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Abstract 

Automated image-based assessment of blood films has tremendous potential to support clinical 

haematology within overstretched healthcare systems. To achieve this, efficient and reliable 

digital capture of the rich diagnostic information contained within a blood film is a critical first 

step. However, this is often challenging, and in many cases entirely unfeasible, with the 

microscopes typically used in haematology due to the fundamental trade-off between 

magnification and spatial resolution. To address this, we investigated three state-of-the-art 

approaches to microscopic imaging of blood films which leverage recent advances in optical 

and computational imaging and analysis to increase the information capture capacity of the 

optical microscope: optical mesoscopy, which uses a giant microscope objective (Mesolens) to 

enable high resolution imaging at low magnification; Fourier ptychographic microscopy, a 

computational imaging method which relies on oblique illumination with a series of LEDs to 

capture high resolution information; and deep neural networks which can be trained to increase 

the quality of low magnification, low resolution images. We compare and contrast the 

performance of these techniques for blood film imaging for the exemplar case of Giemsa-

stained peripheral blood smears. Using computational image analysis and shape-based object 

classification we demonstrate their use for automated analysis of red blood cell morphology and 

visualization and detection of small blood borne parasites such as the malarial parasite 

Plasmodium falciparum. Our results demonstrate that these new methods greatly increase the 

information capturing capacity of the light microscope with transformative potential for 

haematology and more generally across digital pathology. 

 

Keywords (MeSH): Light Microscopy; Diagnostic Imaging; Supervised Machine Learning; 
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Introduction 

Microscopic analysis of blood films is fundamental to many areas of haematology from research 

to clinical diagnosis [1]. Automated assessment of digitized blood films [2,3] has potential to 

transform overstretched clinical services that require prompt and accurate assessment of large 

numbers of specimens. This need is particularly acute in low-resource settings where human 

expert analysis of the blood film is the only tool available. Information rich blood film 

micrographs contain a wealth of details which allow classification and counting of blood cells 

and detection of blood borne parasites and bacterial infections. In contrast to alternative methods 

such as rapid diagnostic tests and flow cytometry, microscopy also allows visualization and 

analysis of cell morphology. However, the fundamental properties of light and practical optical 

engineering constraints limit the ability of a conventional light microscope to capture high-

resolution images with a large Field of View (FoV), making it impossible to visualize an entire 

blood film at high spatial resolution in a single image. As a result, large images are often formed 

by sequential capture and subsequent stitching of multiple small image fields; a process which is 

slow, prone to subjectivity and inadequate sampling. In addition to the high cost of traditional, 

clinical grade whole slide imaging systems, many such devices are incapable of achieving the 

high spatial resolution often required for diagnostic image-based blood film assays. 

For illustration, consider the problem of imaging an entire thin blood film which lies within a 

rectangular patch on the microscope slide of 40 mm x 20 mm and has a thickness of 

approximately 3 μm. At modest spatial resolution, with a 20x/0.45 objective and a conventional 

large format scientific camera (2048 x 2048 6.5 μm pixels), the microscope has a field of view 

of 0.44 mm2 and a depth of field (DoF) of 3.7 μm. To capture the entire film would require 

approximately 1,800 image fields in a single focal plane, or 3,600 images over two focal planes 

(assuming a maximum separation of half the DoF) to fully sample the film axially. The problem 

is exacerbated at higher spatial resolution as magnification increases and depth of field 



  

decreases with increasing numerical aperture (NA). In practice diagnostic assays are typically 

based on the analysis of a small number of image fields, but the example demonstrates the 

practical difficulty of digitally capturing all the information within a blood film using a 

conventional optical microscope. Creating an extended FoV image by stitching together 

multiple small fields of view invariably results in artefacts due to spatial registration errors and 

brightness variations between image patches (Figure 1A). In recent years a number of 

innovative techniques have been developed to increase the information capture capacity of the 

optical microscope, allowing high spatial resolution imaging with a large FoV. These 

approaches can be categorized as: a) purely optical - relying on novel optical and mechanical 

design and engineering; b) computational imaging - optical encoding of additional sample 

information using novel hardware architectures followed by decoding using computational 

image processing; and c) purely computational – increasing the information content of images 

post capture using prior knowledge about the sample and/or the imaging system. In this article 

