-13-

33.

[255] Patrick Royston, Mahesh K B Parmar, and Douglas G Altman. “Visu-

alizing Length of Survival in Time-to-Event Studies: A Complement to

Kaplan–Meier Plots”. In: JNCI: Journal of the National Cancer Institute

100.2 (2008), pp. 92–97. issn: 0027-8874. doi: 10.1093/jnci/djm265.

url: https://doi.org/10.1093/jnci/djm265.

https://doi.org/10.1214/aos/1176348654
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.jstor.org/stable/2238700{\%}5Cnhttp://projecteuclid.org/euclid.aoms/1177705148
http://www.jstor.org/stable/2238700{\%}5Cnhttp://projecteuclid.org/euclid.aoms/1177705148
https://doi.org/DOI: 10.1017/CBO9780511543494.011
https://www.cambridge.org/core/books/clinical-applications-of-artificial-neural-networks/neural-networks-as-statistical-methods-in-survival-analysis/6AC01B644586FE2EF1D34B6A59CC183E
https://www.cambridge.org/core/books/clinical-applications-of-artificial-neural-networks/neural-networks-as-statistical-methods-in-survival-analysis/6AC01B644586FE2EF1D34B6A59CC183E
https://www.cambridge.org/core/books/clinical-applications-of-artificial-neural-networks/neural-networks-as-statistical-methods-in-survival-analysis/6AC01B644586FE2EF1D34B6A59CC183E
https://www.cambridge.org/core/books/clinical-applications-of-artificial-neural-networks/neural-networks-as-statistical-methods-in-survival-analysis/6AC01B644586FE2EF1D34B6A59CC183E
https://doi.org/10.1007/BF01428127
https://doi.org/10.1007/BF01428127
https://doi.org/10.1007/BF01428127
https://doi.org/10.1111/1467-9574.00158
https://doi.org/10.1111/1467-9574.00158
https://doi.org/10.1111/1467-9574.00158
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1093/jnci/djm265
https://doi.org/10.1093/jnci/djm265


302 Bibliography

[256] Patrick Royston and Mahesh K.B. Parmar. “Flexible parametric proportional-

hazards and proportional-odds models for censored survival data, with ap-

plication to prognostic modelling and estimation of treatment effects”. In:

Statistics in Medicine 21.15 (2002), pp. 2175–2197. issn: 02776715. doi:

10.1002/sim.1203.

[257] Patrick Royston and Willi Sauerbrei. “A new measure of prognostic sep-

aration in survival data”. In: Statistics in Medicine 23.5 (2004), pp. 723–

748. issn: 02776715. doi: 10.1002/sim.1621.

[258] Peter Ruckdeschel et al. S4 Classes for Distributions. 2006. url: https:

//cran.r-project.org/package=distr.

[259] Lukas Sablica and Kurt Hornik. “mistr: A Computational Framework for

Mixture and Composite Distributions”. In: The R Journal 12.1 (2020),

p. 283. issn: 2073-4859. doi: 10.32614/RJ- 2020- 003. url: https:

//journal.r-project.org/archive/2020/RJ-2020-003/index.html.

[260] Andreas Sashegyi and David Ferry. “On the Interpretation of the Hazard

Ratio and Communication of Survival Benefit”. eng. In: The oncologist

22.4 (2017), pp. 484–486. issn: 1549-490X. doi: 10.1634/theoncologist.

2016-0198. url: https://pubmed.ncbi.nlm.nih.gov/28314839https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC5388384/.

[261] Alan D Saul. Gaussian Process Based Approaches for Survival Analysis.

2016.

[262] Michael Schemper and Robin Henderson. “Predictive Accuracy and Ex-

plained Variation in Cox Regression”. In: Biometrics 56 (2000), pp. 249–

255. issn: 02776715. doi: 10.1002/sim.1486.

[263] Matthias Schmid and Torsten Hothorn. “Flexible boosting of accelerated

failure time models”. In: BMC bioinformatics 9 (2008), p. 269. doi: 10.

1186/1471-2105-9-269.

[264] Matthias Schmid and Torsten Hothorn. “Boosting additive models using

component-wise P-splines”. In: Computational Statistics & Data Analysis

53.2 (2008), pp. 298–311. issn: 0167-9473.

[265] Matthias Schmid and Sergej Potapov. “A comparison of estimators to

evaluate the discriminatory power of time-to-event models”. In: Statistics

in Medicine 31.23 (2012), pp. 2588–2609. issn: 02776715. doi: 10.1002/

sim.5464.

[266] Matthias Schmid et al. “A Robust Alternative to the Schemper-Henderson

Estimator of Prediction Error”. In: Biometrics 67.2 (2011), pp. 524–535.

issn: 0006341X. doi: 10.1111/j.1541-0420.2010.01459.x.

https://doi.org/10.1002/sim.1203
https://doi.org/10.1002/sim.1621
https://cran.r-project.org/package=distr
https://cran.r-project.org/package=distr
https://doi.org/10.32614/RJ-2020-003
https://journal.r-project.org/archive/2020/RJ-2020-003/index.html
https://journal.r-project.org/archive/2020/RJ-2020-003/index.html
https://doi.org/10.1634/theoncologist.2016-0198
https://doi.org/10.1634/theoncologist.2016-0198
https://pubmed.ncbi.nlm.nih.gov/28314839 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388384/
https://pubmed.ncbi.nlm.nih.gov/28314839 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388384/
https://doi.org/10.1002/sim.1486
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.1002/sim.5464
https://doi.org/10.1002/sim.5464
https://doi.org/10.1111/j.1541-0420.2010.01459.x


Bibliography 303

[267] Gideon Schwarz. “Estimating the Dimension of a Model”. In: The Annals

of Statistics 6.2 (1978), pp. 461–464. issn: 0090-5364. doi: 10.1214/aos/

1176344136. arXiv: arXiv:1011.1669v3. url: http://projecteuclid.

org/euclid.aos/1176344136.

[268] Guido Schwarzer, Werner Vach, and Martin Schumacher. “On the misuses

of artificial neural networks for prognostic and diagnostic classification in

oncology”. In: Statistics in Medicine 19.4 (2000), pp. 541–561. issn: 0277-

6715. doi: 10.1002/(SICI)1097- 0258(20000229)19:4<541::AID-

SIM355> 3.0.CO;2- V. url: https://pubmed.ncbi.nlm.nih.gov/

10694735/.

[269] Mark Robert Segal. “Regression Trees for Censored Data”. In: Biometrics

44.1 (1988), pp. 35–47.

[270] H Seker et al. “An artificial neural network based feature evaluation index

for the assessment of clinical factors in breast cancer survival analysis”.

In: IEEE CCECE2002. Canadian Conference on Electrical and Computer

Engineering. Conference Proceedings (Cat. No.02CH37373). Vol. 2. 2002,

1211–1215 vol.2. isbn: 0840-7789 VO - 2. doi: 10.1109/CCECE.2002.

1013121.

[271] Huseyin Seker et al. “Assessment of nodal involvement and survival analy-

sis in breast cancer patients using image cytometric data: statistical, neural

network and fuzzy approaches”. eng. In: Anticancer research 22.1A (2002),

pp. 433–438. issn: 0250-7005. url: http://europepmc.org/abstract/

MED/12017328.

[272] Han-Tai Shiao and Vladimir Cherkassky. “SVM-based approaches for pre-

dictive modeling of survival data”. In: Proceedings of the International

Conference on Data Mining (DMIN). The Steering Committee of The

World Congress in Computer Science, Computer . . ., 2013, p. 1.

[273] Pannagadatta K. Shivaswamy, Wei Chu, and Martin Jansche. “A support

vector approach to censored targets”. In: Proceedings - IEEE International

Conference on Data Mining, ICDM. 2007, pp. 655–660. isbn: 0769530184.

doi: 10.1109/ICDM.2007.93.

[274] Raphael Sonabend. R62S3: Automatic Method Generation from R6. 2019.

url: https://cran.r-project.org/package=R62S3.

[275] Raphael Sonabend. survivalmodels: Models for Survival Analysis. 2020.

url: https://cran.r-project.org/package=survivalmodels.

