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Abstract

Gauging viral transmission through human mobility in order to contain the COVID-19 pandemic has been a hot
topic in academic studies and evidence-based policy-making. Although it is widely accepted that there is a strong
positive correlation between the transmission of the coronavirus and the mobility of the general public, there are
limitations to existing studies on this topic. For example, using digital proxies of mobile devices/apps may only
partially reflect the movement of individuals; using the mobility of the general public and not COVID-19 patients in
particular, or only using places where patients were diagnosed to study the spread of the virus may not be
accurate; existing studies have focused on either the regional or national spread of COVID-19, and not the spread at
the city level; and there are no systematic approaches for understanding the stages of transmission to facilitate the
policy-making to contain the spread.
To address these issues, we have developed a new methodological framework for COVID-19 transmission analysis
based upon individual patients’ trajectory data. By using innovative space–time analytics, this framework reveals the
spatiotemporal patterns of patients’ mobility and the transmission stages of COVID-19 from Wuhan to the rest of
China at finer spatial and temporal scales. It can improve our understanding of the interaction of mobility and
transmission, identifying the risk of spreading in small and medium-sized cities that have been neglected in existing
studies. This demonstrates the effectiveness of the proposed framework and its policy implications to contain the
COVID-19 pandemic.
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1 Introduction
Since the first case of COVID-19 was confirmed in
December 2019 in Wuhan, China, over 134 million
people have been infected with the disease and it has
caused nearly 2.9 million deaths in 190 countries or re-
gions, as of April 2021 (World Health Organisation,
2021). The pandemic has also triggered a variety of ex-
treme restrictions, such as large-scale regional/national
lockdowns and other non-pharmaceutical interventions

(NPIs), with the global economy facing a recession
(World Bank, 2020).
Researchers have devoted themselves extensively to

analysing the characteristics of COVID-19 from multidis-
ciplinary perspectives, including but not limited to its epi-
demiological and genomic characterisations (Lu et al.,
2020), clinical features (Guan et al., 2020; Vetter et al.,
2020), incubation period (Backer, Klinkenberg, & Wallinga,
2020), and asymptomatic carriers (Bai et al., 2020). Such
studies have made valuable contributions to the treatments
and vaccines used to suppress the disease (Kaur & Gupta,
2020; Kupferschmidt & Cohen, 2020). Moreover, substan-
tial evidence collected during the outbreak in Wuhan
showed that one of the typical modes of COVID-19
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transmission is person to person interaction (Chan et al.,
2020), underlining the fact that the large-scale and dis-
persed migration of the population can amplify a localised
outbreak into a widespread pandemic (Balcan et al., 2009;
Halloran et al., 2014). Therefore, in order to contain the
spread of COVID-19, it is important to estimate human
mobility and gauge its relationship with the viral transmis-
sion pattern. This task has aroused much attention not only
in academia but also in governmental sectors pursuing
evidence-based policy-making (Raboisson & Lhermie,
2020).
With the development of Internet of Things (IoT),

mobile phones, and other Internet facilities, many studies
have utilised mobile devices as a digital proxy for human
mobility (Balzotti, Bragagnini, Briani, & Cristiani, 2018; Xie,
Song, Li, & Ma, 2018). With regard to COVID-19, human
mobility patterns derived from mobile devices/apps have
been explored in relation to the severity of COVID-19 in
an area, usually represented by the number of confirmed
cases/deaths. It is vital to quantify changes in human mobil-
ity and understand the human mobility patterns during the
pandemic at the national, regional, and individual levels
(Grantz et al., 2020). At the national and regional levels,
such work is helpful in assessing the effectiveness of gov-
ernmental NPIs (e.g., lockdowns), helping policymakers to
decide if extra or different interventions might be required
(Cheng, Liu, Zhang, Dong, & Liu, 2021). At the individual
level, understanding the human mobility pattern helps us
to gain insight into people’s pattern of social contact and
thus improve contact tracing (Yabe et al., 2020).
Nationwide mobile phone data were used to track the

population outflow from Wuhan at the prefecture level,
which has a high correlation with the cumulative number
of infections (Jia et al., 2020). Badr et al. (2020) and Xiong,
Hu, Yang, Luo, and Zhang (2020) employed daily mobile
phone data to represent the population’s movement pat-
terns for each county in the US, showing a positive correl-
ation with the COVID-19 growth rate ratio. Moreover,
introducing restrictions on the mobility of infected patients
or on citizens in high-risk regions (such as lockdown) could
delay and decrease the peak of the epidemic in the early
stage of a COVID-19 outbreak, as examined in Shenzhen
(Zhou et al., 2020), Tokyo (Yabe et al., 2020), and Italy and
France (Santamaria et al., 2020). However, it was also found
that restricting human mobility has only limited value,
given that spatial heterogeneity has been evidenced in
counties in the US (Hu et al., 2021) and in regions of the
UK (Cheng et al., 2021).
Although a strong positive correlation exists between

the mobility of the general public (represented by the
digital proxy) and the transmission pattern of the cor-
onavirus, there are limitations to the current studies. As
warned of by Grantz et al. (2020), at the population level
evidence has shown that using data derived from mobile

