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Bayesian Deconvolution and Quantification
of Metabolites from J-Resolved NMR

Spectroscopy

Andreas Heinecke∗, Lifeng Ye†, Maria De Iorio‡, and Timothy Ebbels§

Abstract. Two-dimensional (2D) nuclear magnetic resonance (nmr) methods
have become increasingly popular in metabolomics, since they have considerable
potential to accurately identify and quantify metabolites within complex biologi-
cal samples. 2D 1H J-resolved (jres) nmr spectroscopy is a widely used method
that expands overlapping resonances into a second dimension. However, exist-
ing analytical processing methods do not fully exploit the information in the
jres spectrum and, more importantly, do not provide measures of uncertainty
associated with the estimates of quantities of interest, such as metabolite con-
centration. Combining the data-generating mechanisms and the extensive prior
knowledge available in online databases, we develop a Bayesian method to anal-
yse 2D jres data, which allows for automatic deconvolution, identification and
quantification of metabolites. The model extends and improves previous work
on one-dimensional nmr spectral data. Our approach is based on a combination
of B-spline tight wavelet frames and theoretical templates, and thus enables the
automatic incorporation of expert knowledge within the inferential framework.
Posterior inference is performed through specially devised Markov chain Monte
Carlo methods. We demonstrate the performance of our approach via analyses of
datasets from serum and urine, showing the advantages of our proposed approach
in terms of identification and quantification of metabolites.

Keywords: MCMC, metabolomics, NMR spectroscopy, shrinkage priors, wavelet
frames.

1 Introduction

The metabolome is the collection of small biological molecules (metabolites) present in
a living system. Metabolites are the building blocks of the large molecules of life (such
as DNA or proteins) and also convey energy and information around the cell. Examples
of metabolites include amino acids (e.g. Leucine), which form the building blocks of
proteins, and glucose, which provides the energy to sustain life through the reactions
of glycolysis. The scientific discipline concerned with the comprehensive quantitative
analysis of metabolites is referred to as metabolomics (sometimes as metabonomics,
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metabolic profiling or metabolic phenotyping). Almost all experiments in metabolomics
require identification or quantification of metabolites in complex biological mixtures,
usually biofluids or tissue samples. Research in nuclear magnetic resonance (nmr)-based
metabolomics has obtained substantial attention in the biomedical sciences, with numer-
ous applications in the areas of biology and medicine, including biochemistry (Raams-
donk et al., 2001; Palaric et al., 2019), oncology (Griffiths et al., 2002; Hollinshead
et al., 2016), disease diagnostics (Brindle et al., 2002; Bieleń et al., 2019), epidemiology
(Holmes et al., 2008; Viswan et al., 2019), genetics (Illig et al., 2009; Dehghan, 2019),
organism classification (Bundy et al., 2002; Mahrous and Farag, 2015), and toxicol-
ogy (Lindon et al., 2003; Hajduk et al., 2016). For instance, Bieleń et al. (2019) show
that in patients affected by head and neck squamous cell carcinoma, and undergoing
radio-/chemo-radiotherapy, real-time dynamic changes in the serum metabolome can
be detected at the beginning of the treatment using nmr-based metabolomics. These
metabolic alterations are characteristic for malnutrition or cachexia and their early
detection enables identifying and monitoring patients with a higher risk of weight loss.

One-dimensional 1H nmr spectroscopy (which we refer to as 1D nmr) remains a
leading analytical technology in metabolomics, with advantages including high repro-
ducibility, relatively rapid spectral acquisition times and nmr resonances that provide a
direct measure of metabolite concentration based upon a single internal standard (Hore,
2015). Each metabolite in a 1D nmr spectrum presents a characteristic resonance, or
peak, signature of intensity proportional to its concentration in the biological mix-
ture. Typical biological mixtures often contain thousands of metabolites. Many of the
resonance peaks generated by these metabolites create severe spectral overlaps, which
seriously restricts the quantitative analysis of metabolites. Astle et al. (2012) developed
a Bayesian model, which incorporates information available in online databases on the
patterns of spectral resonances generated by human metabolites, to automate peak as-
signment and spectral deconvolution for 1D nmr spectra in the frequency domain. This
model and its specially designed Markov chain Monte Carlo strategy are implemented
in the R package batman (Hao et al., 2012). However, this model cannot fully address
the problem of target signals being overlapped by other sharp signals, which are not ex-
plicitly modelled. This problem is particularly pronounced in crowded spectral regions.
Therefore, it is of paramount importance to develop appropriate statistical approaches
to precisely identify and quantify metabolites within complex biological samples, so that
the capability of metabolomics can be fully realised.

Two-dimensional (2D) nmr spectroscopy has considerable benefits over 1D nmr in
metabolomics, as it can substantially improve spectral deconvolution and identification,
at the expense of prolonged experimental time. Compared to 1D spectra, peak overlap
in 2D spectra is greatly diminished because spin magnetization is transferred between
different nuclear spins, resulting in more informative spectra. The introduction of an
additional dimension allows for a better representation of metabolites, which greatly
aids biomarker identification.

A popular 2D method for metabolomics is the 2D 1H J-resolved nmr spectroscopy
(jres), first introduced by Aue et al. (1976b). J-coupling, also known as spin-spin cou-
pling or scalar coupling, refers to the splitting of each resonance into multiple peaks,
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due to the interaction between nearby nuclei. Specific chemical substructures (e.g. CH2-
CH3, a carbon atom bonded to two hydrogen atoms and to another carbon atom which
in turn is bonded to three hydrogen atoms) give rise to characteristic splitting patterns
(e.g. doublets or triplets), leading each molecule to have a distinctive pattern of peaks
which helps, for example, when identifying unknown molecules. J-coupling, moreover,
has the advantage that the coupling patterns are less sensitive to changes in pH than
chemical shift values (Moore and Sillerud, 1994). While 2D methods, such as correla-
tion spectroscopy (cosy) (Aue et al., 1976a; Braunschweiler and Ernst, 1983) or total
correlation spectroscopy (tocsy) (Davis and Bax, 1985), use J-coupling to correlate
chemical shifts of the coupling spins, jres spectroscopy disperses the overlapping reso-
nances into a second dimension and can provide a metabolic fingerprint in a relatively
short acquisition time because of the low number of increments recorded in the indirect
dimension. In 1D nmr much of the peak overlap is due to each resonance being split into
multiple peaks by J-coupling. Moving this dispersion into a separate dimension by using
jres spectroscopy therefore significantly reduces congestion, and enhances metabolite
identification and estimation. For further details on jres spectroscopy we refer to (Lud-
wig and Viant, 2010) and the references therein. The 2D jres spectra are collections of
convolved peaks, of which Figure 1 shows an example. Each spectral peak corresponds
to magnetic nuclei resonating in the biological mixture represented by a pair of fre-
quency coordinates determining the displacement of the peak in the (x, y)-plane. The
x-axis corresponds to the chemical shift and is measured in parts per million (ppm) of
the resonant frequency of a standard peak. The y-axis corresponds to the J-coupling
information and shows the distance of each peak from the centre of the resonance in
Hz/F , where F is the operating frequency of the spectrometer in MHz. The volume
under each peak on the z-axis is proportional to the concentration of the correspond-
ing metabolite in the biological mixture. Resonance frequencies of magnetic nuclei are
largely determined by their molecular environment, i.e. by the chemical structure of the
molecules in which they are embedded and by the configuration of their chemical bonds
within the molecules. Consequently, every metabolite has a characteristic molecular 2D
jres signature, i.e., presents itself as a convolution of peaks that appear in specific
positions in the 2D jres spectrum. The peaks of a signature often have significantly
different chemical shifts and J-coupling information, and so appear widely separated in
a spectrum.

Standard analysis of jres measurements is often based on 1D projections of the 2D
spectra. For example, Viant (2003) perform multivariate statistical analyses for jres

metabolomics data by taking projections of each 2D spectrum onto the chemical shift
axis. However, 1D projections of jres spectra inevitably discard the spin-spin coupling
measurements, which potentially become important for further discrimination between
different metabolites, especially within complex biological samples. This strategy is
therefore not ideal as it does not allow the available information to be fully exploited.
Gómez et al. (2014) combine 2D jres with 1D nmr spectra to avoid peak misidentifica-
tion. Their quantification step, however, is still performed on the 1D spectrum. Kikuchi
et al. (2016) construct a database for 2D jres spectra from 598 metabolite standards
and develop analytic tools for absolute quantification. However, their quantification tool
only supports 38 commonly observed major metabolites. Another typical approach is
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to unfold the 2D data into a single row vector which can then be used in supervised or
unsupervised machine learning algorithms. For example, Parsons et al. (2007) are able
to discriminate liver samples from fish derived from different polluted rivers using this
simple approach. Again, this process does not make full use of the information provided
by the second dimension.