[276] Raphael Sonabend. param6: A Fast and Lightweight R6 Parameter Inter-

face. 2021. url: https://cran.r-project.org/package=param6.

https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
http://arxiv.org/abs/arXiv:1011.1669v3
http://projecteuclid.org/euclid.aos/1176344136
http://projecteuclid.org/euclid.aos/1176344136
https://doi.org/10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
https://doi.org/10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
https://pubmed.ncbi.nlm.nih.gov/10694735/
https://pubmed.ncbi.nlm.nih.gov/10694735/
https://doi.org/10.1109/CCECE.2002.1013121
https://doi.org/10.1109/CCECE.2002.1013121
http://europepmc.org/abstract/MED/12017328
http://europepmc.org/abstract/MED/12017328
https://doi.org/10.1109/ICDM.2007.93
https://cran.r-project.org/package=R62S3
https://cran.r-project.org/package=survivalmodels
https://cran.r-project.org/package=param6


304 Bibliography

[277] Raphael Sonabend and Franz Kiraly. “distr6: The Complete R6 Probabil-

ity Distributions Interface”. In: The R Journal (2021). arXiv: 2009.02993.

url: https://cran.r-project.org/package=distr6.

[278] Raphael Sonabend and Franz J. Kiraly. “set6: R6 Mathematical Sets In-

terface”. In: Journal of Open Source Software 5.55 (2020), p. 2598. issn:

2475-9066. doi: 10.21105/joss.02598. url: https://cran.r-project.

org/package=set6.

[279] Raphael Sonabend and Florian Pfisterer. mlr3benchmark: Benchmarking

analysis for ’mlr3’. 2020. url: https://cran.r-project.org/package=

mlr3benchmark.

[280] Raphael Sonabend and Patrick Schratz. mlr3extralearners: Extra Learners

For mlr3. 2020. url: https://github.com/mlr-org/mlr3extralearners.

[281] Raphael Sonabend et al. “mlr3proba: An R Package for Machine Learning

in Survival Analysis”. In: Bioinformatics (2021). issn: 1367-4803. doi:

10.1093/bioinformatics/btab039. url: https://cran.r-project.

org/package=mlr3proba.

[282] Xiao Song and Xiao-Hua Zhou. “A semiparametric approach for the co-

variate specific ROC curve with survival outcome”. In: Statistica Sinica

18 (2008), pp. 947–965.

[283] Annette Spooner et al. “A comparison of machine learning methods for

survival analysis of high-dimensional clinical data for dementia predic-

tion”. In: Scientific Reports 10.1 (2020), p. 20410. issn: 2045-2322. doi:

10.1038/s41598- 020- 77220- w. url: https://doi.org/10.1038/

s41598-020-77220-w.

[284] Spotswood L Spruance et al. “Hazard ratio in clinical trials”. eng. In:

Antimicrobial agents and chemotherapy 48.8 (2004), pp. 2787–2792. issn:

0066-4804. doi: 10.1128/AAC.48.8.2787- 2792.2004. url: https:

//pubmed.ncbi.nlm.nih.gov/15273082https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC478551/.

[285] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks

from overfitting”. In: The journal of machine learning research 15.1 (2014),

pp. 1929–1958. issn: 1532-4435.

[286] Mikis Stasinopoulos et al. gamlss.add: Extra Additive Terms for Gener-

alized Additive Models for Location Scale and Shape. 2020. url: https:

//cran.r-project.org/package=gamlss.add.

http://arxiv.org/abs/2009.02993
https://cran.r-project.org/package=distr6
https://doi.org/10.21105/joss.02598
https://cran.r-project.org/package=set6
https://cran.r-project.org/package=set6
https://cran.r-project.org/package=mlr3benchmark
https://cran.r-project.org/package=mlr3benchmark
https://github.com/mlr-org/mlr3extralearners
https://doi.org/10.1093/bioinformatics/btab039
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3proba
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/10.1128/AAC.48.8.2787-2792.2004
https://pubmed.ncbi.nlm.nih.gov/15273082 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC478551/
https://pubmed.ncbi.nlm.nih.gov/15273082 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC478551/
https://pubmed.ncbi.nlm.nih.gov/15273082 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC478551/
https://cran.r-project.org/package=gamlss.add
https://cran.r-project.org/package=gamlss.add


Bibliography 305

[287] Michael B Steinberg et al. “Triple-combination pharmacotherapy for medi-

cally ill smokers: a randomized trial”. In: Annals of internal medicine 150.7

(2009), pp. 447–454. issn: 0003-4819.

[288] W Nick Street. “A Neural Network Model for Prognostic Prediction.” In:

Proceedings of the Fifteenth International Conference on Machine Learn-

ing. San Francisco, 1998.

[289] The Benelux C M L Study Group. “Randomized Study on Hydroxyurea

Alone Versus Hydroxyurea Combined With Low-Dose Interferon-α2b for

Chronic Myeloid Leukemia”. In: Blood 91.8 (1998), pp. 2713–2721. issn:

1528-0020. doi: 10.1182/blood.V91.8.2713.2713_2713_2721. url:

https://doi.org/10.1182/blood.V91.8.2713.2713{\_}2713{\_

}2721https://ashpublications.org/blood/article/91/8/2713/

107615/Randomized-Study-on-Hydroxyurea-Alone-Versus.

[290] The Diabetic Retinopathy Study Research Group. “Preliminary report on

effects of photocoagulation therapy.” eng. In: American journal of ophthal-

mology 81.4 (1976), pp. 383–396. issn: 0002-9394 (Print). doi: 10.1016/

0002-9394(76)90292-0.

[291] Terry M. Therneau. A Package for Survival Analysis in S. 2015. url:

https://cran.r-project.org/package=survival.

[292] Terry M. Therneau and Beth Atkinson. rpart: Recursive Partitioning and

Regression Trees. 2019.

[293] Terry M. Therneau and Elizabeth Atkinson. Concordance. 2020. url:

https://cran.r-project.org/web/packages/survival/vignettes/

concordance.pdf (visited on 06/02/2020).

[294] Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data:

Extending the Cox Model. New York, 2000. isbn: 0-387-98784-3.

[295] Terry M. Therneau, Patricia M. Grambsch, and Thomas R. Fleming.

“Martingale-based residuals for survival models”. In: Biometrika 77.1 (1990),

pp. 147–160. issn: 00063444. doi: 10.1093/biomet/77.1.147.

[296] Grigorios Tsoumakas and Ioannis Katakis. “Multi-Label Classification: An

Overview”. In: International Journal of Data Warehousing and Mining 3.3

(2007), pp. 1–13. issn: 1548-3924. doi: 10.4018/jdwm.2007070101. url:

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=

10.4018/jdwm.2007070101.

[297] Gerhard Tutz and Harald Binder. “Boosting Ridge Regression”. In: Com-

putational Statistics & Data Analysis 51 (2007), pp. 6044–6059. doi: 10.

1016/j.csda.2006.11.041.

https://doi.org/10.1182/blood.V91.8.2713.2713_2713_2721
https://doi.org/10.1182/blood.V91.8.2713.2713{\_}2713{\_}2721 https://ashpublications.org/blood/article/91/8/2713/107615/Randomized-Study-on-Hydroxyurea-Alone-Versus
https://doi.org/10.1182/blood.V91.8.2713.2713{\_}2713{\_}2721 https://ashpublications.org/blood/article/91/8/2713/107615/Randomized-Study-on-Hydroxyurea-Alone-Versus
https://doi.org/10.1182/blood.V91.8.2713.2713{\_}2713{\_}2721 https://ashpublications.org/blood/article/91/8/2713/107615/Randomized-Study-on-Hydroxyurea-Alone-Versus
https://doi.org/10.1016/0002-9394(76)90292-0
https://doi.org/10.1016/0002-9394(76)90292-0
https://cran.r-project.org/package=survival
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
https://doi.org/10.1093/biomet/77.1.147
https://doi.org/10.4018/jdwm.2007070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2007070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2007070101
https://doi.org/10.1016/j.csda.2006.11.041
https://doi.org/10.1016/j.csda.2006.11.041


306 Bibliography

[298] Gerhard Tutz and Matthias Schmid. Modeling Discrete Time-to-Event

Data. Springer Series in Statistics. Cham: Springer International Publish-

ing, 2016. isbn: 978-3-319-28156-8. doi: 10.1007/978-3-319-28158-2.

url: http://link.springer.com/10.1007/978-3-319-28158-2.

[299] Hajime Uno et al. “Evaluating Prediction Rules for t-Year Survivors with

Censored Regression Models”. In: Journal of the American Statistical As-

sociation 102.478 (2007), pp. 527–537. issn: 01621459. url: http://www.

jstor.org/stable/27639883.