phones may only partially reflect the movement of indi-
viduals, with the exact representativeness of such a
measurement varying due to the different settings and
uncertainties. Furthermore, only confirmed and asymp-
tomatic patients and not the total floating population
are the carriers and spreaders of the virus, but there has
been no specific study on patients’ mobility. Moreover,
confirmed case data only capture data when a particular
person tests positive for coronavirus (i.e., becomes a ‘pa-
tient’) and the location where they are eventually tested
(i.e., the destination of their journey before isolation/
treatment). Hence, the virus may have already been
transmitted to others in other locations, since the virus
carrier could be still in the incubation period or asymp-
tomatic. Therefore, not only the place where the patent
was diagnosed but also the other places where they vis-
ited before the diagnosis should be investigated in order
to gain a full picture of the virus transmission.
Last but not least, studies investigating the relation be-

tween human mobility/flow and COVID-19 transmission
have mainly focused on their associations at the regional or
national level. There is no systematic approach to identify if
an outbreak is considered local or regional, if a city is at
high risk due to having a high virus exposure, and what the
next stages of the spread consist of. All these factors have
strong policy implications. If outbreaks are local, then local
lockdown or full testing might be more effective. If a city is
at high risk, then it is likely that the number of patients will
increase, so more preparations and resources are needed.
To overcome these limitations, this paper develops a

new methodological framework for COVID-19 transmis-
sion analysis based upon individual patients’ trajectory
data. Using innovative spatiotemporal data mining tech-
niques, patients’ mobility patterns in cities during their
incubation periods will be analysed. The spatiotemporal
activity hotspots of patients will be detected, revealing
the order and stages of the dynamic transmission of the
virus. We believe that the deeper insights gained at the
finer spatial and time scales will facilitate the creation of
effective policies to contain the virus.
The paper is organised as follows. After the introduction

in this section, Section 2 presents our data sources and
pre-processing steps. Then, the methodology is presented
in Section 3, including steps for analysing patients’ travel
behaviours to revealing the diffusion stages and orders of
the virus in space and time. The analytical results of the
case are presented and discussed in detail in Section 4.
Section 5 summarises the major findings and limitations
of this study and makes suggestions for further research.

2 Data and pre-processing
2.1 Data introduction
This study uses the trajectory data of patients confirmed
to have COVID-19 in mainland China, primarily
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focusing on the early stage of this pandemic. Two data
sources, patient trajectory data and confirmed case data
from China last spring, are used in this study. The pa-
tients’ trajectory data were provided by Beijing Advanced
Innovation Centre for Big Data and Brain Computing
(BCBD) (BCBD, 2020). The BCBD has applied natural
language processing and other methods to extract infor-
mation from public resources on 4626 confirmed pa-
tients from January 21 to February 20, 2020, including
their gender, age, occupation, city of permanent resi-
dence, Wuhan/Hubei contact history, and patient trajec-
tory (e.g., time, location, transportation, and event)
(Fig. 1).

2.2 Data pre-processing
The patient trajectories published by BCBD were incon-
sistent in terms of their formatting and details, which
may be attributed to the various privacy concerns across
different regions in China. Some patients were recorded
at a fine spatial resolution. For instance, in Hainan prov-
ince, data were available at the level of individual build-
ings, while the data in Beijing were relatively coarser.

Therefore, the original data need to be processed and
filtered.
Here, we aggregated all recorded locations of activities

at the city level and used the city level as nodes for
patients’ trajectories. The reason for this is threefold.
First, mainland China has a top-down hierarchy, and
each village and town can find the city to which it be-
longs. Second, the transportation system in China also
has a hierarchical structure, similar to the urban system
(Siwiak, Szczesny, & Siwiak, 2020), and movement be-
tween towns uses cities as intermediaries. Third, the city
is the regional centre that is responsible for the treat-
ment and tracking of confirmed cases on all lands under
the jurisdiction of the city, including town and villages.
In total, we have data on patients’ trajectories through
304 cities in China.
However, the patients diagnosed in Beijing and Shanghai

only had recorded activity on the day of diagnosis; thus, the
confirmed case data in these two cities are not included
here. We believe that the elimination of these two cities will
not affect the overall analysis and conclusions of our study.
Therefore, the travel trajectories of 4051 patients in 302

Fig. 1 Example of raw data of BCBD
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cities were eventually covered in our analysis in the case
study, discussed in Section 4. This means that we have the
data of confirmed cases in 25 provincial-level units,1 includ-
ing 20 provinces (excluding Qinghai, Hubei, Taiwan), 3 au-
tonomous regions (excluding Xinjiang Uygur, Xizang), and
2 municipalities (excluding Beijing, Shanghai). It should be
noted that the patients’ trajectory may cover the entirety of
mainland China before they were confirmed as having
COVID-19 in these 25 units.
Moreover, in the BCBD data the trajectory information

is recorded as the dates (2–01 or 2–05) with corre-
sponding locations (A or B), as shown in Fig. 2a. There
are no location data between two discontinuous dates.
Here, we use the location of the previous date as a proxy
for the location between dates. This idea has been used
to complement the 14-day trajectories from the date the
case is confirmed (here, 14 days is used as the virus incu-
bation period), as shown in Fig. 2b. Given that the pa-
tients’ trajectories were re-constructed mostly by
interviewing the confirmed patients, there is a slight
chance that the records may not be fully accurate. We
consider that this error is acceptable for our analysis,
and discussion of the impact of this error is beyond the
scope of this paper. We also assume the patient has vis-
ited no other cities between two discontinuous dates, be-
cause the places/cities and dates of visitation should
have been recorded if other places/cities were visited.
In this way, we generated a continuous spatiotemporal