The most widely used statistical methods to analyse 2D jres data from their original
format are: (i) binning the spectrum to reduce dimensionality and evaluating summary
statistics; (ii) unsupervised multivariate clustering techniques, such as Ward’s algorithm
or K-means, applied to binned or original spectral data; and (iii) peak alignment followed
by pattern recognition methods such as principal component analysis or partial least
squares regression. The limitations of binning spectral data are well documented (Craig
et al., 2006; Forgacs et al., 2011) and, in general, none of these methods fully exploit
the information in the spectrum. While these methods usually lead to the identification
of spectral regions associated, for example, to a phenotype of interest, they still require
extensive work for the identification and estimation of concentration of metabolites.
Perhaps, even more importantly, they do not provide measures of uncertainty associated
with the estimates.

Potentially the most accurate approach to analyze an intact 2D jres spectrum is
fitting manually each individual resonance to the theoretical peak shape of a certain
metabolite. Peak identification is complicated by variations in peak positions between
spectra, caused by inevitable and uncontrollable changes in experimental conditions
and differences in the chemical properties of the biological samples. Expert spectro-
scopist deconvolution is rarely practical for jres spectra because it is time consuming
and requires knowledge about metabolite resonance patterns. Targeted profiling (Weljie
et al., 2006), usually performed in 1D against a standard library of metabolite resonance
peaks, reduces the requirement of expert spectroscopist knowledge but is still labour
intensive.

Contribution of this article: Since jres datasets are large (typically 50–100 times
larger than comparable 1D nmr spectra) and heavily structured, specialized models and
appropriate tools are required to perform metabolite quantification. To the best of our
knowledge, there are no efficient statistical methods available for analysing jres spec-
tra, which automatically combine the data-generating mechanisms and the extensive
prior knowledge available in online databases, and at the same time provide measures
of uncertainty. In this article, we develop a fully likelihood based approach to analyse
2D jres data from complex biological mixtures, which allows for expert guided auto-
matic deconvolution, identification and quantification of metabolites. The advantages of
our method are that it allows direct quantification of metabolites drawn from a library
of known compounds, disambiguation of assignment of highly overlapping resonances,
deconvolution of signals in highly crowded regions, and estimates of uncertainty in rel-
ative concentrations and peak positions. Note that in many applications only relative
concentration estimation, i.e. estimation of the ratio of concentrations between sam-
ples, is feasible since absolute quantification usually involves calibration of signals from
a biological mixture of interest using reference signals from a standard containing a
detectable compound of known concentration.
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Figure 1: Example of a jres spectrum surface plot. The x-axis corresponds to the
chemical shift and is measured in parts per million (ppm) of the resonant frequency of
a standard peak. The y-axis corresponds to the J-coupling information and shows the
distance of each peak from the centre of the resonance measured in Hz/F . The standard-
ized intensity on the z-axis is proportional to the concentration of the corresponding
metabolite.

Our approach is based on a combination of theoretical templates and B-spline tight
wavelet frames. The incorporation of theoretical or empirical metabolite templates is
a clear advantage in terms of model interpretability as compared to common analysis
tools in metabolomics such as binning, principal component analysis and partial least
squares or to a model based only on basis function representation of the spectrum.
We perform posterior inference through specially devised Markov chain Monte Carlo
(mcmc) methods. Finally, we demonstrate the effectiveness of our approach on simulated
data and via analyses of datasets from serum and urine.

2 Modelling

Acquisition of nmr data requires sampling at regularly spaced time points to yield time
domain data, which needs to be transformed to Fourier/frequency domain (as shown
in Figure 1). The Fourier transform is necessary to convert the spectrum represented
by a series of cosines in time domain to an easily recognisable spectrum in frequency
domain. Next, the resulting 2D frequency spectra require specific processing, which
comprises two main steps: tilting the spectrum, followed by symmetrisation. Tilting
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involves moving the centre of the peaks corresponding to the same multiplet in the
J-coupling dimension so that they are aligned in the chemical shift dimension. Points
other than the centre are also moved in a similar manner. In other words, after tilting,
peak maxima in each multiplet appear at the same resonance frequency. Since the tilted
peaks have now been subjected to a shearing transformation, the resultant peak shapes
have changed from the initial unprocessed spectrum. Consequently, the spectrum has to
be symmetrised, forcing the signal intensities to become symmetric around the centre
line of the spectrum along the J-coupling dimension. After symmetrisation, the peaks
are truncated, but still centred. After this standard preprocessing, which is typically
performed fully automatically with the spectrometer manufacturer’s proprietary soft-
ware (or using publicly available packages such as NMRglue (Helmus and Jaroniec,
2013)), a frequency-domain 2D jres spectrum, as exemplified in Figure 1, is given by
position vectors x = (x1, . . . , xNC

) on the chemical shift axis and y = (y1, . . . , yNJ
) on

the J-coupling axis, together with a measurement matrix z = (zij)i=1,...,NC ;j=1,...,NJ

whose elements are the resonance intensities at the usually uniformly spaced positions
(xi, yj). Depending on the resolution of the spectrum and the size of the region under
consideration, NC typically is of the order 103 − 104, while NJ typically is of the order
102 − 103. The intensity measurements are corrupted by noise and therefore, although
inherently positive quantities, may in some cases be negative valued. We standardize
the intensities to satisfy

∑
i,j zij = 1.

We model z | x,y assuming that zij | x,y are independent Normal random variables
with

E(zij | x,y) = φ(xi, yj) + ξ(xi, yj), for 1 ≤ i ≤ NC and 1 ≤ j ≤ NJ . (1)

The φ component of the model corresponds to signal from targeted metabolites which
we aim to quantify and for which prior information in the form of spectral signatures
is available, either catalogued in public databases or through expert knowledge. The
ξ component of the model represents the signal generated by untargeted and/or un-
known metabolites or other molecules and may, if necessary, include partial signals
from metabolites whose residual resonances are modeled in the φ component. This con-
struction mirrors an equivalent modelling strategy developed by Astle et al. (2012)
for 1D nmr data. We model the φ component parametrically via continuous functions
of continuous chemical shift and J-coupling information, using the physical theory of
J-resolved nmr (see, e.g., Ludwig and Viant, 2010). The ξ component is modelled non-
parametrically using a wavelet system constructed from a piecewise linear B-spline (see
Dong and Shen, 2015).

2.1 Modelling of catalogued metabolite signal

In theory, resonance signatures of different metabolites are independent and aggregate
in the jres spectrum by convolution, with an intensity proportional to molecular abun-
dance. Each molecular compound has a specific spectral signature given by a set of
multiplets across the spectrum. These multiplets are characterized by their position δ
on the chemical shift axis and the position ζ of their individual peaks on the J-coupling
axis.
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More precisely, the targeted signal is a linear combination of the signatures of M
different targeted metabolites, i.e.

φ(δ, ζ) =

M∑
m=1

βmtm(δ, ζ) for (δ, ζ) ∈ R
2, (2)

where the tm are continuous template functions specifying the jres signatures of the
metabolites, with concentrations βm that are proportional to the molecular abundance
of the m-th metabolite in the biological mixture. The number of targeted metabolites
M is specified by the researcher and depends on the available prior information and the
scientific problem. In general, M varies between one to several hundreds.

The jres signatures tm of the metabolites are a superposition of multiplets, each
of which is in turn a superposition of individual peaks. Multiplets appear at certain
positions on the chemical shift and J-coupling axes. The number of peaks, their distances
from each other and relative heights can be used for metabolite identification. More
precisely,

tm(δ, ζ) =
∑
u

ρmugmu(δ − δ�mu, ζ), (3)

where u is indexing the multiplets gmu belonging to the m-th metabolite. The chem-
ical shift parameter δ�mu of the multiplet specifies the position of the centre of mass
of gmu. The coefficients ρmu are usually equal to the number of protons in a molecule
of the metabolite that contributes resonance signal to the u-th multiplet. Due to re-
laxation effects (Hore, 2015) the ρmu may not always be positive integers, in which
case they have to be interpreted as “effective” proton contributions. The volume∫∞
−∞

∫∞
−∞ gmu(δ, ζ) dδ dζ is assumed to be constant over m and u. Thus the volume

under each tm is proportional to the number
∑

u ρmu of resonating protons in the m-th
molecule, giving a measure of abundance. These observations will become crucial when
we describe our shrinkage strategy in Section 3.

