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Abstract

The study of knot concordance for smooth knots is a classical and essential

problem in knot theory, an important field in topology since the mid 1800s.

Two knots are said to be concordant if they jointly form the boundary of a

cylinder in four-dimensional Euclidean space. This project studies the variant

most relevant to symplectic geometry, called Lagrangian concordance, in which

we ask for the knots to be Legendrian and for them to bound a Lagrangian

surface. We ask which knots are Lagrangian concordant to and from the

standard Legendrian unknot and find obstructions coming from the cyclic p-

fold branched covers of these knots. We restrict large classes of closures of 3-

braids from candidacy using a variety of techniques from smooth, symplectic,

and contact topology. For the remaining family of braids, we draw Weinstein

diagrams of symplectic fillings of their double covers. We use the Chekanov-

Eliashberg differential graded algebra of the links in these diagrams to compute

the symplectic homology of these fillings in order to obstruct the last of these

3-braids.
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Impact Statement

The research in this thesis impacts various fields of mathematics. Mainly,

we answer questions about symplectic and contact topology. Our main re-

sult is the symplectic version of a long standing problem in smooth topology.

It is proved using both classical tools from smooth topology and new techno-

logy from symplectic and contact geometry including the Chekanov-Eliashberg

DGA, open book decompositions, Lefschetz fibrations, and symplectic homo-

logy. We contribute to the understanding of Lagrangian cobordisms, which

are of great interest to modern symplectic geometers as they form the building

blocks of many currently studied mathematical structures including symplectic

field theory, Legendrian contact homology, and the wrapped Fukaya category.

Our results also give insight to the topology of contact manifolds.
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Chapter 1

Introduction

Knot concordance was first defined by Fox and Milnor in [FM66] as a way

to endow topological knots with a group structure. Since then, the study of

knot concordance for smooth knots has become a classical and essential pro-

blem in low dimensional topology where many easily asked questions regarding

knot concordance have not still not been answered. Two knots are said to be

smoothly concordant if they jointly form the boundary of a smooth cylin-

der in four-dimensional Euclidean space. We study a variant of the problem of

concordance defined in the symplectic setting by Chantraine [Cha10] called La-

grangian concordance. By bringing concordance to this setting, we can tackle

questions by combining the geometric properties of symplectic manifolds with

classical obstructions to smooth concordance. Lagrangian concordance asks

for the boundary knots to be Legendrian in a contact manifold, and for the

cylinder to be Lagrangian in a symplectic manifold. If the Lagrangian surface

between the two boundary Legendrians has higher genus, this is a Lagrangian

cobordism.

Beyond its applications in smooth topology, Lagrangian cobordisms be-

tween Legendrian submanifolds have been studied in symplectic and contact

topology due to their key role in symplectic field theory [EY00]. Indeed, La-

grangian cobordisms were first defined to construct a category whose objects

are Legendrian submanifolds and whose morphisms are given by the exact

Lagrangian cobordisms. This led to the development of a new invariant by
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Chekanov and Eliashberg [Che02, Eli98], a differential graded algebra that

was used to distinguish between two knots that were not distinguishable by

classical invariants. The homology of this differential graded algebra, called

Legendrian contact homology gives a functor from the category of Legendrians

to the category of these differential graded algebras. The study of Lagrangian

cobordisms has also led to the development of the wrapped Fukaya category

[FSS08].

With this motivation, a lot of recent work aims to understand the structure

and behaviour of the Lagrangian cobordism relation. The basic question we

ask is the following:

Question 1.0.1. Let Λ− and Λ+ be Legendrian knots. When does there exist

a Lagrangian cobordism from Λ− to Λ+?

To make the problem tractable, we may study specific kinds of Lagran-

gian cobordisms. For example we can consider decomposable Lagrangian co-

bordisms, which are built out of some elementary moves [BLL+20]. In our

case, we limit the cobordism by its genus and ask:

Question 1.0.2. Let Λ− and Λ+ be Legendrian knots. When does there exist

a Lagrangian concordance from Λ− to Λ+?

Studying this question in the symplectic setting has produced results in

smooth topology. For instance in [Cha10], Chantraine deduces a criterion to

compute the slice genus of some knots.

To formally define Lagrangian concordance, we begin with some basic

definitions to describe the symplectic setting:

Definition 1.0.3. A symplectic manifold (X,ω) is a smooth 2n-dimensional

manifold X equipped with a closed nondegenerate 2-form ω.

Let (X1, ω1) and (X2, ω2) be symplectic manifolds of equal dimension. A

symplectomorphism ϕ : X1 → X2 is a diffeomorphism such that ϕ∗ω2 = ω1.

Definition 1.0.4. A Lagrangian submanifold of a 2n-dimensional symplectic

manifold (X,ω) is an n-dimensional submanifold L of X such that ω|L = 0.
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Definition 1.0.5. A 3-dimensional contact manifold is an oriented 3-manifold

M along with a contact structure which is a completely nonintegrable plane

field ξ ⊂ TM . This means that for each x ∈M , we associate a 2-dimensional

subspace ξx ⊂ TxM , ξx = ker(αx) where α is a 1-form and α ∧ dα > 0.

For example, consider R3 with the standard contact structure:

ξstd = ker(dz − ydx) = span

{
∂

∂y
,
∂

∂x
+ y

∂

∂z

}
.

The contact planes for this contact structure are pictured in Figure 1.1. By

Darboux’s Theorem, all contact structures look locally like (R3, ξstd).

Figure 1.1: The standard contact structure on R3 [Msr09].

Next we define the knots found in contact manifolds which are compatible

with the ambient contact structure.

Definition 1.0.6. Let (M3, ξ) be a contact manifold. A Legendrian knot Λ is

an embedded S1 tangent to ξ, ie. TxΛ = ξx for all x ∈ Λ.

For Lagrangian concordance, we restrict the setting to Legendrian knots

in R3 with the standard contact structure kerα, α = dz − ydx. Let R4 be the

symplectization of R3, Rt × R3 with the symplectic form ω = d(etα).

Definition 1.0.7. [Cha10] Let Λ+,Λ− ⊂ R3 be Legendrian knots where R3

is equipped with the standard contact structure ξ = ker(α). A Lagrangian

cobordism from Λ− to Λ+ is a Lagrangian L embedded in R4 such that

((−∞,−T )× R3) ∩ L = (−∞,−T )× Λ−
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Figure 1.2: A Legendrian knot which is concordant from but not to the standard
tb = −1 unknot U .

and

((T,∞)× R3) ∩ L = (T,∞)× Λ+

for some T ≥ 0.

Definition 1.0.8. If a Lagrangian cobordism has zero genus, then we call it a

Lagrangian concordance. If there is a Lagrangian concordance from Λ− to Λ+,

we write Λ− ≺ Λ+ and say that Λ− is Lagrangian concordant to Λ+.

