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For more than a century, chromatography has been

indispensable as a separation method for both analytics and

purification. Among the variety of chromatographic techniques,

liquid chromatography has a special status owing to its

efficiency and versatility, and its status is further enhanced by

the continuous improvements of analysers, materials, methods

and understanding, all supported by computational

approaches. High performance liquid chromatography (HPLC)

has always held a special place in pharmaceutical processing,

and computational HPLC has been explored since the very

early stages of computing, although without having yet reached

its full potential. Herein, we provide a comprehensive and

critical review of recent developments in designing and

operating liquid chromatographic systems, focussing on their

modelling approaches and control strategies at large scale.
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Introduction
Liquid chromatography (LC), and in particular high

performance liquid chromatography (HPLC), is the most

common separation method in the production of pharma-

ceutical and biopharmaceutical products. The method is

highly versatile, used for fast analysis and high yield

separation at both preparative and process scale. While

HPLC was initially operated only in batch mode, recently

techniques allowing for continuous operation, such as

counter-current chromatography [1–3] and simulated

moving beds [4�], have advanced significantly.

Within the chemical industries, chromatographic processes

cannot yet be designed with the same confidence as, say,
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distillation, and laboratory experimentation and pilot plant

testing are normally necessary. As the elution behaviour is

complex, the development of accurate experimental pro-

cedures is challenging, and usually the number of experi-

ments required is limited by the availability of expensive

material. Mathematical modelling is an invaluable tool to

reduce the number of costly and time-consuming experi-

ments, as well as to gain insight into separation mechanisms

to support design decisions at production scale. Therefore,

the use of in silico (HP)LC can accelerate analytical and

preparative method development with reduced experi-

mental effort and material, yielding improved purity and

yield of the desired product while reducing solvent con-

sumption. This is of special importance for early stage drug

development and in turn for the reduction of the time-to-

market of new drugs. In biopharmaceutical production,

optimisingpreparativeHPLCforchiraldrugsisofparticular

importance as theirpurification is a commonmanufacturing

bottleneck [5,6]. Once the process has been designed,

appropriate monitoring and control measures are required

to ensure the operation is conducted optimally and without

disturbances.

Although computational methods have always accompa-

nied LC, the continuous improvement of mathematical

models including commercial software [7], more afford-

able computational power (e.g. via cloud computing) [8],

the acceptance of simulations for Quality by Design

(QbD) concepts by pharma regulatory bodies [9�,10],
and the exciting trend towards machine learning or artifi-

cial intelligence [11��] are likely to change academic and

industrial practices in the coming decade. This work

reviews the broad landscape of modelling and control

for LC, focussing on the current state of the art, the

mathematical models available and how these have been

used recently.

Retention models
The variety of chromatographic systems available, and

the wide range of solutes that are separated using these

systems, makes the choice of a suitable starting point for

model development somewhat of a search for the famous

‘needle in a haystack’, as a wide range of strategies are

available (see Figure 1). A number of commercial simu-

lation software tools are available [7], such as DryLab by

Molnar-Institute [12�], AutoChrome [13] by ACD/Labs

(replacing ChromGenius after 2018), and Auto Developer

by ChromeSword [14]. To predict chromatograms, these
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commercial tools use a database either of experimental

chromatograms or of physio-chemical parameters (or a

combination thereof). Peak tracking algorithms are also

commonly included [15] as well as algorithms for opti-

mising HPLC methods. Until now, however, ‘optimising’

HPLC conditions is commonly achieved via experimen-

tal design and model response surfaces [16,17], and not

via proper optimisation. These models — if they can be

called models — do not provide any fundamental insight

or knowledge into the process, although they can be fairly

accurate if fitted well, and are commonly used for robust-

ness studies [18]. Still, they are not much superior to basic

trial-and-error based approaches owing to the high exper-

imental effort that they require.