we investigate three such approaches for microscopic imaging of blood films: a) optical 

mesoscopy [4] (OM) in which a giant microscope objective lens combines low magnification 

with a high numerical aperture; b) Fourier ptychographic microscopy (FPM) [5] in which high 

resolution information is captured using a low magnification objective lens via sequential 

illumination of the sample at a series of different angles; and c) deep neural networks (DNNs) 

which leverage prior knowledge about sample structure and the correspondence between low 

and high resolution images to increase image quality [6]. To assess the performance of these 

different methods for blood film imaging we investigate their suitability for extraction of 

diagnostically relevant information, including red blood cell (RBC) morphology and the 

detection of small blood borne parasite such as the malaria parasite P. falciparum, from images 

of Giemsa-stained peripheral blood films. The results are compared against images produced 

using the type of standard brightfield microscope commonly used for routine examination of 

blood films. We demonstrate the potential of the resulting large image datasets for automated 



  

analysis by developing simple image processing workflows for analysis and classification of 

RBC morphology. Finally, we discuss the potential for broader application and adoption of 

these novel methods in haematological imaging and beyond. 

 

Materials and methods 

 
Optical Mesoscopy (OM) using a Mesolens 

A Mesolens is a giant microscope objective lens designed for digital image acquisition 

(supplementary material, Figure S1A), which has a unique combination of low magnification 

(4x) and high numerical aperture (NA) (0.47) to allow sub-cellular resolution imaging of sample 

volumes in excess of 100 mm3 [4,7]. The lens is chromatically corrected across the entire visible 

spectrum, and multiple correction collars can be adjusted for imaging specimens with oil, 

glycerol, or water immersion. To capture the large, high resolution images produced by the 

Mesolens, the mesoscope system, uses a chip-shifting camera sensor (VNP-29MC, Vieworks, 

Gyeonggi-do, Republic of Korea), which records images by shifting a 29 Megapixel CCD chip. 

During acquisition each camera pixel successively occupies nine positions in a 3 x 3 array. 

Subsequent reconstruction of each (260 Megapixel, 506 Mb) takes approximately 5 s on a 

typical laboratory PC. The camera has a monochrome sensor and so colour brightfield images 

are created using a series of blue (445 GB 50, Comar Optics, Linton, Cambridge, UK), green 

(520 GB 50, Comar Optics) and red (610 GY 50, Comar Optics) coloured glass filters manually 

inserted into the illumination path between the white LED light source and the Mesolens. The 

three resultant colour channel images are then merged into a false colour RGB image and white 

balanced in Fiji [8] (supplementary material, Figure S1B,C). Prior to imaging, blood film slides 

were coated with immersion oil (Type LDF, Cargille, Cedar Grove, NJ, USA). Total image 



  

acquisition time was 540 ms, 600 ms, and 1440 ms for the red, green, and blue colour channel 

images respectively. 

 

Fourier Ptychographic Microscopy (FPM) 

FPM [5] is a widefield coherent imaging technique which exploits the fact that illuminating a 

thin sample at an oblique angle provides access to normally undetectable high spatial resolution 

information [9]. The method combines a large field of view with high spatial resolution making 

it particularly attractive for imaging blood films and it has previously been used for counting 

white blood cells [10] and high resolution imaging of infected red blood cells [11]. FPM relies 

on the capture of a series of images of the sample as it is illuminated sequentially by individual 

LEDs within a 2D array (supplementary material, Figure S2A). Combining the information 

contained within these images increases the effective numerical aperture from 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 to 

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 is determined by the illumination from the LED furthest 

from the optical axis 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = sin𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚. Extending the spatial frequency support in this way 

increases spatial resolution and improves visualization of fine structural details (supplementary 

material, Figures S2B, and S3). We developed an upright FPM system [12] using a 

commercially available, low cost LED matrix (WS2812, WorldSemi, DongGuan, GuangDong, 

PR China) containing 22x22 RGB LEDs arranged on a square grid with an inter LED spacing of 

7 mm to 8 mm. The LED matrix was mounted 50–90 mm below the sample (depending on the 

objective used) on a custom 3D-printed holder which was imaged using an air immersion 

objective lens (4x/0.16, 10x/0.3 or 20x/0.45 – UPLSAPO4x, MPLFLN10x and MPLFLN20x 

