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Summary
Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and

variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus pho-

tographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glau-

coma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant

(GWS; p% 53 10�8) hits in 156 loci. TheML-based GWAS replicated 62 of 65 GWS loci from a recent VCDRGWAS in the UKB for which

two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly

expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance

of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause

severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and pri-

mary open-angle glaucoma in the independent EPIC-Norfolk cohort.
Introduction

Genome-wide association studies (GWASs) require accu-

rate phenotyping of large cohorts, but expert phenotyping

can be costly and time intensive. On the other hand, self-

reported phenotyping, while cost-effective and often

insightful,1 can be inaccurate for nuanced phenotypes

such as osteoarthritis2 or infeasible to obtain for complex

quantitative phenotypes. Population-scale biobanks, such

as the UK Biobank (UKB)3 and Biobank Japan,4 that

contain genomics, biomedical data, and health records

for hundreds of thousands of individuals provide opportu-

nities to study complex disorders and traits.5 GWASs of in-

dividual blood- and urine-based biomarkers, which can be

assayed accurately with high throughput, have shed light

on disease etiology.6,7

Advances in deep learning have enabled the extraction

of medically relevant features from high-dimensional

data, such as using cardiac magnetic resonance imaging

to infer cardiac and aortic dimensions,8 color fundus pho-

tographs to detect glaucoma risk,9 and optical coherence

tomography images to predict age-related macular degen-

eration progression.10 Using medically relevant features

extracted from biobank data by machine learning (ML)

models as GWAS phenotypes provides an opportunity to

identify genetic signals influencing these traits. For

example, Glastonbury et al. trained an ML model to pre-
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dict mean adipocyte areas from histology images and

used the predictions to perform a GWAS, doubling the

cohort size in comparison to similar studies.11

Here, we propose training anMLmodel to automatically

phenotype a large cohort for genomic discovery. The pro-

posed paradigm has two phases: in the ‘‘model training’’

phase, a database of expert-labeled samples (for which ge-

nomics data are not required) is used to train and validate a

phenotype prediction model (Figure 1A); in the ‘‘model

application’’ phase, the model is applied to biobank data

to predict phenotypes of interest, which are then analyzed

for genomic associations (Figure 1B). This paradigm has

several advantages. First, model application is scalable

and efficient. Second, a single model can predict multiple

phenotypes simultaneously. Third, the model can be

applied retrospectively to existing data, resulting in new

phenotypes or more accurate predictions for the existing

phenotypes. Fourth, multiple lines of evidence can be inte-

grated to predict a single phenotype, which would be pro-

hibitively expensive if performed manually.

As a proof of concept, we investigate predicting glau-

coma-related features from fundus images and performing

genomic discovery on the predicted features. Glaucoma is

an optic neuropathy that results from progressive retinal

ganglion cell degeneration12 and is the leading cause of

irreversible blindness globally,13 affecting more than 80

million people worldwide.14 Moreover, glaucoma is one
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Figure 1. ML-based phenotyping concept and its application to VCDR
(A) ‘‘Model training’’ phase in which a phenotype prediction model is trained with expert-labeled data.
(B) ‘‘Model application’’ phase in which the validated phenotype prediction model is applied to new, unlabeled data followed by
genomic discovery.
(C) Definition of vertical cup-to-disc ratio (VCDR) in a real fundus image.
(D) Schematic of the multi-task ensemble model used in phenotype prediction.
(E–H) Scatterplots of theML-based VCDR versus expert-labeled VCDR values for the train (E), tune (F), test (G), and UK Biobank (H) data-
sets. Number of grades per image is shown in parentheses.
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of the most heritable common human diseases, with heri-

tability estimates of 70%,15 and there is evidence for effec-

tive genomic risk prediction.16,17

The hallmark diagnostic feature of glaucoma is optic

disc cupping.12 The vertical cup-to-disc ratio (VCDR;

Figure 1C), a quantitative indicator for optic nerve head

morphology and a frequently reported quantitative mea-

sure of cupping, is an important endophenotype of glau-

coma.18–21 With the advent of very large biobank studies

and routine retinal imaging in community optometric

practices, there is huge potential for furthering our under-

standing of glaucoma through population-level analysis of

VCDR. However, human grading of optic disc images to

ascertain VCDR is costly and extremely resource intensive

at large scale because it requires expert knowledge and de-

ciphering the optic cup margin is challenging.

Here, we developed an ML model using 81,830 non-

UKB, ophthalmologist-labeled fundus images to predict

image gradability, VCDR, and referable glaucoma risk. We

used the model to predict VCDR in 65,680 UKB partici-
2 The American Journal of Human Genetics 108, 1–14, July 1, 2021
pants of European ancestry from 175,337 fundus images.

We then performed a GWAS on the ML-based VCDR

phenotype (hereafter, ‘‘ML-based GWAS’’) and compared

the results to prior VCDR GWASs, including a recent

VCDR GWAS using phenotypes derived from expert-

labeled UKB fundus images.17 We show that ML-based

phenotypes are accurate and substantially more efficient

to obtain than expert-phenotyped VCDR measurements,

identify novel genetic associations with plausible links to

known VCDR biology, and produce more accurate poly-

genic risk scores for predicting VCDR in an independent

population.
Methods

Model training and validation
We followed the procedure described previously by Phene et al.,9

modifying only to remove all UKB images. Briefly, we used

81,830 color fundus images from AREDS,22 EyePACS (see web
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resources), Inoveon (see web resources) from the United States,

and two eye hospitals in India (Narayana Nethralaya and Sankara

Nethralaya). Ethics review and institutional review board exemp-

tion was obtained via Quorum Review Institutional Review Board.

We trained ten independent multi-task Inception v323 deep con-

volutional neural networks on the fundus images, using weights

learned from the Image Net dataset24 as pre-trained weights for

the convolutional layers. For each of the ten models, a different

random seed, which randomly changes the ordering of the

training data and selection of mini-batches, the random initializa-

tion of the last layers of the neural network, and random image

augmentation and dropout patterns, was used. Furthermore, we

performed image augmentation25 and early stopping26 based on

mean squared error (MSE) for predicting VCDR on the tune dataset

for picking the best model. The final prediction model is the

average prediction of the ten models in the ensemble.

Phenotype calling in the UK Biobank cohort
We included UKB participants with color fundus images. After

making predictions for 175,337 images, 21,400 were predicted to

be ungradable and were removed. Individual-level VCDR values

were computed as the average per-eye VCDR within a single visit,

with preference for the initial visit (supplemental information).

Genome-wide association study
We used BOLT-LMM v.2.3.427,28 to examine associations between

genotype and ML-based VCDR in European individuals in UKB by

using the –lmm parameter to compute the Bayesian mixed model

statistics. We used all genotyped variants with minor allele fre-

quency > 0.001 to perform model fitting and heritability estima-

tion. We performed rank-based inverse normal (INT) transforma-

tion to the ML-based VCDR phenotype to increase the power for

association discovery.29 Finally, in our association study, we used

sex, age at visit, visit number (i.e., 1 or 2 to indicate visit 1 or visit

2), number of eyes used to compute VCDR, genotyping array indi-

cator, refractive error, average gradability scores of all fundus im-

ages included for each participant, and the top 15 genetic prin-

cipal components as covariates.

Detecting independent genome-wide significant loci
Genome-wide significant (GWS; p % 5 3 10�8) lead SNPs, inde-

pendent at R2 ¼ 0.1, were identified via PLINK’s –clump command

(see web resources). The reference panel for linkage disequilibrium

(LD) calculation contained 10,000 unrelated subjects of European

ancestry from the UKB. Loci were formed around lead SNPs on the

basis of the span of reference panel SNPs in LD with the lead SNPs

at R2 R 0.1. Loci separated by fewer than 250 kb were subse-

quently merged.

SNP-heritability estimates for ML-based VCDR
We computed the SNP heritability for ML-based VCDR by

applying stratified LD score regression30 on the VCDRGWAS sum-

mary statistics while using the 75 baseline LD annotations pro-

vided by S-LDSC authors (see web resources).

Replication of existing loci
Loci for ML-based VCDR and comparator studies were formed as

described above, and the common reference panel of 10,000

randomly selected unrelated subjects from the UKB. Replication

was assessed via the proportion of ML-based VCDR loci that over-

lapped with comparators and the proportion of comparator loci
T

that overlapped with the ML-based VCDR loci. Thus, replication

required that both studies had a GWS variant within a common

genomic region, although not necessarily the same variant. Loci

reaching GWS in the ML-based VCDR but not identified in any

comparator GWASs of VCDR analyzed here are hereafter referred

to as ‘‘novel loci.’’
Mendelian randomization and mediation analyses
We performed two sample Mendelian randomization analysis, im-

plemented via TwoSampleMR (see web resources), to examine the

causal association between intraocular pressure (IOP), as assessed

by Khawaja et al.,16 and ML-based VCDR. Per-SNP associations

were meta-analyzed via Egger regression.31

We performedmediation analysis to estimate the association be-

tweenML-based VCDR and glaucoma, as assessed by Gharahkhani

et al.32 Mendelian randomization is in fact a special case of medi-

ation analysis in which the instrumental variables (here, SNPs)

have no effect on the outcome (here, glaucoma) other than

through the mediator (here, ML-based VCDR). Our mediation

analysis differs from Mendelian randomization in that, because

limited availability of summary statistics from Gharahkhani

et al., the SNP set was defined on the basis association with the

mediator (ML-based VCDR) rather than the outcome (glaucoma).

Among the 118 independent, significant glaucoma SNPs identi-

fied by Gharahkhani et al., 116 remained after harmonizing

with VCDR. To account for probable direct effects of the candidate

SNPs on glaucoma odds, for example via IOP, we again meta-

analyzed the per-SNP associations via Egger regression.
VCDR polygenic risk score
We developed two polygenic risk scores (PRSs) by using the prun-

ing and thresholding (PþT)33 and elastic net34 methods. The UKB

test cohort was graded with the same guidelines used in grading

other datasets used in this study. The HRT-derived VCDR was

examined and, for participants with good quality scans in both

eyes, the mean value of right and left eyes was considered, as pre-

viously described.35 Genotyping was carried out on the Affymetrix

UK Biobank Axiom array, as previously described.36

In the PþTmodel, we used a set of variants common to the UKB

and EPIC-Norfolk cohorts. EPIC-Norfolk’s imputation was per-

formed with the HRC v.1 panel and excludes indels;37 thus, to

harmonize the variants, we filtered out variants from Craig et al.

and our ML-based GWAS not present in EPIC-Norfolk. This re-

sulted in 58 variants from the 76 reported variants from the Craig

et al. GWAS (i.e., 18 variants were dropped) and 282 of the 299 var-

iants from our ML-based GWAS (i.e., 17 fewer variants).