In [Cha10], Chantraine showed that Legendrian isotopic Legendrian knots

are Lagrangian concordant, and that Lagrangian concordance can be ob-

structed by classical Legendrian knot invariants: the rotation number and

the Thurston-Bennequin number. Lagrangian concordance is both reflexive

and transitive, suggesting that as a relation, it is potentially a partial order on

Legendrian knots. In [Cha13], it is proved that Lagrangian concordance is not

symmetric. This is by an explicit construction of a Lagrangian concordance

from the maximum Thurston Bennequin number (tb = −1) unknot U to the

knot Λ in Figure 1.2 and a proof via augmentations of the Chekanov-Eliashberg

DGA that no concordance from Λ to U exists.

It is not known if Lagrangian concordance is antisymmetric, ie. if Λ1 ≺

Λ2 ≺ Λ1,, then Λ1 is Legendrian isotopic to Λ2. As a first step to understanding

the potential antisymmetry of this relation, we pose the following question

about the simplest case:

Question 1.0.9. Which Legendrian knots Λ satisfy U ≺ Λ ≺ U (as in Figure

1.3)?

The answer to this question is not known. Even simpler, it is not known

whether any knot is Lagrangian concordant to the standard tb = −1 unknot
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U , other than U itself. We know that if a Legendrian knot Λ satisfies U ≺ Λ,

then U can be filled at the negative end by a Lagrangian disk. The result

is a Lagrangian filling of Λ with genus zero. Boileau and Orevkov showed

that any such Λ must be quasipositive [BO01], meaning it is the closure of

a braid consisting of conjugates of positive generators. Furthermore, Λ must

be smoothly slice, meaning it bounds a smooth disk in B4. Thus, to obstruct

concordance from the unknot, we can use smooth obstructions to sliceness.

Cornwell, Ng, and Sivek [CNS16] answer Question 1.0.9 in a special case.

They show that no nontrivial Λ can have a decomposable Lagrangian concor-

dance to U . They also provide many obstructions to and examples of Lagran-

gian concordance. For example, if Λ has at least two normal rulings, then

Λ ⊀ U .

Λ UU

S3

C2C1

S3S3

Rt × S3

Figure 1.3: A Lagrangian concordance C1 from U to Λ glued to a Lagrangian
concordance C2 from Λ to U .

The main result of this thesis gets us closer to an answer to Question

1.0.9. We provide a new obstruction to the double concordance U ≺ Λ ≺ U

on the topological knot type of Λ:

Theorem 5.4.3. Let U be the standard tb = −1 unknot. Let Λ be a Le-

gendrian knot satisfying U ≺ Λ ≺ U , and Λ 6= U . Then Λ cannot be smoothly

the closure of a 3-braid.
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Figure 1.4: A braid (with crossings in the blue box) and its closure.

Braids are a tractable way to think about knots. The n-stranded braids

physically consist of n strings which weave over and under each other with

fixed ends. Their properties are captured by the Artin braid group Bn given

by the presentation:

〈σ1 . . . σn−1 | σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n, σiσj = σjσi for |i · j| ≥ 2〉.

Individual braids can be represented by braid words consisting of these σi’s

which indicate a positive crossing of the i + 1th string over the ith string.

From an n-stranded braid, we can easily obtain its closure: the knot or link

we get by identifying or “closing up” the fixed ends of the strings, see Figure

1.4. Likewise, every link in S3 is the closure of some n-braid [Ale23]. Braids

which are conjugate have isotopic closures.

The 3-stranded braids are particularly tangible because we can write them

down explicitly. In [Mur74], Murasugi found representatives for all conjugacy

classes of 3-braids, allowing us to list all such links as the closures of one of

the three following braid words:

1. (σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−ak
2 for a1, . . . , ak ≥ 0,

2. (σ1σ2)3dσm2 for m ∈ Z,

3. (σ1σ2)3dσk1σ
−1
2 for k = −1,−2,−3.
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Figure 1.5: Going from left to right, a positive Markov move (or stabilization) and
from right to left its inverse (or de-stabilization).

for d ∈ Z.

Bennequin [Ben83] showed that any conjugacy class of braids can be closed

in a natural way to produce a transverse knot in (S3, ξstd), and that every

transverse knot is transversely isotopic to a closed braid. In [OS03, Wri02], the

Markov Theorem for transverse knots is proved, showing that two transverse

closed braids that are isotopic as transverse knots are also isotopic as transverse

braids. More precisely:

Theorem 1.0.10. [OS03, Wri02] Two braids represent transversally isotopic

links if and only if one can pass from one braid to another by conjugations in

braid groups, positive Markov moves, and their inverses.

Markov moves, also called positive or negative stabilizations, are an ope-

ration on braids that increases the number of strands but preserves the to-

pological knot type of the braids. These moves take a braid B in Bn to a

braid B′ in Bn+1 by B′ = Bσ±1
n , see Figure 1.5. They are called positive when

the added crossing is positive (σn), and negative when the added crossing is

negative (σ−1
n ).

Using conjugations and positive Markov moves (and their inverses), Hay-

den proves the following:

Theorem 1.0.11. [Hay18] Every quasipositive link has a quasipositive repre-

sentative of minimal braid index.
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Remark 1.0.12. Thus every transverse representative given by a quasipositive

link type is transversely isotopic to a transverse quasipositive braid of minimal

braid index. In our case, if a quasipositive knot has braid index 3, then any

quasipositive transverse representative of that smooth knot type is transversely

isotopic to a transverse 3-braid. For a candidate Λ satisfying U ≺ Λ ≺ U , we

obtain a transverse knot Λ′ which is a positive push off of Λ. If Λ is smoothly

the closure of a 3-braid, then so is Λ′. We will obstruct the transverse braid

Λ′ in order to obstruct Λ.

We first eliminate Murasugi braids of type 2 and 3 by using obstructions

to smooth concordance. We will then reframe the problem of Lagrangian

concordance as one of fillings of Σp(Λ
′), the p-fold cyclic cover of S3 branched

over Λ′. This construction is used to obtain the following obstructions:

Theorem 3.1.5. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

any p-fold cyclic branched cover Σp(Λ
′) of S3 branched over the transverse

push-off Λ′ of Λ embeds as a contact type hypersurface in (B4, ξstd). Moreover,

Σp(Λ
′) is Stein fillable and has a Stein filling which embeds in (B4, ξstd).

Theorem 3.1.6. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

any filling of the p-fold cyclic branched cover Σp(Λ
′) of S3 branched over the

transverse push-off Λ′ must embed in a blow up of B4 and must have negative

definite intersection form.

We restrict to the double cover to obtain further obstructions. For instance

the following:

Theorem 3.3.2. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

the contact cyclic branched double cover (Σ2(Λ′), ξ) of S3 branched over the

transverse push-off Λ′ of Λ has

d3(ξ) = −1

2
.