Olympus, Shinjuku City, Tokyo, Japan) and a tube lens with a focal length of 200 mm, giving a 

total system magnification of 4.4x, 11.1x or 22x. Images were recorded using a monochrome 

camera (IRIS 15, Teledyne Photometrics, Tucson, AZ, USA) with a sensor comprising 

5056 x 2968 4.25 μm pixels, giving a field of view of 4.8 mm x 2.8 mm at 4.4x. Image capture 



  

was synchronised with the LED illumination sequence using a microcontroller (Uno, Arduino, 

Somerville, MA, USA). For each image set the sample was sequentially illuminated with 225 

individual LEDs arranged within a filled circle on the matrix. With a camera exposure time of 

100 ms, the total acquisition time for each (monochrome) image was slightly less than 30 s. 

Colour images were captured by combining images acquired under illumination by red, green, 

and blue LEDs. Images were reconstructed using a version of the iterative phase retrieval 

method described by Tian et al. [13] modified to reduce background-related image artefacts 

[14].  

 

Image enhancement using a Convolutional Neural Network (CNN) 

Machine learning (ML) based computational image enhancement was performed using a  

Convolutional Neural Network (CNN) with an encoder-decoder architecture consisting of three 

2D convolutional layers (Conv2D), followed by nine residual layers (ResBlock), two 2D 

transposed convolutional layers (UpConv2D) and one 2D convolutional layer with a hyperbolic 

tangent (Tanh) activation function at the end [15] (supplementary material, Figure S4). To 

generate training data, high-resolution reference images of blood films captured with a 100x/1.4 

oil immersion lens were degraded by convolution with theoretical intensity point spread 

functions (PSF) for 10x/0.3 and 20x/0.45 objective lenses, where the values of the PSFs were 

evaluated using the Richards and Wolf 3D model [16] assuming monochromatic light at a 

wavelength of 610 nm. Each captured image field corresponded an area of 166 μm x 142 μm. 

After convolution, simulated images were down sampled, by factors of ten and five, to account 

for differences in magnification. The model was then pre-trained using a total 52 high-resolution 

– simulated low-resolution image pairs, each 2560x2160 pixels in size, before being fine-tuned 

using a set of twenty-two real high resolution - low resolution image pairs. During each iteration 

512x512 patches were randomly cropped from each training image pair. Random rotations and 



  

flips were applied to further augment the training set. An Adam optimizer with an initial 

learning rate of 0.0003 was used to minimize the mean absolute error between the target (ground 

truth) and predicted images in both spatial and Fourier space. Model training was performed 

using Tensorflow’s GPU implementation [17], which took approximately 18 h on an Intel 

(Santa Clara, CA, USA) Core i9 3.1 GHZ CPU with a NVIDIA (Santa Clara, CA, USA) 

GeForce RTX GPU with 12 Gb of memory.  

The model was evaluated on unseen real image fields acquired with 10x/0.3 and 20x/0.45 

objective lenses. Following training, subsequent processing of low-resolution images took 

approximately 0.5 seconds per image field on a standard laboratory PC with a graphics 

processor. 

 

Conventional brightfield microscopy 

For comparison with OM and FPM results, reference images of blood films were also acquired 

using a conventional motorized brightfield microscope (BX63, Olympus) with a 100x/1.4 oil 

immersion objective lens (MPlanApo N, Olympus) and a digital colour camera (Edge 5.5c, 

PCO, Kelheim, Lower Bavaria, Germany). Images were de-mosaiced and then white balanced 

using a reference image of a blank microscope slide. Further colour balancing was performed 

manually in order to match the colour of RBCs to those in FPM and OM images of the same 

slides. To account for the shallow depth of field, a focal series (z-stack) of images spanning the 

thickness of the blood film was captured for each region of interest in the sample. Each z-stack 

was then processed using a wavelet-based extended depth of field algorithm [18] to render a 

single image with all sample features in focus. For CNN training and testing additional images 

were acquired using the same microscope with 10x/0.3 and 20x/0.45 (MPLFLN, Olympus) 

objective lenses. 