In the elastic model, we used the ML-predicted VCDR as the

target label from the 62,969 UKB training samples to train the

elastic model. For Craig et al., we used 76 variants that included

the 58 variants from the PþT model and 18 additional proxy var-

iants that are in high LD (R2 R 0.6) with the 18 variants dropped

from the Craig et al. PþT model. The same set of 282 variants used

in PþT was used for the ML-based model. We performed 5-fold

cross validation and used the L1-penalty ratios of [0.1, 0.5, 0.7,

0.9, 0.95, 0.99, 1.0].
Glaucoma liability conditional analysis
We defined glaucoma risk liability as the logit transform of the

highest-level of ML-based glaucoma probability (‘‘likely glau-

coma’’; supplemental information) as
he American Journal of Human Genetics 108, 1–14, July 1, 2021 3



Please cite this article in press as: Alipanahi et al., Large-scale machine learning-based phenotyping significantly improves genomic discov-
ery for optic nerve head morphology, The American Journal of Human Genetics (2021), https://doi.org/10.1016/j.ajhg.2021.05.004
g¼ log
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p

1� p

�
;

where p and g denote ML-based glaucoma risk probability and lia-

bility, respectively. We performed conditional analysis on ML-

based glaucoma risk liabilities by using BOLT-LMM conditional

on ML-based VCDR. In this conditional analysis, we additionally

adjusted for the same covariates used in the primary ML-based

VCDR GWAS.
Glaucoma subtypes prediction in the EPIC-Norfolk

cohort
We analyzed 5,868 participants from the EPIC-Norfolk Eye Study

cohort whowere genotyped via the Affymetrix UK Biobank Axiom

array, met inclusion criteria and quality control, and had scanning

laser ophthalmoscopy VCDR measurements (supplemental infor-

mation). Included participants had a mean age of 68 years (SD ¼
7.7, range 48–90), 55% were women, and the mean VCDR was

0.34 (SD ¼ 0.23). Of the 5,868 samples, 175 were classified as pri-

mary open-angle glaucoma (POAG) cases (see supplemental infor-

mation for detailed POAG criteria), of which 98 were classified as

high tension glaucoma (HTG; IOP > 21 mmHg) and 77 as normal

tension glaucoma (NTG; IOP % 21 mmHg) on the basis of the

corneal-compensated IOP at the Eye Study assessment. Pre-treat-

ment IOP was imputed by dividing by 0.7 for participants using

glaucoma medication at the time of assessment, as previously

described.16

We extracted age, sex, POAG status, NTG status, and HTG status

from all 5,868 samples. We fitted independent logistic regression

models to predict POAG, HTG, and NTG statuses by using VCDR

PRS, age, and sex as predictors. We considered both the ML-based

elastic net VCDR PRS and the Craig et al. elastic net PRS described

above.
Results

Overview of the ML-based phenotyping method

We used 81,830 fundus images graded by a panel of experts

that passed our labeling guideline assessment (supple-

mental information) to train a phenotype prediction

model that jointly predicts image gradability, VCDR, and

referable glaucoma risk (Figure 1D). We split these images

into ‘‘train,’’ ‘‘tune,’’ and ‘‘test’’ sets; training images were

graded by one to two eye care providers with varied exper-

tise, while images in the two latter sets were each graded by

three glaucoma specialist experts. We benchmarked model

performance on all data splits (Figures 1E–1G; Table S1).

On the test set of 1,076 test images, the model achieved

a Pearson’s correlation of R ¼ 0.91 between predicted and

graded VCDR (95% confidence interval [CI] ¼ 0.90–0.92)

and root mean square error (RMSE) of 0.079 (95% CI ¼
0.074–0.085). Additionally, we validated model generaliz-

ability on 2,115 UKB fundus images each graded by two

to three experts (hereafter, ‘‘UKB test set’’), which achieved

similar predictive performance to the test set (Figure 1H; R

¼ 0.89, 95% CI ¼ 0.88–0.90; RMSE ¼ 0.092, 95% CI ¼
0.088–0.096; Table S1). We also validated that the model

generalizes across ancestries in a larger set of 4,816 UKB

fundus images with at least one manual grade (Figure S1).
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ML-based GWAS replicates a manual phenotyping

VCDR GWAS and discovers 93 additional novel loci

We applied the VCDR prediction model to the entire set

of 175,337 UKB fundus images. Most images were either

predicted to be easily gradable (predicted gradability >

0.9) or completely unusable (predicted gradability < 0.2)

(Figure S2). We classified all 21,400 images with predicted

gradability < 0.7 as ‘‘ungradable.’’ Manual inspection of

100 randomly selected ungradable images showed they

were typically completely dark, bleached white, or

extremely out of focus. After removing the 21,400 ungrad-

able images, aggregating predicted VCDR values across left

and right eyes and the first and second visits for each indi-

vidual, subsetting the cohort to individuals of European

ancestry, and performing cohort quality control, a cohort

of 65,680 individuals with VCDR phenotype remained

for further analysis (supplemental information, Figures

S3 and S4). To control for confounding factors (e.g., popu-

lation structure) and increase power, we added age at the

time of visit, sex, average image gradability, number of

fundus images used in VCDR calculation, normalized

refractive error, genotyping array type, and the top 15 ge-

netic principal components as covariates.

We performed the ML-based GWAS by using BOLT-LMM

(supplemental information). While genomic inflation DGC

was 1.20 (Figure S5), the stratified LD score regression-

based (S-LDSC) intercept30 was 1.06 (SEM ¼ 0.02), indi-

cating that most test statistic inflation can be attributed

to polygenicity rather than population structure. The

SNP-based heritability in the ML-based GWAS was 0.43

(SEM ¼ 0.03), a majority of the 56% heritability estimated

for VCDR by twin and family-based studies (Asefa et al.,

2019)38. The ML-based GWAS identified 299 independent

genome-wide significant (GWS) hits (R2 % 0.1, p %

5 3 10�8) at 156 independent GWS loci after merging

hits within 250 kb together (Figure 2A, Tables S2 and S3).

Based on sum of single effects regression,39 the number

of causal variants within the 156 independent GWS loci

was conservatively estimated at 813 (supplemental infor-

mation; Tables S4 and S5).

To understand the influence of training dataset size on

model performance and GWAS results, we retrained the

ML model with as little as 10% of the full training set. Per-

formance curves indicate that using fewer than 8,000

training images achieved a Pearson’s correlation R ¼ 0.83

(95% CI ¼ 0.81–0.84) on the UKB test set, identified 131

GWS loci, and replicated 123 of the 156 loci identified in

the full model (Figures S6 and S7). An analysis of the impli-

cations of phenotyping accuracy on genomic discovery

suggested that the difference in power for the model

trained with 10% of the training data and the model

trained with all data would maximally reach 15%

(Figure S8).

Next, we compared the ML-based GWAS results with

those from the two largest existing VCDR GWASs. First,

we compared with the VCDR meta-analysis from the

International Glaucoma Genetics Consortium (IGGC) in
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23,899 Europeans20 for which all summary statistics are

publicly available (see web resources). The ML-based

GWAS replicated all 22 GWS loci and exhibited strong ge-

netic correlation (0.95, SEM ¼ 0.03, p¼ 2.13 10�167) with

the IGGC GWAS (Figure 2B, Table 1), and effect size regres-

sion analysis showed a slope significantly different from

zero (slope¼ 0.983, SEM¼ 0.041, p¼ 13 10�61) and indis-

tinguishable from one (p ¼ 0.67; Figure S9; supplemental

information). Second, we compared with a GWAS on

67,040 manually phenotyped UKB fundus images17 for

which only the independent genome-wide significant
T

SNPs are publicly available. The ML-based GWAS repli-

cated 62 out of 65 GWS loci with very similar estimated ef-

fect sizes (Figures 2B and 2C, Table 1) and more significant

p values (Figure S10). The p values and effect sizes of the

novel loci are shown in Figure S11. The three loci not repli-

cated at the GWS level in the ML-based GWAS were all

Bonferroni-replicated (adjusting for 65 tests), and p values

ranged from 5.53 10�8 to 6.63 10�5. Third, we compared

our results with a meta-analysis of the Craig et al. and

IGGC VCDR GWASs.17 The ML-based GWAS replicated

82 of the 90 loci at GWS level, and the remaining eight
he American Journal of Human Genetics 108, 1–14, July 1, 2021 5



Table 1. Replicated loci of ML-based VCDR GWASs and meta-analysis at GWS level

Discovery GWAS details

Number of loci replicated
in ML-basedVCDR GWAS

Number of loci replicated
in ML-based þ IGGCVCDR
GWAS

S-LDSC-based genetic
correlation with
ML-based VCDRStudy (phenotype)

Number of
participants Loci

ML-based (VCDR) 65,680 156 – 151 –

ML-based 10% (VCDR) 65,044 131 123 125 0.99 (2.1 3 10�3)

ML-based þ IGGC20 (VCDR) 89,579 189 151 – 0.97 (2.6 3 10�3)

IGGC20 (VCDR) 23,899 22 22 22 0.95 (0.03)

Craig et al.17 (VCDR) 67,040 65 62 63 N/A

Craig et al.17 þ IGGC20 (VCDR) 90,939 90 82 85 N/A

Khawaja et al.16 (IOP) 139,555 107 14 22 0.19 (0.02)

Gharahkhani et al.32 (POAG) 383,500 118 32 40 N/A

‘‘ML-based 10% (VCDR)’’ denotes the GWAS performed on VCDR predictions of the ML model trained with only 10% of the training data. ‘‘ML-based þ IGGC
(VCDR)’’ denotes meta-analysis of ML-based and IGGC VCDR GWAS. Likewise, ‘‘Craig et al.þ IGGC (VCDR)’’ denotes meta-analysis of Craig et al. VCDR and IGGC
VCDR GWAS. Genetic correlation was only computed when the full set of summary statistics were available.
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loci were Bonferroni-replicated with and had p values

ranging from 1.4 3 10�7 to 6.6 3 10�5 (Table 1).

Finally, we performed a meta-analysis of our ML-based

GWAS with the IGGC VCDR GWAS, which resulted in

189 GWS loci (supplemental information; Table 1 and

Tables S6 and S7). This ML-based meta-analysis replicated

63 out of 65 of Craig et al.’s discovery GWAS and 85 out

of 90 Craig et al.’s meta-analysis at GWS level (Table 1).

Taken together, these comparisons demonstrate that the

ML-based GWAS accurately identifies known VCDR associ-

ations and additionally identifies over 90 novel loci

(Figure 2B, Table S8), substantially increasing our under-

standing of the genetic underpinnings of this complex

trait.

To assess the biological plausibility of the novel loci

identified in the ML-based GWAS, we compared gene set

enrichment analyses of the 156 ML-based loci to those of

the 65 Craig et al. loci by using FUMA.40 Nine eye-related

gene sets were significantly enriched in both sets of loci.

The enrichment odds ratios (ML-based enrichment over

Craig et al. enrichment) of all nine gene sets were greater

than one, suggesting improved identification of function-

ally relevant pathways in the ML-based loci (Figure S12).

To assess effects of distal cis-regulatory interactions, we

also performed enrichment analyses of the 156 ML-based

loci and the 65 Craig et al. loci by using GREAT.41 Consis-

tent with the FUMA results, the ML-based loci were more

significantly enriched than the Craig et al. loci across all

tested ontologies (Figure S13). The ML-based loci were

significantly enriched for 22 gene sets, the majority of

which are developmental and seven of which are eye

related (Table S9). In contrast, the Craig et al. loci were

significantly enriched for only three gene sets; two of these

are eye-related sets that were also enriched in theML-based

results (Table S9).