[300] Hajime Uno et al. “On the C-statistics for Evaluating Overall Adequacy

of Risk Prediction Procedures with Censored Survival Data”. In: Statistics

in Medicine 30.10 (2011), pp. 1105–1117. issn: 02776715. doi: 10.1002/

sim.4154. arXiv: NIHMS150003.

[301] Kevin Ushey, J J Allaire, and Yuan Tang. reticulate: Interface to ’Python’.

2020. url: https://cran.r-project.org/package=reticulate.

[302] V Van Belle et al. “Additive survival least-squares support vector ma-

chines”. In: Statistics in Medicine 29.2 (2010), pp. 296–308. issn: 0277-

6715. doi: 10.1002/sim.3743. url: https://doi.org/10.1002/sim.

3743.

[303] Vanya Van Belle et al. “Support Vector Machines for Survival Analysis”.

In: In Proceedings of the Third International Conference on Computa-

tional Intelligence in Medicine and Healthcare. 1. 2007. doi: 10.1016/j.

microrel.2005.05.002.

[304] Vanya Van Belle et al. “Survival SVM: a practical scalable algorithm”. In:

Proceedings of the 16th European Symposium on Artificial Neural Networks

(ESANN). 2008, pp. 89–94.

[305] Vanya Van Belle et al. “Learning Transformation Models for Ranking and

Survival Analysis”. In: Journal of Machine Learning Research 12 (2011),

pp. 819–862. issn: 15324435.

[306] Vanya Van Belle et al. “Support vector methods for survival analysis:

A comparison between ranking and regression approaches”. In: Artificial

Intelligence in Medicine 53.2 (2011), pp. 107–118. issn: 09333657. doi:

10.1016/j.artmed.2011.06.006. url: http://dx.doi.org/10.1016/

j.artmed.2011.06.006.

[307] Marc J Van De Vijver et al. “A gene-expression signature as a predictor

of survival in breast cancer”. In: New England Journal of Medicine 347.25

(2002), pp. 1999–2009. issn: 0028-4793.

https://doi.org/10.1007/978-3-319-28158-2
http://link.springer.com/10.1007/978-3-319-28158-2
http://www.jstor.org/stable/27639883
http://www.jstor.org/stable/27639883
https://doi.org/10.1002/sim.4154
https://doi.org/10.1002/sim.4154
http://arxiv.org/abs/NIHMS150003
https://cran.r-project.org/package=reticulate
https://doi.org/10.1002/sim.3743
https://doi.org/10.1002/sim.3743
https://doi.org/10.1002/sim.3743
https://doi.org/10.1016/j.microrel.2005.05.002
https://doi.org/10.1016/j.microrel.2005.05.002
https://doi.org/10.1016/j.artmed.2011.06.006
http://dx.doi.org/10.1016/j.artmed.2011.06.006
http://dx.doi.org/10.1016/j.artmed.2011.06.006


Bibliography 307

[308] Hans C. Van Houwelingen. “Validation, calibration, revision and combina-

tion of prognostic survival models”. In: Statistics in Medicine 19.24 (2000),

pp. 3401–3415. issn: 02776715. doi: 10.1002/1097-0258(20001230)19:

24<3401::AID-SIM554>3.0.CO;2-2.

[309] Hans C. Van Houwelingen. “Dynamic prediction by landmarking in event

history analysis”. In: Scandinavian Journal of Statistics 34.1 (2007), pp. 70–

85. issn: 03036898. doi: 10.1111/j.1467-9469.2006.00529.x.

[310] J C Van Houwelingen et al. “Predictability of the survival of patients with

advanced ovarian cancer.” In: Journal of Clinical Oncology 7.6 (1989),

pp. 769–773. issn: 0732-183X.

[311] Vladimir Vapnik. The Nature of Statistical Learning Theory. 1998. isbn:

978-0-387-94559-0.

[312] Aki Vehtari and Heikki Joensuu. A Gaussian processes model for sur-

vival analysis with time dependent covariates and interval censoring. 2013.

url: https://users.aalto.fi/{~}ave/VehtariJoensuu{\_}GIST{\_

}CT{\_}timing{\_}poster{\_}2013.pdf (visited on 04/20/2020).

[313] Bhanukiran Vinzamuri, Yan Li, and Chandan K. Reddy. “Pre-processing

censored survival data using inverse covariance matrix based calibration”.

In: IEEE Transactions on Knowledge and Data Engineering 29.10 (2017),

pp. 2111–2124. issn: 10414347. doi: 10.1109/TKDE.2017.2719028.

[314] David M Vock et al. “Adapting machine learning techniques to censored

time-to-event health record data: A general-purpose approach using in-

verse probability of censoring weighting”. In: Journal of Biomedical Infor-

matics 61 (2016), pp. 119–131. issn: 1532-0464. doi: https://doi.org/

10.1016/j.jbi.2016.03.009. url: http://www.sciencedirect.com/

science/article/pii/S1532046416000496.

[315] Chris T Volinsky and Adrian E Raftery. “Bayesian Information Criterion

for Censored Survival Models”. In: International Biometric Society 56.1

(2000), pp. 256–262.

[316] Hong Wang and Gang Li. “A Selective Review on Random Survival Forests

for High Dimensional Data”. eng. In: Quantitative bio-science 36.2 (2017),

pp. 85–96. issn: 2508-7185. doi: 10.22283/qbs.2017.36.2.85. url:

https://pubmed.ncbi.nlm.nih.gov/30740388https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC6364686/.

[317] Ping Wang, Yan Li, and Chandan K. Reddy. “Machine Learning for Sur-

vival Analysis: A Survey”. In: ACM Computing Surveys 1.1 (2017). arXiv:

arXiv:1708.04649v1.

https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
https://doi.org/10.1111/j.1467-9469.2006.00529.x
https://users.aalto.fi/{~}ave/VehtariJoensuu{\_}GIST{\_}CT{\_}timing{\_}poster{\_}2013.pdf
https://users.aalto.fi/{~}ave/VehtariJoensuu{\_}GIST{\_}CT{\_}timing{\_}poster{\_}2013.pdf
https://doi.org/10.1109/TKDE.2017.2719028
https://doi.org/https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/https://doi.org/10.1016/j.jbi.2016.03.009
http://www.sciencedirect.com/science/article/pii/S1532046416000496
http://www.sciencedirect.com/science/article/pii/S1532046416000496
https://doi.org/10.22283/qbs.2017.36.2.85
https://pubmed.ncbi.nlm.nih.gov/30740388 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364686/
https://pubmed.ncbi.nlm.nih.gov/30740388 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364686/
http://arxiv.org/abs/arXiv:1708.04649v1


308 Bibliography

[318] Zhu Wang. bujar: Buckley-James Regression for Survival Data with High-

Dimensional Covariates. 2019. url: https://cran.r- project.org/

package=bujar.

[319] Zhu Wang and C Y Wang. “Buckley-James Boosting for Survival Analysis

with High-Dimensional Biomarker Data”. English. In: Statistical Applica-

tions in Genetics and Molecular Biology 9.1 (2010). doi: https://doi.

org/10.2202/1544-6115.1550. url: https://www.degruyter.com/

view/journals/sagmb/9/1/article-sagmb.2010.9.1.1550.xml.xml.

[320] L J Wei. “The Accelerated Failure Time Model: A Useful Alternative to

the Cox Regression Model in Survival Analysis”. In: Statistics in Medicine

11 (1992), pp. 1871–1879.

[321] Thomas Welchowski and Matthias Schmid. discSurv: Discrete Time Sur-

vival Analysis. 2019. url: https://cran.r- project.org/package=

discSurv.

[322] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-

Verlag New York, 2016. isbn: 978-3-319-24277-4. url: https://ggplot2.

tidyverse.org.

[323] Tymoteusz Wolodzko. extraDistr: Additional Univariate and Multivariate

Distributions. 2019. url: https://cran.r- project.org/package=

extraDistr.

[324] David H Wolpert. “Stacked generalization”. In: Neural Networks 5.2 (1992),

pp. 241–259. issn: 0893-6080. doi: https://doi.org/10.1016/S0893-

6080(05)80023-1. url: http://www.sciencedirect.com/science/

article/pii/S0893608005800231.

[325] Marvin N. Wright and Andreas Ziegler. “ranger: A Fast Implementation of

Random Forests for High Dimensional Data in C++ and R”. In: Journal

of Statistical Software 77.1 (2017), pp. 1–17.