trajectory for each of the patients in the 14-day incuba-
tion period at the city level, as shown in Fig. 3. Observ-
ing the distribution pattern of the activity trajectory in
Fig. 3, we can see that each provincial unit presents a
central radial pattern, with the confirmed province as
the core, and there are many trajectory points in neigh-
bouring provinces. This indicates that a considerable
number of patients visited other cities/places before they
were diagnosed and confirmed in a specific city/place dur-
ing their incubation periods. Conventional analysis of the
human mobility related to the transmission of COVID-19
focuses on where the patient was finally diagnosed. The
truth is that not all patients stayed in the same places be-
fore they were diagnosed, as shown in Fig. 3, and the city
they passed through might be the actual location of their
infection. However, these locations are ignored in existing
research, which will conceal the actual spatial spread of

the epidemic. Therefore, it is necessary to analyse patients’
movement patterns and paths to understand this further,
which is one of the aims of this work.
Data concerning the cumulative number of cases and

the daily increase in the number of confirmed cases are
released by the national and provincial health commis-
sion in China (see Fig. 4). Figure 4 shows the develop-
ment of the number of confirmed patients in each city,
which should be compared with Figs. 6b and 8c.

3 Methodology
This work proposes three steps to analyse patients’
movement and case data to gain a deeper insight into
COVID-19 transmission to prevent its further spread.
We first analyse the mobility and travel patterns of pa-
tients in cities during the incubation period alongside
the case data from both spatial and temporal perspec-
tives. Then, we extract the space-time hotspots/clusters
of patient incubations to understand the dynamics of
movement and transmission over space and time. Fi-
nally, we detect the order and stage of transmission
within cities based upon the case data. Using patients’
mobility patterns and the order of case transmission, the
spatiotemporal stages and patterns of transmission (local
or cross-regional) can be drawn.

3.1 Travel patterns vs. transmission—local or regional
outbreak
As COVID-19 has a strong transmission capacity, cities
where patients have stayed before their confirmation
may have a high risk of virus transmission. Therefore,
we will analyse the travel behaviour of patients in other
cities before they are confirmed. First, the patients who
have been to Wuhan city and Hubei Province will be
identified to understand the initial transmission from
Wuhan to other cities. Then, the travel distance, daily
visiting volume and length of stay of all the patients in a
city will be analysed to help us understand patients’ mo-
bility vs. virus transmission at the city level. This can
help us to identify the key factors leading to the daily
confirmed and accumulated cases in cities. Based upon
patients’ travel distance and length of stay, it is possible
to identify whether outbreaks in a city are local or part
of the pattern of regional transmission. Based upon the
numbers of daily visitors and lengths of stay, we can
identify the cities which have been highly exposed to the
virus even if their confirmed cases may not be high at
that moment.

3.2 Space-time paths of patients—space-time hotspots
The analyses above give perspectives in either space or
time. Given that the viral transmission is continuously
moving in space and time, it is better to understand the
dynamic viral transmission through space–time paths

1China’s administrative division system divides the country into 34
provincial administrative units at the first level, including 23 provinces
(Anhui, Fujian, Gansu, Guangdong, Guizhou, Hainan, Hebei,
Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning,
Qinghai, Shan_xi, Shandong, Shanxi, Sichuan, Yunnan, Zhejiang,
Taiwan), five autonomous regions (Inner Mongolia, Ningxia, Guangxi,
Xinjiang Uygur, Tibet), four municipalities (Beijing, Chongqing,
Shanghai, Tianjin), and two special administrative regions (Macau,
Hong Kong).
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built upon the trajectory points of all patients. The
space–time path will be able to show areas with high
concentrations of patients in space–time—namely, the
high-risk clusters (e.g., cities or regions) (Siwiak et al.,
2020). This fine spatiotemporal scale will reveal trans-
mission patterns that might have been ignored in exist-
ing research based on the whole population’s mobility.
This will help us to understand the stages and orders of
transmission.
3D Kernel Density (3D-KDE) is a method that is

widely used to simplify trajectories and display active
trajectories in a volumetric manner with three-

dimensional space-time (Andrienko & Andrienko, 2013).
3D-KDE was designed by adding a time dimension to
the 2D kernel density (Nakaya & Yano, 2010). In order
to simplify the computing process, the intermediate
process of the paths will be ignored. 3D-KDE only calcu-
lates the spatial density of the start or endpoints at each
moment (Amini et al., 2015). In this study, 3D-KDE em-
ploys a Gaussian kernel density algorithm. The spatio-
temporal cube includes 50 temporal planes (the BCBD
dataset covers 50 days), and each plane has been divided
into 10 km grids. After computing, 600*400*50 three-
dimensional matrices of spatiotemporal density can be

Fig. 3 Trajectories of the confirmed patients in cities of 25 provincial-level units

Fig. 2 Completing the 14-day trajectories: a original trajectory data structure; b inserting missing dates between discontinuous dates
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obtained, and each point has a density value. The heat
map is used to visualise the results of the density ana-
lysis. In this paper, Voxler was used to directly produce a
continuous and smooth spatiotemporal density cube
(Demšar & Virrantaus, 2010). The equation for 3D-KDE
is as defined in Eq. 1 (Brunsdon, Corcoran, & Higgs,
2007):

f ðx; y; tÞ ¼ 1

nb2s bt

X
i
K sðx−xibs

;
y−yi
bs

ÞKtðt−tibt
Þ; ð1Þ

where f (x, y, t) represents the kernel density at the pos-
ition of x, y, t; n is the number of confirmed patients in
each city on one plane; and bs and bt represent the
search bandwidth in space and time, respectively.