Lastly, we performed a phenome-wide association study

(PheWAS) over all 299 independent GWS hits by using

OpenTargets (web resources). OpenTargets reported
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62,753 (variant, phenotype) pairs that were nominally sig-

nificant (p % 0.05); after Bonferroni correction, 974 pairs

were significant (supplemental information). We observed

that 314 of the 974 significant pairs belonged to the

‘‘anthropometric measurement’’ trait category, while the

‘‘eye measurement’’ category had 101 pairs (Table S10).

Biological significance of select novel VCDR-associated

loci

Several of the VCDR-associated loci discovered in this

study are known to be associated with intraocular pressure

(IOP), including rs1361108 near CENPW,42 rs2570981 in

SNCAIP,42 rs6999835 near PKIA,16 and rs351364 in

WNT2B.16 This suggests that a proportion of the genetic

variation in VCDR is mediated via IOP and pathophysio-

logical processes affecting the anterior segment of the

eye, consistent with IOP’s being a strong risk factor for

glaucoma.43 Indeed, we observed that 13% (14 of 107) of

the GWS loci from the latest IOP meta-analysis16 were

GWS in the ML-based VCDR GWAS. In addition, the over-

all genetic correlation between our ML-based VCDR

GWAS and the IOP GWAS meta-analysis is 0.19 (SEM ¼
0.02, p ¼ 5.5 3 10�15), indicating that VCDR is partially

explained by IOP. Moreover, a Mendelian randomization

(MR) analysis followed by Egger regression31 suggests

that IOP has a strong directional association with ML-

based VCDR: the regression intercept does not differ

significantly from zero (intercept ¼ 0.001, SE ¼ 0.002,

p ¼ 0.7), but the slope does (slope ¼ 0.072, SE ¼ 0.020,

p ¼ 4 3 10�4). The reverse analysis provided no evidence

for a directional association between ML-based VCDR and

IOP (supplemental information; Figure S14).

VCDR is an objective quantification of the proportion of

neuronal tissue at the head of the optic nerve (Figure 1C).

Interestingly, several VCDR-associated loci discovered in

this study encompass genes involved in neuronal and syn-

aptic biology, and thus may influence VCDR via direct ef-

fects on the retina and optic nerve rather than via IOP.
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NCKIPSD (rs7633840) is involved in the formation and

maintenance of dendritic spines, and modulates synaptic

activity in neurons.44 CPLX4 (rs77759734) is required for

the maintenance of synaptic ultrastructure in the adult

retina.45 MARK2 (rs199826712) has roles in neuronal cell

polarity and the regulation of neuronal migration.46

These loci complement additional neuronal loci also

discovered by Craig et al.; some notable examples include

MYO16 (rs10162202), TRIM71 (rs56131903), and FLRT2

(rs1289426). An increase in VCDR may be due not only

to loss of retinal ganglion cell neurons but also loss of neu-

ral supporting tissue, such as glial cells. One of our novel

VCDR-associated loci is an indel on chromosome 8 (chr8:

131,606,303_CTGTT_C), near ASAP1; this locus has been

associated with glioma,47 suggesting glial cells as potential

mediators of the VCDR association.

Several genes at the novel VCDR-associated loci harbor

mutations that cause severe Mendelian ophthalmic dis-

ease. Here, for the first time, we report common variants

at these genes that are associated with VCDR variation at

a population level. Three of our novel loci are at

ADAMTSL3 (rs59199978), PITX2 (rs2661764), and

FOXC1 (rs2745572), all of which are associated with syn-

dromic ocular anterior segment dysgenesis, which in

turn causes raised IOP and secondary glaucoma.

ADAMTSL3 is an important paralog of ADAMTSL1—which

itself is also associated with VCDR in our GWAS. A muta-

tion in ADAMTSL1 has been reported to cause inherited

anterior segment dysgenesis and secondary congenital

glaucoma.48 Mutations in PITX2 and FOXC1 cause Axen-

feld-Rieger syndrome.49 Common variants at these loci

may mark more subtle effects on ocular anterior segment

development, resulting in subclinical changes in IOP and

VCDR that are apparent on a population level. While

FOXC1 variants have been previously associated with

glaucoma,50 this is the first time they have been associated

with population variation in VCDR. Mutations in PRSS56,

a gene at one of our novel VCDR-associated loci, cause

microphthalmia in humans.51 Another two of our

VCDR-associated loci are at EYA1 and EYA2 (eyes absent

homologs 1 and 2), genes that are important for eye

development in Drosophila. EYA1 has been implicated in

ocular anterior segment anomalies and cataract.52 We

also replicate some of the loci identified by Craig et al.,

such as ELP4, which has been associated with aniridia,53

a condition characterized by the absence of an iris and

that can predispose patients to glaucoma.53,54

ML-based GWAS improves VCDR polygenic risk scores

We developed PþT and elastic net PRSs for both the ML-

based VCDR GWAS and the Craig et al. GWAS (Tables

S11–S14). These PRSs were evaluated in two test sets: a

holdout set of 2,076 subjects from UKB with VCDR

measured by two to three experts and a set of 5,868 sub-

jects from the European Prospective Investigation into

Cancer Norfolk (EPIC-Norfolk) cohort with VCDR

measured by scanning laser ophthalmoscopy (HRT).55
T

Because the EPIC-Norfolk imputation was done with the

HRC v.1 (Haplotype Reference Consortium) panel, which

excludes indels,37 we subset theML-based GWAS summary

statistics to HRC v.1.

For the PþT model, subsetting to HRC v.1 results in 282

hits, down from 299 original hits. With the effect sizes

from the ML-based GWAS (Table S11), this model achieves

a Pearson’s correlation R ¼ 0.37 (95% CI ¼ 0.33–40) in the

UKB adjudicated cohort. The PþT model from the Craig

et al. GWAS does not include 18 out of 76 SNPs (absent

in HRC v.1) and achieves a Pearson’s correlation R ¼ 0.29

(95% CI ¼ 0.25–0.33). The performance metrics of the

ML-based Craig et al. PþT models when not subset to

HRC v.1 are shown in Figure S15. Performance in the

EPIC-Norfolk set was slightly lower, but the PþTmodel still

explained 9.6% of the total variance (Figure 3A). In both

sets, the ML-based PþT model outperformed the Craig

et al. PþT model (UKB: DR ¼ 0.079, p < 0.031, n ¼
2,076; EPIC: DR¼ 0.082, p< 5.93 10�4, n¼ 5,868, permu-

tation test).

We then used the ML-based VCDR values from UKB to

train elastic net models; after removing all images used in

building the adjudicated test set, the training set contained

62,969 samples. In contrast to the PþT model in which

GWAS marginal effect sizes are used as PRS weights, elastic

net jointly learns all weights in a supervised manner. To

make up for the 18 missing Craig et al. SNPs, we identified

LD-based proxies for all of the missing hits in HRC v.1 and

included them in training the elastic net model. The ML-

based elastic net model (Table S12) numerically improved

upon the PþT model in both UKB (R ¼ 0.38, 95% CI ¼
0.34–0.41) and EPIC (R ¼ 0.33, 95% CI ¼ 0.30–0.35) sets

(Figure 3B). The elastic net model explains 14.2% and

10.6% of total VCDR variation in the UKB and EPIC-Nor-

folk sets, respectively. The Craig et al. elastic net model

has a more pronounced improvement—probably because

of the addition of proxy SNPs—but the ML-based model

still significantly outperforms it (UKB: DR ¼ 0.064, p <

9.6 3 10�3, n ¼ 2,076; EPIC: DR ¼ 0.053, p < 6.8 3 10�4,

n ¼ 5,868, permutation test).

Relationship of primary open-angle glaucoma and VCDR

To study the relationship between primary open-angle

glaucoma (POAG) and VCDR, we defined POAG status in

UKB by using a combination of self-report and hospital

episode International Classification of Diseases 9/10 codes

(supplemental information). ML-based VCDR has moder-

ate predictive power for POAG with an area under the

ROC curve (AUC) of 0.76 (n ¼ 65,193, 95% CI ¼ 0.74–

0.78, POAG prevalence ¼ 1.9%) and area under the preci-

sion-recall curve (AUPRC) of 0.14 (95% CI ¼ 0.12–0.16).

After binning individuals by ML-based VCDR, we

computed odds ratios (ORs) in each bin versus the bottom

bin (Figure 4A). The most extreme bin (VCDR > 0.7, n ¼
385), which corresponds to a diagnostic criterion for glau-

coma,18 has an OR of 74.3 (95% CI¼ 57.0–94.3) versus the

bottom bin (VCDR < 0.3, n ¼ 30,752).
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Figure 3. VCDR polygenic risk score performance metrics
(A and B) Pearson’s correlations between measured VCDR values and predictions of the pruning and thresholding (PþT) (A) and the
elastic net models (B) are shown for the PRS learned from ML-based and Craig et al.17 hits. Error bars depict 95% confidence intervals.
Numbers above bars are the observed Pearson’s correlations. Indications of p value ranges (permutation test): *p% 0.05, **p% 0.01, ***p
% 0.001. The Craig et al. PþT model uses 58 out of 76 hits. Measured VCDR values were obtained from adjudicated expert labeling of
fundus images (UKB, n ¼ 2,076) and scanning laser ophthalmoscopy (HRT) (EPIC-Norfolk, n ¼ 5,868).
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We then performed mediation analysis (MA) to study

the association of VCDR with glaucoma. Similar to MR,

MA evaluates the association between an intermediary or

mediating phenotype (here, VCDR) and an outcome

phenotype (here, glaucoma). However, whereas in MR

the SNP set is selected on the basis of association with

the mediator, because of the limited availability of glau-

coma summary statistics from the study by Gharahkhani

et al.,32 the SNP set for MA was selected on the basis of as-

sociation with the outcome. Because, contrary to MR’s

exclusion restriction, the included SNPs may have affected

glaucoma through a pathway other than VCDR (e.g., IOP),

the per-SNP estimates of association were meta-analyzed

with Egger regression (Egger et al., 199731), which is

robust to this assumption.56 The Egger slope of 5.7

(SE ¼ 1.8, p ¼ 3 3 10�3) differs significantly from zero,

providing evidence that VCDR, as ascertained by our ML-

based models, is strongly associated with the odds of glau-

coma (Figure S16). We note that the Egger intercept of 0.04

also differs significantly from zero (p ¼ 7 3 10�7), indi-

cating the presence of directional pleiotropy; that is, vari-

ants included in the analysis, on average, were associated

with an increase in the odds of POAG through a pathway

other than VCDR.