[326] Laure Wynants et al. “Prediction models for diagnosis and prognosis of

covid-19: systematic review and critical appraisal”. In: BMJ 369 (2020),

p. m1328. doi: 10 . 1136 / bmj . m1328. url: http : / / www . bmj . com /

content/369/bmj.m1328.abstract.

[327] Anny Xiang et al. “Comparison of the performance of neural network

methods and Cox regression for censored survival data”. In: Computational

Statistics & Data Analysis 34.2 (2000), pp. 243–257. issn: 0167-9473. doi:

https://doi.org/10.1016/S0167-9473(99)00098-5. url: http://

www.sciencedirect.com/science/article/pii/S0167947399000985.

https://cran.r-project.org/package=bujar
https://cran.r-project.org/package=bujar
https://doi.org/https://doi.org/10.2202/1544-6115.1550
https://doi.org/https://doi.org/10.2202/1544-6115.1550
https://www.degruyter.com/view/journals/sagmb/9/1/article-sagmb.2010.9.1.1550.xml.xml
https://www.degruyter.com/view/journals/sagmb/9/1/article-sagmb.2010.9.1.1550.xml.xml
https://cran.r-project.org/package=discSurv
https://cran.r-project.org/package=discSurv
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://cran.r-project.org/package=extraDistr
https://cran.r-project.org/package=extraDistr
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
http://www.sciencedirect.com/science/article/pii/S0893608005800231
http://www.sciencedirect.com/science/article/pii/S0893608005800231
https://doi.org/10.1136/bmj.m1328
http://www.bmj.com/content/369/bmj.m1328.abstract
http://www.bmj.com/content/369/bmj.m1328.abstract
https://doi.org/https://doi.org/10.1016/S0167-9473(99)00098-5
http://www.sciencedirect.com/science/article/pii/S0167947399000985
http://www.sciencedirect.com/science/article/pii/S0167947399000985


[328] Yanying Yang. “Neural Network Survival Analysis”. PhD thesis. Univer-

siteit Gent, 2010, p. 57. isbn: 9781617796326.

[329] Angeline Yasodhara, Mamatha Bhat, and Anna Goldenberg. Prediction of

New Onset Diabetes after Liver Transplant. 2018.

[330] Ali Zare et al. “A Comparison between Accelerated Failure-time and Cox

Proportional Hazard Models in Analyzing the Survival of Gastric Can-

cer Patients.” In: Iranian journal of public health 44.8 (2015), pp. 1095–

102. issn: 03044556. doi: 10.1007/s00606-006-0435-8. url: http:

//www.ncbi.nlm.nih.gov/pubmed/26587473{\%}0Ahttp://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4645729.

[331] Yucheng Zhang et al. “CNN-based survival model for pancreatic duc-

tal adenocarcinoma in medical imaging”. In: BMC Medical Imaging 20.1

(2020), p. 11. issn: 1471-2342. doi: 10.1186/s12880-020-0418-1. url:

https://doi.org/10.1186/s12880-020-0418-1.

[332] Lili Zhao and Dai Feng. “DNNSurv: Deep Neural Networks for Survival

Analysis Using Pseudo Values”. In: (2020). arXiv: 1908 . 02337. url:

https://arxiv.org/abs/1908.02337.

[333] Zheng Zhou et al. “Survival Bias Associated with Time-to-Treatment Ini-

tiation in Drug Effectiveness Evaluation: A Comparison of Methods”. In:

American Journal of Epidemiology 162.10 (2005), pp. 1016–1023. issn:

0002-9262. doi: 10.1093/aje/kwi307. url: https://doi.org/10.1093/

aje/kwi307.

[334] Wan Zhu et al. “The Application of Deep Learning in Cancer Progno-

sis Prediction”. eng. In: Cancers 12.3 (2020), p. 603. issn: 2072-6694.

doi: 10.3390/cancers12030603. url: https://pubmed.ncbi.nlm.

nih.gov/32150991https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC7139576/.

[335] X Zhu, J Yao, and J Huang. “Deep convolutional neural network for sur-

vival analysis with pathological images”. In: 2016 IEEE International Con-

ference on Bioinformatics and Biomedicine (BIBM). 2016, pp. 544–547.

isbn: VO -. doi: 10.1109/BIBM.2016.7822579.

309

https://doi.org/10.1007/s00606-006-0435-8
http://www.ncbi.nlm.nih.gov/pubmed/26587473{\%}0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4645729
http://www.ncbi.nlm.nih.gov/pubmed/26587473{\%}0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4645729
http://www.ncbi.nlm.nih.gov/pubmed/26587473{\%}0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4645729
https://doi.org/10.1186/s12880-020-0418-1
https://doi.org/10.1186/s12880-020-0418-1
http://arxiv.org/abs/1908.02337
https://arxiv.org/abs/1908.02337
https://doi.org/10.1093/aje/kwi307
https://doi.org/10.1093/aje/kwi307
https://doi.org/10.1093/aje/kwi307
https://doi.org/10.3390/cancers12030603
https://pubmed.ncbi.nlm.nih.gov/32150991 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139576/
https://pubmed.ncbi.nlm.nih.gov/32150991 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139576/
https://pubmed.ncbi.nlm.nih.gov/32150991 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139576/
https://doi.org/10.1109/BIBM.2016.7822579


Appendices

310



Appendix A

Chapter 5 Pseudo-code

Algorithm 7 Fitting the (C1) compositor (section 5.4.1).
Input Continuous ranking model, MR. Training data, D0. Kaplan-Meier esti-
mator, MS. Model parameters, θ.
Output Fitted ranking model and estimated baseline survival function,
{M̂R, S0}.

M̂R ← fit(MR,D0, θ)
S0 ← fit(MS,D0)
return {M̂R, S0}

Algorithm 8 Predicting with the (C1) compositor (section 5.4.1).
Input Fitted continuous ranking model, M̂R. Estimated baseline survival func-
tion, S0. Testing data, D1. Model parameters, Θ. Model form, F .
Output Composed distribution, ζ.

η̂ ← predict(M̂R,D1,Θ)
function C(t)

switch F do
case ph

return S0(t)∧ exp(η̂)

case aft
return S0(t/ exp(η̂))

case po
return S0(t)/(exp(−η̂) + (1− exp(−η̂)) ∗ S0(t))

end function
ζ.S ← C
return ζ
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Algorithm 9 Fitting the (C2) compositor (section 5.4.2).
Input Survival time model, MT . Standard error model, MS. Training data, D0.
Model parameters, θT , θS.
Output Fitted survival time and standard error models, {M̂T , M̂S}.

M̂T ← fit(MT ,D0, θT )
M̂S ← fit(MS,D0, θS)
return {M̂T , M̂S}

Algorithm 10 Predicting with the (C2) compositor (section 5.4.2).
Input Fitted survival time model, M̂T . Fitted standard error model, M̂S. Model
parameters, ΘT ,ΘS. Assumed distribution with respective location-scale param-
eters: d(µ, σ). Testing data, D1.
Output Composed distribution, ζ.

µ← predict(M̂T ,D1|ΘT )
σ ← predict(M̂S,D1|ΘS)
ζ ← d(µ, σ)
return ζ

Algorithm 11 Fitting the (C3) compositor (section 5.4.3).
Input Probabilistic survival model: M . Training data, D0. Model parameters,
θ.
Output Fitted probabilistic survival model, M̂ .

M̂ ← fit(M,D0, θ)
return M̂

Algorithm 12 Predicting with the (C3) compositor (section 5.4.3).
Input Fitted probabilistic survival model, M̂ . Summary method, φ. Testing
data, D1. Model parameters, Θ.
Output Composed survival time prediction, T̂ .

ζ ← predict(M̂,D1,Θ)
T̂ ← φ(ζ)
return T̂

Algorithm 13 Fitting the (C4) compositor (section 5.4.4).
Input B survival models: M = {Mb}Bb=1. Training data, D0. Model parameters,
θ = {θb}Bb=1.
Output B fitted survival models, M̂ .

for b = 1, ..., B do
M̂b ← fit(Mb,D0, θb)

end for
M̂ ← {M̂b}Bb=1

return M̂
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Algorithm 14 Predicting with the (C4) compositor (section 5.4.4).
Input B fitted survival models, M̂ = {M̂b}Bb=1. Testing data, D1. Model param-
eters, Θ = {Θb}Bb=1.
Output Averaged survival prediction, φ.

for b = 1, ..., B do
φb ← predict(M̂b,D1,Θb)

end for
φ← mean(φ1, ..., φB)
return φ
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Appendix B

Full Text of Section 5.5.7.4

This section discusses multi-label classification algorithms and includes a novel
‘wrapper’ for solving multi-label classification problems with any classifier.