Here, d3 is Gompf’s 3-dimensional invariant on 2-plane fields. It was

defined and proved to be an invariant in [Gom98]. Theorem 1.2 of [Pla06]
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states that for Λ′ a transverse knot and (Σ2(Λ′), ξ) the double cover of S3

branched over Λ′, d3(ξ) is completely determined by the topological link type

of Λ′ and its self-linking number sl(Λ′). Indeed, Plamenevskaya’s work [Pla06]

gives an algorithm to produce the contact surgery diagram of Σ2(Λ′). From

there we can use work of Ding, Geiges, and Stipsicz (Corollary 3.6 of [DGS04])

to explicitly compute d3 from the Legendrian link in the surgery diagram. For

our obstruction, we compute d3 using Theorem 3.1.5 and formulas from Ito

[Ito17].

We are able to obstruct Murasugi type 2 and 3 braids using smooth ob-

structions to sliceness. In particular we show that the closure of these braids

is either not quasipositive (and thus not Lagrangian fillable) or that they are

strongly quasipositive, which as observed by Rudolph [Rud93], implies they

are not slice by a result of Kronheimer and Mrowka [KM93].

Using Theorem 3.3.2, we can restrict the family of Murasugi type 1 braids

to a small family. We produce the following obstruction on the remaining

braids of Murasugi type 1:

Corollary 3.3.7. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , and

Λ′, the transverse pushoff of Λ, is the closure of a 3-braid β, then the algebraic

length of β is 2.

We study particular fillings of Σ2(Λ′) by drawing their Weinstein hand-

lebody diagrams [Wei91]. Weinstein diagrams are the symplectic analogue to

Kirby diagrams. They are used to illustrate a symplectic version of handle

decomposition. In 4-dimensions, we depict 1-handles as pairs of balls or walls

(ie. as a pair of line segments), and 2-handles as Legendrian knots. Sur-

gery diagrams and Weinstein diagrams are related by replacing 1-handles with

(+1)-surgery components. As stated previously, one way to obtain these sur-

gery diagrams for Σ2(Λ′) is through the algorithm laid out in [Pla06, HKP08]

by Harvey, Kawamuro, and Plamenevskaya. To avoid linked positive surgery

components, which cannot be easily transformed to 1-handles, we obtain Wein-

stein diagrams in an alternative way by adapting the recipe laid out by Casals
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Figure 1.6: A Weinstein filling of Σ2(Λ′). The shaded blue and shaded green re-
present parallel strands of a single Legendrian link in S1 × S2.

and Murphy in [CM19]. We prove the following theorem:

Theorem 4.3.2. Let Λ be a Legendrian knot which is the closure of a quasi-

positive 3-braid of algebraic length 2. Let Λ′ be a positive transverse push off

of Λ. Then there is a filling of Σ2(Λ′), the double cover of S3 branched over Λ′,

given by the handle decomposition consisting of a single 1-handle and a single

2-handle pictured in Figure 1.6.

We use these Weinstein diagrams to compute the symplectic homology

of the filling, via the Chekanov-Eliashberg differential graded algebra of the

Legendrian attaching sphere depicted in the diagram. The homology of the

Chekanov-Eliashberg differential graded algebra, called the Legendrian contact

homology was introduced by Chekanov and Eliashberg [Che02, Eli98], and was

the first non-classical Legendrian link invariant. The differential graded algebra

is generated by Reeb chords in a Legendrian link in R3, and the differential

counts holomorphic disks in R × R3. A Z-graded version of the Chekanov-

Eliashberg differential graded algebra was defined by Etnyre, Ng, and Sabloff

[ENS+02], and a version of this differential graded algebra was defined for

links in #m(S1×S2) by Ekholm and Ng [EN15], counting an infinite family of

generators coming from Reeb chords in the 1-handles. The differential graded

algebra was then simplified by Etgü and Lekili [EL19] who showed that the

internal DGA of a given 1-handle is generated by a subalgebra consisiting

of finitely many generators. The Chekanov-Eliashberg DGA can be used to

compute invariants of the Weinstein manifolds which correspond to handle

attachments along these links. In particular, we will use the DGA to compute

the symplectic homology of the filling of Σ2(Λ′) following work of [BEE12] and

show:
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Theorem 5.3.4. Let Λ 6= U be a Legendrian knot which is the closure of

a quasipositive 3-braid of algebraic length 2. Let Λ′ be a positive transverse

push off of Λ. Then there is a filling of Σ2(Λ′), the double cover of S3 branched

over Λ′, which has nonvanishing symplectic homology.

The main result of the thesis (Theorem 5.4.3) will follow from an argu-

ment showing that a filling of Σ2(Λ′) cannot embed in B4. A corollary of

this result may be of separate interest. In [MT20], Mark and Tosun pose the

following question: which smooth, oriented manifolds can be realized, up to

diffeomorphism, as contact type hypersurfaces in R2n with the standard sym-

plectic structure? In their paper, they rule out a large class of 3-dimensional

homology spheres from arising as contact type hypersurfaces in R4, specifically

the Brieksorn spheres. The following result provides another infinite family of

contact manifolds which are rational homology spheres but do not embed in

R4.

Corollary 5.4.5. Let Σ2(Λ′) be the double cover of S3 branched over a qua-

sipositive transverse knot which is the closure of a 3-braid of algebraic length

2. Suppose Λ′ is not the unknot. Then Σ2(Λ′) does not embed as a contact

type hypersurface in R4.

1.1 Structure of the thesis

Chapter 2 introduces some basic concepts regarding Symplectic fillings, Le-

gendrian and transverse knots, as well as background on Weinstein manifolds

and their handlebody diagrams. In Chapter 3, we build some basic obstructi-

ons from fillings using the concordance U ≺ Λ ≺ U . We then use both smooth

and contact/symplectic properties to eliminate large families of 3-braids from

concordance, reducing the problem to studying the family of quasipositive

3-braids with algebraic length 2. In Chapter 4, we produce open book decom-

positions of the double covers of the knots in this remaining family of 3-braids

from which we produce Weinstein Lefschetz fibrations of a filling of these dou-

ble covers. We then draw the Weinstein handlebody diagrams for these fillings.
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In Chapter 5, we compute the Chekanov-Eliashberg differential graded algebra

of the Legendrian attaching spheres of these Weinstein handlebody diagrams.

We use this to prove that these fillings have non-zero symplectic homology,

and we use this fact to prove the main theorem. In Chapter 6, we summa-

rize some results from [ACSG+20a, ACSG+20b] written in collaboration with

Bahar Acu, Orsola Capovilla-Searle, Agnes Gadbled, Aleksandra Marinkovic̀,

Emmy Murphy, and Laura Starkston. This work develops a technique for

drawing Weinstein handlebody diagrams for a certain class of symplectic ma-

nifolds.



Chapter 2

Background

This section begins with some background material on symplectic and contact

geometry and the tools which we will apply to the Lagrangian concordance

problem.

2.1 Symplectic fillings

We begin with some background on symplectic fillings.