Besides few exceptions, the peak configurations of the multiplets gmu can be classi-
fied into several common types, such as doublets, triplets, or doublet of doublets (see
Figure 2). This classification, together with a small number of continuous quantities
called J-coupling constants, which determine the distance of each peak from the centre
of the multiplet along the J-coupling axis, completely parametrize a multiplet. We model
multiplets gmu as weighted averages of Vmu translated generalized bivariate Student-t
densities fσ1σ2ν with zero mean and zero correlation, which we will discuss in more
detail in (5) below. More precisely,

gmu(δ, ζ) =

Vmu∑
v=1

wmuvfσ1σ2ν(δ, ζ − ζmuv), (4)

where the weights wmuv (which over v sum to one, and are available through data banks
and expert knowledge) determine the relative heights of the peaks in the multiplet. The
translation parameters ζmuv determine the J-coupling offsets of the peaks from the
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Figure 2: Peak configurations of some common multiplet types. The x-axis indicates
chemical shift while the y-axis indicates the J-coupling. The upper panel shows a doublet
with chemical shift δ�mu and peak offset ζmuv. The lower panel shows a triplet and
quadruplet.

centre of mass of the multiplet. Multiplets are usually symmetric around ζ = 0, with
{−ζmuv}v=1,...,Vmu = {ζmuv}v=1,...,Vmu , and wmuv′ = wmuv whenever ζmuv′ = −ζmuv,
see Figure 2.

Under ideal experimental conditions, the individual peaks in 1D nmr spectra have
the shape of Lorentzians (Cavanagh et al., 2007). In 2D jres spectra the tensor prod-
uct of two Lorentzian curves may be used to fit individual peaks, however, the precise
mathematical description of peak shapes in jres spectra has yet to be determined (Gold-
man, 1992). In many types of spectroscopy, Voigt profiles are used to model peak
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shapes (Bruce et al., 2000). They can be understood as a convolution of Lorentzian
and Gaussian profiles, each of which is derived from different underlying physical pro-
cesses. However, the relative importance of these processes is difficult to estimate from
the data and is usually inferred from evidence for light/heavy tails. We therefore choose
to model peaks by generalized bivariate Student-t distribution kernels with zero mean
and zero correlation given by

fσ1σ2ν(x, y) =
Γ((ν + 2)/2)

Γ(ν/2)πνσ1σ2

(
1 +

1

ν

(
x2

σ2
1

+
y2

σ2
2

))−(ν+2)/2

for (x, y) ∈ R
2, (5)

where σ1, σ2 are scaling parameters controlling peak width, ν represents the number
of degrees of freedom controlling the tail decay, and Γ denotes the Gamma function.
Individual peak shapes in our model are thus controlled by three parameters. Student-t
kernels have shapes that are similar to Voigt profiles, with the degree of freedom cor-
responding to the mixing weights, and are attractive as (5) coincides with the Cauchy
distribution when ν = 1, i.e. with a Lorentzian curve in the 1D case, and converges
to a Normal distribution as ν approaches infinity. As such they give modelling flexi-
bility to accommodate different peak shapes as well as experimental noise. Since it is
difficult to estimate the relative importance of the physical processes leading to the
particular strength of Laurentzian and Gaussian in the peak formation via convolution,
and since the noise in jres measurements is not yet well understood, in our appli-
cations we fix ν at large value, based on the observation that peaks in the data decay
rapidly, and in general the choice of ν should be dictated by the particular experimental
conditions.

2.2 Modelling of uncatalogued metabolite signal

We model the uncatalogued component of (1) using a discrete B-spline wavelet tight
frame. Frames have first been introduced by Duffin and Schaeffer (1952) and gained in
popularity since the work of Daubechies et al. (1986). While frames are widely used in
engineering applications (Mallat, 2008; Casazza and Kutyniok, 2012), they have been
employed less in other fields. For a comprehensive introduction to wavelet frames we
refer to Mallat (2008) and for further details on the particular systems described in
this section to Dong and Shen (2010, 2015). Wavelet frames are representation systems
consisting of shifts and dilations of compactly supported functions that can provide
multiresolution representations of signals, consisting of a low-pass approximation and
high-pass details. They enable localized and adaptive processing of data, e.g. in accor-
dance with prior information, and have successfully been applied in metabolomics. The
local support of representation functions makes wavelet expansions a local-influence
model, whereas their overlapping support acts as a regularizing mechanism that facili-
tates stability. Wavelet frames are stable in the sense that small changes in coefficients
do not perturb the function significantly and vice versa. Together with the locality and
the filtering in low- and high-pass channel information, these characteristics make the
expansion coefficients highly interpretable. Beyond stability, localization, and multires-
olution, particular wavelet frames offer many advantages in applications. Among the
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most relevant to this work are the support size of the wavelets, their symmetry and
smoothness properties, as well as the redundancy of the overall system, i.e. its ability
to provide sparse and parsimonious representations. Small support size translates to
better localization of feature coefficients of the signal and is desirable since it implies
lower computational costs and sparse approximation to local features. Symmetry of
the frame elements has the advantage that the corresponding transform can be imple-
mented using mirror boundary conditions without introducing artefacts or increasing
the computational burden. This is particularly important in metabolomics applications,
since metabolite resonances often appear close to the spectral boundaries. Moreover,
metabolomic data has a high amount of inherent local symmetries. To account for the
symmetry of peaks in 1D nmr spectra, Astle et al. (2012) use Symlet 6 (from the family
of Daubechies’ least asymmetric wavelets) to model uncatalogued metabolites, as they
want to preserve the orthonormality of the representation system. There are several
strategies to simultaneously achieve perfect symmetry, small support and smoothness,
one of which is to give up orthonormality and to use wavelet tight frames. Tight frames
provide stable signal decomposition and reconstruction in the same fashion as orthonor-
mal bases, while having built in redundancy, thus enabling sparser representations than
(bi)orthogonal systems and in turn allowing the application of strong shrinkage priors
to the transformed coefficients.

Given a separable Hilbert space H with inner product 〈·, ·〉 and a finite or countable
index set I, a sequence {gi}i∈I ⊂ H is called a tight frame for H if

f =
∑
i∈I

〈f, gi〉gi for all f ∈ H. (6)

Tight frames thus provide perfect signal reconstruction in the same way as Hilbert
space orthonormal bases, without requiring the frame elements to be orthonormal or the
coefficients in (6) to be unique. Indeed, the only properties of Hilbert space orthonormal
bases that (Astle et al., 2012) use for their inferential method is (6). A tight frame
is, in fact, an orthonormal basis if and only if all its elements have unit norm. The
coefficients {〈f, gi〉}i∈I ∈ �2(I) are called the canonical frame coefficients of f , where
�2(I) denotes the space of square-summable scalar sequences indexed by I. The analysis
operator of the tight frame maps every signal f ∈ H to its sequence of canonical frame
coefficients. Its adjoint operator is called the synthesis operator and maps c ∈ �2(I) to
the superposition

∑
i∈I c(i)gi ∈ H. The system {gi}i∈I is a tight frame if and only if

the composition of its analysis and synthesis operator is the identity on H.

The elements of a wavelet frame are generated by shifts and dilations of, in general
more than one, generators, called framelets. In this article, we use a discrete B-spline
wavelet tight frame. This class of frames is widely used in wavelet frame based image
restoration and has first been introduced by Ron and Shen (1997). The tight frame is
generated via a set of finitely supported framelet filters {a(l)}rl=1 ∈ �2(Z

d) (where here
d ∈ {1, 2} depending on the dimensionality of our problem) that define a shift-invariant
system

{(a(l)(n− k))n∈Zd : l ∈ {1, . . . , r}, k ∈ Z
d}, (7)
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consisting of all of their integer shifts. Sufficient for the system (7) to be a tight frame
for �2(Z

d) is that the filters satisfy the unitary extension principle condition of Ron and
Shen (1997), in which case the analysis and synthesis operators are given via discrete
convolutions by

W : u ∈ �2(Z
d) →

⎛
⎝∑

j∈Zd

a(l)(j − k)u(j)

⎞
⎠

(k,l)∈Zd×{1,...,r}

∈ �2(Z
d × {1, . . . , r}) (8)

and

W� : c ∈ �2(Z
d × {1, . . . , r}) →

⎛
⎝ r∑

l=1

∑
j∈Zd

c(k − j, l)a(l)(j)

⎞
⎠

k∈Zd

∈ �2(Z
d). (9)

The wavelet systems, corresponding to filters satisfying the unitary extension princi-
ple condition via the refinement equations from multiresolution analysis theory, form
a wavelet tight frame of functions for L2(R

d), for which (8) and (9) describe the un-
decimated single level fast wavelet transform. Since in our practical application both
signals and filters are finite we identify �2(Z

d) with R
NC×NJ and �2(Z

d × {1, . . . , r})
with R

NC×NJ×r for d = 2, and with R
NC , respectively R

NC×r, for d = 1. The convolu-
tions in (8) and (9) are performed using symmetric boundary extensions matching the
symmetry of the respective filters. In case d = 1, we use the r = 3 filters

a(1) =
1

4
(1, 2, 1), a(2) =

√
2

4
(1, 0,−1), a(3) =

1

4
(−1, 2,−1).