As shown above, VCDR is an informative endopheno-

type for glaucoma, and we hypothesize that its PRS should

also be predictive of POAG. Indeed, 32 out of 118 loci pre-

viously associated with POAG32 were significantly associ-

ated with ML-based VCDR in this study. We applied the

ML-based elastic net model to the UKB individuals of Euro-

pean ancestry that do not have fundus images (n¼ 98,151)

to estimate their genetic VCDR. As expected, this

genetic model performs noticeably worse than the model

using a direct measurement of the VCDR phenotype

(AUC ¼ 0.56, 95% CI ¼ 0.55–0.57, AUPRC ¼ 0.07, 95%

CI ¼ 0.066–0.073, n ¼ 98,151, POAG prevalence ¼
5.5%). Nonetheless, when we binned samples by VCDR

elastic net PRS, participants in the highest bin (PRS Z >

2.5, n ¼ 567) had a considerably higher POAG prevalence
8 The American Journal of Human Genetics 108, 1–14, July 1, 2021
(OR ¼ 3.4, 95% CI ¼ 2.6–4.3; Figure 4B) than those in the

lowest bin (PRS Z < �0.1, n ¼ 46,136).

In addition to VCDR, the ML model was trained to pre-

dict referable glaucoma risk;9 this model output can be in-

terpreted as the probability a specialist would refer an indi-

vidual for detailed glaucoma evaluation. Because the

model output is a continuous value, we can evaluate the

contribution of features other than VCDR to referable glau-

coma risk by regressing out the VCDR signal.We computed

glaucoma risk liability as the logit transform of the ML-

based glaucoma probability, which is highly correlated

with ML-based VCDR (Figure 4C, Pearson’s R ¼ 0.91, n ¼
65,680, p< 13 10�300). While a large VCDR is the cardinal

feature of a glaucomatous optic nerve, there are other fea-

tures that suggest glaucoma that are difficult to quantify

(e.g., bayoneting or baring of blood vessels and hemor-

rhages). To examine the genetic associations with glau-

comatous optic disc features other than VCDR, we carried

out a GWAS of ML-based glaucoma risk conditioned on

ML-based VCDR by using BOLT-LMM. The observed SNP

heritability was 0.062 (SEM ¼ 0.013) with genomic infla-

tion of 1.04 and S-LDSC-based intercept of 1.01 (SEM ¼
9.8 3 10�3; Figure S17) and the GWAS identified eight

GWS loci (Tables S15 and S16). Interestingly, two of these

loci, OCA2-HERC2 (Figure 4D; rs12913832, p ¼ 2.2 3

10�66) and TYR (rs1126809, p ¼ 5.8 3 10�13), have been

previously associated with macular inner retinal thickness

(retinal nerve fiber layer and ganglion cell inner plexiform

layer) as derived from UKB optical coherence tomography

images.57 These inner retinal parameters have diagnostic

utility for glaucoma that is considered complementary to

VCDR and may be particularly efficacious at detecting

early glaucoma.58 Moreover, it is not currently possible to

ascertain the thickness of the inner retina from fundus im-

ages, which are two-dimensional. Together, this suggests

that ML-based phenotyping has the potential to identify

glaucoma-related features from fundus images that are

complementary to VCDR and not typically gradable by

humans.
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Glaucoma prediction in the EPIC-Norfolk cohort

To further assess the utility of the ML-based elastic net

VCDR PRS for prediction of glaucoma, we classified the sta-

tus of EPIC-Norfolk participants (n¼ 5,868) for POAG (175

cases and 5,693 controls). We additionally sub-categorized

POAG cases into HTG (98 cases) and NTG (77 cases). Given

the enrichment of the VCDR PRS for variants associated

with neuronal development and function, we hypothe-

sized that the PRS would be particularly associated with

NTG. We fit a logistic regression model to predict POAG

status by using age, sex, and ML-based elastic net VCDR

PRS as its three predictors.

The ML-based elastic net VCDR PRS was strikingly associ-

ated with POAG, and particularly NTG, in EPIC-Norfolk

(Figure 5). The ORs (95% CI) comparing the top risk decile

with the bottom decile were 9.7 (3.4–27.6) for POAG, 7.4

(2.2–25.2) for HTG, and 16.5 (2.2–125.9) for NTG (Figure 5).

The overall prediction metrics were AUC ¼ 0.74, 95% CI ¼
0.70–0.77, AUPRC ¼ 0.08, 95% CI ¼ 0.06–0.11, prevalence

¼ 3.0% for POAG; AUC ¼ 0.73, 95% CI ¼ 0.68–0.78,

AUPRC ¼ 0.05, 95% CI ¼ 0.03–0.08, prevalence ¼ 1.7%

for HTG; and AUC ¼ 0.76, 95% CI ¼ 0.71–0.80, AUPRC ¼
0.04, 95% CI ¼ 0.03–0.06, prevalence ¼ 1.3% for NTG.

The AUC and AUPRC show nominally significant improve-

ments over those from an analogous model using the Craig
T

et al. elastic net VCDR PRS for POAG (DAUC ¼ 0.014, 95%

CI ¼ 0.0–0.03, p ¼ 0.03; DAUPRC ¼ 0.008, 95% CI ¼
0.0–0.02, p ¼ 0.03, paired bootstrap test) and HTG

(DAUC ¼ 0.014, 95% CI ¼ 0.0–0.03, p ¼ 0.04; DAUPRC ¼
0.006, 95% CI ¼ 0.0–0.02, p ¼ 0.04, paired bootstrap test).
Discussion

Large cohorts of genotyped and phenotyped individuals

have enabled researchers to identify genetic influences of

many traits. As methods to ascertain genetic variants in

large cohorts continue to improve, we anticipate the major

challenge for cohort generation to be accurate and deep

phenotyping59 at scale. Here, we demonstrated that ML-

based phenotyping shows promise for improving both

scalability to biobank-sized datasets and phenotyping ac-

curacy. We predicted VCDR from all 175,337 UKB fundus

images in less than 1 h on a distributed computing system.

Multiple lines of evidence indicate that the model-based

VCDR predictions improve accuracy over manual labeling,

including the reproduction of known VCDR-related

biology, identification of plausible novel genetic associa-

tions, and generation of polygenic risk scores that better

predict VCDR in multiple held-out datasets. Additional
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Figure 5. Primary open-angle glaucoma (POAG) prediction in the EPIC-Norfolk cohort
(A–C) Odds ratios and 95% CIs for POAG prevalence by decile of VCDR PRS; reference is decile 1. Results are from logistic regression
models adjusted for age and sex for primary open-angle glaucoma (175 cases, 5,693 controls) (A), high-tension glaucoma (HTG; 98 cases,
5,693 controls) (B), and normal-tension glaucoma (NTG; 77 cases, 5,693 controls) (C). Results are presented for the ML-based elastic net
VCDR PRS (blue) and the Craig et al.17 elastic net VCDR PRS (yellow). Note the y axis log scale.
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advantages of ML-based phenotyping over manual label-

ing are improved joint prediction accuracy for multiple

correlated phenotypes and predicting liabilities instead of

binary labels for binary phenotypes. By regressing out pre-

dicted VCDR from the predicted referrable glaucoma risk

(i.e., whether the individual should seek further ophthal-

mologist care), we identified residual referrable risk not

attributable to variation in VCDR.

The improvement of our model-based VCDR GWAS over

the recent expert-labeled VCDR GWAS by Craig et al. is

consistent with improved phenotyping accuracy by our

model. The expert labels may include more noise or mea-

surement error than the ML-based labels, as suggested by

the inter-grader variability; the inter-grader Pearson’s cor-

relation between the two ophthalmologists as reported

by Craig et al. for images graded multiple times was 0.75

(95% CI ¼ 0.72–0.77), whereas the ML model achieves a

Pearson’s correlation of 0.89 between the model predic-

tions and adjudicated expert labels (95% CI ¼ 0.88–0.90).

Noise or variability in human grading of VCDR can arise

from difficulty in defining the cup-rim border of the optic

disc. If the cup-rim border is sloping, rather than having

vertical edges, defining it is challenging via two-dimen-

sional images. In this situation, the average VCDR of mul-

tiple graders may be considered more accurate than a sin-

gle grader’s score. Our ML-based model was trained and

tuned on images that were assessed by multiple graders

and may therefore be expected to outperform a single hu-

man grader, on average.

The 93 novel VCDR-associated loci discovered by ML-

based phenotyping substantially expand our knowledge

of the biological processes underlying optic nerve head

morphology. While elevated IOP is an established cause

of glaucoma,43 characterized by a pathologically enlarged

VCDR, our results support the role of IOP’s contributing

to variation in VCDR within the healthy range as well.

Of particular note were commonVCDR-associated variants

in genes harboring mutations that cause inherited anterior

segment dysgenesis that is well characterized phenotypi-

cally. Our findings suggest these dysgenesis processes
10 The American Journal of Human Genetics 108, 1–14, July 1, 2021
may also occur at subclinical levels and contribute to vari-

ation in the complex VCDR phenotype. Understanding

the genotype-phenotype link in rare single-gene disorders

can therefore improve our knowledge of some of the many

contributory causes to complex traits. Our results also sup-

port an important role of neuronal development processes

for VCDR. It remains uncertain whether these processes

primarily influence VCDR during optic nerve development

in early life, thereby reflecting population variation in

baseline optic nerve head anatomy, or act later in life and

reflect a pathological, glaucomatous change in VCDR

over time. Interestingly, genes involved in developmental

processes more broadly, including development of the car-

diovascular and urogenital systems, were significantly en-

riched in our results (Table S8). This may suggest early

life processes are a major determinant of VCDR variation

in adult populations.

This study also showed that a substantial proportion of

VCDR variation can be predicted with a polygenic risk

score. Improving VCDR prediction produces a concomi-

tant improvement in glaucoma prediction, as we demon-

strated by stratifying glaucoma prevalence by using the

VCDR PRS. While the UK National Screening Committee

does not currently recommend population screening for

glaucoma because tests lack sufficient positive predictive

value,60 using polygenic prediction to identify subsets of

the general population that are at risk for glaucoma may

enable effective screening. Notably, we identified a sub-

stantially higher POAG prevalence in the top decile of

VCDR PRSs and it may be that current screening tests

would have sufficient positive predictive value if applied

to this enriched population subset. Earlier detection and

treatment of glaucoma, a disease that causes progressive

and irreversible vision loss, is a key strategy outlined by

the World Health Organization for the prevention of

blindness worldwide.61

While this study demonstrates the potential for ML-

based phenotyping to expand our understanding of the

genetic variation underlying complex traits, the method

has important limitations that must be taken into
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account. Application of this technique relies on the

trained model’s producing accurate predictions in the

genomic discovery set. Here, we showed strong generaliz-

ability of the model trained on non-UKB fundus images to

the UKB fundus images used for genomic discovery by

manually labeling a small subset of UKB fundus images

and validating model predictions against these ground

truth labels. Application to other phenotypes derived

from fundus images, or other data modalities such as op-

tical coherence tomography or magnetic resonance imag-

ing, would require similar demonstrations of model

generalizability. Additionally, the initial model training

can be costly and time intensive, as it requires manual la-

beling to be performed. While our ablation analysis

showed that training on only 10% of the data still identi-

fied the majority of VCDR-associated loci, model perfor-

mance did not appear to saturate even at the full training

set size. Ongoing improvements to transfer learning may

reduce future labeled data requirements,62 although the

ability to extrapolate consumer imaging improvements

to biomedical imaging is unclear.63

Another limitation of our study was the absence of data

for absolute vertical disc diameter (VDD), a commonly

used proxy for disc size. While VDD is a heritable trait64

that would be of interest given its correlation with

VCDR, considerable challenges preclude extending ML-

based phenotyping to VDD in our study. Because VDD is

an absolute size measurement, it requires strict standardi-

zation of image acquisition. In particular, differences in ab-

solute size measurements from images arise secondary to

camera-related magnification and from ocular refraction,

mostly determined by the length of the eye.65 Since our

training images were derived from multiple centers and

multiple different cameras that were not standardized in

terms of magnification and zoom, it is not possible to

derive an accurate VDD on which to train an algorithm.