Definition 2.1.1. Let (X,ω) be a compact connected symplectic manifold

with boundary M . A Liouville vector field V on (X,ω) is a vector field which

points transversely outwards at ∂X = M satisfying LV ω = ω. A Liouville

form λ is a 1-form such that dλ = ω. A Liouville vector field V induces a

Liouville contact form λ on M , where λ = ιV ω|M . If the Liouville vector field

exists globally on (X,ω), then we call (X,ω) a Liouville domain or an exact

symplectic filling of (M, ξ), where ξ = ker(λ).

Note that the flow of a Liouville vector field dilates the symplectic form.

When a vector field points transversally outwards at a boundary, we call this

boundary convex, and when it points inwards, we call this concave. When we

have a convex or concave boundary component, it naturally inherits a contact

structure, and this contact structure determines the symplectic form in a collar

neighborhood of the boundary. We now formally define the different kinds of

symplectic fillings.

Definition 2.1.2. Let (M, ξ) be a contact manifold.
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1. We say (X,ω) is a weak filling of (M, ξ) if ω|ξ > 0.

2. We say (X,ω) is a strong filling of (M, ξ) if there is a Liouville vector

field V defined near ∂X.

3. We say (X,ω) is a exact filling if V extends globally over X, in which

case ιV ω defines a global primitive of ω.

4. We say (X,ω) is a Stein filling if it comes with an integrable complex

structure J , and admits a plurisubharmonic function φ : X → [0,∞)

for which ∂X is a regular level set, and V is the gradient ∇φ, and ω =

−ddCφ.

We can think of the filling of a contact manifold (M, ξ) as a sort of sym-

plectic cobordism from the empty manifold to (M, ξ). Similarly, a symplectic

cobordism from (M, ξ) to the empty manifold is called a symplectic cap.

Definition 2.1.3. We say that a contact manifold (M3, ξ) is overtwisted if

there is a contact embedding of an overtwisted disk (a disk whose boundary

is tangent to ξ, and whose interior is transverse to ξ everywhere except at one

point) into (M, ξ).

A contact manifold that is not overtwisted is called tight.

Overtwisted manifolds are not fillable. Any fillable contact manifold is

tight, though not every tight contact manifold is fillable [EH02]. In fact, we

have the following hierarchy of fillability criteria:

Stein fillable ( exactly fillable ( strongly fillable ( weakly fillable ( tight.

2.2 Knots in contact manifolds

2.2.1 Legendrian knots

We defined Legendrian knots in the introduction; we now go into some detail.

For a more thorough treatment, see [Etn03]. As stated in the introduction,
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locally, every contact manifold looks like (R3, ξstd). Hence for visualization

and intuition, it is convenient to consider a Legendrian L in (R3, ξstd). We

parametrize L by the smooth immersion φ : S1 → R3 : θ 7→ (x(θ), y(θ), z(θ)),

and since L is tangent to ξ = ker(dz − ydx),

z′(θ)− y(θ)x′(θ) = 0. (2.1)

Definition 2.2.1. We say two knots L and L′ are Legendrian isotopic if there

is a continuous family Lt, t ∈ [0, 1] of Legendrian knots such that L0 = L and

L1 = L′.

Equivalently, L and L′ are Legendrian isotopic if there is a one parameter

family φt : M →M , t ∈ [0, 1], of contactomorphisms of M such that φ0 is the

identity map and φ1(L) = L′.

To visualize Legendrian knots diagrammatically, we consider the front

projection of the knot L, which is its image under the map

π : R3 → R2 : (x, y, z) 7→ (x, z).

Then π(L) is parametrized by φπ : S1 → R2 : θ 7→ (x(θ), z(θ)). Note that

π(L) cannot have any vertical tangencies since the equation (2.1) implies that

if x′(θ) = 0, then z′(θ) = 0. Note also that because of equation (2.1), we can

recover the y coordinate of L by taking the slope

y(θ) =
z′(θ)

x′(θ)

when x′(θ) 6= 0, and

y(θ) = lim
σ→θ

z′(σ)

x′(σ)

otherwise. Given a front projection, this also means that at each crossing, the

order of the strands can be determined by their slopes with the more negatively

sloped strand in front.

As in the case of topological knots, Legendrian knots in the front pro-
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Figure 2.1: Front projections of a Legendrian unknot, trefoil, and figure 8 knot.

jection are related by a series of Reidemeister moves.

Theorem 2.2.2. Two front diagrams are Legendrian isotopic if and only if

they are related by regular homotopy and a sequence of Legendrian Reidemeis-

ter moves (See Figure 2.2).

We call the moves in Figure 2.2 Reidemeister 1, Reidemeister 2, and Rei-

demeister 3, respectively.

Figure 2.2: Legendrian Reidemeister moves in the front projection (along with
rotations of these diagrams 180◦ about each axis).

Another important projection to consider is the Lagrangian projection

π : R3 → R2 : (x, y, z) 7→ (x, y).

Parametrizing a Legendrian knot L by φ as above gives a parametrization

of π(L) by φ(θ) = (x(θ), y(θ)). By equation (2.1) the z coordinate can be

recovered by integration in the other two coordinates up to overall translation

in the z-direction. Choosing some z0 = z(0), we get:

z(θ) = z0 +

∫ θ

0

y(t)x′(t)d(t).
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Note that since the z coordinate must go back to itself along the knot, Green’s

theorem implies that the Lagrangian projection bounds a signed area of zero.

A diagram of an unknot without a crossing cannot be a Lagrangian pro-

jection. The Lagrangian projection is particularly useful when computing

the Chekanov-Eliashberg DGA and the Legendrian Contact Homology of a

Legendrian link [BEE12, Ekh19, EL17, EN15]. We will describe this compu-

tation in Chapter 5.

Figure 2.3: Lagrangian projections of a Legendrian unknot, trefoil and figure 8
knot.

We also have Reidemeister moves in the Lagrangian projection, which

yield a weaker result.

Theorem 2.2.3. Two Lagrangian diagrams are Legendrian isotopic only if

they are related by regular homotopy and a sequence of Legendrian Reide-

meister moves as illustrated in Figure 2.4.

Note that unlike the case of the front projection, these moves are not

sufficient to guarantee Legendrian isotopy.

Figure 2.4: Legendrian Reidemeister moves in the Lagrangian projection (along
with rotations of these diagrams 180◦ about each axis).

Additionally, there is a method of diagramatically translating between the

front and Lagrangian projections of a Legendrian knot.
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Theorem 2.2.4. [Ng03] Given a front projection of a Legendrian knot L, we

can obtain a diagram isotopic to the Lagrangian projection by altering cusps

in the front diagram as in Figure 2.5.

These moves will become an important part of computing the Chekanov-

Eliashberg DGA for certain Legendrian links.

Figure 2.5: Left cusps become loops and right cusps are smoothed out to translate
between the front and Lagrangian projections of the same knot.