The lowpass filter a(1) is the refinement mask of the univariate piecewise linear B-spline
max(1 − |x|, 0), while the highpass filters a(2), respectively a(3), are wavelet masks of
piecewise linear anti-symmetric, respectively symmetric, framelets. In our jres appli-
cation, i.e. when d = 2, we use the r = 9 tensor products of a(1),a(2) and a(3), i.e.,
the tight frame we are using consists of the integer-shifts of nine filters with common
support size 3× 3.

Note that the number r of filters is dictated by the choice of order for the B-splines
and framelets. Our choice of piecewise linear order is motivated by computational
tractability. We have experimented with piecewise cubic order, in which case a neg-
ligible improvement of performance comes at a computational cost that is unacceptable
for applications, since then r = 5 for the 1D case and r = 25 for 2D case. Moreover,
note that we use an undecimated transform, as those perform better than decimated
transforms in coefficient processing applications, where shift-invariance of coefficients
is desirable due to inaccuracies introduced via positional noise (i.e. noise in multiplet
position) and during data acquisition. For details we refer to (Mallat, 2008), where the
undecimated transform is referred to as the à-trous algorithm. Finally, we refrain from
using several dilation levels as the consequential increase in data size on the trans-
form side would render the mcmc-algorithm unnecessarily expensive while yielding no
significant improvements.



436 Bayesian Deconvolution from J-Resolved NMR

2.3 Likelihood

Given measurements z ∈ R
NC×NJ and targeted metabolites Tm := (tm(xi, yj))i,j ∈

R
NC×NJ (m = 1, . . . ,M), the likelihood of our model in framelet domain is defined by

Wz =
M∑

m=1

βmWTm + θ + ε, εij� ∼ N(0, λ−1), (10)

where θ ∈ R
NC×NJ×r are wavelet frame coefficients of the untargeted signal, r being the

number of framelets, and ε = (εij�) ∈ R
NC×NJ×r are independent identically Normal

distributed errors with scalar precision parameter λ. For every l = 1, . . . , r, the matrix
(θijl)i,j ∈ R

NC×NJ contains the canonical framelet coefficients of the l-th framelet. In the
spectral regions specified by the theoretical templates we encounter identifiability issues
in the estimation of β = (β1, . . . , βM )� as we are attempting to fit both parametric
and nonparametric components. To address this problem we specify localized shrinkage
priors. While the identifiability problem in 1D has already been tackled by Astle et al.
(2012) by imposing a hard thresholding constraint in signal domain, their approach
makes computations inefficient and therefore infeasible for the 2D setting. In Sections 3
and 6, we compare our approach with the prior and wavelet specifications of Astle et al.
(2012) and highlight the advantages of our method.

3 Prior specifications

The problem of identifiability of the regression coefficients β of the targeted signal and
the frame coefficients θ of the untargeted signal in the likelihood (10) arises because
in some regions of the spectrum we attempt to fit both the targeted theoretical tem-
plates and the untargeted frame component, while the frame component θ alone could
be used to fit the observed spectra perfectly. Scientific interest is mainly in estimat-
ing the relative metabolite concentrations β. To resolve the unidentifiability problem,
therefore, sparse solutions for θ are preferred, where some of the components of θ are
shrunk towards zero by assigning them a prior distribution with heavy tails and con-
centration of mass near zero. For 1D nmr spectra, Astle et al. (2012) assign a global
prior distribution to shrink the wavelet coefficients. Additionally, the authors impose
a hard thresholding constraint to components of W�θ (where W� denotes the inverse
wavelet transform with respect to Symlet 6 wavelets) that fall below a small negative
threshold parameter, to which they assign a hyperprior to perform local shrinkage (see
Eq. (7) in Astle et al., 2012). The rationale is to prevent the wavelet component of
the model to compensate for mismatched metabolites. However, this strategy presents
several practical limitations: (i) the components of θ become highly correlated which
significantly slows down convergence of the mcmc algorithm; (ii) the implementation of
optimization algorithms, such as gradient-based variational inference, becomes difficult;
(iii) the posterior distribution of the wavelet coefficients becomes increasingly complex
with growing data size, making it challenging to impose such constraint for jres spectra
which usually are 50 − 100 times larger than comparable 1D nmr spectra. For these
reasons we opt for an alternative strategy and introduce additional local shrinkage in
wavelet frame domain, driven by expert knowledge.
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Shrinkage priors: To tackle the unidentifiability problem, we enforce sparse solu-
tions for θ via global and local shrinkage. There are two main approaches to shrinkage
in the Bayesian framework: two component discrete mixture priors (usually with a point
mass at zero) known as the spike-and-slab (Mitchell and Beauchamp, 1988; George and
McCulloch, 1993) and a variety of continuous shrinkage priors (see, for example, Pol-
son et al., 2012; Bhattacharya et al., 2015; Piironen et al., 2017; Bhadra et al., 2019).
The spike-and-slab prior is intuitively appealing as it performs automatic variable se-
lection when the spike is taken to be a delta-spike in the origin and it usually performs
well in applications. The main disadvantages of this approach are that the results can
be sensitive to prior hyperparameter choices (in particular slab variance and prior on
the inclusion probability) and that the posterior inference can be too computation-
ally expensive in high dimensions. On the other hand, continuous shrinkage priors are
computationally tractable and offer scalable solutions to complex problems and usually
yield similar results to those obtained with a spike and slab approach. Computationally
efficient and widely used shrinkage priors are the horseshoe (Carvalho et al., 2010), the
lasso (Tibshirani, 1996) and the Student-t prior (Tipping, 2001). We use the horse-
shoe prior since its flat Cauchy-like tails allow components of θ to assume large values
a posteriori when supported by the data, while its infinitely tall spike at the origin
provides strong shrinkage for small entries of θ. We further make use of the localization
of the framelets to additionally shrink the framelet coefficients θ in regions of targeted
metabolites.

In more detail, given a global shrinkage parameter τ , the horseshoe prior for θijl can
be represented as the scaled mixture of Normals

(θijl | μijl, τ) ∼ N(0, μ2
ijlτ

2), μijl ∼ C+(0, cijl), for all i, j, l,

where the θijl | τ are conditionally independent and where the local shrinkage parame-
ters μijl are assigned half Cauchy distributions. As suggested by Gelman (2006), we also
assign a half Cauchy distribution to the global shrinkage parameter, τ ∼ C+(0, d). The
hyperparameters cijl and d govern the amount of local and global shrinkage imposed.
For the choice of the cijl we adopt the following local shrinkage strategy:

(i) Consider spectral regions in the targeted components to which we wish to ap-
ply additional local shrinkage in framelet domain, i.e., regions where we want to fit
theoretical templates. We suggest that additional local shrinkage should be applied
to at least one multiplet of each targeted metabolite. To facilitate accurate posterior
concentration estimates, at least one multiplet for each metabolite should deconvolve
correctly, and we thus would like to apply extra local shrinkage to multiplets that are
less overlapped with strong untargeted signals, so that they can better drive concentra-
tion estimation. For instance, in the urine spectrum shown in Figure 8 the area around
3.660ppm usually presents severe overlapping, thus, we would not consider extra local
shrinkage for multiplets around 3.660ppm. If there is no prior information regarding
overlap available, we propose the following two options: (1) For each metabolite, apply
extra local shrinkage to the multiplets corresponding to the largest number of pro-
tons. The motivation for this strategy is that multiplets with higher number of protons
are less likely to be overlapped with stronger signals from untargeted metabolites. For
example, the metabolite Valine has four multiplets, located at 0.976ppm, 1.029ppm,
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3.601ppm and 2.261ppm. The latter multiplet is not considered in this work due to its
extremely complex structure. The corresponding height ratios of the three remaining
multiplets, which are proportional to their number of H-protons, are 3:3:1 and thus we
apply extra shrinkage to the two multiplets with the highest number of protons, located
at around 1.029ppm and 0.976ppm. (2) Apply extra local shrinkage to all multiplets of
the targeted metabolites. This second option is more straightforward and allows robust
concentration estimation even when signals of targeted metabolites are partially over-
lapped with strong signal components of untargeted metabolites. The reason is that
the extra shrinkage pushes framelet coefficients towards zero, leaving part of the signal
unexplained and leading to an underestimation of the precision parameter λ. For the
examples presented in this article we use the first option, as model fitting using this
option is often more satisfactory.