3.3 Lagging correlation between cities—case/virus
spreading order
The step above focuses on exploring patients’ hotspots
(before confirmation) and their dynamics in space–time.
This step aims to explore whether the increasing number

of patients in each city has a lagging correlation (Kang,
Choi, Kim, & Choi, 2020). This means that the growth
patterns of the two cities are similar but there is time lag,
which could be used to analyse the order of spread of
COVID-19. This can be used to further explain and asso-
ciate the findings from Step 3.2 to build the orders and
stages of the transmission, whether local or regional.
Sliding Window Time Lag Cross-Correlation (SWTL

CC) is used in this research to achieve this goal, which
originates from the combination of the methods of slid-
ing window (SW) and time lag cross-correlation (TLCC).
TLCC can identify directionality between two signals,
such as a leader–follower relationship in which the
leader initiates a response that is repeated by the fol-
lower. The sliding window can estimate the correlation
between two sets of data at a smaller time granularity.
According to the results of the sliding window, TLCC
could be used to further detect which set of data
changes caused a change in another set of data to deter-
mine the sequence of events (Podobnik, Wang, Horvatic,
Grosse, & Stanley, 2010).

Fig. 4 Number of confirmed patients accumulated in cities in 4 stages
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SWTLCC takes out fragments of the window size from
the two sets of data and calculates the TLCC values of
these two fragments. Then, as the window slides from
front to back, the correlation of the entire set of data can
be calculated. Compared with TLCC, SWTLCC can ana-
lyse whether there is a correlation between the two sets of
data at a shorter time granularity and at what time the
correlation between the two groups of data occurred.
We first offset one set of data and use the offset data to

continuously analyse the degree of deviation between data
of other cities and Wuhan to obtain the maximum correl-
ation coefficient under the degree of offset. The degree of
deviation can indicate the time sequence of the current
city data affected by the Wuhan data, while the maximum
correlation coefficient indicates whether the current city
data and Wuhan data show similar trends.

4 Results
Here, we present the exploratory analysis of the trajec-
tory data from January 21 to February 20, 2019, when
the outbreak of COVID-19 started in Wuhan and was
transmitted to the rest of the country at its peak.

4.1 Travel behaviours of the patients
4.1.1 Patients who have been to Hubei
Figure 5a presents the total number of confirmed cases
and patients who have been to Wuhan (i.e., Hubei prov-
ince), which varies significantly among the 25 provinces.
For example, the numbers of cases in Zhejiang, Henan,
Heilongjiang, Chongqing, Sichuan, and Guangdong are
significantly higher than in other provinces. When the
total number of confirmed patients is small, it strongly
correlates with the number of patients who have been to
Wuhan, as shown in Fig. 5b. Moreover, when the num-
ber of patients conspicuously increases, the proposed

relationship is disturbed and shifted. For example, Zhe-
jiang Province and Heilongjiang Province have many
confirmed cases with a relatively low proportion of cases
that have been to Hubei. The situation in Guangdong
Province, however, is just the opposite. It has many cases
that have been to Hubei, but the total number of con-
firmed cases did not rise sharply. This feature may re-
flect the difference in the spread mode of the virus
between Hubei and other provinces. For example, the
spread in Heilongjiang was caused by its famous local
winter tourism activities. A small number of confirmed
patients stayed there for a long time (local outbreak),
which caused many local infections. in comparison, the
outbreak in Zhejiang Province was due to many patients
coming in from elsewhere.

4.1.2 Daily visit patients in cities
Since the trajectory data are detailed, it is possible to de-
rive these patients’ daily distribution and obtain the total
number of patients visiting each city every day. Here, we
introduce the concept of “daily visit patients”, which rep-
resents the number of patients who were in their incuba-
tion period in each city every day (before being
diagnosed). Additionally, if we add up the number of
“daily visiting patients” in a period, we can find the “total
number of visiting patients” in a particular city. In this
part, we only consider those patients who have been to
Wuhan/Hubei and returned, because the data focus on
how infected people who have been to a high-risk zone
can spread the virus to a larger area. Thus, this can re-
flect the spread pattern of COVID-19 better.
Figure 6a shows the top 20 cities with the most patients

visiting each day, growing rapidly in the first few days.
However, after the lockdown of Wuhan, those numbers
began to decline significantly, even though more patients

Fig. 5 Number of cases that have travelled to Wuhan vs. total number of confirmed cases at the provincial level: a case numbers, b
their correlation
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were confirmed. Among others, Chongqing had a com-
paratively higher number and reached its peak first. Ha’er-
bin’s daily number of visitors was second only to
Chongqing, but its growth rate seemed slower than that of
other cities. The numbers of daily patients in Hunan Prov-
ince (Xinyang, Shangqiu, Zhengzhou), Shanxi Province
(Yangquan), Guangdong Province (Zhuhai), Hainan Prov-
ince (Sanya, Haikou), and Tianjin are also relatively high.
By summing the time series data of each city, we derived

the total number of patients visiting each day; this is
shown in Fig. 6b. In terms of the overall pattern, four
prominent agglomeration areas were formed: 1) patients
returning from Hubei formed a relatively continuous

cluster area between Hubei and Beijing, consisting of four
provinces, including Anhui (Hefei), Shandong, Henan
(Shangqiu), and Hebei; 2) Chongqing and Ha’erbin
formed two distribution areas centred on themselves in
the southeast and northeast, respectively; and 3) in the
southern coastal areas, the Pearl River Delta and Hainan
Province have formed another distribution area, reflecting
the simultaneous existence of continuous transmission
and cross-regional transmission.