Even within UKB, accurately measuring VDD from fundus

images is not possible because there are no measurements

of axial length. Correcting for magnificationwith spherical

equivalent only corrects for about 30% of eye size-related

magnification artifact, whereas axial length correction

can account for nearly 100% of the variation.65 Conse-

quently, we cannot exclude the possibility that some loci

discovered in this study would not reach genome-wide sig-

nificance in a GWAS adjusted for VDD. However, the

similar effect sizes estimated for loci significant both in

our study and in Craig et al., and the increased number

of loci discovered in an independent ML-based GWAS of

VDD-adjusted VCDR in the UKB,66 suggest that many of

the loci discovered here influence VCDR independently

of VDD.

In summary, we have proposed a method for perform-

ing genomic discovery on biobank-scale datasets by us-

ing machine learning algorithms for accurate phenotyp-

ing. A key benefit of the method is its ability to use a

modest-sized biomedical dataset annotated with reason-

able accuracy to train a model that identifies the under-
Th
lying patterns and yields usable predictions. Extending

the method to additional phenotypes and data modal-

ities in large-scale biobanks could further expand our un-

derstanding of disease etiology and improve genetic risk

modeling.
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Figures

Figure S1. Accuracy of the VCDR prediction model across genetic ancestries. Of 4,816 total UK
Biobank images with at least one manual VCDR grade, differences between the manual label (“True
VCDR”) and the model prediction (“predicted VCDR”) are shown by ancestry (see “Genetic ancestry
inference”; European n=4,538; African n=124; South Asian n=110, Chinese n=44). No significant
differences were detected across ancestries (one-way ANOVA P=0.56 across the four groups; paired
T-test P=0.78 when comparing European to non-European).



Figure S2. Kernel density estimate of the distribution of image gradability and VCDR predictions
in UK Biobank images. The 21,400 images with gradability < 0.7 were omitted from further analysis.



Figure S3. VCDR phenotype calling process. The numbers below each eye indicate gradable /
available images.

Figure S4. Genetic Principal Components. The first two PCs of all individuals in the UK Biobank and
the GWAS cohort is shown. The individuals with self-reported "British", "Indian", "Afrcian" and "Chinese"
ancestries are also shown for reference. The inset shows a zoomed version of the GWAS cohort.



Figure S5. QQ-plot for the ML-based VCDR GWAS. The expected P-values are based on a uniform
distribution.



a b c

Figure S6. VCDR model performance as a function of the percentage of training data samples
used to train the model. Pearson’s correlation between the model-predicted VCDR and the
expert-labeled VCDR at training data percentages from 10% to 100% for a, the tune dataset, b, the test
dataset, and c, the UKB adjudicated dataset. See Model Training and Evaluation section for detailed
dataset definitions.

Figure S7. Comparison of the Full model P-values with the 10% Ablation P-values for 299 Full
model hits. The dashed red horizontal and vertical lines indicate the GWS level (P<5×10-8).



Figure S8. Power and non-centrality curves as a function of per-SNP heritability. The curves are
stratified by the correlation between the mismeasured and true phenotypes. Sample size was set to
n=50,000; changing the sample sizes amounts to horizontally shifting the power curves. The range of
per-SNP heritabilities was selected to demonstrate the inflection points of the power curves.

Figure S9. Regression of IGGC VCDR meta-analysis effect sizes on winner’s curse-corrected
ML-based VCDR effect size estimates. Of 299 independent GWS hits, 214 were present in IGGC.
Regression slope was computed with intercept fixed to zero. The dotted blue line shows the line of best
fit.



Figure S10. Comparison of ML-based VCDR P-values with the Craig et al. P-values for 73 Craig et
al. hits. The dashed red horizontal and vertical lines indicate the GWS level (P<5×10-8).



Figure S11. Novel ML-based VCDR loci. The -log10(P) and the effect size magnitude (change in
expected VCDR per risk allele) of the 93 novel loci not observed in Craig et al. or IGGC VCDR GWAS loci
are shown. The error bars show standard errors of the effect sizes. The red dashed line denotes the
genome-wide significance level.



Figure S12. FUMA enrichment of eye-related gene sets from the ML-based VCDR GWAS versus
the VCDR GWAS of Craig et al. Enrichment is quantified via the odds ratio, with confidence interval and
P-value provided by Fisher’s exact test.



a b

Figure S13. GREAT enrichment of loci from the ML-based VCDR GWAS vs the VCDR GWAS of
Craig et al. a, Comparison of Bonferroni-corrected P-values for the region-based test reported by GREAT
for the five listed ontologies. Dashed horizontal and vertical lines show the threshold for statistical
significance at a Bonferroni-corrected P ≤ 0.05, and the diagonal line indicates y=x. More ontology terms
are statistically significant for the ML-based GWAS than Craig et al. b, Comparison analogous to that in a,
for the gene-based test.

Figure S14. Egger Regression for Mendelian Randomization of the effect of IOP on ML-based
VCDR. Independent, significant IOP-associated SNPs were ascertained from Khawaja et al. and
harmonized with GWAS results for ML-based VCDR.



Figure S15. VCDR polygenic risk score performance metrics on the UKB imputation panel.
Pearson's correlations between measured VCDR values and predictions of the pruning and thresholding
(P+T) and the Elastic Net models are shown for the PRS learned from ML-based and Craig et al. hits.
Error bars depict 95% confidence intervals. Numbers above bars are the observed Pearson's
correlations. Indications of P-value ranges: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. Measured VCDR values
were obtained from adjudicated expert labeling of fundus photographs (UKB, n=2,076).

Figure S16. Egger Regression for Mendelian Randomization of the Effect of VCDR on Glaucoma
log Odds. Independent, significant Glaucoma risk SNPs were ascertained from Gharahkhani et al. and
harmonized with GWAS results from ML-based VCDR.



Figure S17. QQ-plot for the ML-based glaucoma liability GWAS conditional on ML-based VCDR.
The expected P-values are based on a uniform distribution.



Tables

Table S1. Phenotype prediction model performance metrics. For VCDR Pearson's
correlation is reported. AUC, area under ROC curve; AUPRC, area under precision-recall curve,
RMSE, root mean square error. The numbers in parentheses are 95% confidence intervals.

Shared nomenclature for all GWAS results:
CHR, chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-effect allele;
EAF, effect allele frequency; BETA, estimated effect size; SE, standard error; P, GWAS P-value;
NUM_INDV, sample size for the variant; SRC, imputed or genotyped variant; INFO, imputation
INFO score (set to 1 for genotyped variants); CRAIG, locus replicated in Craig et al. GWAS,
CRAIG_META, locus replicated in Craig et al. meta-analysis; GENE_CONTEXT: genomic
context of the variant, as explained below.

● Overlapping gene(s)
○ [A]: variant overlaps gene A
○ [A,B]: variant overlaps genes A and B

● Downstream genes
○ []A: variant position is 0 < p ≤ 103 bp upstream of closest downstream gene A
○ []-A: variant position is  103 < p ≤104 bp upstream of closest downstream gene A
○ []--A: variant position is  104 < p ≤105 bp upstream of closest downstream gene A
○ []---A: variant position is  105 < p ≤106 bp upstream of closest downstream gene A
○ []: closest downstream gene is further than 106 bp

● Upstream genes
○ The notation for upstream genes is similar, but gene A is on the left side, e.g., B-[]

means variant position is 103 < p ≤104 bp downstream of closest gene B

For example, FOXD2--[]---TRABD2B indicates the variant is 104 < p ≤105 downstream of
FOXD2 and 105< p ≤106 upstream of TRABD2B.

Table S2. ML-based VCDR GWAS independent GWS hits (R2≤0.1, P≤5×10-8).

Table S3. ML-based VCDR GWAS independent GWS loci (R2≤0.1, P≤5×10-8, distance between
top hits > 250k).

Table S4. SuSiE per-SNP results for all fine-mapped SNPs. PIP is the posterior probability the
SNP is causal, higher being more likely; and LOCUS_IDX is a locus identifying index (as
defined in Table S3). SNPs with PIP = 0 are not shown.

Table S5. SuSiE results summarized per-locus. N_FINEMAPPED is the number of SNPs in loci
with PIPs available. N_GWS is the number of genome-wide significant SNPs with MAF>0.05.
N_CAUSAL is the sum of PIPs across SNPs in the locus. The estimated number of causal
SNPs for a locus is min(N_GWS, N_CAUSAL).

Table S6. ML-based + IGGC VCDR meta-analysis independent GWS hits (R2≤0.1, P≤5×10-8).

Table S7. ML-based + IGGC VCDR meta-analysis independent GWS loci (R2≤0.1, P≤5×10-8,
distance between top hits > 250k).

Table S8. Novel ML-based VCDR GWAS loci. One-hundred fifty-six (156) independent,
genome-wide significant loci were identified by the ML-based VCDR GWAS, increasing to 189



after meta-analyzing with the IGGC’s results. This table reports the numbers of loci that were
not overlapped by any locus from each previous study, and hence were novel with respect to
that study. For example, 135 of the 156 ML-based VCDR loci were not overlapped by any locus
reported in the IGGC’s original meta-analysis. In addition to comparing against individual
studies, we compare against the unions of results from multiple studies. For example, 93 of the
156 ML-based VCDR loci were not overlapped by any locus from either the original IGGC
meta-analysis or the Craig et al. VCDR GWAS.

Table S9. All GREAT ontology terms significant for at least one of the two sets of loci. All
terms in the ontologies of Figure S13 were tested. Abbreviations: ML P-val, the
Bonferroni-corrected P-value for the region-based test with the ML-based GWAS loci; Craig
P-val, the Bonferroni-corrected P-value for the region-based test with the Craig et al. GWAS
loci; GOBP, Gene Ontology Biological Process; MP1KO, Mouse Phenotype Single Knockout;
HP, Human Phenotype.

Table S10. PheWAS results for ML-based VCDR hits. Results from queries to the
OpenTargets website are presented for all 299 ML-based VCDR hits. Abbreviations: SNP ID:
ML-based VCDR hit ID, P-value: P-value obtained from OpenTargets, Beta: estimated effect
size obtained from OpenTargets, PASS: True if the P-value is smaller than the Bonferroni
threshold and False otherwise.