(ii) While shrinkage is performed in framelet domain, the spectral regions chosen in
the previous step are characterized by parameters δ�mu and ζmuv in frequency domain
(see Figure 2). Using prior information about the uncertainty of these parameters, dis-
cussed below, we determine regions, centered around (δ�mu, ζmuv), of likely locations for
the specified multiplets and identify the index set I × J ⊂ NC ×NJ for which (xi, yj)
belongs to the determined regions. (Recall that the index (i, j) identifies a position in
frequency domain.) First, choose low and high shrinkage parameters 0 ≤ cl < ch, and
let ωij = ch if (i, j) ∈ I × J and ωij = cl if (NC × NJ) \ (I × J ). Next, define the
hyperparameters cijl controlling the local shrinkage of the coefficients θijl of the l-th
framelet filter (l = 1, . . . , r) located at position (i, j) ∈ NC ×NJ via a running average
across the filters support with the low and high shrinkage regions described through
(ωij) in signal domain. Specifically, noting that all filters we use have support of size
3 × 3, consider the index sets Sij = ({i − 1, i, i + 1} × {j − 1, j, j + 1}) ∩ (NC × NJ)
within the data grid and define cijl via

log10 cijl :=
1

|Sij |
∑

(m,n)∈Sij

ωmn.

This means that higher shrinkage is applied in the specified regions, with the level of
shrinkage weakening towards the boundary of the regions.

Figure 3 illustrates the rationale for applying local shrinkage and its effect on the
estimation of concentrations in the urine spectrum that we consider in further de-
tail in Section 6. We focus on a region in which the targeted metabolites Valine and
Isoleucine (templates shown in top panel) are overlapped with an untargeted signal
component. The experimentally observed spectrum, shown in black in the middle and
bottom panels, exhibits a multiplet at 0.998ppm that, in theory, could be assigned to
either Isoleucine or Valine, a multiplet at 1.045ppm that can only belong to Valine, and
signal at around 3.660ppm, part of which could be assigned to Isoleucine. This region
is problematic as it is highly overlapped. Note, that there is a multiplet of Isoleucine
at around 0.923ppm, but no signal is detected in the given spectrum. Without local
(but only global) shrinkage (middle panel), part of the untargeted signal at around
3.660ppm is assigned to Isoleucine, as there the theoretical template for this metabolite
presents a mutiplet. In this case, this latter region is driving the estimation of concen-
tration of Isoleucine and the model is relatively insensitive to the information in the
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Figure 3: Effect of additional local shrinkage applied to framelet coefficients of selected
targeted regions. For ease of visualization, spectra are vectorised columnwise and plotted
in 2D. On the x-axis we report the chemical shift region of the multiplet, and on the
y-axis their intensities. The top panel shows the templates of the metabolites Valine
and Isoleucine that are targeted. The theoretical template of the multiplet structure
of Valine is doublet-doublet-doublet with proton intensity ratio 3:3:1 (recall that we
do not include one of the Valine multiplets in the analysis), while that of Isoleucine
is triplet-doublet-doublet with proton intensity ratio 3:3:1. Additional local shrinkage
is applied in the experiment shown in the bottom panel to the regions of high proton
multiplets, i.e. to the first three columns in the lower panel, meaning that estimation is
driven by Valine. Compared to the middle panel, in which no additional local shrinkage
is applied, this strategy leads to improved accuracy of the concentration estimation for
the metabolites.

region around 0.923ppm. Consequently, the signature template of Isoleucine does not
match the shape of the spectral data between 0.920ppm and 1.000ppm. The result-
ing mismatch between the observed spectrum and the overall targeted metabolite fit is
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being compensated by a negative frame component such that a perfect overall model
fit is achieved even though the Isoleucine concentration is erroneously overestimated.
This also leads to coarse overestimation of the concentration for Valine, since the two
multiplets at 0.998ppm (overlapping with the multiplet from Isoleucine) and 1.045ppm
should have the same intensity. The mutiplet at 1.045ppm is driving the estimation of
concentration, but it needs to compensate for the fact that signal at 0.998ppm needs
to be split between the two metabolites. Altogether, the conflicting information from
different parts of the spectrum results in a negative frame component.

Increasing the overall global shrinkage does not resolve this phenomenon, and results
in signals in highly overlapped regions getting erroneously over-explained. Moreover,
additional global shrinkage would further push the framelet coefficients to zero, leaving
relevant parts of the signal unexplained and consequently result in underestimating the
precision parameter λ. However, introducing additional local shrinkage to the frame
coefficients in regions of targeted metabolites, as described in (i) and (ii) above, can
successfully address the problem. As shown in the bottom panel, the region around
0.922ppm is then driving the estimation of concentration of Isoleucine and the region
around 1.045ppm is driving the estimation of concentration of Valine. These regions are
the least overlapped for the two metabolites. Due to the extra local shrinkage the frame
component captures mainly the untargeted signal and is prevented from compensating
for misfitted targeted metabolites.

The remaining prior specifications (for the coefficients of the targeted metabolites
and for the precision parameter) are generalizations of the 1D priors used in Astle et al.
(2012) to our 2D model.

Prior for precision parameter λ: We opt for a conjugate prior and choose a Gamma
distribution with shape parameter a and rate b/2, where smaller values of a and b
correspond to increased uncertainty in the value of λ. For the simulations and examples
described in this article we choose a = 10−6 and b = 10−9.

Priors for peak widths: The spectra considered in this article are generated from
the biofluids urine and serum. While in this case peak widths change between spectra,
their changes are negligible within spectra. We therefore assume that peaks within a
spectrum are dependent upon two global peak width parameters σ1 and σ2, see (5), for
which we choose log-Normal distributions with median 1Hz/F and variance 4.6Hz2/F 2,
where F is the operating frequency of the spectrometer in MHz. These priors give good
support to a broad region around 1Hz/F , the typical peak widths generated by modern
spectrometers (Hore, 2015). Note that the assumption of common peak widths can
easily be relaxed, since local deviations at the metabolite, multiplet or peak level can
be modelled via Gaussian random effects on log σ1 and log σ2.

Prior for peak shape: In some applications it might be useful to also assign a prior to
the peak shape parameter. Similar to peak widths, peak shapes vary between spectra,
but negligibly within spectra. Thus, we assume that peaks within a spectrum depend
on a common peak shape parameter ν, see (5), to which a log-Normal prior distribution
with mean zero and variance 25 can be assigned. This prior gives good support to a
broad region around zero. In Section 6, we prefer to fix ν.
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Priors for multiplets: The parametrization of metabolite signature templates is done
in two steps, see (3) and (4), via linear combinations of multiplets along the chemical
shift axis, which in turn arise as linear combinations of Student-t distributions (5) along
the J-coupling axis. Uncertainty of peak positions can therefore be modelled separately
within and between multiplets. The parameters ζmuv and wmuv, determining the peak
positions on the J-coupling axis and their amplitudes within multiplets in (4), can be
computed via simple rules from the J-coupling constants Jmu (see Hore (2015) for de-
tails) and may be assumed to be constant across spectra. The multiplet chemical shift
parameters δ�mu and J-coupling constants Jmu vary slightly between spectra as a result

of differing experimental conditions. Empirical estimates Ĵmu for Jmu and δ̂�mu for δ�mu

are published in online databases and can be used to construct an informative prior
distribution. The deviations of both Jmu and δ�mu from their estimates are local, with
smaller variations more likely than larger ones. Therefore, for each Jmu we assign a
truncated Normal prior distribution with mean Ĵmu, variance 7Hz2, and truncation re-
gion [ 12 Ĵmu,

3
2 Ĵmu]. For each δ�mu we choose a truncated Normal prior distribution with

mean δ̂�mu, variance 10−4ppm, and truncation region [δ̂�mu − 0.03ppm, δ̂�mu + 0.03ppm].
Note that, given specific knowledge about the variability of particular multiplet loca-
tions across spectra, it may be appropriate to specify a multiplet- or metabolite-specific
alternative for Jmu or δ�mu.