Formally, let X ⊆ Rp for p features in a training dataset and let K be the
number of labels to predict, then the multi-label classification task is the problem
of estimating the function ĝ,

ĝ : X→ [0, 1]K (B.0.1)

The models are trained on data (X1, Y1), ..., (Xn, Yn)
iid∼ (X, Y ) t.v.i. X×[0, 1]K .

Multi-label classification models can be grouped into ‘problem transformation’
methods (PTs) and ‘algorithm adaptation methods’ (AAs) [296]. PTs solve the
multi-class problem by transforming the data into a single-label problem and then
utilising off-shelf classification models, they are therefore reductions themselves.
AAs adapt the classifiers themselves and few of these algorithms exist off-shelf
(gL(DB|θ) in fig. 30); hence PTs are the focus in this section (CC and CB in
fig. 30). Common PTs are summarised below and then generalised into a single
multi-label classification ‘wrapper’. For the PTs below that include an example,
each assumes the original dataset is the one in table 25 where X is the only
feature and Y 1, Y 2, Y 3 are three labels to predict.1

Table 25: Example multi-label classification dataset.

X Y 1 Y 2 Y 3
1 1 0 0
2 0 0 0
3 1 1 0

Exclusive Multi-Class Method: A new outcome variable, Y ∗ t.v.i. {1, ..., K},
is defined such that all K labels are treated as K classes. Advantages: Simple
to implement. Majority of classifiers can handle multiple categories. Disad-
vantages: Assumes labels are mutually exclusive. Only for binary multi-label

1Table 25 is a generic multi-label classification dataset and not one resulting from the
survival reduction.
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classification. Example data (Ex.) after transformation (trafo): Multi-
class classification dataset with one label consisting of three possible ‘classes’,
corresponding to the original three labels:

X Y
1 2
2 1
3 3

Label Power Set Method: A new outcome variable, Y ∗ t.v.i. {1, ..., 2K}, is
defined that takes as classes the powerset of the original K labels. Advantages:
Simple to implement. Does not require original labels to be mutually exclusive.
Disadvantages: Probabilistic predictions have no meaningful interpretation.
Only works if original multi-label dataset has binary classes. Ex. after trafo:
Multi-class classification dataset with 23 classes, corresponding to the labels in
which an observation is alive:

X Y
1 {1}
2 {}
3 {1 ∧ 2}

Binary Relevance Method: The original dataset is replicated intoK datasets
where the same features are used, but each includes only one of the original out-
come labels. Advantages: Reduces the problem to multiple single-label binary-
class problems. Can be handled by any classifier. Disadvantages: Additional
run-time and storage requirements as K classifiers are required. Classifiers make
independent predictions, which may be unrealistic when labels are correlated.
Ex. after trafo: Three datasets, corresponding to the probability of event in
Y1-3 independently:

X Y 1
1 1
2 0
3 1

X Y 2
1 0
2 0
3 1

X Y 3
1 0
2 0
3 0

Classifier Chains Method: Labels are ordered and for each ordered label
to predict, classifiers are trained on features and the true, observed values for
all previous labels. Advantages: Predictions are not independent as classifier
makes use of previous labels. Sophisticated models should learn that if the event
can occur only once then once it is observed in a previous label, it is guaranteed
for future labels. Disadvantages: Each subsequent model makes use of previous
labels and so the running time and required storage increases with every model.
Ex. after trafo: Three datasets with the final column being the label to predict
and the others being features and prior labels:
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X Y 1
1 1
2 0
3 1

X Y 1 Y 2
1 1 0
2 0 0
3 1 1

X Y 1 Y 2 Y 3
1 1 0 0
2 0 0 0
3 1 1 0

Nested Stacking Almost identical to classifier chains except that instead of
using real values from previous labels, the predicted estimates are used instead.
This makes it a stacking method as each subsequent model is built using elements
of the previous. In terms of model size this is similar to classifier chains but may
take longer to fit as the algorithm calls back to previous models.

Dependent Binary Relevance and Stacking The final two methods are
similar to classifier chains and nested stacking except that the ordering of labels
is not required. Instead every covariate and label – except the target – is included
as a feature to train the model. These are not appropriate methods when a nat-
ural ordering is present in the data.

In the classification reduction, target labels are correlated, multi-class, and have
a natural ordering. Hence exclusive multi-class, label power set, dependent bi-
nary relevance and stacking are not appropriate; only binary relevance, classifier
chains and nested stacking are recommended for this reduction. Binary relevance
cannot be applied to the discrete hazard representation (section 5.5.7.2) compo-
sition as doing so will estimate the pmf not hazard. This is the case as the hazard
function assumes knowledge about ‘the past’, i.e. survival up until a given time.
Therefore only an algorithm that makes sequential predictions can estimate this
conditional quantity.

Classifier chains and nested stacking have the added advantage of taking into
account information from previous labels, given some pre-specified ordering, but
at the cost of increased time and storage requirements. Table 26 shows the
time taken to fit/predict a logistic regression model, using each PT above, to
a simulated dataset consisting of 66 observations, one binary feature, one nu-
meric feature, and ten binary, mutually-exclusive, labels. The fastest methods
for fit/predict were binary relevance and classifier chains. A fitted binary rel-
evance model was also the smallest (in Mb). The stacking PT was both the
longest to fit/predict and one of the largest stored models (double the size of
binary relevance).

The LWrapper Each of the PT methods can be generalised into a single ‘wrap-
per’ for multi-label classification, which is termed the ‘LWrapper’. This is a
wrapper as any classifier can be ‘wrapped’ in the LWrapper to form a composite
model capable of making multi-label classification predictions. Doing so increases
flexibility in user-choice and potential hyper-parameters for tuning.

Let K be the number of labels in the multi-label classification dataset and let
k ∈ 1, ..., K denote a single label to be predicted.

The LWrapper has three hyper-parameters. The first is the ‘L’ parameter
which is a value in 1, ..., k− 1, and corresponds to the number of labels to utilise
as covariates. For example if Xi t.v.i. Rp are p features for observation i and
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Table 26: Times to fit/predict logistic regression for each PT, as well as the size of the
trained model. PTs incorporating other labels require double the space. Time taken
to fit/predict significantly increases with method complexity.

Method Mean (ms) cld1 Size (Mb)
Binary Relevance 90 a 2.3
Classifier Chains 113 a 2.4

Dependent Binary Relevance 214 b 4.8
Nested Stacking 331 c 2.4

Stacking 437 d 4.8

1. Significance test for run-time of each method where ‘a’ is fastest and ‘d’ is slowest.
The experiment is conducted on R version 3.6.1; Platform: x86 64-apple-darwin15.6.0 (64-
bit); Running under: macOS Mojave 10.14.4 with mlr v2.16.0 [22], and microbenchmark
v1.4-7 [215].

Table 27: Correspondence of Select-l wrapper to PT algorithms.

Ordered Not Ordered
Stacked Not Stacked Stacked Not Stacked

l = 02 BR1 BR BR BR
l = k − 13 NS CC ST DBR

1. Key: Binary Relevance (BR); Nested Stacking (NS); Classifier Chains (CC); Stacking
PT (ST); Dependent Binary Relevance (DBR).
2. Select-0 is always equivalent to Binary Relevance (as is Past-0 and First-0).
3. If data is ordered then Select-(k−1) is equivalent to classifier chains and Stacked-Select-
(k−1) is equivalent to nested stacking. If data is not ordered then Select-(k−1) is equivalent
to dependent binary relevance and Stacked-Select-(k − 1) is equivalent to stacking PT.

L = 2, then the covariates for prediction are the p features and two of the labels.1

The second parameter, ‘type’, corresponds to which L of the labels are utilised as
covariates, the options are ‘Past’, ‘First’, or ‘Select’, these are described below.
The final parameter, ‘stacking’, indicates if stacking should be applied to the
models.

For notational convenience, below ‘Past-l’ will refer to the wrapper with the
‘past’ type and with ‘L’ set to l. ‘Stacked-Past-l’ is the wrapper when stacking
is additionally applied. Analogously for first and select.

The Past-l wrapper predicts the probability of event in each of the K labels
individually using the ‘previous’ l labels for prediction, this assumes a given
ordering for the labels. The First-l wrapper predicts the probability of event in
each of the K labels individually using the ‘first’ l labels for prediction, again
assuming an ordering. The Select-l wrapper incorporates variable selection to
select l variables. If an ordering is specified then the model will only select from
labels ‘before’ k. Each model can be adapted to stacking methods by using
‘previous’ predictions as features instead of the true observed labels. The PT
methods are special cases of the Select-l wrapper (table 27).