The simplest computer-assisted methods are based on

linear solvent strength (LSS) theory [19,20]. LSS assumes

a linear relation between the retention factor logarithm

and the volume fraction of the organic phase. The param-

eters describing this relation can be determined based on

a small set of experiments. Not least due to its simplicity,

LSS theory is used frequently to predict the retention

factors and the related elution times for changing mobile

phase compositions [21,22��], including within commer-

cial software. More advanced retention models consider-

ing both mobile and stationary phase properties are the

linear solvation energy relationships (LSER) introduced

in the 1980s and still used [23–25], again including within
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commercial software. LSER uses semi-empirical expres-

sions, derived from first principles, to relate the retention

time to solvent-dependent solute parameters such as

polarisability, hydrogen bond acidity/basicity and molec-

ular volume. Hence, LSER can predict elution times of

new (usually small molecule) solutes for different mobile

phase compositions and type of solvent used [26].

More versatile, but more complex and frequently data

driven, models predicting retentions for different chro-

matographic systems are chromatographic quantitative

structure retention relationships (CQSRR) [27,28].

Although CQSRR include LSER models [29], their usage

is usually specified explicitly. The concept of CQSRR is

to relate variations of one or more response variables

describing the retention behaviour to the variations of

so-called descriptor variables. These descriptor variables

should represent both the chromatographic system and

the molecular entity of the solute(s). The latter is com-

monly accounted for by choosing suitable molecular

descriptors — which is not a simple task considering

the >5000 options [30]. CQSRR models commonly com-

bine global optimisation algorithms choosing the molec-

ular descriptors with statistical techniques such as multi-

ple linear regression [31,32], chemometrics [33�,34],
machine learning strategies such as decisions trees [35],

random forest and support vector machines [36], and

artificial neural networks [37].

Despite the success of CQSRR, the often large number of

partly ‘mysterious’ descriptors [38] required to predict

retention accurately makes the underlying retention

mechanisms difficult to understand. Retention depends

on the physiochemical properties of the solutes, which

cannot be deduced from their atomic composition; that is,

solutes with the same molecular formula can have very

different retention behaviours [39]. Predictive models

require training with representative (in terms of the

physiochemical properties) solutes, a task that is chal-

lenging for large molecules owning to their intrinsic

complexity. Therefore, CQSRR strategies for biomole-

cules require large data sets and/or include a model

selection step based on the similarity of a solute with

the samples used to train individual models [40].

The use of machine learning strategies is by no means

new. Nevertheless, the limited experimental data avail-

able is a roadblock for retention time predictions for new

solutes. Each laboratory uses customised HPLC instru-

ments and unique solvent compositions, gradient profiles,

flow rates, and so on. Therefore, machine-learning strat-

egies are commonly utilised for relatively small in-house

built databases, that is, a small experimental design space

of selected solute candidates. It has been shown, how-

ever, that for analytical reversed phase HPLC, retention

factor predictions of one HPLC system can be projected

onto other systems given the general conservative
www.sciencedirect.com
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(a) Concept of HPLC which is common for analytical and preparative

HPLC. (b) Schematic of plate model. (c) Schematic of (top) discretised

mass balance equation with (bottom) radial profile used in general rate

models.
compound elution order [41]. This has recently enabled

machine learning strategies to train models using big

databases with retention data for >80k small molecules

[11��,42].

A common limitation for these models is the lack of

flexibility, for example in modelling complex gradients

and realistic sample and mobile phase injection profiles.

Also, a possible solvent mismatch between the sample

solvent and the mobile phase, which is common for

preparative HPLC, cannot be accounted for (which

includes commercial software tools) [43]. This is why

modelling the actual transport of the solutes and the

mobile phase, and considering the concentrations of both,

is essential for the development of a true digital LC twin.