Priors for metabolite abundances: Each coefficient βm in (2) corresponds to the
resonance intensity signature of a metabolite and is proportional to the abundance of
the metabolite in the biological mixture. Since intensities are positive, the support of the
priors for each βm is restricted to [0,∞). Conjugacy considerations motivate the use of a
truncated Normal prior distribution for each component, i.e. βm ∼ TN(em, 1/s2m, 0,∞).
This distribution has sufficient flexibility to encode prior information for a wide range
of research problems. For the examples presented in this article we choose em = 0 and
s2m = 10−6 for all m = 1, . . . ,M , indicating low prior information.

4 MCMC algorithm

We implement an mcmc algorithm to sample from the posterior distribution of the
model parameters. Compared to the mcmc strategy in Astle et al. (2012), in our setup
the mcmc becomes more efficient and easy to implement. For further details on the
specific update steps we refer to Supplementary Materials (Heinecke et al., 2020).

We employ Gibbs samplers to update the components of β and θ, both having
truncated Normal conditional distributions, and the precision parameter λ, which has a
Gamma distribution. For each of the remaining parameters controlling the targeted and
untargeted components of the model we use Metropolis-Hastings updates. Specifically,
to update the peak widths parameters σ1 and σ2 we use log-Normal proposals. To
update the multiplet chemical shift parameter δ�mu, we propose δ

�′

mu from the truncated
Normal distribution

TN
(
δ�mu, V

2
δ�mu

, δ̂�mu − 0.03ppm, δ̂�mu + 0.03ppm
)
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centered on the current parameter value. Similarly, for the J-coupling constants Jmu,
we propose J ′

mu from the truncated Normal distribution

TN

(
Jmu, V

2
Jmu

,
1

2
Ĵmu,

3

2
Ĵmu

)
.

For the local shrinkage parameters μijl and the global shrinkage parameter τ we employ
Gaussian proposals truncated below at zero. All proposal variances are adapted using
the adaptive Metropolis-within-Gibbs algorithm of Roberts and Rosenthal (2009), i.e.
each proposal variance is tuned to target an acceptance rate of 0.45 by increments
and decrements, whose magnitude asymptotically decays at a rate proportional to the
inverse of the square root of the iteration number.

Additional Metropolis-Hastings block updates, which prevent the Markov chain from
getting trapped in local modes, can be added effortlessly to the described mcmc algo-
rithm. For example, in order to reduce correlation between chains from the targeted and
untargeted components of the model in framelet domain, a joint update of a parameter
for the targeted component may be introduced. When compared to single parameter
updates, such block updates allow the Markov chain to move further, but their accep-
tance rate is lower. Considering computational efficiency in view of the sizes of jres

spectra, Metropolis-Hastings block updates are therefore not utilised in the examples
of this article.

5 Simulation study

We examine the performance of our method on ten simulated datasets which are cre-
ated from empirical jres spectra of the four metabolites Valine (bmse000811), Isoleucine
(bmse000884), Threonine (bmse000810) and Glucose (bmse000797) available from the
Biological Magnetic Resonance Bank (BMRB, Ulrich et al., 2007). The synthetic data
is generated as follows. First, the empirical spectral template of each metabolite is nor-
malised so that the intensities sum up to one. Then the simulated spectrum is obtained
through a linear combination of the four templates with pre-specified weights. Finally
we add Gaussian noise. More specifically, the spectrum of the ith simulated biological
mixture is

Mixi = wi
V SV + wi

ISI + wi
TST + wi

GSG + ε for i = 1, . . . , 10,

where wi
V , w

i
I , w

i
T and wi

G represent the weights of the Valine, Isoleucine, Threonine
and Glucose metabolites, respectively, and SV , SI , ST and SG represent the respective
normalised spectral templates. The weights of the biological mixture can be interpreted
as the relative concentrations of each metabolite. Gaussian noise ε with mean zero and
variance 0.0012 is added to each spectrum. To estimate the relative concentrations of
each metabolite in the different mixtures, we also create a baseline spectrum in which all
weights are equal to one. We estimate the relative concentration as the ratio between the
estimates obtained for the mixture and the ones obtained from the baseline spectrum.

To assess the performance of our model, we compare the logarithm of the estimated
relative concentrations with the logarithm of the true relative concentrations. Prior
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Figure 4: Top panel: Comparison between the logarithm of the true relative concen-
trations and the estimated relative concentrations obtained with our method on the
ten mixtures. Bottom panel: Performance comparison between our approach and the
binning on the ten simulated biological mixtures.

hyperparameters are set as d = 103.5, cl = 0 and ch = 5. The choice of cl = 0 is guided
by Carvalho et al. (2010), for the choice of d and ch see Section 5 of Supplementary
Material. For each dataset, we run 10, 000 iterations of the mcmc algorithm, a burn-in
of 5, 000 iterations and thinning every five iterations. Figure 4 shows the comparison
between true relative concentrations and estimated relative concentrations for the ten
biological mixtures. It is evident that our method can estimate the relative concentration
very well. Furthermore, we compare our results with those obtained by binning the
spectral data, which is commonly done in metabolic analysis (see, for example, Sousa
et al., 2013). In this method bins around multiplets corresponding to each metabolite are
defined, with bin boundaries validated by an NMR expert. Then relative concentration
estimates of each metabolite are obtained by taking the sum of the intensities in the
spectral bins corresponding to each metabolite. From Figure 4 it is clear that binning
does not perform as well. Further details on the simulation results and the comparison
are presented in Supplementary Material S2.
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Figure 5: Deconvolution surface plot from urine jres spectrum for the region around
1.337ppm, where the resonance is generated by Lactate. For ease of visualization we
plot the fit on a grid of equally spaced points with distance 0.002ppm for the chemical
shift axis.

6 Performance on urine and serum spectra

We examine the performance of our method on a urine and a serum dataset. 1H nmr

spectra of human urine and serum samples were obtained from healthy participants
of the Airwave Health Monitoring Study (Elliott et al., 2014). The samples were pre-
pared and acquired according to protocols published in Dona et al. (2014). Spectra were
acquired at 600MHz with Bruker Ascend configured to the Bruker IVDr specification
(Bruker Corporation, Billerica, ma, usa) at 300K (urine) or 310K (serum). 1D nmr

spectra were acquired using nuclear Overhauser enhancement spectroscopy (noesy)-
presat using gradients and water suppression (noesygppr1d pulse sequence), a spectral
window of 20ppm (urine) or 30ppm (serum), 4s relaxation delay, 10ms mixing time, to
a total of 32 transients acquired with 64k data points for urine or 96k data points for
serum. 2D jres data was acquired using the jresgpprqf pulse sequence, with water sup-
pression, a spectral window of 16.6ppm, 2s relaxation delay, 2 scans and 40 increments
in the indirect dimension. The spectra were automatically phased and baseline-corrected
and chemical shifts were referenced using the singlet signal of tsp set at 0ppm (urine) or
to the doublet resonance of α-glucose set at 5.23ppm (serum) using Topspin 3.2 software
(Bruker Biospin Ltd).
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6.1 Jres spectra

We demonstrate the performance of our proposed method on the 2D jres human urine
spectrum, with targeted metabolites Valine, Leucine, Isoleucine, Alanine, Lactate and
3-Hydroxybutyrate. A second performance demonstration on the 2D jres human serum
spectrum is included in Section S4 of the Supplementary Material, and yields results
broadly similar to the urine spectrum. A sensitivity analysis on the 2D jres human
urine spectrum is included in Section S5 of Supplementary Material.

To improve computational efficiency in the quantitative analysis of the test dataset
we make use of the theoretical symmetry of 2D jres spectra with respect to the chem-
ical shift axis and only analyze data with non-negative J-coupling values. Since peaks
in the observed spectrum exhibit thin tails, which in some cases drop abruptly to zero
due to experimental artefacts, we use bivariate Gaussian distributions, corresponding to
bivariate Student-t distributions with large degree of freedom (ν = 10, 000). Hyperpa-
rameters are set to d = 103.5, ch = 5 and cl = 0. We run the mcmc algorithm for 10, 000
iterations, following upon 5, 000 burn-in iterations, with thinning (selecting every fifth
value). The resolution of the urine spectrum is NC ×NJ = 436×26 and the experiment
is performed on a laptop with 3.1GHz Intel Core i5 processor, resulting in a run time
of 1065 minutes.