4.1.3 Average movement distance of patients
As shown in Fig. 3 above, the movement trajectories of
the confirmed patients in each province are quite

Fig. 6 Number of patients (before diagnosis) in cities who have been to Hubei: a daily number of visiting patients; b accumulated number of
visiting patients
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variable. For example, Chongqing, Guangdong, Heilong-
jiang, and Sichuan have larger-scale activity trajectories,
which is consistent with the fact that these provinces
have more confirmed cases. In the Henan and Zhejiang
provinces, on the contrary, the spatial distribution of the
trajectories displayed does not match with the highest
number of confirmed cases. Furthermore, there were not
many confirmed cases in Hainan, though it has shown a
large scale of activity trajectories.
To understand the seeming inconsistency of the activ-

ity trajectories with the number of confirmed cases, we
simplified the distance that each patient moved (the Eu-
clidean distance between the cities where the patient
was for 14 days prior to being diagnosed and the city

where they were confirmed to have COVID-19). Then,
we calculated the average moving distance of each city
and province (the total travel distance of patients in a
city/province divided by the total number of patients in
the city/province). The result is shown in Fig. 7.
At the city level, some cities far away from Wuhan,

such as Sanya and Haikou (Hainan Province), as well as
Shuangyashan, Changchun, and Harbin (Northeast
China), have high moving distances, while Chongqing,
which is very close to Wuhan, also has a high value.
At the province level, provinces with higher moving

distances are generally farther from Hubei (except
Chongqing), such as Inner Mongolia and Yunnan, as
well as provinces in the northwest and northeast regions.

Fig. 7 The average 14-day total travel distance of individual patients in a the top 22 cities and b 25 provincial-level units
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This is well understood, indicating that patients who
travelled from Hubei province at the beginning of the
virus outbreak reached these provinces after moving a
long distance. While Chongqing not only had many con-
firmed patients, these people also had moved across a
large spatial distance before being diagnosed, which im-
plies that there was a regional outbreak. On the con-
trary, Henan had the most confirmed patients, but its
average regional migration distance is relatively small.
Such results may indicate that the confirmed patients
only moved within a small geographic area, implying
that there was a local outbreak in Henan, similar to
Zhejiang.

4.1.4 Staying time of patients
As discussed above, many patients visited other cities
besides the city where they were confirmed to have
COVID-19. Due to the strong transmission capacity of
the virus, it is expected that the city where patients have
stayed the longest will face the highest risk of virus
transmission. Therefore, we analysed the length of time
that the patients confirmed to have COVID-19 stayed in
each city; the results are shown in Fig. 8.
Figure 8a shows a scatter plot of the average length of

time stayed of all the patients in the city, divided by the
total length of their trajectory and the total number of
patients in each city. It shows that in more than half of
the cities, the proportion of time spent by all the patients
in this city is less than 50%. A reasonable assumption
could be that patients were not infected with the virus in
the city where they were confirmed to have COVID-19
but just visited there to work or seek medical treatment,
while the city they passed through was the actual loca-
tion of their infection. To confirm this, we converted the
perspective to the patients by calculating the proportion
of time each patient spent in the city where they were
diagnosed (we name this value the “stay ratio”). We gen-
erated a data distribution diagram (reclassified at 10%
intervals). Nearly 50% of patients spent more than 90%
of their time in the city where they were confirmed to
have COVID-19, while nearly 30% of patients had a stay
ratio of less than 50%, as shown in Fig. 8b. From Fig. 8a,
b, we can also see that if there were more patients in a
city, there will be a higher probability that these patients
never left or only left the city for a short period of time.
Although we know that there are many such patients,
there is still a considerable number of patients who did
not spend most of their time before being diagnosed in
the city where they were confirmed to have COVID-19
(low stay ratio).
Figure 8c shows the spatial distribution map of the

average proportion of time stayed by patients in each
city. Comparing Figs. 6band 8c, a remarkably similar
pattern could be found—there are four key zones, as

described in Section 4.1.3. Comparing these two figures
with Fig. 4, the patterns are very similar to the final stage
of the accumulative case patterns on February 18, 2020.
This indicates that there is a strong association of pa-
tients’ mobility patterns with the virus transmission,
which will be further explored in the following
subsection.

4.1.5 Patients’ mobility vs. case numbers
As shown in Fig. 6a, about ten cities had significantly
more daily visits by patients than other cities. Chongqing
Municipality and Ha’erbin are particularly prominent,
while most other cities are at the same level. Among
these cities with higher numbers, provincial capital cities
and municipalities are ranked lower, while second- and
third-tier cities such as Xinyang, Yangquan, and Zhuhai
are ranked higher, with more confirmed patients active
in these cities every day. However, if we use the trad-
itional number of confirmed patients (as shown in Fig.
5b) to rank cities, the larger provincial capital cities are
ranked higher, such as Beijing, Chongqing Municipality,
and Shanghai. Using these two methods, the ranking of
the cities is vastly different, as shown in Table 1.
It can be noticed that cities with higher rankings using