As with smooth knots, we can attempt to understand Legendrian knots by

looking at their invariants. In fact the first invariant of a Legendrian knot to

note is the smooth type of the knot. The second is comes from the “twisting”

of the ambient contact structure about the knot.

Definition 2.2.5. For any contact manifold equipped with a contact 1-form α,

there is a vector field V called the Reeb vector field, determined by iV (dα) = 0

and α(V ) = 1. On the standard contact R3, this is the vector field ∂
∂z

. Let L

be a Legendrian link. We define a Reeb chord of L to be an integral curve for

the Reeb vector field with both endpoints on L.

Definition 2.2.6. Let L be a Legendrian knot in (M, ξ). Let V be the Reeb

vector field. Then V is a vector field transverse to ξ along L. The Thurston-

Bennequin number tb(L) is the linking number of L with a pushoff of L in the

z-direction. Given a front diagram, this is easily computed as

tb(L) = writhe(L)− 1

2
(the number of cusps in L).

In the Lagrangian projection, tb(L) = writhe(L).
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Given a Legendrian knot L, we can can obtain another Legendrian knot of

the same topological knot type via a process called stabilization. Let L ⊂ R3

and view it in the front projection. A stabilization of L is removing a strand

and replacing it with a zigzag as in Figure 2.6. If the zigzag is pointing down

(where down cusps are added) then the stabilization S+(L) is called positive,

and if the zigzag is point up (where up cusps are added) then the stabilization

S−(L) is called negative.

Figure 2.6: Positive and negative stabilizations in the front projection.

The Thurston-Bennequin number of a stabilized knot is tb(S±(L)) =

tb(L) − 1. Eliashberg showed in [Eli92] that this number is bounded above

by proving the Bennequin-Eliashberg inequality which says: if (M, ξ) is a tight

contact 3-manifold, let L be a Legendrian knot in M with Seifert surface Σ(L).

Then

tb(L) + |rot(L)| ≤ χ(Σ(L)),

where rot(L) denotes the rotation number of the knot, an invariant given by the

“winding number”of L in R2. In the front diagram, rot(L) is easily computed

as:

rot(L) =
1

2
(D − U)

where D denotes the number of down cusps and U the number of up cusps.

Thus the maximum Thurston-Bennequin number is a knot invariant for smooth

knots.

2.2.2 Transverse knots

Closely related to Legendrian knots are knots which are not tangent but trans-

verse to a contact structure.
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Definition 2.2.7. A transverse knot T ⊂ (M3, ξ) is an embedded S1 always

transverse to ξ.

Two transverse knots T and T ′ are transverse isotopic if they are homo-

topic through a family of transverse knots.

Usefully, transverse knots can be classified using braid words:

Theorem 2.2.8. [Ben83] Any transverse knot in (R3, ξstd) is transversely iso-

topic to the closure of a braid.

Furthermore, given a Legendrian knot, we can deform it to a transverse

knot of the same smooth type by taking a transverse pushoff:

Definition 2.2.9. Given L a Legendrian in (M, ξ), let A = S1 × [−ε, ε] be

an annulus such that S1 × {0} = L, and TA|L = ξ|L. For sufficiently small

ε > 0, let L+ = S1 × { ε
2
} and L− = S1 × {− ε

2
}. Then L± are the positive and

negative transverse pushoffs of L.

2.3 Weinstein Manifolds

Weinstein manifolds are symplectic manifolds which are compatible with a

symplectic handle decomposition.

2.3.1 Smooth Handlebodies

In smooth manifolds, smooth knots can be used to depict handle attachment.

We will briefly discuss how to use this data to study smooth manifolds, before

moving into the symplectic setting. For a full treatment, see [GSI+99].

Definition 2.3.1. For 0 ≤ k ≤ n, an n-dimensional k-handle is a copy of

Dk ×Dn−k attached to the boundary of an n-manifold X along ∂Dk ×Dn−k

by an embedding φ : ∂Dk×Dn−k → ∂X which we call the attaching map. We

call k the index of the handle.

Given an n-dimensional k-handle h ∼= Dk ×Dn−k, we call

1. Dk × 0 the core,
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2. 0×Dn−k the co-core,

3. ∂Dk ×Dn−k and φ(∂Dk ×Dn−k) the attaching regions,

4. ∂Dk × 0 the attaching sphere,

5. and 0× ∂Dn−k the belt sphere, see Figure 2.7.

X

h

A

B

Figure 2.7: The 2 dimensional 1-handle h attached to the the boundary of X,
with a red core, green co-core, blue attaching regions, attaching sphere
A ∼= S0, and belt sphere B ∼= S0.

When considering the diffeomorphism type of X ∪φ h, it is sufficient to

specify φ up to isotopy. We can construct φ : ∂Dk × Dn−k → ∂X from an

embedding φ0 : ∂Dk × 0 → ∂X together with a framing : an identification f

of the normal bundle of Imφ0 with ∂Dk × Rn−k, and these two pieces of data

specify φ up to isotopy. In other words, handles are specified by a knotted

sphere φ0 : Sk−1 → ∂X along with a framing f of that sphere.

Definition 2.3.2. Let Xn be a compact manifold with ∂X = ∂+X t ∂−X

where ∂+X and ∂−X are two compact submanifolds, either of which may be

empty. A handle decomposition of X is an identification of X with a manifold

obtained from I × ∂−X by attaching handles such that ∂−X corresponds to

{0} × ∂−X. If ∂−X = ∅, then we call X a handlebody.

Definition 2.3.3. A Kirby diagram of a manifold X4 is a description of a

4-dimensional handle decomposition by a diagram in R3 consisting of pairs of

identified spheres (denoting the attaching spheres of 1-handles), links which
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may pass through the 1-handles (denoting the attaching spheres of 2-handles),

and framing data for each link.

0

0

Figure 2.8: A Kirby diagram containing two 0-framed 2-handles and two 1-handles.

2.3.2 Handle Moves

Definition 2.3.4. Given two k-handles, h1 and h2 attached to ∂X, a handle

slide of h1 over h2 is given by isotoping the attaching sphere of h1, and pushing

it through the belt sphere of h2, see Figure 2.9.

Definition 2.3.5. A (k−1)-handle hk−1 and a k-handle hk, 1 ≤ k ≤ n can be

cancelled, provided that the attaching sphere of hk intersects the belt sphere

of hk−1 transversely in a single point. We call this a handle cancellation, see

Figure 2.10.

Any two Kirby diagrams of the same manifold X are related by a finite

sequence of link isotopies, handle slides, and the creation and cancellation of

handle pairs.

2.3.3 Weinstein handle decomposition

We now bring handle decomposition to the symplectic setting. Weinstein hand-

les were first described in [Wei91]. For more details, see [CE12].