Figure 5 shows a surface plot of the metabolite fit around 1.337ppm, while Figure 6
shows heat maps of the measured spectrum, overall fitting and metabolite fitting. Along
with the additional column-wise 2D plots of the metabolite estimations provided in Fig-
ures S3 and S4 in Supplementary Material, they illustrate that our method performs
well with respect to goodness of fit, metabolite deconvolution and estimation of relative
concentrations. The estimated posterior mean squared error is 7.721 × 10−9. For Va-
line (Figure S3, top panel, in Supplementary Material), the first and second multiplets
are fitted very well, while the signal from the third multiplet is relatively weak and
overlapped with stronger signals from untargeted metabolites, resulting in problematic
fitting results. For Leucine (Figure S3, bottom panel, in Supplementary Material), the
first and second multiplet should theoretically have the same amplitude (which is not
observed); however our method estimates a mid-level concentration of Leucine, result-
ing in overestimation of the first multiplet and underestimation of the second multiplet.
This is reasonable as concentrations are averaged across multiplets. The concentration
for Isoleucine (Figure S4, top panel, in Supplementary Material) is close to zero as
the signal is very weak at the location of its first multiplet. For Alanine, Lactate and
3-Hydroxybutyrate (Figure S4, bottom panel, in Supplementary Material), the peak
shapes differ from Gaussian kernels due to unmodelled experimental conditions. Con-
sequently for each multiplet the high amplitude centre peaks are estimated correctly,
while the remaining peaks are slightly underestimated.

As for the convergence of the mcmc, Figures S5–S10 in Supplementary Material
show traceplots of the log-likelihood, of some randomly selected framelet coefficients,
of the precision parameter λ, of the concentration β, of the chemical shift δ and of the
J-coupling ζ parameters for selected metabolites. We report the results obtained from
running three different chains. It is worth noticing that the dimension of the parameter
space is greater than 204000. While it can be seen that the framelet coefficients and the
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Figure 6: Heat maps for intensities from the urine jres dataset. The x-axis corresponds
to chemical shift in ppm, the y-axis to J-coupling in MHz/F. Plots show original data
(upper panel), overall fitting, i.e., metabolite and framelet fitting (middle panel), and
fitting of metabolites only (lower panel). Multiplets in the lower panel from left to right:
Valine (3.601ppm), Alanine, Lactate, 3-Hydroxybutyrate, Valine (1.029ppm), Valine
(0.976ppm), Leucine (0.95ppm), Leucine (0.94ppm). The Isoleucine fit is not visible in
the lower panel as its concentration estimate is close to zero.
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precision parameter reach convergence quickly, the Markov chain for other parameters,
such as the concentration of metabolites, is slow to explore the support of the posterior
distribution, i.e. the Markov chain is mixing slowly. This is to be expected due to overlap
and shift of the multiplets. Moreover, it is well known that, when using the horseshoe
prior with correlated variables, a main concern is the multimodality of the posterior,
which can lead to difficulties in sampling and especially to slow convergence of the
mcmc. Nevertheless, from Figure S5 in Supplementary Material it can be seen that
the traceplot of the log-likelihood is satisfactory (Robert and Casella, 2013). Further,
unidentifiability issues often lead to the presence of ridges in the posterior, as in our case.
For the parameters defining the catalogued metabolites (concentration, J-coupling and
chemical shift parameters), which are those most affected by the identifiability problems,
the traceplots show that the three chains end in different – but very close – regions of the
posterior parameter space. Nevertheless, the traceplots of the log-likelihood (where the
three chains overlap) show that the algorithm finds a region of high likelihood, as it seems
to be able to reach the ridge in the posterior and moves within it. This is confirmed also
by Table S3 in Supplementary Material, which compares the estimates of the relative
concentrations obtained from different chains. These estimates are consistent, except
for Isoleucine which is present in the sample at almost zero concentration, and as such
it is more affected by structural noise.

Finally, in Figures 20–25 in Supplementary Material we report the posterior distribu-
tion of the concentration parameters and the chemical shift and translation parameters
of the six metabolites for the serum and the urine spectra.

6.2 Methods comparison

In the metabolomic literature it is widely accepted that the second dimension provided
in 2D jres spectra can help to mitigate the challenges in the identification and quantifi-
cation of metabolites in 1D nmr spectroscopy that are mainly due to overlap (Fonville
et al. (2010); Féraud et al. (2015)). We illustrate this point by comparing relative concen-
tration estimates using our approach on 1D nmr and on 2D jres urine spectra from the
same sample. Relative concentrations are considered for both datasets, since their scal-
ing differs due to data normalization. As a baseline metabolite we choose Valine, since it
is relatively isolated in both the 1D and the 2D spectra. In Figure 7 we compare the es-
timation results for relative concentrations obtained via our method applied to 1D nmr

data, 2D jres and via binning. (For the numerical values see Table S2 in Supplementary
Material.) Note that binning only produces point estimates with no quantification of
uncertainty. It is evident that the relative concentration estimates of Leucine, Isoleucine,
Alanine and 3-Hydroxybutyrate differ significantly between 1D and 2D spectra. Obvi-
ously, 1D nmr leads to much wider 95% credible intervals due to the fact that less
information is available in the data. In most cases the credible intervals obtained from
1D and 2D data do not overlap, clearly showing the potential of 2D nmr spectroscopy.
Note that Figure 8 shows that the signals from Leucine (around 0.95ppm), Isoleucine
(around 0.93ppm, 1.00ppm, 3.65ppm) and 3-Hydroxybutyrate (around 1.20ppm) are
severely overlapped with signals from other untargeted or uncatalogued metabolites.
This makes identification of signals from targeted metabolites challenging and results
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Figure 7: Posterior relative concentration estimates and posterior standard deviations
using our method on the urine spectrum from 1D nmr measurements, from 2D jres

measurements as well as using binning on the 2D jres measurements. Valine is chosen
as baseline. For four of the five targeted metabolites the posterior means of the estimates
obtained using the second dimension differ by more than 25%. The figure shows 95%
credible intervals. Note binning only produces point estimates with no quantification of
uncertainty of the estimate.

in inaccurate estimation of the concentrations. Due to additional information available
from the J-coupling dimension, the overlapping issue is less severe in 2D jres spectra,
see Figure 6. The underestimation of the concentration for Alanine (around 1.49ppm)
from the 1D spectrum stems from fixing J-coupling constants at values slightly different
from those observed, as indicated in Figure 8 (around 1.49ppm). While this problem
could be overcome by allowing the distance between peaks in a multiplet to fluctuate
around the theoretical value, we do not deem the introduction of the additional com-
putational burden necessary as the problem rarely occurs on a spectrum. Moreover,
when dealing with urine, a further obstacle to identification and quantification is that
some metabolites might be present in the sample at low intensities. In our application
the intensities of Valine, Leucine, and Isoleucine signals are lower in urine as compared
to their intensities in serum. The signals from Valine can be clearly observed in the
jres spectrum in Figure 6, while the signals from Leucine and Isoleucine are present
with much lower intensities. This implies that the true concentrations of Leucine and
Isoleucine in this urine sample should be much lower than that of Valine. However, the
concentration estimates of Valine, Leucine and Isoleucine from the 1D nmr data are
close to each other, while the estimates from the 2D jres data are in line with what
would be expected, see Table S2 in Supplementary Material. Traditional binning has



A. Heinecke, L. Ye, M. De Iorio, and T. Ebbels 449

Figure 8: Deconvolution of selected regions from the urine 1D nmr data. The x-axis
corresponds chemical shift in ppm and y-axis to intensities. The top panel shows res-
onances generated by Valine, Leucine, Isoleucine and 3-Hydroxybutyrate. The lower
middle panel and lower right panel show resonances generated by Alanine and Lactate,
respectively. The lower left panel shows resonances generated by untargeted metabolites
and weak signals from Valine and Isoleucine.

limitations when being applied to 2D jres spectra. Firstly, it is difficult to choose the
bin boundaries for metabolites in regions of severe overlapping or weak signals, and
secondly, severe overlapping can result in overestimation of concentration.