 



  

Sample collection and blood film preparation 

The internationally recognized ethics committee at the Institute for Advanced Medical Research 

and Training (IMRAT) of the College of Medicine, University of Ibadan (COMUI) approved 

this research on the platform of the Childhood Malaria Research Group (CMRG) within the 

academic Department of Pediatrics, University of Ibadan, as well as at school and Primary Care 

centres throughout the city of Ibadan with permit numbers UI/EC/10/0130 and UI/EC/19/0110. 

Parents and/or guardians of study participants gave informed written consent in accordance with 

the World Medical Association ethical principles for research involving human subjects. 

Blood films were prepared at the College of Medicine, University of Ibadan, Nigeria according 

to World Health Organization malaria microscopy standard operating procedures MM-SOP-01 

to 06b. A 12 μl and a 2 μl droplet from a finger prick blood sample were deposited on different 

parts of a cleaned glass microscope slide. The larger droplet was then spread across a circular 

region of diameter 10 mm using a pipette tip to create a thick film and the smaller droplet was 

spread along the length of the slide using a second clean glass slide to form a thin film (Figure 

1). Blood films were then fixed by dipping the thin film end of the slide into methanol for two 

seconds. After air drying, slides were coated with Giemsa solution (Merck, Darmstadt, Hesse, 

Germany) and left for 8–10 min before flushing away excess stain using buffered water. Slides 

were then air-dried a second time before imaging. 

 

Analysis of RBC morphology 
 
For OM we developed a simple computational workflow to segment and analyze RBCs from 

thin blood films. Illumination nonuniformity was corrected using adaptive thresholding with a 

Gaussian kernel. A binary image mask was then generated using K-means clustering-based 

image segmentation [19] to partition image pixels into foreground (RBCs) and background 

classes. Holes in RBCs were removed by morphological filling, and a size exclusion threshold 



  

was then applied to each discrete binary object to remove overlapping RBCs and smaller objects 

from the binary image. A set of 45 shape descriptors for each binary object was then computed 

using the open-source image analysis software CellProfiler [20]. For FPM, RBCs were 

segmented by applying a Sobel edge detector to the unwrapped FPM phase images, followed by 

global thresholding using Otsu’s method [21] and finally morphological filling to create a set of 

binary RBC objects. As for OM images, 45 shape descriptors were then computed for each 

segmented RBC. 93 successfully segmented RBCs were manually classified as round or 

spiculated (echinocytes and acanthocytes) and the corresponding shape feature vectors were 

used to train a set of supervised machine learning classifiers using MATLAB’s (Mathworks, 

Natick, MA, USA) Classification Learner app. Of the 25 different classifiers tested a quadratic 

support vector machine gave the highest prediction accuracy (97.8%). 

 

Space Bandwidth Product as a measure of the information capture capacity of a microscope 
 

The information capturing capacity of a microscope can be quantified by its space bandwidth 

product (SBP) [5], which is equal to the number of image pixels required to sample the full field 

of view (𝐹𝐹𝑂𝑂𝑉𝑉), 𝑆𝑆𝐵𝐵𝑃𝑃 = 𝐹𝐹𝑂𝑂𝑉𝑉/(0.5𝑟𝑟)2. In the absence of imaging aberrations, the spatial resolution 

𝑟𝑟, is determined by the NA of the objective lens and the characteristics of the illumination. For 

brightfield microscopy with broadband illumination, the configuration used for the great 

majority of blood film imaging, the lateral resolution can be quantified using Abbe’s resolution 

criterion, 𝑅𝑅Abbe = 𝜆𝜆/2𝑁𝑁𝑁𝑁. For simplicity, 𝜆𝜆 can be assumed to represent an average of the 

illumination power spectrum, the spectral transmittance of the microscope components and the 

spectral responsivity of the camera. The achievable FOV is also dependent on the NA, as 

practical constraints to the diameter of the objective lens pupil means that focal length decreases 

with increasing NA and hence magnification increases. The NA also determines the depth of 

field of the microscope according to [22] 𝐷𝐷𝑂𝑂𝐹𝐹~𝜆𝜆𝑛𝑛/𝑁𝑁𝑁𝑁2 + 𝑛𝑛∙𝑒𝑒/(𝑀𝑀∙𝑁𝑁A), where 𝑛𝑛 is the refractive 



  

index of the objective lens immersion medium, 𝑒𝑒 is the size of the camera’s pixels and 𝑀𝑀 is the 

magnification of the microscope system. This means that high spatial resolution images have an 

inherently shallow depth of field as well as a small field of view. 