Definition 2.3.6. For a Morse function f on a manifold X, a gradient-like

vector field V for f satisfies the following:

1. V (f) > 0 away from critical points, and
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h1

h2

h1

h2

h1 h2

Figure 2.9: A 2 dimensional 1-handle slide of h1 over h2.

h1

h2

Figure 2.10: A 2-dimensional 1-handle h1 cancelled with a 2-dimensional 2-handle
h2.

0

Figure 2.11: A cancelling pair consisting of a 1-handle and a 2-handle in a Kirby
diagram.

2. for p ∈ Crit(X), there is a coordinate neighbourhood of p such that V is

the gradient of f , ie. V = −2x1
∂
∂x1
− · · · − 2xλ

∂
∂xλ

+ 2xλ+1
∂

∂xλ+1
+ · · ·+

2xm
∂

∂xm
.

Definition 2.3.7. A Weinstein structure on a smooth manifold X is encoded

by:

1. a symplectic structure ω on X,

2. a Liouville vector field V for ω on X,

3. a Morse function φ such that V is gradient like for φ.

A Weinstein domain (X,ω, V, φ) is a symplectic manifold with contact type

boundary, meaning V is defined near ∂X and is everywhere pointing transver-

sely outwards along ∂X, and a Weinstein structure. A Weinstein manifold is

a Weinstein domain extended by a cylindrical end to make V complete.
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For example, Cn carries the canonical Weinstein structure:

ωstd =
n∑
j=1

dxj ∧ dyj,

Vstd =
1

2

n∑
j=1

(xj
∂

∂xj
+ yj

∂

∂yj
), and

φstd =
1

4

n∑
j=1

(x2
j + y2

j ).

Different Weinstein structures can exist on the same symplectic manifold. For

example, consider Cn with the standard symplectic structure as the cotangent

bundle of Rn. This gives us the Weinstein structure with

ω =
n∑
i=1

xidyi, V =
n∑
i=1

xi
∂

∂xi
, and φ =

1

2

n∑
i=1

|xi|2.

This φ is not Morse, so we may perturb slightly by a Morse function f to obtain

V ′ = V + VF where VF is the Hamiltonian vector field of F (x, y) = 〈x,∇f(y)〉

and φ′ = φ+ f .

Given a Weinstein manifold (X,ω, V, φ), any regular level set Σc := φ−1(c)

carries a canonical contact structure ξ defined by the contact form α = (ιV ω)|Σ.

Definition 2.3.8. A smooth family (X,ωs, Vs), s ∈ [0, 1] of Liouville manifolds

is a simple Liouville homotopy if there exists a smooth family of exhaustions

X =
⋃∞
k=1X

k
s by compact domains Xk

s ⊂ V with smooth boundaries along

which Vs is outward pointing.

A smooth family (X,ωs, Vs), s ∈ [0, 1] of Liouville manifolds is a Liouville

homotopy if it is a finite composition of simple Liouville homotopies.

A Weinstein homotopy is a smooth family of Weinstein structures

(ωt, Vt, φt), t ∈ [0, 1] where we allow birth-death type degenerations, such that

the associated Liouville structures (ωt, Vt) form a Liouville homotopy.

Theorem 2.3.9. If two Weinstein manifolds are Weinstein homotopic, then

they are symplectomorphic.
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Weinstein manifolds are manifestly topological as they can be specified

up to Weinstein homotopy by some handle attachment data. An exhaustion

of a Weinstein manifold (X,ω, V, φ) by regular sublevel sets Σc, c ≤ dk, such

that each interval (dk−1, dk) contains at most one critical value provides a

handlebody decomposition of V whose core discs are symplectically isotropic

and whose attaching spheres are contactly isotropic.

Theorem 2.3.10. [Wei91] Weinstein handle attachment is completely speci-

fied (up to Weinstein homotopy) by the attaching data of the Liouville vector

fields along the isotropic attaching spheres, ie. given a Weinstein manifold

(X2n, ω, V, φ), let Sk−1 be an embedded isotropic sphere with trivial conformal

symplectic normal bundle in Σ = Σdk . Then the elementary cobordism from

Σ to Σ′ obtained by attaching a standard Weinstein k-handle to Σ × I along

a neighbourhood of Sk−1 carries a symplectic structure and a Liouville vector

field transverse to Σ and Σ′.

We can also think of these handle attachments in terms of contact surgery

on Σ along Sk−1. The contact structure induced on Σ is the given one, and the

contact structure on Σ′ differs only from Σ on the spheres where the surgery

took place.

Definition 2.3.11. [Wei91] The standard Weinstein k-handle is constructed

as a submanifold of

(R2n, ω, Vk, fk),

where

ω =
n∑
j=1

dxj ∧ dyj,

Vk = ∇fk,

fk =
1

4

n−k∑
j=1

(x2
j + y2

j ) +
n∑

j=n−k+1

(x2
j −

1

2
y2
j ).

Consider the closed unit k-disc in {x1 = · · · = xn = y1 = · · · = yn−k = 0},
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isotropic with respect to ω. For some ε > 0, take the tubular neighbourhood

hεk =

{
n∑
j=1

x2
j + Σn−k

j=1 y
2
j ≤ ε

}
∩

{
n∑

j=n−k+1

y2
j ≤ 1

}

with the induced Weinstein structure. Notice that Xk is transverse to ∂hεk,

flowing in one boundary component and out the other, see Figure 2.12.

Rk

R2n−k

Figure 2.12: The standard Weinstein k-handle in R2n. The Liouville vector field
Xk (in pink) flows in one of the boundary components and out the
other.

We saw that smooth handle decomposition is depicted by smooth knots,

we now look at Weinstein handle decomposition depicted via Legendrian knots.

Definition 2.3.12. [Gom98] A Legendrian link diagram in Gompf standard

form with n ≥ 0 1-handles is given by the following data:

1. A rectangular box parallel to the axes in R2,

2. A collection of n distinguished segments of each vertical side of the box,

aligned horizontally in pairs and denoted by balls or walls and

3. A front projection of a Legendrian tangle (a disjoint union of Legendrian
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knots and arcs) contained in the box, with endpoints lying in the distin-

guished segments and aligned horizontally in pairs.

Note that while framing data was required to define a smooth Kirby di-

agram, in the case of Legendrian link diagrams, the framing is given by the

Thurston-Bennequin number minus 1. Gompf showed that given such a di-

agram, the boundary of a 1-handlebody H can be identified with a contact

manifold obtained from the standard contact structure on S3 by removing

smooth balls and gluing in the resulting boundaries as in a given Legendrian

link diagram in standard form. Two Legendrian links in standard form are

contact isotopic in ∂H if and only if they are related by a finite sequence of

the six moves shown in Figures 2.2 and 2.13, and Legendrian isotopies of the

box that fix the outside boundary of the balls and introduce no vertical tan-

gencies. We call the moves in Figure 2.13 Gompf 4, Gompf 5, and Gompf 6,

respectively.

Figure 2.13: Gompf’s three additional isotopic moves, up to 180 degree rotation
about each axis.