Transport models
Since tracking all the solute molecules in (HP)LC is

neither feasible nor necessary, continuum approaches

in terms of solute concentrations are used. Transport

models typically use spatial or temporal averaged solute

and solvent concentrations in the mobile and stationary

phases. The uniform and dense packing within an HPLC

column suggests model reduction to the axial (z) dimen-

sion (see Figure 2a). This can be an oversimplification for

preparative or process chromatography, where the larger

columns (commonly loaded manually) are prone to non-

homogeneous packing causing radial velocity and tem-

perature gradients or non-homogeneous sample injection.

Hence, two dimensional (radial and axial) transport mod-

els, although not yet the standard, are by no means the

exception [44,45].

The simplest descriptions of mass transport through the

stationary phase are plate models. These models depict a

column of length L by a discrete number N of side-by-

side and well-mixed cells/plates of width Dz (=L=N ),

which is commonly set to the theoretical plate height.

The mobile phase transfers from one plate to the next as

new mobile phase enters the first plate either continu-

ously or discontinuously (see Figure 2b). Despite dating

back to the 1940s, these models are still in use due to their

simplicity, adaptability and efficient numerical computa-

tion, for example, via parallelisation [43,46].

Several different models for closing the mass balance

equations governing the evolution of chromatographic

peaks have been used; these are most prominently sum-

marised by Guichon et al. [47]. Equilibrium dispersive

models (EDM) account for dispersion due to flow through

the stationary phase by considering an apparent disper-

sion coefficient Da. Although the name indicates that

equilibria are assumed, the effects of non-ideal mass

transfer (by which we mean that equilibrium is not

established instantaneously) can be lumped into Da if

solute mass transfer between stationary and mobile

phases is fast compared to axial convection and
www.sciencedirect.com 
dispersion. Because of their simplicity and the small

number of parameters, EDMs remain a common first-

choice [4�,48], especially if mass transfer can be consid-

ered to be fast. This assumption seems valid for small

molecules but is commonly adopted without justification.
Current Opinion in Chemical Engineering 2019, 1:100685
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The more advanced general rate models (GRMs) account

for mass transfer effects by incorporating transfer resis-

tance, surface diffusion, adsorption–desorption kinetics,

and pore diffusion [45,49]. This is achieved by two

additional equations describing the radial solute concen-

tration profiles inside the porous particles (Figure 2c) and

the mass transfer between the stationary and mobile

phases at the stationary particle surfaces. For some kinetic

parameters, the GRM reduces to a lumped kinetic model

which can be considered as an intermediate between

EDM and GRM [50]. Since computational power is no

longer a bottleneck for the more demanding GMR mod-

els, and because these models provide the highest accu-

racy, they are now used more commonly, although their

application is mostly limited by the amount of parameters

that have to be estimated using additional models or

experiments.

Solving these transport models requires an inlet boundary

condition, which depends on the sample injection profile.

This transient concentration profile at the column inlet

results from the sample volume, the flow rate and sample

dispersion before the column. Owing to this additional

complexity (or to bad habits), the incorrectly assumed

rectangular injection profiles still prevail. There are

exceptions, which use either experimentally determined

injection profiles [46] or surrogate models derived by

convoluting Gaussian, square and exponential residence

time profiles, that can account for variable sample

volumes and flow rates after parameter estimation

[51��]. Additional complexity arises from solvent mis-

match between the sample and the mobile phase, which

is more relevant to preparative chromatography [46].

Despite the challenges described, such transport models

provide the basis for true digital LC twins, in combination

with either first principle models or hybrid computational/

experimental retention models. Within a QbD frame-

work, the confidence in the employed models can
Figure 3
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therefore increase, rendering the application of advanced

control strategies for process operation less challenging.