 
Results  
 

OM, FPM and DNNs increase information content and spatial resolution of images for blood 

film analysis 

The interdependence of the magnification and NA of the objective lens in a conventional 

microscope means that the capture of a larger imaging volume is necessarily achieved at the 

expense of spatial resolution. Figure 2A shows the decrease in lateral spatial resolution with 

increasing FoV and DoF for five common objective lenses. The figure inset (Figure 2B) 

illustrates how the image information content, quantified using the space-bandwidth product, 

also decreases with increasing spatial resolution. In practice this means conventional high-

resolution images inherently carry less information than their low resolution, larger FoV 

equivalents. Both FPM and OM deviate from this trend. FPM increases lateral spatial resolution 

(effective NA) whilst maintaining FoV. As the effective NA (NAsyn) increases, reconstructed 

FPM images have a correspondingly shallower DoF [22], however recovery of the full complex 

optical field in FPM enables images to be computationally refocused post-capture to visualize 

the sample over the full DoF of the (low NA) objective lens [12]. In OM an objective lens with a 

long effective focal length (low magnification) and a high NA enables capture of high spatial 

images with a substantially larger field of view (6 mm in diameter) than is possible with a 

conventional microscope. 

The typical size and thickness of thick and thin films are indicated by the black crosses in Figure 

2A, where the thick film is assumed to lie within a circular region of diameter 10 mm and the 

thin film within a rectangular patch 40 mm x 20 mm. For all sample features to be 

simultaneously in focus the DoF must exceed the thickness of the blood film. For thick films 



  

this is the case for a typical 4x (NA = 0.16) or 10x (NA = 0.3) objective. For thin films both the 

Mesolens (NA = 0.47) and a typical 20x (NA = 0.45) objective also have a sufficient DoF. The 

large area of a typical blood film means that a low-magnification objective is required in order 

to capture a significant fraction of the film in a single image. A microscope with a large format 

(21.49 mm x 12.61 mm) camera and a 4x objective has an FoV of 16.9 mm2, equivalent to 

21.6% of the area of a thick film or 2.1% of the area of a thin film. The Mesolens employs a 

sensor-shifting camera to allow a similar FoV of 13.1 mm2, equivalent to 16.6% of the area of a 

thick film or 1.6% of the area of a thin film. More importantly, whilst a conventional 

microscope with a 4x/0.16 objective lens has a lateral resolution of only around 2.3 µm, at the 

same magnification the OM and FPM systems achieve sub-µm lateral resolution which is 

sufficient to resolve important details such as the fine structure of blood cells. 

To compare the performance of the different methods the same thin blood film was imaged 

using FPM, OM, and a conventional microscope system, with the latter image also processed 

using the previously described trained CNN model. In all cases the nominal spatial resolution of 

the raw images was approximately the same, as the NA of the objective lens in each system was 

between 0.45 – 0.47. Qualitative assessment of the image results (Figure 3A,B) reveals several 

interesting features. Firstly, images produced by the Mesolens and a conventional microscope 

are similar; that the conventional image is slightly sharper is likely due to a small tilt of the 

sample with respect to the focal plane of the Mesolens. The effect of the CNN is primarily to 

increase image contrast and sharpen the edges of the RBCs. Whilst this edge enhancement 

allows clearer separation of RBCs in regions where they are densely clustered (bottom row of 

Figure 3B), visualization of fine morphological details, such as the membrane projections of the 

spiculated RBCs in the top and middle rows of Figure 3B, is only possible in the high-resolution 

FPM image reconstructions. These differences are reflected in the radial power spectrum of the 

images shown in Figure 3C, where it can be seen that the effect of the CNN is to increase the 

contrast at intermediate to high spatial frequencies without significantly extending the spatial 



  

frequency cutoff beyond the diffraction limited value of ~1.7 µm-1. The capture of high 

frequency information in FPM both increases contrast for high spatial frequencies and extends 

the support of the optical transfer function (the maximum spatial frequency captured by the 

microscope) with a corresponding increase in image resolution (supplementary material, Figure 

S2B). 