Thus, if two Weinstein diagrams are related by a finite sequence of iso-

topies consisting of the six Gompf moves, handle slides, and the creation and

cancellation of handle pairs, then they are two different Weinstein diagrams

of the same Weinstein domain. These moves also relate the contact manifold

which is the boundary of such a Weinstein domain.
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2.3.4 Contact surgery diagrams

As stated in the previous section, a Weinstein diagram depicts not only a 4-

dimensional manifold but also the 3-dimensional contact manifold at its boun-

dary. An equivalent treatment of these link diagrams is given by contact

surgery.

Definition 2.3.13. Let L ⊂ S3 be a Legendrian knot. Let N(L) denote a

small neighbourhood of L with meridian and longitude µ and λ respectively

along ∂N(L) such that λ lies on a Thurston-Bennequin number framed push-

off of L. An (a
b
)-Legendrian surgery is a Dehn surgery along L with a slope

a
b
6= 0 with respect to the Thurston-Bennequin framing: we construct a new

manifold M = (S1 ×D2) ∪f S3 \N(L) where S1 ×D2 is glued in via the map

f : S1 × ∂D2 → ∂N(L) which sends {?} × ∂D2 to aµ+ bλ.

When a
b

= −1, we call this a Legendrian surgery.

Note that if a
b
6= 1

n
, then the contact structure on the surgered manifold

is not unique.

A contact surgery diagram thus consists of a link in S3 along with framing

coefficients a
b

for each component of the link.

Theorem 2.3.14. [DG09] Let L ⊂ (M, ξ) be a Legendrian knot. Let L′ be a

Legendrian push-off of L. Then the manifold (M ′, ξ′) given by a Legendrian-

surgery along L and a contact (+1)-surgery along L′ is contact isotopic to

(M, ξ).

Thus in a contact surgery diagram, a cancelling pair of surgeries consists

of a (+1)-surgery and a (−1)-surgery along a pair of parallel Legendrian knots.

Additionally we can use the three Reideimeister moves and three Gompf moves

to manipulate surgery diagrams because of the following theorem:

Theorem 2.3.15. Let (X,ω) be a Weinstein domain whose handle decompo-

sition is given by a Weinstein diagram. Attaching a 2-handle to (X,ω) along

a Legendrian knot L in its boundary M gives a symplectic manifold (X ′, ω′)

whose boundary M ′ is the result of a Legendrian surgery on L ⊂M .
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Figure 2.14: Top: handle sliding over a (−1)-surgery Legendrian (turquoise).
Bottom: handle sliding over a (+1)-surgery Legendrian (pink) re-
sulting in a cusp and a cone respectively. The crossing may appear
on either the top or bottom of the pink strand by a single application
of Reidemeister 3.

In [DG09], Ding and Geiges establish handle slides for surgery diagrams

as band sums between the sliding knot and a Legendrian push-off of the knot

that was slid over. This is realized diagrammatically as a spherical cusp–edge

for a Legendrian handle slide over a (−1)-surgery Legendrian knot, and as a

cone singularity for a Legendrian handle slide over a (+1)-surgery Legendrian

knot. This is also shown (and generalized to higher dimensional Legendrians)

in Proposition 2.14 of [CM19]. This allows us to manipulate surgery diagrams

by handle slides as shown in Figure 2.14.

+1

+1

Figure 2.15: Diagrams depicting the same contact 3-manifold, we swap the 1-
handles in the diagram on the left for the (+1) contact surgeries on
the right. The blue box denotes some arbitrary Legendrian tangle.
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Ding and Geiges also show that there is a standard way to replace 1-

handles by contact (+1)-surgeries along trivial Legendrian unknots. This pro-

cess is illustrated in Figure 2.15.

Thus once we obtain a Legendrian link diagram depicting a contact 3-

manifold we can manipulate it as a contact surgery diagram as well as using

the calculus developed by Kirby and Gompf for Weinstein diagrams, with the

link diagram representing the contact boundary of a Weinstein domain.



Chapter 3

Obstructing families of

Murasugi braids

3.1 Initial obstructions from fillings

In this section, we prove some new obtructions to Lagrangian concordance

to and from the unknot which come from restrictions on the fillings of cyclic

branched covers of knots. We use these theorems to obstruct some families of

Murasugi braids. To begin, we will need Lemma 4.1 of [CGHS13] which gives

a way of approximating a Lagrangian filling with a symplectic one:

Lemma 3.1.1. [CGHS13] Let (X,ω) be a strong filling of (Y, ξ) with an orien-

ted Lagrangian L ⊂ X whose boundary is a Legendrian Λ ⊂ Y . Then, the

Lagrangian surface L may be C∞ approximated by a symplectic surface L′

that satisfies:

1. ω|L′ > 0 and

2. ∂L′ is a positive transverse link smoothly isotopic to Λ.

This result follows from Lemma 2.3.A proved by Eliashberg [Eli95]:

Lemma 3.1.2. [Eli95] Let F be a connected surface with boundary in a 4-

dimensional symplectic manifold (X,ω). Suppose that ω|F is positive near ∂F

and non-negative elsewhere. Then F can be C∞-approximated by a surface

F ′ which coincides with F near ∂F = ∂F ′ and such that ω|F ′ > 0.
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B4

Σp(U
′)

Σp(Λ
′)

Σp(U
′)

Figure 3.1: Σp(L
′) ∪ B4, a filling of Σp(U

′). Here, Σp(C
′) is represented by the

green area.

Additionally, we will use Theorem 1.2 of [Cha10]:

Theorem 3.1.3. [Cha10] Consider the standard contact S3 and let U be

the standard Legendrian unknot with tb(U) = −1. Let C be an oriented

Lagrangian cobordism from U to itself, then there is a compactly supported

symplectomorphism φ of R× S3 such that φ(C) = R× U .

This theorem follows from an important result of Eliashberg and Poltero-

vich, Theorem 1.1.A of [EP96]:

Theorem 3.1.4. [EP96] Any flat at infinity Lagrangian embedding of R2 into

the standard symplectic R4 is isotopic to the flat embedding via an ambient

compactly supported Hamiltonian isotopy of R4.

Theorem 3.1.5. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

any p-fold cyclic branched cover Σp(Λ
′) of S3 branched over the transverse

push-off Λ′ of Λ embeds as a contact type hypersurface in (B4, ξstd). Moreover,

Σp(Λ
′) is Stein fillable and has a Stein filling which embeds in (B4, ξstd).

Note that since Λ must be quasipositive, fillability of Σp(Λ
′) also follows

from a result of [Pla06].

Proof of Theorem 3.1.5. Suppose we have some Legendrian knot Λ in S3 such

that U ≺ Λ ≺ U in Rt × S3 (which is symplectomorphic to R4 \B4). Suppose

Λ ∈ {0} × S3. Let C1 be the Lagrangian cylinder from U to Λ and C2 be the
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Lagrangian cylinder from Λ to U , see Figure 1.3. By Theorem 3.1.3, C1 ∪ C2

is Hamiltonian isotopic to the product cylinder R× U .