1The LWrapper extends simply to the time-varying covariates setting by noting that any
‘sliding window’ approach, which fits and predicts models over time, can be set-up so
covariates update over time with the sequentially fitted model. This is not discussed further
due to being out of scope of this thesis.
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Appendix C

Chapter 4 Proofs

Proof of lemma 4.5.1

Proof. Let Y := SX(X) and as X is a continuous random variable assume FX
is continuous and non-decreasing and so the quantile function F−1

X exists. Note
that FX is continuous in [0,1]. By transformation of random variables,

FY (x) = P (Y ≤ x)

= P (SX(X) ≤ x)

= P (FX(X) ≥ 1− x)

= P (X ≥ F−1
X (1− x))

= 1− P (X ≤ F−1
X (1− x))

= 1− FX(F−1
X (1− x))

= 1− 1 + x = x

Further note that if U ∼ U(0, 1) then FU(u) = u. As U and Y := SX(X) have
the same distribution function, it follows SX(X) ∼ U(0, 1).

Proof of lemma 4.6.2

Proof.

Proof of (i). By definition L is outcome-independent proper if E[L(pY , T,∆)] ≤
E[L(p, T,∆)] but this is a contradiction to the statement, hence L is not outcome-
independent proper, proving (i). �

Proof of (ii). By definition L is outcome-independent strictly proper if L is
outcome-independent proper and E[L(pY , T,∆)] = E[L(p, T,∆)]⇔ p = pY , how-
ever by (i) L is not outcome-independent proper and therefore by definition can-
not be outcome-independent strictly proper, proving (ii). �

Proof of (iii). Proof is identical to (i). �
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Proof of (iv). Proof of (iv): By definition L is strictly proper if L is proper and
E[L(pY , T,∆)] = E[L(p, T,∆)] ⇔ p = pY , however by (iii) L is improper and
therefore by definition cannot be strictly proper, proving (iv). �

Proof of lemma 4.6.3

Proof.

Proof of (i). By definition L is approximately proper if E[L(pY , T,∆|c)] ≤
E[L(p, T,∆|c)] but this is a contradiction to the statement, hence L is not ap-
proximately proper, proving (i). �

Proof of (ii). By definition L is approximately strictly proper if L is approxi-
mately proper and E[L(pY , T,∆|c)] = E[L(p, T,∆|c)] ⇔ p = pY , however by (i)
L is not approximately proper and therefore by definition cannot be approxi-
mately strictly proper, proving (ii). �

Proof of lemma 4.6.4

Proof.

Proof of (i). Proof follows by definition of properness and substituting the ex-
pressions defined above. If L is proper then

E[L(pY , T,∆)] ≤ E[L(p, T,∆)]

⇒ SL(pY , pY ) ≤ SL(pY , p)

⇒ HL(pY ) ≤ SL(pY , p)

⇒ 0 ≤ SL(pY , p)−HL(pY )

⇒ DL(pY , p) ≥ 0

where the second inequality is substituting definition of SL, the third is substi-
tuting definition of HL, the third is subtracting HL from both sides, and the final
by substituting definition of DL and reversing the inequality. �

Proof of (ii). Proof follows similarly to (i) after replacing the inequalities by strict
inequalities. �
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Proof of lemma 4.6.5

Proof. Proof follows by transformation of random variables via the joint cdf.
The joint cdf of (X, Y ) is defined by,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds (C.0.1)

By definition of indicator variables, Z = 1 iff Y ≥ X and 0 otherwise and so
on substituting Z for Y ,

FX,Z(x, z) = P (X ≤ x, Z ≤ z)

=

P (X ≤ x), z = 1

P (X ≤ x, Z = 0) = P (X ≤ x, Y < X), z = 0

where the first case follows as Z ∈ {0, 1} and hence P (X ≤ x, Z ≤ 1) = P (X ≤ x)
as Z is marginalised out. The second case follows as Z ∈ {0, 1} and so P (Z ≤
0) = P (Z = 0), and by definition of indicator variables Z = 0 iff Y < X. Now
focusing on the second case,

P (X ≤ x, Y < X) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (t, y)Ix(t, y) dt dy

=

∫ x

−∞

∫ s

−∞
fX,Y (s, y) dy ds

where Ix = I(a ≤ x, b < a). The first line follows by definition of joint probabili-
ties and the second by change of notation. Now,

FX,Z(x, z) =

FX(x), z = 1∫ x
−∞

∫ s
−∞ fX,Y (s, y) dy ds, z = 0

(C.0.2)

For mixed joint distributions, FX,Y (x, y) =
∑

t≤y
∫ x
s=∞ fX,Y (s, t) ds, hence the

joint density is given by

fX,Z(x, z) =


∂FX,Z(x,1)−FX,Z(x,0)

∂x
, z = 1

∂FX,Z(x,0)

∂x
, z = 0

=

 ∂
∂x

∫ x
−∞

∫∞
−∞ fX,Y (s, y) dy ds−

∫ x
−∞

∫ s
−∞ fX,Y (s, y) dy ds, z = 1

∂
∂x

∫ x
−∞

∫ s
−∞ fX,Y (s, y) dy ds, z = 0

=

 ∂
∂x

∫ x
−∞

∫∞
−∞ fX,Y (s, y) dy −

∫ s
−∞ fX,Y (s, y) dy ds, z = 1∫ x

−∞ fX,Y (x, y) dy, z = 0
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=

 ∂
∂x

∫ x
−∞

∫∞
s
fX,Y (s, y) dy ds, z = 1∫ x

−∞ fX,Y (x, y) dy, z = 0

=


∫∞
x
fX,Y (x, y) dy, z = 1∫ x

−∞ fX,Y (x, y) dy, z = 0

where the first equality is the definition of the joint mixed pdf in terms of the
cdf, the second equality follows by substituting eq. (C.0.2), the third by taking
the partial derivative of the second case over x and by linearity of integration in
the first case, the fourth by subtracting the inner integrals, and the fifth by taking
the partial derivative of the first case over x. The proof is now complete.

Proof of corollary 4.6.6

Proof. From lemma 4.6.5, for any jointly absolutely continuous random variables,
X, Y supported on the Reals and Z = I(X ≤ Y ) it holds that,

fX,Z(x, z) =


∫∞
x

fX,Y (x, y) dy, z = 1∫ x
−∞ fX,Y (x, y) dy, z = 0

(C.0.3)

If X, Y are independent then fX,Y (x, y) = fX(x)fY (y) by definition of inde-
pendence. Substituting this result into the above equation,

fX,Z(x, z) =


∫∞
x

fX(x)fY (y) dy, z = 1∫ x
−∞ fX(x)fY (y) dy, z = 0

=

fX(x)
∫∞
x

fY (y) dy, z = 1

fX(x)
∫ x
−∞ fY (y) dy, z = 0

=

fX(x)SY (x), z = 1

fX(x)FY (x), z = 0

where the first equality holds as X, Y independent, the second by properties
of integration, and the third by definition of the cumulative distribution and
survival functions. The proof is now complete.

Proof of proposition 4.6.12

Proof.

Proof of (i). Let P be a family of absolutely continuous distributions over the
positive Reals and let ζ, ξ be some distributions in P. Let Y be some random
variable distributed according to ξ and let C be an r.v. t.v.i. T and let Y and
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C be independent. Let T := min{Y,C} and ∆ := I(T = Y ). Let Ŷ be some
random variable distributed according to ζ, independent of Y , C, T , and ∆.