the first method are generally not ranked high when
using the second method (except Chongqing Municipal-
ity). This means that, for example, in Xinyang and
Shangqiu, many confirmed patients have visited here
during the incubation period, but they did not end up
staying there and were eventually diagnosed in other cit-
ies. Thus, there are two assumptions here: first, that
these patients were infected in Xinyang or Shangqiu and
then returned to other cities to be diagnosed; second,
that these patients went to other cities for medical treat-
ment after they developed symptoms, and they were
eventually diagnosed in other cities. In either case, cities
such as Xinyang are particularly important for disease
prevention and control because these cities might be the
actual places where the spread of the virus occurs. How-
ever, if we only use the data of patients confirmed to
have COVID-19, we cannot discover the existence of
these second- or third-tier cities which are at high risk
(such as Sanya and Haikou).
Furthermore, the result shown in Fig. 6 is different

from the existing literature, which used aggregated mo-
bility flow derived from mobile phone data at prefectures
in China (please refer to Jia et al., 2020, Fig. 1). More-
over, based upon the proportion of the length of stay of
patients confirmed to have COVID-19 (Table 1), we can
see that Tianjin, Ningbo, and Wenzhou (cities in
Zhejiang); Zhoukou, Xinyang, Zhengzhou, and Shangqiu
(cities in Henan); and Ha’erbin all have very high rates
of patients staying. This indicates that the patients con-
firmed to have COVID-19 in these cities have indeed
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stayed in these places for a long time, which is consist-
ent with the conjecture in Section 4.1.3—that is, these
areas are likely to have local outbreaks.

4.2 Space-time paths of patients after returning from
Hubei province
Section 4.1 analyses the mobility of the patients from
either spatial or temporal perspectives. In this section,

the spatial and temporal dimensions are integrated to
understand the transmission dynamics in integrated
space–time. We hereby specifically extract the spatio-
temporal records of the patients who have been to
Wuhan/Hubei before, then plot their paths after return-
ing from Hubei. After calculation and rendering, as de-
scribed in Section 3.2, the result is obtained and shown
in Fig. 9. The three coordinate axes represent two-

Fig. 8 Length of stay of patients in cities: a the average proportion of length of stay vs. the total number of patients confirmed to have COVID-
19; b the stay ratio of patients confirmed to have COVID-19 in the cities where they were diagnosed; c the total length of stay of patients
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dimensional space (i.e., X and Y) and one-dimensional
time (i.e., Z). The space–time density graph has become
a columnar shape unevenly clustered in some places.
Four high-density agglomeration areas were identified
and named according to their spatial distributions (see
Fig. 9), including the Heilongjiang cluster, Chongqing
cluster, Henan–Hebei–Tianjin cluster, and Guangdong
cluster.
The distribution of spatial activity density of pa-

tients shows a similar pattern as that of Fig. 6b in
Section 4.1.1 and Fig. 8c in Section 4.1.3. A spatial
circle is formed around Hubei Province, whilst some
provinces, including Chongqing and Henan surround-
ing Hubei Province, show high-density agglomeration.
Similarly, Guangdong, Hainan, and northeast China,
which are far from Hubei, also show high-density
agglomeration.

Observing the space–time cube from the side and gen-
erating a gradient density curve, we can observe similar
results as shown in Fig. 10. The X-axis represents the
profile along the latitude direction, and the Y-axis is the
tempol line running through 50 days. This shows that
Chongqing has the highest cluster density and the most
prolonged duration, with a remarkably high density from
about early January to the end of February (almost 50
days). While Guangdong and Henan-Hebei-Tianjin clus-
ter were also formed early, the Heilongjiang cluster was
formed a few days later than the other clusters. There is
a clear sequence of the time when patients start to
gather in different clusters. The cluster in Guangdong
Province reached its peak earliest on January 22, and the
cluster in Chongqing reached its peak on January 23.
The clusters in these two regions nearly disappeared at
the end of the time range included in the data (February

Table 1 The city rankings based upon the number of daily patient visits, daily confirmed patients (as of February 18, 2020), and daily
stay time proportion

City ranking using daily patient (before confirmation) visits number (top 10)

City Chongqing Municipality Ha’erbin Xinyang Yangquan Zhuhai Shangqiu Tianjin Sanya Zhengzhou Haikou

Count 2859 2614 1471 1011 972 936 933 933 869 867

City ranking using daily confirmed patient number (top 10)

City Chongqing Municipality Ha’erbin Wenzhou Ningbo Tianjin Shangqiu Zhuhai Changde Xinyang Suzhou

Count 336 187 182 142 111 94 91 80 78 76

City ranking using daily stay time proportion (top 10)

City Ningbo Tianjin Wenzhou Zhoukou Ha’erbin Shangqiu Hangzhou Xinyang Zhengzhou Chongqing
Municipality

Proportion 83% 77% 71% 67% 67% 63% 58% 57% 57% 52%

Patient number 142 111 182 64 187 94 53 78 67 336

Fig. 9 Space–time paths clusters of patients after returning from Hubei Province
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18), which means that the confirmed patient stopped ac-
tivities in these two areas within 1 month. The Henan–
Hebei–Tianjin cluster peak appeared later, on January
25, while the Heilongjiang cluster appeared latest on
January 28. These two clusters showed no signs of disap-
pearing before February 18, indicating the patient activ-
ities of these two clusters lasted longer, exceeding the
time frame of our study. It is speculated that the virus
transmission may have stages due to stages of patient
movements revealed here, which will be explored in the
following subsection.