 

OM and FPM enable quantitative analysis of RBC morphology over large areas of the blood 

film 

Variations in RBC morphology provide important diagnostic cues [23]. Whilst conventional 

microscopic techniques offer sufficient spatial resolution to detect subtle morphological 

differences, their FoV is typically too small to capture enough RBCs for detection of rare 

phenotypes and extraction of robust population-wide statistics. To investigate the suitability of 

OM and FPM for morphological assessment, we developed simple illustrative computational 

workflows to segment and classify RBCs from images of thin blood films (Figure 4). 

For OM we analysed differences in RBC morphology for a patient diagnosed with sickle cell 

disease (HbSS) and a healthy non-sickle (HbAA) control. The left panel of Figure 4A shows a 

scatter plot of the minor and major axes of segmented RBCs, 6,166 cells for the healthy control 

and 2,281 cells for the HbSS patient. For the control, most RBCs are near circular and lie close 

to the diagonal (major-axis length = minor-axis length). The elongation of RBCs for the HbSS 

patient results in a qualitatively different distribution characterized by a large number of (off-

diagonal) highly elliptical, RBCs. The right panel of Figure 4A shows the same data plotted as 

an ellipse eccentricity (e, the ratio of the distance between the foci of the ellipse and its major 

axis length) histogram. For the control, RBC eccentricity follows a normal distribution centered 

at e ~ 0.5. For the HbSS patient the histogram is bimodal with a distribution that can be 

approximated as a sum of two Gaussians (non-linear least squares fit, R-squared = 0.97) with 



  

mean and standard deviations of 0.49 and 0.16 and 0.81 and 0.12. The first of these terms 

closely matches the eccentricity distribution for the control (mean = 0.47, standard deviation = 

0.14, R-squared = 0.996) suggesting that the second Gaussian term describes aberrant RBC 

morphologies associated with HbSS. This analysis was performed for a patch size of 1.95 mm x 

1.95 mm. Assuming the same RBC number density across the full (13.1 mm2) Mesolens FoV, 

the analysis would include almost 21,200 RBCs for the control sample and more than 7,800 

RBCs for the HbSS patient. 

The higher spatial resolution of FPM allows visualization and assessment of more subtle 

differences in RBC morphology. As an example, we segmented and classified RBCs in FPM 

images of a thin blood film captured with a 10x/0.3 objective as spiculated or round based on 

the presence or absence of characteristic spiky membrane projections. The spiculated class 

includes both echinocytes (regularly spiculated) and acanthocytes (irregularly spiculated), where 

the latter can indicate a variety of disorders including liver disease, anaemias, and some 

hereditary conditions. Both classes cluster reasonably well by eccentricity and compactness 

(defined as mean squared distance of the object pixels from the centroid normalized by the 

area). The number of cells which can be analysed in this way is limited primarily by the 

reliability of the cell segmentation, which is strongly dependent on the RBC density and the 

proportion of overlapping or touching cells. For Figure 4B we were able to segment and analyse 

35 RBCs in a 76.5 µm x 76.5 µm patch. Assuming a similar RBC density and segmentation rate 

this equates to detection and classification of ~ 13 000 RBCs over the entire (10x) FPM FoV. 

 

FPM and ML improve visualization of Plasmodium falciparum parasites 

The small size of many blood-borne parasites and the presence of morphologically similar 

‘distractors’, arising from non-specific staining or contamination, necessitates high resolution 

imaging for accurate parasite detection in blood films. To assess the suitability of FPM and 



  

CNNs for parasite detection, we visually examined images of Giemsa-stained thin films 

clinically assessed as positive for the P. falciparum malaria parasite (MP). P. falciparum 

typically present as small ring-shaped objects, typically ~2 μm in diameter, comprising a dark, 

densely stained chromatin spot surrounded by a fainter cytoplasmic ring. Figure 5A shows FPM 

images of the same three regions within a thin film captured using different objective lenses to 

illustrate how the NA of the objective and the resulting synthetic NA of the reconstructed image 

affect the visibility of MPs (for the corresponding full images see supplementary material, 

Figure S3). In the 4x/0.7 images, although parasites are visible with sufficient contrast to pick 

out the chromatin spot, the spatial resolution is inadequate to clearly visualize the ring structure. 