Shared nomenclature for all PRS Tables:
CHR, chromosome; POS, base-pair variant position; REF, reference allele; ALT, alternative
allele; EA, effect allele, COEFF, variants coefficient

Table S11. ML-based P+T PRS using EPIC panel (282 variants).

Table S12. ML-based ElasticNet PRS using EPIC panel (282 variants).

Table S13. ML-based P+T PRS using UKB panel (299 variants).

Table S14. ML-based ElasticNet PRS using UKB panel (299 variants).

Table S15. ML-based glaucoma risk conditioned on ML-based VCDR independent GWS hits
(R2≤0.1, P≤5×10-8).

Table S16. ML-based glaucoma risk conditioned on ML-based VCDR independent GWS loci
(R2≤0.1, P≤5×10-8, distance between top hits > 250k).



Methods

Phenotype Prediction Model
Data collection
Grading of images has been described in detail previously (Phene et al. 2019). In short, graders
assessed each image for gradability, presence of various optic nerve head (ONH) features
(including estimation of VCDR; the ratio between the vertical diameter of the cup and the
vertical diameter of the disc) and referable glaucomatous optic neuropathy (GON). Gradability
was measured based on image quality, blurring, media opacity, or any other confounding
reason. If graders selected “ungradable” for a particular feature or referable GON, then no grade
was collected for that aspect. To enable systematic training of graders, we developed grading
guidelines and iterated on the guidelines with a panel of three fellowship-trained glaucoma
specialists to increase inter-rater agreement; please refer to the Supplementary Table 1 in
(Phene et al. 2019). Similar to clinical practice, for VCDR graders were asked to provide an
estimate as a decimal between 0.0 and 1.0, with 0.1 increments (0.0 < VCDR < 1.0). For
referable GON grading we developed guidelines for a four-point GON assessment
("non-glaucomatous", "low-risk glaucoma suspect", “high-risk glaucoma suspect”, and “likely
glaucoma”) where the “high-risk glaucoma suspect” or “likely glaucoma” levels were considered
referable, that is, the ONH appearance was worrisome enough to justify referral for
comprehensive examination. Graders were asked to provide a referable GON grade after
evaluating the image for the other ONH features.

Model training and validation
Data processing and model training has been described previously (Phene et al. 2019). In short,
we first remove all UK Biobank (UKB) samples from the "train", "tune", and "test" sets used by
(Phene et al. 2019). We use 81,830 color fundus images from AREDS (age-related eye disease
study) (Age-Related Eye Disease Study Research Group 1999), EyePACS
(https://www.eyepacs.org/), Inoveon (http://www.inoveon.com/) from United States and two eye
hospitals in India (Narayana Nethralaya and Sankara Nethralaya). In total, 69,460 of the 79,355
training images were gradable. All color fundus images are cropped to center the retinal image
and resized to 587×587 pixels. The prediction model consists of ten independently trained
multi-task Inception V3 (Szegedy et al. 2016) deep convolutional neural networks. To accelerate
model training, convolutional layers were initialized using the weights learned from the Image
Net dataset (Deng et al. 2009). We used image augmentation (Shorten and Khoshgoftaar 2019)
(randomly changing brightness, hue, contrast, saturation and flipping the image horizontally and
vertically) to regularize model training in TensorFlow (Abadi et al. 2016). Full set of
hyperparameters is given in the "Model hyper-parameters" section. We used early stopping
(Prechelt 1998) based on root mean squared error (RMSE) for predicting VCDR in the tune set

https://www.eyepacs.org/
http://www.inoveon.com/


for each model. The final prediction was the average prediction of the ten models in the
ensemble. Model performance metrics are listed in Table S1.

Genomic Discovery

UK Biobank cohort
The UK Biobank is a very large multisite cohort study established by the Medical Research
Council, Department of Health, Wellcome Trust medical charity, Scottish Government and
Northwest Regional Development Agency. Detailed study protocols are available online
(http://www.ukbiobank.ac.uk/resources/ and http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi). A
baseline questionnaire, physical measurements, and biological samples were undertaken in 22
assessment centers across the UK between 2006 and 2010. All UK residents aged 40 to 69
years who were registered with the National Health Service (NHS) and living up to 25 miles from
a study center were invited to participate. The study was conducted with the approval of the
North-West Research Ethics Committee (ref 06/MRE08/65), in accordance with the principles of
the Declaration of Helsinki, and all participants gave written informed consent. This research
has been conducted using the UK Biobank Resource under Application Number 17643.

Ophthalmic assessment was not part of the original baseline assessment and was introduced
as an enhancement in 2009 for 6 assessment centers which are spread across the UK
(Liverpool and Sheffield in North England, Birmingham in the Midlands, Swansea in Wales, and
Croydon and Hounslow in Greater London). Imaging of both eyes was performed using the
Topcon 3D OCT- 1000 Mark II in a dark room without pupil dilation. The instrument takes a color
photograph of the retina as well as an optical coherence tomography scan; we used the color
photographs in the current study. The right eye was imaged first. Refractive status of both eyes
was measured by autorefraction (Tomey RC5000; Erlangen-Tennenlohe). Spherical equivalent
was calculated as the sphere + 0.5 * cylinder and participant-level refractive error was taken as
the mean of right and left values.

Genetic ancestry inference
To minimize the impact of population structure, we limited our GWAS cohort to individuals of
European genetic ancestry, which was defined as follows:

1. Determine the set all individuals with self-reported "British" ancestry.
2. Compute the medioid of the British ancestry set in the 15-dimensional genetic principal

component (PC) space.
3. Calculate the distance of each individual in the UK Biobank to the British medioid.
4. Form the "European" set by selecting all individuals with a distance from the British

medioid less than 40 (based on the 99th percentile of distances of individuals who
self-identify as British or Irish).

Using this scheme, approximately 99% of all individuals with self-reported British and Irish
ancestries are included, and in total slightly over 8% of all individuals are filtered. It should be
noted that our cohort selection is conservative and keeps only individuals very close to the core

http://www.ukbiobank.ac.uk/resources/
http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi


British ancestry, e.g., it removes over 42% of individuals with self-reported "Any other white
background" ancestries. The PC plot of all individuals in the UK Biobank and the GWAS cohort
is shown in Figure S4.

Ancestry determination for African, Chinese, and South Asian samples was performed in an
analogous manner, using self-reported ancestry and distance from the resulting medioid of
(“African”, 35), (“Chinese”, 25), (“Indian”, 35), respectively. Distances were selected based on
visual inspection of the top PCs. Samples with self-reported Indian and Pakistani ancestry
overlap strongly in PC space and density of distance from the medioid value, so are merged
and referred to as “South Asian” in Figure S1.

Phenotype calling
After predicting VCDR for all 175,337 fundus images from 85,665 individuals in UKB, we first
remove the 21,400 images which are predicted as ungradable (gradability prediction < 0.7) for
VCDR. Recall that there are two imaging visits, called visit 1 and 2. We define the phenotype
only based on one of these visits, because there is an approximate 5 years difference between
the two visits and many factors such as age, medications, eye operations can be materially
different between the two visits.

If an individual has any gradable image(s) from visit 1, we define the phenotype based on these
images; otherwise, we define it based on visit 2 (a.k.a. first repeat imaging visit). For a specific
visit, we first average the VCDRs of each eye and then average these per eye VCDRs if both
eyes have gradable images. Moreover, to account for the impact of image gradability on the
phenotype, we computed the average gradability score of all images used in defining an
individual's phenotype. For the details and statistics of phenotype calling, see Figure S3. To
control for the small variations in phenotype calling, we add the visit number used (i.e., 1 or 2)
and the number of eyes used in calling the phenotype (i.e., 1 or 2) as covariates. After
subsetting to individuals of European ancestry and removing samples with excess
heterozygosity or missingness, putative sex chromosome aneuplody, and missing refractive
error report, we call the VCDR phenotype for 65,680 individuals.

Genome-wide association study
We use linear mixed models as implemented in BOLT-LMM v2.3.4 (Loh et al. 2015) to account
for population structure and cryptic relationships in UK Biobank, and to increase association
power. We applied BOLT-LMM to all individuals of European ancestry with available VCDR who
passed our sample QC and had non-missing covariates (n=65,680). We used sex, age at visit,
visit number (i.e., 1 or 2 to indicate visit 1 or visit 2), number of eyes used to compute VCDR
(i.e., 1 or 2 to indicate one eye or both eyes are used), genotyping array indicator, refractive
error, average gradability scores of all fundus images used in phenotype calling and the top 15
genetic principal components as covariates. To increase association power and make the
normality assumption more plausible, ML-based VCDR was rank-based inverse normal (INT;
(McCaw et al. 2019)) transformed. We considered the autosomal chromosomes for our GWAS
and filtered out variants with minor allele frequency (MAF) < 0.001, imputation INFO score < 0.8,



or Hardy-Weinberg equilibrium (HWE) P < 1×10-10 in Europeans. Using these filters, 13,110,443
variants passed QC. To verify that our association results were not driven by population
stratification, we applied LD score regression (Bulik-Sullivan et al. 2015).

Identification and comparison of loci
Genome-wide significant (GWS; P ≤ 5×10-8) lead SNPs, independent at R2=0.1, were identified
using the plink --clump command (v1.90b4). The reference panel comprised a random
sample of 10,000 unrelated subjects of white European ancestry from the UK Biobank. Around
each lead SNP, a locus was defined as the span of reference panel SNPs in LD with the lead
SNP at R2≥0.1. For consistency with locus formation as implemented by FUMA (Watanabe et al.
2017), loci separated by fewer than 250 kb were merged, and the most significant, independent
SNP in the merged locus was retained as the lead SNP. Gene context annotations were added
from the GRCh37 version of GenCode v34 "comprehensive gene annotations." Only
protein-coding genes and level 1 long noncoding RNAs (lncRNA) were considered.

For comparing loci across studies, loci were formed within each using the common reference
panel and procedure described above. Locus overlap metrics were calculated using the
GenomicRanges package (Lawrence et al. 2013) in R (v3.2.3). In comparing loci from studies A
and B, it is possible for a single locus from study A to overlap multiple loci from study B and
conversely. Consequently, the “overlap” operation is asymmetric, and the number of loci from
study A that overlap a locus from study B may differ from the number of loci from study B that
overlap a locus from study A. To make this concrete, consider the 22 loci reported by the 2017
IGGC meta-analysis (Springelkamp et al. 2017). Twenty (20) of these loci were overlapped by,
and thus replicated by, the subsequent Craig et al. GWAS (Craig et al. 2020). However, only 19
of the Craig et al. loci were overlapped by an IGGC locus. This occurs because a single, larger
locus from Craig et al. on chromosome 22 spanning base pairs 28,175,232 to 30,620,360 (lead
SNP: rs6005840, P=1.9x10-38) overlapped with two smaller loci from Springelkamp et al.: one
spanning 28,195,332 to 29,447,570 (lead SNP: rs5752773, P=4.6x10-21) and the second
spanning 29,888,485 to 30,620,360 (lead SNP: rs1003342, P=4.3x10-8). From the perspective
of Craig et al., 65 - 19 = 46 of the reported loci were novel, even though 20 of the IGGC’s loci
were replicated.