Monitoring and control
In the previous section, we discussed how various model-

ling approaches can be employed to analyse, model and

design chromatographic processes. However, a number of

factors, such as imperfect column packing, the presence

of disturbances, plant-model mismatch and so on, can

hinder optimal operation of the real plant and product

quality specifications might therefore be violated. Ade-

quate process control is often required, which can either

be conventional (i.e. P, PI, PID controllers) or advanced

(e.g. model predictive control). Typical controlled vari-

ables in liquid chromatography include, but are not

limited to, product purity, recovery yield, production rate

and pH. A number of variables can be manipulated to

achieve the desired control performance, such as feed

flow rate and composition, switching times for continuous

operations and so on (see Figure 3). Although conven-

tional control strategies are economically attractive and

simple to implement, centralised control usually outper-

forms conventional methods. Because of the complexity

of advanced control strategies, however, the latter have

not yet been implemented in large, industrial scale

despite the growing interest [52].

For batch chromatographic processes, various control

strategies have been developed in order to ensure robust

control performance. Advanced strategies often combine

online measurements and parameter estimation based on

online optimisation routines; for example, the use of

Extended (EKF) and Ensemble (EnKF) Kalman Filters.

This strategy has been employed for simultaneous esti-

mation of uncertain states and inlet concentration of

nonlinear chromatographic processes based on noisy mea-

surements at the outlet, demonstrating that the EKF is

significantly faster, although less accurate, compared to
ystem
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the EnKF [53]. Open-loop control has also been consid-

ered in order to identify fractionation endpoints that meet

purity constraints, for instance, the simultaneous max-

imisation of recovery yield and production rate for a

ternary mixture separation problem of human insulin

analogues in a HPLC process. In an effort to minimise

buffer and storage tanks, a methodology for the design

and control of an Integrated Column Sequence (ICS) has

been proposed which for small scale production can be

implemented on a single chromatographic system, for

instance controlling a four-column chromatographic sys-

tem for the separation of a mixture of proteins [54].

Currently, the biopharmaceutical manufacturing industry,

in particular, is pushing towards the transition from batch to

continuous, or at least semi-continuous, operation in order

to reduce manufacturing cost and processing times and to

increase flexibility and product quality [55]. This transition

requires the acquisition and handling of often heteroge-

neous data throughProcessAnalytical Technologies (PAT)

[56] to inform process monitoring and control, and global

coordination of decentralised control loops to ensure suc-

cessful continuous operation [57]. Model-based adaptive

control strategies can also be considered, for example, for

continuous two-column capture step of monoclonal anti-

bodies (mAb) using protein A chromatography [58].

Another example is advanced control of a Multicolumn

Counter Current Solvent Gradient Purification process

(MCSGP) implementing a SIMO multi parametric MPC

controller with an approximate model that tracks the inte-

gral of the concentrations at the outlet stream, outperform-

ing P-only control, for a mAb production process [59,60].

Simulated MovingBed(SMB) ischallenging tooperate and

accurate cycle-to-cycle adaptive control is needed, gener-

ally implemented via a parameter estimator and a controller

[52].Alsoof interest is theuseofArtificialNeuralNetworks,

for instance working simultaneously with an offline mea-

surement system such as Quasi-Virtual Analyser (Q-VOA),

for the separation of a bi-naphthol enantiomer mixture in a

SMB process [61]. Other control strategies have also been

applied for the control of continuous chromatographic

processes, for instance, based on multi-objective optimisa-

tion to find optimal open-loop control parameters for the

separation of human growth hormone (hGH) from its dimer

[62].

Although the abovementioned strategies provide efficient

control of the systems considered, simultaneous optimisa-

tion of the design (e.g. solvent type and composition based

on data-driven or hybrid models) and dynamic operation

(i.e. control), although computationally demanding, is

expected to improve process performance further and

ensure optimal operation, supporting the transition towards

continuous and semi-continuous bioprocesses [63�,64].
Towards this transition and when considering the design

and/or optimisation of an end-to-end bioprocess, various

objectives can be set such as process stability, product
www.sciencedirect.com 
purity, environmental impact and so on. Even if the total

number of degrees of freedom reduces owing to the cou-

pling of the units, the complexity of the problem increases,

because all the units should operate at optimal conditions,

both individually and as a whole. Designing and controlling

entire processes would require detailed models of all the

processing units as well as their associated control systems.