4.3 Orders and stages of virus transmission
4.3.1 Orders of virus transmission
As observed from Fig. 6a, the daily increase in the num-
ber of patients in each city seems to have a chrono-
logical order. Wuhan grew rapidly, and Chongqing’s
data grew with Wuhan’s data, while other cities grew
more slowly. The sequence of data changes may repre-
sent the order of diffusion in time. Figures 9 and 10 col-
lectively further illustrate that there is order and possible
cross-regional transmission of the virus. To explore this
further, we apply the SWTLCC analysis introduced in
Section 3.3 to validate the associations between the mo-
bility with the virus transmission.
We first use the data of Wuhan as the benchmark data

to perform SWTLCC with a window size of 20 (approxi-
mately half of the total date recorded with patient activ-
ity tracking, to ensure that there are enough data in the
window). The data of all other cities are compared with
the data of Wuhan, and the result is shown in Fig. 11.

Selecting the analysis results of the top three cities other
than Wuhan, the data offset in Chongqing is not obvi-
ous, while the data in Ha’erbin and Zhuhai have a no-
ticeable offset to the left in the middle part, this
indicates that the data of Wuhan are leading the data of
these two cities to change. Moreover, the change pat-
terns of the rest cities in Fig. 6a are similar to those of
Ha’erbin or Zhuhai, strongly guided by Wuhan data.
According to the method described in Section 3.3, we

apply the TLCC method to find the data sequence. After
calculating, the data of three representative cities are se-
lected, as shown in Fig. 12 below. The results of the
TLCC analysis for the data of Chongqing, Ha’erbin, and
Zhuhai show that the maximum correlation coefficients
that these three cities can achieve are all above 0.9, but
the offsets increase sequentially. Chongqing has the most
minor offset; Wuhan’s data began to change immediately
after it began to change, while Zhuhai was left behind a
little, and Ha’erbin’s data only began to change after six
shifts. This shows that the three cities are affected by the
spatial activities of Wuhan patients in a sequence.
In order to visualise all the data, it is necessary to filter

the data of other cities. First, the correlation coefficient
must be greater than 0.9 (high relevant cities). Secondly,
the number of visits by confirmed patients in a city
needs to reach a certain number. Through the observa-
tion of the data, the value of 400 is selected as the
screening criterion; finally, the cities with a positive off-
set are selected, which means these cities are affected by
the Wuhan data. After screening, the result is shown in
Fig. 13. The blue curve is the reverse offset value and is

Fig. 10 Temporal sections of the space–time cube
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sorted. The larger the value, the faster the data of the
city were affected by the Wuhan data.
According to the observation of the offset value curve

in Fig. 13, we divided the sequence of these cities af-
fected by Wuhan data into three stages. The offset is
within 3 as the first stage, 3 to 5 offsets as the second
stage, and more than 5 offsets as the third stage. In each
stage, there are some prominent cities. In the first stage,
the data of Beijing and Guangzhou change fastest, al-
most synchronised with the data of Wuhan. Chongqing
also changes very quickly, and its total number of patient
visits is extremely high, which means that the city has
the fastest response and the largest number of patients.
In the second stage, Zhengzhou, Xinyang, and Yangquan
had a higher number of patient visits in this stage; in the
third stage, Ha’erbin and Tianjin have higher values,
while Ha’erbin is particularly high. The concentration of
confirmed patients in these two cities was only after the
epidemic in Wuhan developed for a period, but the local
virus spread fast, which led to the number of confirmed
patients rising rapidly.

4.3.2 Stages of COVID-19 transmissions
Based upon the analysis above, we can now draw the de-
velopment stages of COVID-19 transmission in main-
land China as shown in Fig. 14.
In the first stage, the confirmed patients in Wuhan in-

creased rapidly and spread out from Wuhan as the centre,
first to Beijing, Guangzhou, Zhuhai, Haikou, and Sanya in
a cross-regional manner, as well as to Chongqing in an ad-
jacent diffusion way. This may be achieved by frequent
transport connections between these cities with Wuhan
via train or air flights.

In the second stage, a corridor zone was formed in the
plain urban area between Beijing and Wuhan, where the
spatial activities of the confirmed patients spread. Accord-
ing to the approach of spreading, the number of patients
visited Xinyang, Shangqiu, Yangquan, and Zhengzhou in-
creased rapidly. This more like the local spreading via
train or other transport modes.
In the third stage, the patients spread to Ha’erbin and

Tianjin in the form of cross-regional or adjacent spread-
ing through some special events. At this stage, two
cross-regional spreading zones in the south and the north
were formed, the adjacent spreading zone and the corridor
spreading zone formed in the central area, and the cross-
regional diffusion zone formed in the northeast.
According to Fig. 6, very few confirmed patients in

Heilongjiang (Northeast diffusion zone), Hebei, and
Henan provinces (Corridor diffusion zone) have been to
Hubei. This implies that these provinces have local out-
breaks, while Guangdong and Chongqing, on the con-
trary, have become regional new sources of virus spread.
After three stages, two different types of transmission

areas were formed. One is the adjacent diffusion area closer
to Hubei, such as Chongqing, Henan, and Hebei, and the
other is the cross-regional diffusion area that is farther away
from Hubei, such as Heilongjiang, Guangdong, and
Hainan.
According to the results in Fig. 13, adjacent diffusion

occurs in the second stage (except Chongqing) and the
mechanism is the gradual spread of patients in a con-
nected area, just like the corridor area shown in Fig. 14.
On the other hand, there are two different generation
mechanisms for cross-regional transmission. The trans-
mission in Guangdong and Hainan is mainly caused by

Fig. 11 Data offsets of Chongqing, Ha’erbin, and Xinyang (WTLCC)
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Fig. 13 Joint graph of the total number of patient visits, data offset, and maximum correlation coefficient in each city

Fig. 12 Different offset values of three cities data (TLCC)
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migrants and it occurs in the first stage; these two prov-
inces and Hubei have a relatively close relationship dur-
ing the Spring Festival. However, the spread in
Heilongjiang is caused by special tourism events, so its
spread occurs in the third stage.
Table 2 summarises the virus transmission stages

and types of diffusion based upon the patients’ mobil-
ity patterns. Here, the adjacent diffusion means that
the cases are spreading at the local or regional level,
and those cities are the focus cities in such spreading.
The cross-regional diffusion means that the spreading
is cross-regional, though the spread in those cities at
stage 3 is more like a local outbreak in Ha’erbin and
Tianjin.