By lemma 4.6.4, the loss is improper if there exists some ζ, ξ such thatDSDLL(ξ, ζ) <
0. Proof follows by demonstrating such ζ, ξ exist and therefore that the loss is
improper. First calculating SIGS(ξ, ζ),

SIGS(ξ, ζ) = E{
∫ τ∗

0

S2
Ŷ

(τ)I(T ≤ τ,∆ = 1)

ĜKM(T )
+
F 2
Ŷ

(τ)I(T > τ)

ĜKM(τ)
dτ}

= E[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ ] + E[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ ]

= qE[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ |∆ = 1] + qE[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 1] +

(1− q)E[

∫ τ∗

T

S2
Ŷ

(τ)∆

ĜKM(T )
dτ |∆ = 0] + (1− q)E[

∫ T

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 0]

= qE[

∫ τ∗

Y

S2
Ŷ

(τ)

ĜKM(Y )
dτ |∆ = 1] + qE[

∫ Y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 1] +

(1− q)E[

∫ C

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτ |∆ = 0]

= q

∫
fY |∆(y|1)

∫ τ∗

y

S2
Ŷ

(τ)

ĜKM(y)
dτdy + q

∫
fY |∆(y|1)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +

(1− q)
∫
fC|∆(c|0)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

=

∫
fY,∆(y, 1)

∫ τ∗

t

S2
Ŷ

(τ)

ĜKM(y)
dτdy +

∫
fY,∆(y, 1)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +∫

fC,∆(c, 0)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

=

∫
fY (y)SC(y)

∫ τ∗

y

S2
Ŷ

(τ)

ĜKM(y)
dτdy +

∫
fY (y)SC(y)

∫ y

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdy +∫

fC(c)SY (c)

∫ c

0

F 2
Ŷ

(τ)

ĜKM(τ)
dτdc

where the second equality is linearity of integration and expectation, the third is
law of total expectation and substituting q := P (∆ = 1), the fourth is substituting
Y for T |∆ = 1, C for T |∆ = 0, the fifth is definition of conditional expectation,
the sixth is definition of conditional probability, the seventh is corollary 4.6.6 and
lemma 4.6.7. To prove LIGS is not proper, proof continues in the asymptotic as
n→∞ and ĜKM → SC [153],
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SIGS(ξ, ζ) =

∫
fY (y)

∫ τ∗

y

S2
Ŷ

(τ) dτdy +

∫
fY (y)SC(y)

∫ y

0

F 2
Ŷ

(τ)

SC(τ)
dτdy +∫

fC(c)SY (c)

∫ c

0

F 2
Ŷ

(τ)

SC(τ)
dτdc

In addition for this counter-example let C ∼ ξ so that the above reduces to,

SIGS(ξ, ζ) =

∫
fY (y)

∫ τ∗

y

S2
Ŷ

(τ) dτdy + 2

∫
fY (y)SY (y)

∫ y

0

F 2
Ŷ

(τ)

SY (τ)
dτdy

The loss is improper if there is at least one ζ 6= ξ ∈ P s.t. SIGS(ξ, ζ) <
HIGS(ξ). To find such a counter-example let ξ = Exp(a) and let ζ = Exp(b). If
some X ∼ Exp(λ) then fX(x) = λe−λx, SX(x) = e−λx, S2

X(x) = e−2λx, FX(x) =
1− e−λx, F 2

X(x) = 1− 2e−λx + e−2λx. Continuing by substituting these results,

SIGS(ξ, ζ)⇒
∫

(ae−ay)

∫ τ∗

y

(e−2bτ ) dτdy + 2

∫
(ae−2ay)

∫ y

0

1− 2e−bτ + e−2bτ

(e−aτ )
dτdy

=

∫
(ae−ay)

[
− e−2bτ

2b

]τ∗
y
dy +

2

∫
(ae−2ay)

∫ y

0

eaτ − 2eτ(a−b) + eτ(a−2b) dτdy

=

∫
(ae−ay)

[
− e−2bτ

2b

]τ∗
y
dy +

2

∫
(ae−2ay)

[eaτ
a
− 2eτ(a−b)

a− b
+
eτ(a−2b)

a− 2b

]y
0
dy

=

∫
(ae−ay)

[
− e−2bτ∗

2b
+
e−2by

2b

]
dy +

2

∫
(ae−2ay)

[
(
eay

a
− 2ey(a−b)

a− b
+
ey(a−2b)

a− 2b
)− (

1

a
− 2

a− b
+

1

a− 2b
)
]
dy

=

∫
(ae−ay)

[
− e−2bτ∗

2b
+
e−2by

2b

]
dy +

2

∫
(ae−2ay)

[
(
eay

a
− 2ey(a−b)

a− b
+
ey(a−2b)

a− 2b
)−

( 2b2

a(a− b)(a− 2b)

)]
dy

= −ae
−2bτ∗

2b

∫
e−aydy +

a

2b

∫
ey(−a−2b)dy −( 4b2

(a− b)(a− 2b)

)∫
e−2aydy +

2

∫
e−ay dy − 4a

a− b

∫
(ey(−a−b)) dy +

2a

a− 2b

∫
ey(−a−2b) dy
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= (−ae
−2bτ∗

2b
+ 2)

∫ ∞
0

e−aydy +
a(a+ 2b)

2b(a− 2b)

∫ ∞
0

ey(−a−2b)dy −( 4b2

(a− b)(a− 2b)

)∫ ∞
0

e−2aydy − 4a

a− b

∫ ∞
0

(ey(−a−b)) dy

= (−ae
−2bτ∗

2b
+ 2)

[e−ay
−a

]∞
0

+
a(a+ 2b)

2b(a− 2b)

[ey(−a−2b)

−a− 2b

]∞
0
−( 4b2

(a− b)(a− 2b)

)[e−2ay

−2a

]∞
0
− 4a

a− b

[ey(−a−b)

−a− b

]∞
0

= (−ae
−2bτ∗

2b
+ 2)

[1

a

]
+

a(a+ 2b)

2b(a− 2b)

[ 1

a+ 2b

]
−
( 4b2

(a− b)(a− 2b)

)[ 1

2a

]
−

4a

a− b

[ 1

a+ b

]
=

2

a
− e−2bτ∗

2b
+

a

2b(a− 2b)
− 2b2

a(a− b)(a− 2b)
− 4a

(a+ b)(a− b)

Where the second equality is integration of the first inner integral and ex-
panding the second inner integral, the third equality is integration of the second
inner integral, the fourth equality is substitution of limits, the fifth and sixth are
simplification of the fractions, the seventh is further simplification and specifying
the bounds of integration, the eighth is integration, the ninth is substitution of
limits, and the tenth is expansion.

Proof that the loss is not strictly proper only requires a single counter-example,
hence for convenience select τ ∗ = 1, which simplifies the above as follows

SIGS(ξ, ζ)⇒ 2

a
− e−2b

2b
+

a

2b(a− 2b)
− 2b2

a(a− b)(a− 2b)
− 4a

(a+ b)(a− b)

=
a2 − ae−2b(a+ b)− ab+ 2b2

2ab(a+ b)

To demonstrate the loss is improper let a = 2 and first let b = a = 2, then

HIGS(ξ) =
a2 − ae−2b(a+ b)− ab+ 2b2

2ab(a+ b)

=
1− e−2a

2a

=
1− e−4

4

Now when ζ 6= ξ, let b = 3
2
,

SIGS(ξ, ζ) =
22 − 2e−2 3

2 (2 + 3
2
)− 23

2
+ 23

2

2

(2)(2)3
2
(2 + 3

2
)

=
11

42
− e−3

3
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Now computing the divergence of ζ from ξ,

DIGS(ξ, ζ) = SIGS(ξ, ζ)−HIGS(ξ)

=
11

42
− e−3

3
− 1− e−4

4

= −0.000112 < 0

By lemma 4.6.4 as DIGS(ξ, ζ) < 0 and as Y ⊥⊥ C, it follows that LIGS is not
outcome-independent proper. �

Proof of (ii)-(iv). Proofs follow from (i) and lemma 4.6.2. �
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Appendix D

Section 6.3.6 Figures

Figure 47: Visualising a Binom(0.1, 5) distribution, B, with plot(B, fun = "all").
Functions clockwise from top-left: probability mass, cumulative distribution, quantile
(inverse cdf), cumulative hazard, hazard, and survival.

326



Figure 48: Q-Q plots comparing an unknown Empirical distribution, E, to theoretical
Normal (left) and Exponential (right) distributions with qqplot(E, Normal$new())

and qqplot(E, Exponential$new()) respectively.

Figure 49: Visualising a bivariate empirical distribution, E, with
plot("E", fun = "cdf").
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Appendix E

Chapter 7 Simulated Datasets

Table 28: Simulated datasets used in benchmark experiment.