Similarly, of the 65 loci from Craig et al., 62 were replicated by our ML-based GWAS, but only 61
of the loci from the ML-based GWAS overlapped with a locus reported by Craig et al. A single
larger locus from the ML-based analysis on chromosome 3 spanning base pairs 98,486,551 to
100,810,114 (lead SNP: rs1871794, P=9.4x10-30) overlapped two smaller loci from Craig et al.:
one spanning 98,688,022 to 99,375,069 (lead SNP: rs4928176, P=4.5x10-15), and the second
spanning 100,593,266 to 100,869,589 (lead SNP: rs9827694, P=8.6x10-10). In both cases, two
nearby loci from an earlier study collapsed into a single larger locus in the later, better powered
study.

We describe a locus from an earlier study as having been replicated by a later study if it
overlaps at least 1 locus from the later study. Thus, 20 loci from IGGC were replicated by Craig
et al., and 62 loci from Craig et al. were replicated by the ML-based GWAS. We describe a locus

https://paperpile.com/c/z9gUiG/NFNi


from a later study as novel if it is not overlapped by a locus from any previous study. Among the
156 loci from the ML-based GWAS, 93 were novel, not overlapping with any locus reported by
either IGGC or Craig et al.

Fine-mapping
Fine-mapping of independent significant loci was performed via Sum of Single Effects
Regression (SuSiE; v0.9.0) (Wang et al. 2020), as implemented in R. Briefly, SuSiE identifies
the likely causal variants in a region using a variational approximation to Bayesian variable
selection regression. A posterior inclusion probability (PIP) is assigned to each SNP in the
locus, quantifying the probability that the SNP has a non-zero effect on the outcome. The sum of
PIPs for SNPs in a locus is the posterior expectation of the number of causal variants in that
locus. To estimate the total number of distinct genetic signals for ML-based VCDR detected in
our analysis, PIPs were aggregated across all loci where SuSiE reported no more than the
number of GWS variants in the locus. Loci where SuSiE reported more causal variants than
GWS variants were considered potentially unreliable. The number of causal variants in such loci
was conservatively estimated as the number of GWS variants in the locus, which is potentially
an underestimate. Moreover, uncommon SNPs (those with minor allele frequencies below 5%)
were removed from the fine-mapping analysis, some of which are likely causal. Nevertheless,
the estimated number of genetic signals for VCDR detected by our analysis was 813.

Ablation analysis
In order to assess the dependence of model quality on the training data size, we analyzed
model performance when trained on progressively smaller subsets of the full training data.
Predicted VCDR vs adjudicated VCDR correlations for different sets are depicted in Figure S6.
In particular, when training only on 10% of the data (~7,900 samples), the Pearson’s
correlations (ratio with regard to the original correlation) were 0.87 (94%), 0.87 (96%) and 0.83
(93%), for the Tune, Test, and UKB Adjudicated cohorts.

We also performed a GWAS using the “10% model” predictions, which identified 131
genome-wide significant loci, replicating 123 of the 156 loci identified by the full model. The
scatter plot of P-values for the ML-based GWAS and the 10% ablation GWAS are presented in
Figure S7.

Genomic discovery power analysis
To assess how the power for genomic discovery varied with phenotyping quality, we followed the
"Noisy Measurement Model" (Hormozdiari et al. 2016). Specifically, consider the following:

(1)

where Y is the true VCDR, X is genotype, and is an environmental residual. Suppose Y and X ϵ 
have been standardized to mean zero and variance one. Let h2 denote the per-SNP heritability,
then the residual variance is 1-h2. We do not observe the true VCDR, but instead a
mismeasured version Y*, which is related to Y via



(2)

where δ is mean-zero measurement error. Substituting (1) into (2) gives the variance
component model

(3)

From model (3) we can derive the asymptotic non-centrality parameter (NCP) of the standard
Wald χ2 test of association by considering a sequence of contiguous alternatives (Serfling 1980).
The NCP for the χ2 test based on Y* takes the simple form

where n is the sample size, ρ2 is the square of the correlation between the mismeasured Y* and
true Y phenotypes, and h2 is the true heritability of Y. Power and Non-Centrality Curves as a
function of per-SNP heritability, stratified by the correlation between the measured and true
phenotypes are shown in Figure S8.

Applying the above model to compare the “10% model” and the model trained on the entire
training set, at our GWAS sample size n=65,680, the difference in power between a GWAS
where the correlation between the observed and true VCDR measurements is 0.89 and a
GWAS where the correlation is 0.83 can reach as high as 15%.

Replication slope analysis
To jointly test the ML-based hits for replication of the IGGC VCDR meta-analysis, we first scaled
the effect size estimates of the ML-based GWAS results to account for winner’s curse. Winner’s
curse correction was performed by fitting a two-component Gaussian mixture model, as
described in supplemental section 5.3 of (Turley et al. 2018):

Here is the estimated effect size, is the prior probability of belonging to the null component,β
𝑗

^
π

is the sampling variance (i.e., squared standard error) of , and is the variance in effectσ
𝑗
2 β

𝑗

^
τ2

sizes at non-null SNPs. Model parameters were estimated by maximum likelihood using(π, τ2)
the expectation maximization algorithm (McCaw, Julienne, and Aschard 2020; Meng and Rubin
1993). The observed effect sizes were shrunk to their posterior expectation via:

where is the posterior responsibility of the null-component for SNP j:γ
𝑗



Winner’s curse correction was performed using all genotyped variants as input, with final model

parameter estimates of . We then identified 214 (of 299) ML-based(π = 0. 958, τ2 =  0. 000427)
hits additionally present in the IGGC VCDR meta-analysis and regressed the IGGC effect sizes
on the winner’s curse-corrected ML-based GWAS effect size estimates (Figure S9).

Meta-analysis
GWAS summary statistics for ML-based VCDR were combined with summary statistics from a
previous meta-analysis of VCDR by the International Glaucoma Genetics Consortium (IGGC)
using Meta-Soft (Han and Eskin 2011). The following strategy was adopted for selecting the final
P-value. At each SNP, the I2 statistic (Higgins and Thompson 2002) was calculated to quantify
the proportion of total variation across studies that was attributable to effect size heterogeneity.
For SNPs with I2 > 0, a random effects meta-analysis was performed, using Han and Eskin’s
“RE2” model (see URLs), whereas for those SNPs with I2 = 0, a fixed effects meta-analysis was
performed. Selecting whether to perform random or fixed effects meta-analysis on the basis of I2

is an effort to apply the most appropriate model for the observed effect sizes. Among the 8.6M
SNPs present in both studies, 68% had I2 = 0, while the remaining 32% had I2 > 0. For the 4.5M
SNPs present in our analysis but not in IGGC, the original P-value from the ML-based VCDR
GWAS was retained. The S-LDSC intercept was 1.06 (s.e.m=0.01) and the SNP-heritability h2g
was 0.37 (s.e.m=0.02).

Functional analyses with FUMA and GREAT
Functional analyses were performed in FUMA (Watanabe et al. 2017). We assigned each
variant to the nearest gene within 10kb using FUMA’s “SNP2GENE” functionality, and performed
gene-set enrichment analysis using FUMA’s “GENE2FUNC” functionality. In both cases, we
adopted the default parameter settings. We compared the relative enrichment of gene sets that
were significant according to both the ML-based and the Craig et al. GWAS of VCDR.
Specifically, enrichment refers to the odds that a gene in the gene-set was detected in a given
GWAS, and relative enrichment is the odds ratio comparing our GWAS with the Craig et al.
GWAS. Fisher’s exact test was applied to determine whether enrichment differed significantly
between the two studies. Those sets where the relative enrichment (odds ratio) exceeds 1
represent biologically interesting gene-sets where the ML-based GWAS captured more of the
constituent genes.

GREAT enrichment analyses were performed on the human GRCh37 assembly using GREAT
v4.0.4 (McLean et al. 2010). The default “basal+extension” region-gene association rule was
used with 5 kb upstream, 1 kb downstream, 1000 kb extension, and curated regulatory domains
included. Analyses were performed using the same loci as in the FUMA analyses described
above; 65 loci from Craig et al. and 156 loci from the ML-based GWAS. Terms were considered



statistically significant if the Bonferroni-corrected P-values for both the region-based and
gene-based tests were ≤ 0.05.

Phenome-wide association study (PheWAS) using OpenTargets
PheWAS analyses were performed using the OpenTargets website (see URLs) for all 299
ML-based VCDR hits. For any given variant (e.g., GWAS hit), OpenTargets reports a set of
phenotypes that are nominally significant (P < 0.05) for the variant. This analysis produced
62,753 (variant, phenotype) pairs, of which 974 pass a Bonferroni-corrected threshold (P <
0.05/(299 * 4645)) where 4,645 is the total number of phenotypes in OpenTargets. We observed
that 314 out of 974 significant (variant, phenotype) pairs are classified in the “Anthropometric
measurement” trait category and 101 of 974 are in the “Eye measurement” category. All
nominally significant pairs are reported in Table S10.

VCDR-IOP Mendelian Randomization
Two sample Mendelian randomization (MR) for the association between intraocular pressure
(IOP) and ML-based VCDR was performed using the TwoSampleMR (see URLs) package in R
(4.0.2). Among the 187 independent significant SNPs for IOP from (Khawaja et al. 2018), 183
remained after harmonizing with ML-based VCDR. This provided 183 candidate instrumental
variables for quantifying the association between IOP and ML-based VCDR. Based on
Cochran’s Q test, there was significant evidence of pleiotropy (P<10-16). Therefore, per-SNP
associations were meta-analyzed using Egger regression (Egger et al. 1997), which is robust to
the exclusion restriction (Bowden et al. 2017). The Egger intercept did not differ from zero
(intercept=0.001, P=0.69). The Egger slope of 0.07 (P=4×10-4) provided strong evidence of a
directional association between IOP and ML-based VCDR. In a reversed analysis, regarding
ML-based VCDR as the mediator and IOP as the outcome, the Egger slope was -0.03 (P=0.75),
providing no significant evidence of association in the opposite direction.

Polygenic VCDR Model
Pruning and thresholding
Pruning and thresholding-based polygenic risk scores for VCDR were computed as the
weighted sum of effect allele counts for independent genome-wide significant variants
(P≤5×10-8), where the weight of each variant was its estimated effect size from the GWAS
(Chatterjee, Shi, and García-Closas 2016). To evaluate performance both within the UK Biobank
and in the EPIC-Norfolk cohorts, index variants present in both cohorts were used in PRS
creation, resulting in 58 of the 76 published variants from Craig et al. GWAS and 282 of the 299
index variants from the ML-based GWAS. The UK Biobank evaluation set consisted of
adjudicated expert-annotated VCDR measurements in 2,076 individuals of European ancestry.
The EPIC-Norfolk evaluation set consisted of scanning laser ophthalmoscopy (HRT)-measured
VCDRs in 5,868 individuals.