5 Discussion, summary and conclusions
The COVID-19 pandemic has had a significant impact on
global social and economic activities. As mainland China
was the region where the early outbreak started, studying
the transmission of COVID-19 is of great significance to
formulating effective epidemic prevention and control
measures. By using patient trajectory data, this study has
discovered some new insights into the spatial pattern of
disease transmission from the following perspectives:

5.1 Flaws in using the number of confirmed patients in
existing studies
The result of Section 4.1 indicates that during the 14-
day incubation period, patients can carry out a wide

Fig. 14 Three key stages of COVID-19 transmission in mainland China
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range of activities across space and have opportunities to
spread the virus to a larger area, not just the city where
they were confirmed to have COVID-19. In this case,
traditional data (cumulative number of confirmed pa-
tients in each city) only describes the final location of
each patient and ignores the process of spatial move-
ment—that is, it is static and cannot fully represent the
real distribution pattern. Furthermore, Section 4.1 also
shows that many patients did not carry out spatial activ-
ities in their confirmed city but were merely diagnosed
in these cities. Thus, using the number of confirmed
cases in each city as the basis to study the diffusion pat-
tern data will cause errors.

5.2 New results brought out by proposed spatiotemporal
trajectory data analysis
Studying the spread of the virus by using individual pa-
tients’ trajectory data has yielded different results. By ob-
serving the daily number of patients visiting each city,
we found that the number of patients in some cities
could be remarkably high, even though the total number
of confirmed patients in those cities was relatively low
(Section 4.1.2). Some cities located in the southern re-
gion, such as Zhuhai, Sanya, and Haikou, and in the
northern region, such as Shuangyashan, Changchun, and
Harbin, are the main cities where the confirmed patients
have the greatest mobility during the spread of the
pandemic.
However, these cities are not first-tier cities with a

large population. This will cause the effects mentioned
in Section 4.1.4. Many confirmed patients visited rela-
tively small cities during their incubation period (e.g.,
Xinyang, Yangquan, Sanya, and Haikou.), stayed there
for a long time, and then returned to other cities.
Whether these patients were infected in these small cit-
ies or not, they are more likely to be infected or infect
other citizens when staying in these small cities. There-
fore, these smaller cities may be where the infection and
spread actually occur, and they seem to be ignored by
traditional data.
The results in Section 4.1 show that four prominent

areas of high-intensity patient activity have formed, and
Section 4.2 shows that these areas are formed in three
stages, which is further validated in Section 4.3 (Table 2).
There is one contiguous diffusion area around Wuhan
and Chongqing (stage 1), one corridor diffusion area

between Wuhan and Beijing composed of some small and
medium-sized cities (stage 1; Stage 2), and two cross-
regional diffusion areas in the Pearl River Delta Area
(Stage 2) and Heilongjiang (Stage 3). This corridor diffu-
sion area is interesting; although the number of confirmed
patients in these cities is not large, this corridor area
covers a considerable part of northern China, from Beijing
to Wuhan (Section 4.1.2). This means that the movement
of confirmed patients in this area is relatively free, and
eventually these confirmed patients will move to larger
central cities, which might make the number of confirmed
patients in these small and medium-sized cities appear
quite small. This phenomenon is worth noting, because if
the spread of the virus can be detected and controlled as
early as possible the pressure on management and medical
systems will be much reduced.
Furthermore, the use of patient trajectory data can also

determine whether the confirmed patient has a phased
spread of time and space. The number of patients visiting
big cities such as Beijing, Guangzhou, and Chongqing
started to increase at the earliest timepoint, while cities in
the corridor area generally showed increases in the second
stage. This shows that patients confirmed to have
COVID-19 first spread the disease between large cities
through cross-regional transmission and then infiltrate the
smaller cities sandwiched between large cities. In light of
this, we suggest that putting Wuhan into lockdown did
make an important contribution to containing the spread
of the virus.

5.3 Limitation of this research
Although the use of patient trajectory data can describe
the activities of patients confirmed to have COVID-19
on a finer spatial and time scale, we still cannot know
where and when people were infected. Moreover, due to
our data limitations, this study did not include the
modes of transportation used by patients to move be-
tween cities, and it was also impossible to determine
what activities the confirmed patients performed in the
city, which will lead to a certain degree of error in the
study, because the nature of activities carried out will
significantly affect people’s chance of spreading the virus
to others. One potential means to overcome this limita-
tion would be to use the GPS trajectories of individual
patients, subject to ethical standards and the individual

Table 2 The development stage of adjacent diffusion and trans-regional diffusion

Stage TYPE of diffusion

Adjacent diffusion Cross-regional diffusion

Stage 1 Chongqing Beijing, Guangzhou, Haikou, Zhuhai, Sanya

Stage 2 Zhengzhou, Xinyang, Yangquan, Shangqiu

Stage 3 Ha’erbin, Tianjin
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