For many samples, which are often sub-optimally prepared, we find that such images are often 

inadequate for reliable parasite identification. By contrast, MPs are clearly resolved in FPM 

images captured with 10x and 20x objectives. The 20x images with a synthetic NA of 1.15, in 

particular, compare well with conventional brightfield images captured using a 100x/1.4 

objective shown in the lower row of Figure 5B. Based on this we anticipate a higher MP 

detection efficiency (accuracy) for 20x/1.15 images, however this comes at the expense of a 

smaller field or view and resulting number of RBCs. As a result, the sensitivity for detection of 

a single MP may not necessarily be higher for higher magnification images. 

Figure 5B shows the effect of the CNN on images of RBCs containing MPs (for the 

corresponding full images field see supplementary material, Figure S5). In this case the network 

was trained using a set of image fields of a single slide captured using 100x/1.4, 20x/0.45 and 

10x/0.3 objective lenses and then used to estimate 100x/1.4 images from lower resolution 

images of different fields within the same slide. As noted previously (Figure 3) the CNN has the 

effect of sharpening images, with RBC membranes in 10x and 20x images better defined in 

estimated high-resolution images. Quantitatively, the normalized variance (a measure of image 

sharpness) increases from 61.2% to 83.9% of the value for the 100x ground truth image for 

images captured with the 10x objective and from 65.6% to 90.7% for 20x images. The CNN 



  

also increases the structural similarity index with the ground truth image from 0.70 to 0.77 and 

from 0.73 to 0.76 for the 10x and 20x images respectively. However, we find that the CNN is 

unable to render the four MPs visible from the 10x image. In the 20x image the sharpening 

effect increases the contrast of the chromatin spot but fails to reveal significant additional 

parasite structure. This suggests that the CNN is unlikely to improve the visualization of MPs in 

low magnification (low-resolution) images which are not already, to some extent, visible in the 

raw data. However, by increasing image sharpness / contrast the network may aid the (manual 

or automated) detection of MPs. 

 

Discussion  

To inform relevant clinical pathways, image-based blood film analysis requires sufficient spatial 

resolution to detect (often subtle) morphological features and small objects, and a suitably large 

FoV to capture enough cells, or other objects of clinical interest, for statistical robustness. Our 

results show that OM, FPM and CNNs can all be applied to provide an increased capacity for 

extraction of diagnostically important information of blood films. Although our analysis has 

been restricted to RBCs, in particular assessment of morphology and the detection of 

intracellular parasites, we note that the three methods can also be applied to imaging of WBCs 

(supplementary material, Figure S6). As with RBCs we anticipate that a combining a large FoV 

with high spatial resolution offers significant potential for improved image-based diagnostic 

assays, such as the WBC differential count and the identification of malignant WBCs through 

their aberrant morphology. 

Although our analysis has been restricted to Giemsa-stained thin films, the methods are directly 

applicable to other stains and preparation protocols. Researchers have also effectively applied 

FPM for high resolution imaging of stained tissue sections [24]. By capturing sample phase 

information, FPM holds potential for label-free structural imaging, albeit at the expense of the 



  

specificity provided by chemical staining. Thicker, scattering objects can present challenges for 

FPM, however recent work [25,26] has shown that modification of the image reconstruction 

algorithm can allow effective 3D FPM imaging. OM and CNN image enhancement methods are 

directly applicable to imaging and analysis of thicker samples such as thick blood films and 

tissue sections. 

As with any new technology the wider adoption of these methods depends on several factors, 

principally cost and complexity. FPM is relatively cheap and simple to implement on many of 

the microscopes currently in use for haematological research and clinical practice, requiring 

only the addition of a low-cost LED array, a digital camera and some off-the-shelf electronic 

components. However, care is required when acquiring and reconstructing images in order to 

avoid artefacts. In principle FPM could also be employed to enhance the performance of other 

low-cost automated microscope platforms [27,28], allowing improved diagnostic imaging in 

resource constrained settings. Reconstruction of FPM images using common iterative phase 

retrieval algorithms can be relatively time consuming (several hours for the full FoV of a large 

format camera). Alternative approaches based on machine learning have shown promise in 

reducing the computational burden [29,30] and we have obtained encouraging results using such 

methods for fast reconstruction of FPM images of blood films. Using a CNN-based FPM 

reconstruction model trained using TensorFlow we were able to obtain a high resolution full 

FoV image in approximately three minutes. 