Proper control of preparative and process chromatography

can only be achieved if the measurements used to deter-

mine the control action are reliable. UV–vis or other

spectroscopic methods as well as automated analytical

HPLC systems are used for most chromatographic pro-

cesses. However, the accuracy and explanatory power of

UV–vis spectroscopy is often limited, whilst the HPLC

system provides infrequent (ca. every 3�10 min) mea-

surements of the components of the mixture [65]. In

addition, in order to obtain suitable feedback on process

performance and product quality, lengthy experimental

procedures are required [57], leading to significant delays

in process operation. The detection of impurities in the

mixture is still usually performed offline, for example,

through size exclusion chromatography [65], although a

number of online measurement methods have also been

developed.

A range of such Process Analytical Technologies (PAT)s

have been applied to purification processes, such as online

pH and conductivity sensors, and mass spectrometry [66–

68]. Fourier-transform infrared spectroscopy (FTIR) has

also been applied for protein chromatography [69]. PAT

implementation in biopharmaceutical manufacturing, aim-

ing to improve production efficiency, yield and product

purity and reduce time-consuming offline analyses, hasalso

been considered [70]. Similarly, Partial Least Squares

Regression (PLS) modelling on UV–vis absorption spectra

has been applied for antibody quantification to allow real-

time monitoring in protein A chromatography [71]. How-

ever, as those technologies and their associated models are

characterised by high complexity, they have not yet been

used at commercial scale and more research is required to

pave the way towards their industrial implementation.

Conclusion and perspectives
High performance liquid chromatography is currently the

most important separation method in the pharmaceutical

and biopharmaceutical industries, and is used extensively

at both analytical scale and at preparative and process

scale. For new products, industry can reduce time-to-

market only by combining computational and experimen-

tal work — a goal they can achieve only if they employ

advanced mathematical models. The same models would

enable the efficient design of batch or continuous units for

preparative and process scale operation, as well as for

adequate monitoring and optimal control. The increase in

computational power will allow the adoption of more

complex models and the reduction of the simulation time,
Current Opinion in Chemical Engineering 2019, 1:100685
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and will facilitate faster screening of multidimensional

operation spaces for parameter estimation and optimisa-

tion. However, the immense complexity of predicting

molecule-specific retention times (a complexity similar to

that of solubility predictions) will hinder the use of

generic first principle models for all HPLC method

development. The need for (partly) data-driven or empir-

ical surrogate models will prevail, highlighting the impor-

tance of understanding better retention mechanisms,

benchmark studies and well-structured (open-access)

retention time databases documenting accurately the

chromatographic system used. The widespread use of

chromatographic separation, especially for bioprocesses,

proves not only the success of previous computational

strategies, but shows the potential for improved models.

Computational HPLC is extremely important for biopro-

cessing, where chromatographic separation is a common

bottleneck. Understanding physiochemical properties of

biomolecules, quantifying their effect on retention

behaviour, and identifying mobile and stationary phase

characteristics are key challenges and require more work.

In the nearer future, simpler models, and model-based

control strategies combining offline or online experimen-

tal data, will continue to support continuous chromatog-

raphy and widen production bottlenecks, not only for bio-

production.
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69. Großhans S, Rüdt M, Sanden A, Brestrich N, Morgenstern J,
Heissler S, Hubbuch J: In-line Fourier-transform infrared
spectroscopy as a versatile process analytical technology for
preparative protein chromatography. J Chromatogr A 2018,
1547:37-44 http://dx.doi.org/10.1016/j.chroma.2018.03.005.

70. Sauer DG, Melcher M, Mosor M, Walch N, Berkemeyer M, Scharl-
Hirsch T, Leisch F, Jungbauer A, Dürauer A: Real-time
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