6.3 1D NMR spectra and comparison with BATMAN

The R package batman (Bayesian automated analyzer for nmr, see Hao et al., 2012,
2014) implements the Bayesian method for 1D nmr introduced by Astle et al. (2012),
but currently cannot be run on 2D nmr data. We therefore compare our method with
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batman Our Model
Representation functions
for residual spectrum

Symlet 6 Spline framelets

Theoretical peak Lorentzian Student-t kernel
Identifiability constraint Hard constraint through

truncation
Horseshoe prior with
local shrinkage strategy

Table 1: Comparison of modelling strategy between batman and our approach.

batman on the 1D human urine data set. Notice that our approach is also suitable to
analyse 1D nmr spectra (see Section 6.2 below), as it improves on the original strategy
adopted in batman. The main modelling differences between our work and the paper
by Astle et al. (2012) are summarised in Table 1. Our improvements have led to a more
interpretable model, which is easier to extend to complex set-ups and other 2D nmr

techniques and which allows for more efficient computational algorithms.

For a fairer comparison of the efficancy of the untargeted component of our method
with batman, we use, like batman does, Lorentzians (i.e. densities of Student-t distri-
butions with one degree of freedom) to model individual peaks, and, when possible, em-
ploy the same peak width priors and mcmc strategy as in Astle et al. (2012). Moreover,
theoretically, J-coupling constants vary only insignificantly between spectra, motivating
Astle et al. (2012) to disregard the fluctuation of J-coupling constants. We therefore
also keep J-coupling constants fixed. Parameter values for batman are tuned to yield
optimal results for the given data. Specifically, they are set as aw = 10−9, bw = 10−6,
e = 4, f = 0.35, g = 105, and h = −0.002. For our method, we set the shrinkage pa-
rameters to d = 102.5, ch = 2 and cl = 0. For both models, 10, 000 iterations of mcmc
are performed after 9, 000 burn-in iterations.

Figure 8 shows deconvolution of selected region of the urine spectrum obtained with
our method. The deconvolution is conditional on the posterior mean of the peak width
and chemical shift parameters and is plotted on the same grid as the original spectrum.
The original spectral data are shown by the black lines and the framelet component of
the model by the red dashed lines. We obtain similar results for batman (results not
shown). Indeed, the posterior mean squared error, calculated as the squared difference
between the data and the fitted spectrum, is 1.195×10−5 for our method and 1.193×10−5

for batman, which shows a good performance of both methods. Nevertheless the main
limitation of batman lies in the convergence issues of the MCMC algorithm, due also to
the hard constraint that does not aow for an efficient update of the wavelet coefficients.
Table 2 shows a comparison between the summary statistics of the effective sample sizes
(ess) (Ripley, 2009) and of the integrated autocorrelation times (iac) (Christen and
Fox, 2010; Kalli et al., 2011) of the wavelet coefficients for batman and the framelet
coefficients for our method. The ess provides an estimate of the number of independent
draws from the posterior distribution of a parameter of interest, while the iac provides a
measure of the efficiency of the sampling algorithm in terms of accuracy of the estimates,
with smaller values corresponding to greater efficiency. Using 1000 samples, the mean
of the distribution of the ess of our method is higher than that of batman, indicating
a greater number of independent draws in the mcmc for our approach. Since the time
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Quantile
Mean

Std
dev

Time
in secs

Mean
/time5% 25% 50% 75%

ess batman 90 261 683 906 613 336 7125 0.09
Our method 98 1000 1000 1000 914 241 5004 0.18

iac batman 1.01 1.15 1.45 2.52 2.75 3.95
Our method 0.92 0.98 1.04 1.11 2.05 12.24

Table 2: Comparison of effective sample sizes (ess) and integrated autocorrelation times
(iac) of the coefficients of the uncatalogued signal component between batman and our
method. We report summary statistics of the ess and iac values of all wavelet/framelet
coefficients.

Figure 9: Deconvolution of resonances generated by untargeted metabolites for a selected
region from a urine 1D nmr spectrum. The x-axis corresponds to chemical shift in ppm
and the y-axis to the intensities. The measured spectrum is shown in black, while the
B-spline frame component of our model is plotted in red and the Symlet 6 wavelet
component of batman in blue.

requirement of our method is smaller, this implies that the rate of convergence of the
untargeted component is faster and the algorithm is more efficient. This is further
supported by comparing the iacs: once again, on average, the posterior estimation from
our method is more accurate and mixing is improved. Figure 9 illustrates that in regions
where most of the spectrum is modelled only by framelets, our method improves the
fitting compared to batman when using the same number of samples. This is because
in the original algorithm in batman the presence of hard constraints included in the
model to ensure identifiability lead to lower acceptance rate as they are not always
satisfied during mcmc sampling.

7 Discussion

The major advantage of 2D jres spectra over 1D nmr spectra is that they aid de-
convolution, identification and concentration estimation of metabolites by providing
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information on a second dimension. Presently, there are no automated methods for an-
alyzing 2D jres spectra that make use of the extensive prior information available in
online databases about the physical processes generating the spectral data. Such expert
information can be conveniently incorporated into our Bayesian model via specification
of informative prior distributions. Analysis of serum and urine spectra, as well as simu-
lations on synthetic data, show that our method can identify resonance peaks correctly.
Peak misalignment may occur when a target resonance is overlapped with, or located
close to, other strong signals. The latter is inevitable for any method when peaks overlap
sufficiently.

A clear advantage of our method is its applicability to jres spectra of any complex
mixture, such as food, soil or petroleum. As prior information on metabolite resonance
patterns become more accessible, extensive and precise, a Bayesian method to esti-
mate metabolite concentrations automatically and accurately from 2D jres spectra has
the potential to contribute to many metabolomics research projects. It is, for instance,
straightforward to extend our proposed method to a joint model of multiple jres spec-
tra in which the concentration parameter vector of the targeted metabolites is shared
across spectra and treated as a fixed effect, while the remaining parameters in each
spectrum are independent. Updates involving components of the concentration vector
for the targeted metabolites should then be slightly adjusted from those of the simpler
model to reflect the dependence upon multiple spectra. Updates for the remaining pa-
rameters remain valid within each spectrum. Moreover, it is in principle straightforward
to introduce random effects, with metabolite concentrations varying over spectra, or to
incorporate our model into more complex hierarchies in which the main scientific aim
might, for instance, be classification or clustering.

Our method can be used on both 1D and 2D data. The 1D version of our statistical
model is more efficient than batman and can be extended to other 2D spectroscopy
techniques (e.g. cosy or tocsy) with the main difference being the type of expert
information included in the model. The main limitation of our work is the computational
burden of the MCMC algorithm, which limits the applicability of our model to a large
collection of spectra. We are developing variational algorithms which can greatly speed
up computations, but at the cost of uncertainty evaluation.

Supplementary Material

Supplementary Materials (DOI: 10.1214/20-BA1208SUPP; .pdf).
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Kotylak, A., Sk�ladowski, K., Sokó�l, M., et al. (2019). “NMR-based metabolomics in
real-time monitoring of treatment induced toxicity and cachexia in head and neck
cancer: a method for early detection of high risk patients.” Metabolomics, 15(8): 110.
426

Braunschweiler, L. and Ernst, R. (1983). “Coherence transfer by isotropic mix-
ing: Application to proton correlation spectroscopy.” Journal of Magnetic Reso-
nance, 53(3): 521–528. URL http://www.sciencedirect.com/science/article/

pii/0022236483902263. 427

Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W. L.,
Clarke, S., Schofield, P. M., McKilligin, E., Mosedale, D. E., and Grainger, D. J.
(2002). “Rapid and noninvasive diagnosis of the presence and severity of coronary
heart disease using 1H-NMR-based metabonomics.” Nature Medicine, 8: 1439–1445.
doi: https://doi.org/10.1038/nm1202-802. 426

Bruce, S. D., Higinbotham, J., Marshall, I., and Beswick, P. H. (2000). “An analytical
derivation of a popular approximation of the Voigt function for quantification of NMR
spectra.” Journal of Magnetic Resonance, 142(1): 57–63. 433

Bundy, J. G., Spurgeon, D. J., Svendsen, C., Hankard, P. K., Osborn, D., Lin-
don, J. C., and Nicholson, J. K. (2002). “Earthworm species of the genus Eise-
nia can be phenotypically differentiated by metabolic profiling.” FEBS Letters,
521(1): 115–120. URL http://www.sciencedirect.com/science/article/pii/

S0014579302028545. 426

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for
sparse signals.” Biometrika, 97(2): 465–480. URL http://www.jstor.org/stable/

25734098. MR2650751. doi: https://doi.org/10.1093/biomet/asq017. 437, 443

Casazza, P. G. and Kutyniok, G. (2012). Finite Frames: Theory and Ap-
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