Aside from initial system setup and alignment, practical operation of the Mesolens is similar to a 

conventional brightfield microscope system, albeit with an increased sensitivity to any tilt of the 

specimen with respect to the focal plane of the objective lens because of the large FoV. 

Handling the resulting image datasets can require significant computational resources: an RGB 

OM image is around 1.5 Gb. Also, to date, there are only a small number of Mesolens systems 

housed in specialist academic research laboratories within the UK.  



  

Machine learning methods are ubiquitous across many areas of science, technology, and 

medicine. At present implementation often relies on expert computer scientists and on the 

availability of large amounts of training data. However, once the CNN model has been trained 

and validated, estimation of high quality, high resolution images from lower quality, low 

resolution image input is simple, fast and requires only modest computer hardware. 

Advances in computing hardware and the development of increasingly sophisticated 

computational analysis tools have created an increased capacity for storage and analysis of 

biological and biomedical image data. Our ability to interrogate biological systems, diagnose 

disease and develop new therapeutic treatments may ultimately be limited by our ability to 

acquire suitable image data. Having demonstrated the capacity of OM, CNNs and FPM to 

extract more of the rich structural information contained within from blood films we look 

forward to their wider application for diagnostic imaging in haematology and more widely 

throughout digital pathology.  
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Figure legends 

Figure 1. Brightfield microscopy image of Giemsa-stained peripheral blood smears. (A) 

Overview image showing thin (left) and thick (right) films on a microscope slide, created by 

computational stitching of separate overlapping image fields captured using a 4x/0.16 objective 

lens. (Right) Example of full field of view from within thick (B) and thin (C) films captured 

using a 100x/1.4 oil immersion objective. The spatial extent of the high-resolution field of view 

is indicated by the small red and green boxes in the overview image on the left. 

Figure 2. Field of view, depth of field, spatial resolution, and information capture capacity 

in optical microscopy. (A) Log-linear scatterplot showing field of view and depth of field of 

conventional brightfield microscopy, FPM and Mesolens systems. The diameter of the filled 

circles is proportional to the lateral spatial resolution of each system. FPM generates a complex 

image in which the effective lateral resolution depends on the properties of the object and in this 

case the diameter of the circle represents the reciprocal of the coherent cutoff frequency (λ/NA). 

(B) SBP (a measure of information capturing capacity) of the different techniques in gigapixels. 

Figure 3. Comparison of images produced using different methods. (A) 0.5 mm x 0.3 mm 

region of interest taken from images of a Giemsa-stained blood film. (B) Magnified views of the 

boxed regions shown in (A), scale bars are 2 µm. All images were self white-balanced to 

facilitate comparison. (C) Measured power spectrum (magnitude of a Fast Fourier Transform) 

for the green channel of the images in (A) illustrating differences in contrast and the extent of 

the spatial frequency support for the different methods. 

Figure 4. Measurement of RBC morphology from OM and FPM images of thin films. (A) 

Comparison of RBC morphologies measured from OM images of peripheral blood smears from 

a healthy patient (blue) and a patient diagnosed with sickle cell (HbSS) (green). Analysis 

performed on all segmented cells within a 1.95 mm x 1.95 mm field of view in a thin film from 

each patient. For the healthy patient this corresponds to 6166 segmented cells and for the Hbss 



  

patient 2281 cells. (left) Scatter plot showing length of major and minor axes of ellipses fit to 

segmented RBCs. (right) Normalized histograms showing measured eccentricity of segmented 

RBCs. (B) Classification of RBCs from FPM images. (left) Segmented RBCs are manually 

classified as round (green) or spiculate (pink). (right) Scatter plot showing compactness and 

eccentricity of classified RBCs used in training set. Inset shows confusion matrix for RBCs 

classified using a quadratic support vector machine. Overall accuracy is 97.8%. 

Figure 5. Parasite detection in FPM and CNN enhanced images of Giemsa-stained thin 

blood films. (A) FPM amplitude images showing P. falciparum containing RBCs captured 

using different objective lenses. NA indicated corresponds to the final reconstructed image. (B) 

Raw, CNN recovered and ground truth images of P. falciparum containing RBCs captured using 

10x/0.25 and 20x/0.45 objective lenses. Ground truth conventional brightfield images captured 

using a 100x/1.4 oil immersion objective lens. 
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