Dataset1 Surv Dist2 Cens %3 Cens Type4

Sim1 Cox-Weibull Type I 20

Sim2 Cox-Weibull Type I 50

Sim3 Cox-Weibull Type I 80

Sim4 Cox-Weibull Right 20

Sim5 Cox-Weibull Right 50

Sim6 Cox-Weibull Right 80

Sim7 Cox-Weibull Indep. 20

Sim8 Cox-Weibull Indep. 50

Sim9 Cox-Weibull Indep. 80

Sim10 Weibull Type I 20

Sim11 Weibull Type I 50

Sim12 Weibull Type I 80

Sim13 Weibull Right 20

Sim14 Weibull Right 50

Sim15 Weibull Right 80

Sim16 Weibull Indep. 20

Sim17 Weibull Indep. 50

Sim18 Weibull Indep. 80

Sim19 Gompertz Type I 20

Sim20 Gompertz Type I 50

Sim21 Gompertz Type I 80

Sim22 Gompertz Right 20

Continued on next page...
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Table 28: (continued)

Dataset1 Surv Dist2 Cens %3 Cens Type4

Sim23 Gompertz Right 50

Sim24 Gompertz Right 80

Sim25 Gompertz Indep. 20

Sim26 Gompertz Indep. 50

Sim27 Gompertz Indep. 80

Sim28 Log-Normal Type I 20

Sim29 Log-Normal Type I 50

Sim30 Log-Normal Type I 80

Sim31 Log-Normal Right 20

Sim32 Log-Normal Right 50

Sim33 Log-Normal Right 80

Sim34 Log-Normal Indep. 20

Sim35 Log-Normal Indep. 50

Sim36 Log-Normal Indep. 80

1 Dataset identifier.
2 Survival distribution.
3 Type of censoring, either: Type I; Minimum of survival and censoring distribution (Right);

uninformative/independent censoring (Indep.)
4 Percentage of censoring in dataset.
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Appendix F

Chapter 7 Simulated Data Plots

Figure 50: Correlation heatmap of the non-demographic Xx variables in the simu-
lated datasets for one random simulation of 2,000 observations. A red ‘x’ indicates
the correlation is non-significant, otherwise squares increase in darkness as correlation
becomes more positive.
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Figure 51: Boxplots demonstrating the variable data spread of the ‘non-demographic’
Xx variables in the simulated datasets for one random simulation of 2,000 observations.
Each box is one of the variables and y-axis is the variable value.

Figure 52: Plots demonstrating the variable data spread of the ‘demographic’ variables
in the simulated datasets for one random simulation of 2,000 observations. Top plot

is probability of each category in Xsex
i.i.d.∼ Bern(0.5), middle is probability of each

category in Xtrt
i.i.d.∼ Bern(0.7), bottom is density of Xage

i.i.d.∼ DiscreteUniform[20, 50].
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Figure 53: Density plots for simulated outcome time for a single seed with 50% censor-
ing and 2,000 observations for Cox-Weibull (top row), Weibull (second row), Gompertz
(third row), and Log-normal (fourth row) distributions and Type I (first column), right
informative (second column), and uninformative (third column) censoring.
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Appendix G

Chapter 7 Model Hyper-Parameter

Ranges
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Table 29: Hyper-parameters for tuned or non-default configurations for models in chapter 7.

Model Hyper-parameters1 Values2 Standardize3 Encode4

Kaplan Meier - - 5 5

Nelson Aalen - - 5 5

Akritas Estimator - - 5 5

Cox PH - - 5 5

CV Regularized Cox PH alpha [0, 1] 5 3

Penalized
lambda1

lambda2

[0, 10]

[0, 10]
5 5

Parametric dist {weibull, logistic, lognormal, loglogistic} 5 5

Flexible Splines k {1, ..., 7} 5 5

RSDF-STAT (rfsrc)

splitrule

ntree

mtry

nodesize

logrank/bs.gradient∗∗

{250, ..., 2500}
{1, ..., 12}
{1, ..., 20}

5 5

RSDF-STAT (ranger)

splitrule

num.trees

mtry

min.node.size

C

{250, ..., 2500}
{1, ..., 12}
{1, ..., 20}

5 5

Continued on next page...



Table 29: (continued)

Model Hyper-parameters1 Values2 Standardize3 Encode4

RSCIFF
ntree

mtry

{250, ..., 2500}
{1, ..., 12}

5 5

RRT
minbucket

maxdepth

{1, ..., 20}
{2, ..., 30}

5 5

GBM-GEH/UNO/COX∗

family

mstop

nu

baselearner

gehan/cindex/coxph∗∗

{10, ..., 2500}
[0, 0.1]

{bols, btree}

5 5

CoxBoost
penalty

maxstepno

optimCoxBoostPenalty

1000
5 5

SSVM

type

diff.meth

gamma.mu

kernel

hybrid

makediff3

([10−3, 103], [10−3, 103])

{lin kernel, rbf kernel}

3 3

Continued on next page...
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Table 29: (continued)

Model Hyper-parameters1 Values2 Standardize3 Encode4

Cox-Time

frac

standardize time

num nodes

dropout

weight decay

learning rate

epochs

early stopping

0.3

TRUE

{1k,...,32k}, k = {1, 2, 3, 4}
[0, 1]

[0, 0.5]

[0, 1]

100

TRUE

3 3

DeepHit, DeepSurv,

Nnet-Survival, PC-Hazard∗

frac

num nodes

dropout

weight decay

learning rate

epochs

early stopping

0.3

{1k,...,32k}, k = {1, 2, 3, 4}
[0, 1]

[0, 0.5]

[0, 1]

100

TRUE

3 3

Continued on next page...
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Table 29: (continued)

Model Hyper-parameters1 Values2 Standardize3 Encode4

DNNSurv

validation split

decay

lr

epochs

early stopping

0.3

[0, 0.5]

[0, 1]

100

TRUE

3 3

1 Hyper-parameters for tuning over. The choice of hyper-parameters are largely informed by recommendations from the model author and subsequent papers

exploring optimisation. A ‘-’ indicates no tuning is performed.
2 Ranges for the respective hyper-parameters to tune over. Single values represent deviations from the defaults. Omitted parameters use the package defaults.
3 Pre-processing of covariates by scaling to unit variance and centering to zero mean. A check (3) indicates this step is performed before training the model,

and a cross (5) otherwise.
4 Pre-processing of covariates by treatment encoding with model.matrix. A check (3) indicates this step is performed before training the model, and a

cross (5) otherwise.
∗ The same tuning parameters are used for these models.
∗∗ These parameters are separated and implemented as separate models but condensed in this table for efficiency as all other hyper-parameters configurations

in these rows are identical.
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Appendix H

Chapter 7 Real Experiment

Results Plots

Figure 54: Post-hoc Friedman-Nemenyi tests comparing models on Uno’s C. Red
squares indicate significant differences (p ≤ 0.05) between the pair of models on the x-
and y-axis.
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Figure 55: Post-hoc Friedman-Nemenyi tests comparing models on IGS. Red squares
indicate significant differences (p ≤ 0.05) between the pair of models on the x- and
y-axis.

Figure 56: Post-hoc Friedman-Nemenyi tests comparing models on MAE. Red squares
indicate significant differences (p ≤ 0.05) between the pair of models on the x- and y-
axis.
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Figure 57: Post-hoc Friedman-Nemenyi tests comparing models on Houwelingen’s α.
Red squares indicate significant differences (p ≤ 0.05) between the pair of models on
the x- and y-axis.

Figure 58: Critical difference plots comparing models on Harrell’s C. Superior plots
(lower rank) are on the left with decreasing performance (higher rank) moving right.
Models connected by a thick horizontal black line are not significantly different in
performance.
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Figure 59: Critical difference plots comparing models on ISLL. Superior plots (lower
rank) are on the left with decreasing performance (higher rank) moving right. Models
connected by a thick horizontal black line are not significantly different in performance.

Figure 60: Critical difference plots comparing models on MAE. Superior plots (lower
rank) are on the left with decreasing performance (higher rank) moving right. Models
connected by a thick horizontal black line are not significantly different in performance.

341



Figure 61: Boxplots of average model (x-axis) performance constructed across all
datasets for Uno’s C (y-axis).

Figure 62: Boxplots of average model (x-axis) performance constructed across all
datasets for IGS (y-axis).
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Figure 63: Boxplots of average model (x-axis) performance constructed across all
datasets for MAE (y-axis).

Figure 64: Mean and standard error of model (x-axis) performance constructed across
all datasets for Houwelingen’s α (y-axis). Values close to 1 indicate good calibration.
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Appendix I

Chapter 7 Simulation Experiment

Results Plots

Figure 65: Model group performance across all datasets. x-axis are different model
groups and y-axis is Uno’s C (left) and IGS (right). Boxplots constructed across all
datasets.
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Figure 66: Boxplots of IGS (y-axis) constructed across all simulated datasets for all
models (x-axis).
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