Elastic net
Elastic net-based polygenic risk scores for VCDR were trained using the ML-predicted VCDR as
the target label in 62,969 individuals using scikit-learn (Pedregosa et al. 2011). The Craig et al.
model used 76 variants (the 58 described in the pruning and thresholding section above, plus
18 proxy variants present in both UK Biobank and EPIC-Norfolk that were in highest linkage
disequilibrium (R2≥0.6) with the 18 dropped Craig et al. variants) and the ML-based model used
the same 282 variants as described above. Each model was trained with 5-fold cross-validation
and L1-penalty ratios of [0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0]. Model evaluation was performed in
the same evaluation sets as described above. Both the UK Biobank and EPIC-Norfolk test sets
were scored using the plink --score command and the correlations were computed using the
scores in the resulting *.profile files.

Permutation P-values
A permutation test was applied to assess whether a polygenic risk score (PRS) trained using
summary statistics from the ML-based GWAS significantly outperformed a PRS trained using
summary statistics from the Craig et al. GWAS for predicting VCDR in the UK Biobank and
EPIC-Norfolk cohorts. Phenotypic predictions were generated from both PRS. The test statistic
was the difference in Pearson correlations between the observed and predicted phenotypes,
comparing ML-based with Craig et al. A value exceeding zero indicates better performance by
the ML-based PRS. Under the null hypothesis, the predictions from both PRS are
exchangeable. To obtain a realization from the null distribution, for each subject, the predictions
of the ML-based and Craig et al. PRS were randomly swapped, and the difference in
correlations was recalculated. This procedure was repeated 105 times to obtain the null
distribution. The one-sided P-value is given by the proportion of realizations from the null
distribution that were as or more extreme than the observed difference in correlations.

Glaucoma Association

Mediation Analysis
A mediation analysis was performed to estimate the association between ML-based VCDR and
glaucoma, as assessed by Gharahkhani et al (Gharahkhani et al. 2020). MR is a special case of
mediation analysis in which the SNPs have no direct effect on the outcome; that is, the effect of
genotype on the phenotype passes entirely through the mediator. Our mediation analysis differs
from MR in that, due to limited availability of summary statistics from Gharahkhani et al, the SNP
set was defined based on association with the mediator (ML-based VCDR) rather than the
outcome (glaucoma). Among the 118 independent, significant glaucoma SNPs identified by
Gharahkhani et al, 116 remained after harmonizing with the VCDR summary statistics available
from our study. As expected, Cochran's Q test provided strong evidence of pleiotropy (P<10-16),
and the Egger intercept of 0.04 (P=7×10-7) suggested that variants with tended to increase
VCDR also tended to increase the odds of glaucoma via an alternative pathway. The Egger



slope was 5.7 (P=3×10-3; Figure S16), which is interpreted as a log odds ratio, provides
substantial evidence that increased VCDR was associated with increased glaucoma odds. This
estimate of the association between VCDR and glaucoma remains valid, despite the presence
of pleiotropy, since Egger regression is robust to the exclusion restriction (Bowden et al. 2017).
In a reversed analysis using the same set of candidate SNPs, but regarding glaucoma as the
mediator and VCDR as the outcome, the Egger intercept was 0.00 (P=0.09), and the Egger
slope was 0.02 (P=0.07), providing no strong evidence of association in the opposite direction.

Glaucoma liability conditional analysis
One of the main advantages of the ML-based model is that we can apply our ML-based model
to different phenotypes without additional cost. We computed the glaucoma liability (ML-based
glaucoma) for the same set of individuals in UK Biobank for whom we had calculated VCDR as
described above. We performed GWAS on glaucoma liability (logit scale of glaucoma
probability), using BOLT-LMM, conditional on ML-based VCDR and all covariates included in the
ML-based VCDR GWAS. The LD score regression intercept was 1.00 (SE=0.001), with a
SNP-heritability of 0.06 (0.01). Moreover, QQ-plot is depicted in Figure S17.

UK Biobank glaucoma phenotype
UK Biobank participants who underwent an ophthalmic examination also completed an
ophthalmic touchscreen questionnaire and were considered to have POAG if they responded
"Glaucoma" to the question "Has a doctor told you that you have any of the following problems
with your eyes?". Participants were also considered to have POAG if they had a recorded
hospital episode statistic ICD 10 code for POAG (H40.1). Controls were defined as participants
who underwent the ophthalmic touchscreen questionnaire but did not meet the criteria to be a
case. Additionally, we excluded participants with an ICD 9/10 hospital episode statistic code for
types of glaucoma types other than POAG (ICD 9: 365.*; ICD 10: H40.0, H40.2, H40.3, H40.4,
H40.5, H40.6, H40.8, H40.9, H42.*), participants meeting the case criteria but reporting an age
of glaucoma onset prior to 30 years, and participants reporting glaucoma laser treatment or eye
surgery but not reporting glaucoma on the touchscreen questionnaire. Applying these criteria,
there were 7,654 cases and 182,726 controls.

EPIC-Norfolk cohort
The European Prospective Investigation into Cancer (EPIC) study is a pan-European
prospective cohort study designed to investigate the etiology of major chronic diseases (Riboli
and Kaaks 1997). EPIC-Norfolk, one of the UK arms of EPIC, recruited and examined 25,639
participants between 1993 and 1997 for the baseline examination (Day et al. 1999).
Recruitment was via general practices in the city of Norwich and the surrounding small towns
and rural areas, and methods have been described in detail previously (Hayat et al. 2014).
Since virtually all residents in the UK are registered with a general practitioner through the
National Health Service, general practice lists serve as population registers. Ophthalmic



assessment formed part of the third health examination and this has been termed the
EPIC-Norfolk Eye Study (Khawaja et al. 2013).

In total, 8,623 participants were seen for the Eye Study between 2004 and 2011. Ophthalmic
examination included tonometry (Ocular Response Analyzer; Reichert, New York, USA;
software V.3.01), optic disc photography (Nikon D80 camera; Nikon Corporation, Tokyo, Japan),
scanning laser ophthalmoscopy (Heidelberg Retinal Tomograph 3; Heidelberg Engineering,
Heidelberg, Germany) and nerve fiber layer assessment (GDx-VCC; Zeiss, Dublin, California,
USA). Participants meeting pre-defined criteria and an additional 1:10 participants underwent
automated visual field testing (Humphrey 750i Visual Field Analyzer; Carl Zeiss Meditech Ltd,
Welwyn Garden City, UK). 99.7% of EPIC-Norfolk are of European descent. The EPIC-Norfolk
Eye Study was carried out following the principles of the Declaration of Helsinki and the
Research Governance Framework for Health and Social Care. The study was approved by the
Norfolk Local Research Ethics Committee (05/Q0101/191) and East Norfolk & Waveney NHS
Research Governance Committee (2005EC07L). All participants gave written, informed
consent.

Ascertainment of POAG in the EPIC Norfolk third health examination has been described
previously (Chan et al. 2017). In brief, participants with study results suspicious of glaucoma
(using pre-defined criteria) were referred for further examination by a glaucoma specialist at the
regional University Hospital (Khawaja et al. 2013). Additionally, a diagnosis refinement process
was undertaken by a second glaucoma specialist who independently reviewed the test results of
all participants classified as glaucoma and a proportion of participants who were not classified
as having glaucoma. POAG was defined as the presence of a glaucomatous optic disc together
with either a corresponding visual field defect or otherwise unexplained non-specific visual field
loss, open angles on gonioscopy, and absence of secondary causes of glaucoma. A
glaucomatous disc was defined as one with focal or diffuse neuro-retinal rim thinning, and may
possess, though not necessary for the definition, additional characteristic features such as
bared circumlinear vessels, disc hemorrhages or nerve fiber layer defects. Pseudoexfoliative
and pigmentary glaucoma were defined as secondary glaucoma in this study and therefore did
not contribute to POAG cases. We defined controls as participants not meeting referral criteria
for glaucoma on initial ophthalmic assessment and participants who attended the University
Hospital for further examination and were not classified as having or being suspect for any type
of glaucoma or ocular hypertension.

Initial genotyping on a small subset of EPIC-Norfolk was undertaken using the Affymetrix
GeneChip Human Mapping 500K Array Set and 1,096 of these participants contributed to the
IGGC meta-analysis (Springelkamp et al. 2017). Subsequently, the rest of the EPIC-Norfolk
cohort were genotyped using the Affymetrix UK Biobank Axiom Array (the same array as used
in UK Biobank); it is 5,868 of these participants (which includes no overlap with the 1,096
participants contributing to the IGGC meta-analysis) that contributed to the EPIC-Norfolk
analyses in the current study. SNP exclusion criteria included: call rate < 95%, abnormal cluster
pattern on visual inspection, plate batch effect evident by significant variation in minor allele
frequency, and/or Hardy-Weinberg equilibrium P < 10-7. Sample exclusion criteria included:



DishQC < 0.82 (poor fluorescence signal contrast), sex discordance, sample call rate < 97%,
heterozygosity outliers (calculated separately for SNPs with minor allele frequency >1% and
<1%), rare allele count outlier, and impossible identity-by-descent values. We removed
individuals with relatedness corresponding to third-degree relatives or closer across all
genotyped participants. Following these exclusions, there were no ethnic outliers. Imputation
was carried out using the HRC v1.

Quality control for HRT3 images included requiring a topography SD > 40 µm and checking of
the manually drawn optic disc margin contours by an ophthalmologist (with redrawing if
necessary). The mean HRT3 VCDR of right and left eyes was considered as the participant's
VCDR if good quality scans were available for both eyes. If a good quality scan was only
available for one eye, the VCDR value for that eye was considered for the participant.

Model hyper-parameters
The hyper-parameters used very closely follow (Krause et al. 2018; Phene et al. 2019):

● Inception V3 architecture initialized with pretrained ImageNet weights
● Weight decay: an L2 kernel regularization penalty of 0.00004 applied to all 2D

convolution and dense layers
● Input image resolution: 587 x 587
● Learning rate: 0.001 with an exponential decay rate of 0.99 every two epochs
● Optimizer: Adam optimizer with a 1st moment exponential decay rate, i.e., beta_1, of

0.9, a 2nd moment exponential decay rate, i.e., beta_2, of 0.999, and an epsilon of 0.1
● Model averaging: checkpoints were taken using a moving average of trainable

parameters in the network, i.e., tfa.optimizers.MovingAverage, with an average
decay of 0.9999

● Maximum training steps: The model was trained for 250,000 steps
● Early stopping checkpoint frequency: Model evaluation occurred every 500 steps and

checkpoints monitored VCDR MSE
● Batch size: 16
● Data augmentation:

○ Random horizontal and vertical reflections
○ Random brightness changes (with a max delta of 0.1147528)

[tf.image.random_brightness]
○ Random saturation changes between 0.5597273 and 1.2748845

[tf.image.random_saturation]
○ Random hue changes (with a max delta of 0.0251488) [tf.image.random_hue]
○ Random contrast changes between 0.9996807 and 1.7704824

[tf.image.random_constrast]

Full details are available in the learning/ section of the associated open-source repository:
https://github.com/Google-Health/genomics-research/tree/main/ml-based-vcdr

https://github.com/Google-Health/genomics-research/tree/main/ml-based-vcdr
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