Fill in C1 at the negative end by a Lagrangian disk in B4. Then C := D2∪

C1∪C2 is a Lagrangian filling of the unknot U by a standardly embedded disk.

By Lemma 3.1.1, there is a symplectic approximation of C, call it φ(C) = C ′

with transverse boundary ∂C ′ = U ′ where U ′ is the transverse unknot with

self linking number −1. The p-fold cyclic branched cover of S3 branched over

U ′ is the standard S3 (see Lemma 2.4 of [CE19]).

The p-fold cyclic branched cover of Rt × S3 branched over C ′, which we

will call Σp(C
′) is the standard four ball, (B4, ξstd).

For φ a small enough perturbation, there is some t in a neighbourhood of

0 such that C ′ is transverse to {t}×S3, and Λ′ = C ′∩({t}×S3) is a transverse

push-off of Λ in {t}×S3. Then Σp(Λ
′), the p-fold cyclic branched cover of S3,

branched over Λ′ is a contact type hypersurface in (B4, ξstd). We illustrate this

in Figure 3.1.

Taking the negative end of Σp(C
′) bounded by Σp(Λ

′) gives a Stein filling

X of Σp(Λ
′) which embeds in (B4, ξstd).

X V

Σp(Λ
′)

Σp(U
′)

Figure 3.2: V ∪X, a filling of Σp(U
′), where X is a filling of Σp(Λ

′).

Theorem 3.1.6. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

any filling of the p-fold cyclic branched cover Σp(Λ
′) of S3 branched over the

transverse push-off Λ′ must embed in a blow up of B4 and must have negative

definite intersection form.
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Proof. Suppose we have a Legendrian knot Λ in S3 such that Λ ≺ U in Rt×S3.

Recall the construction from Theorem 3.1.5, of the branched cover Σp(C
′).

Recall also the 4-manifold X which is a filling of the 3-manifold Σp(Λ
′), and

which embeds in Σp(C
′). Let

V := Σp(C
′) \X.

Let X0 be any filling of Σp(Λ
′) and let W = X0∪V be obtained by gluing

X0 to V along Σp(Λ
′). The boundary ∂(W ) = Σp(U

′) = S3. By a theorem

of McDuff (Theorem 1.7 of [McD90]) or of Gromov (p 311 of [Gro85]), W is

necessarily a blowup of B4 with the standard symplectic structure, as S3 has

a unique minimal filling, B4.

Finally, since any surface embedded in X is embedded in B4#nCP2 for

some n ≥ 0, X must be negative definite.

3.2 Obstructing Murasugi type 2 and 3 braids

In this section, we will begin obstructing families of 3 braids using Murasugi’s

classification. Recall that Murasugi [Mur74] found representatives for all con-

jugacy classes of 3-braids, allowing us to list all such links as the closures of

one of the three following types of braid words:

1. (σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−ak
2 for a1, . . . , ak ≥ 0,

2. (σ1σ2)3dσm2 for m ∈ Z,

3. (σ1σ2)3dσk1σ
−1
2 for k = −1,−2,−3,

for some d ∈ Z. We will call these Murasugi type 1, 2, or 3 braids respectively.

First, we will show that if the Legendrian knot Λ satisfies U ≺ Λ ≺ U ,

then Λ′, the transverse push off of Λ cannot be the closure of a 3-braid of
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Murasugi type 2 or type 3 unless it is the unknot. We will eliminate these

braids by showing their closures are links which are not slice. First let us

consider braids of Murasugi type 2.

Lemma 3.2.1. If the Legendrian knot Λ satisfies U ≺ Λ ≺ U , then Λ′, the

transverse push off of Λ, cannot be the closure of a 3-braid of Murasugi type

2, ie. be of the form:

(σ1σ2)3dσm2 ,m ∈ Z.

Proof. Suppose β̂ is the closure of the braid

β = (σ1σ2)3dσm2 ,m ∈ Z.

We note that both a full twist (σ1σ2)3 and its inverse, (σ−1
2 σ−1

1 )3 do not change

the relative positions of the strands in the braid. Thus when we take the closure

of β, we connect the first strand to itself and β̂ is a multiple component link

and, thus cannot be concordant to the unknot, see Figure 3.3.

Figure 3.3: The red strand in a Murasugi type 2 braid forms a single component.
The blue box contains some number of positive or negative full twists,
which are shown to the right. The pink box contains some number of
full twists of the two strands it contains.

Eliminating the Murasugi type 3 braids depends on the fact that if β̂

is the closure of a braid β, then β must be quasipositive but not strongly
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quasipositive (and therefore not positive). Recall that a braid is called positive

if it can be represented as the product of positive generators of the braid group.

A braid is strongly quasipositive if it is the product of positive bands

σi,j = (σj . . . σi−2)σi−1(σj . . . σi−2)−1

where j < i. Thus any positive braid is strongly quasipositive. A braid is

quasipositive if it is the product of conjugates of positive generators of the braid

group. We know that strongly quasipositive braids are quasipositive. A knot

is called (strongly) quasipositive if it is the closure of a (strongly) quasipositive

braid. It follows from [BO01] that Lagrangian fillable Legendrian knots are

quasipositive and it follows from [KM93] that slice knots are not strongly

quasipositive. Thus if Λ satisfies U ≺ Λ ≺ U , Λ must be quasipositive, but

not strongly quasipositive. We will eliminate all braid words of Murasugi type

3 by showing they are either positive or negative by demonstrating a word of

an equivalent braid up to conjugation with either all positive or all negative

generators, except the case of the word (σ1σ2)3σ−3
1 σ−1

2 as this is the unknot,

see Figure 3.4.

Lemma 3.2.2. If the Legendrian knot Λ satisfies U ≺ Λ ≺ U , then Λ′, the

transverse push off of Λ, cannot be the closure of a 3-braid of Murasugi type

3, ie. be of the form:

(σ1σ2)3dσ−m1 σ−1
2 ,m ∈ {1, 2, 3}

unless it is the unknot (the closure of the braid (σ1σ2)3σ−3
1 σ−1

2 ).

Proof. Let β̂ be the closure of the braid

β = (σ1σ2)3dσ−m1 σ−1
2 ,m ∈ {1, 2, 3}.

If d ≤ 0, β is the product of negative generators. It is not quasipositive and

thus fails to be Lagrangian slice. In fact, the mirror of β is a positive braid,
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hence m(β̂) cannot be smoothly slice, so neither can β̂. Thus we consider the

case that d > 0. In this case we perform the following manipulations using the

braid relation σ1σ2σ1 = σ2σ1σ2 when m = 1:

(σ1σ2)3dσ−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1(σ2σ1σ2)σ−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1(σ1σ2σ1)σ−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ1.

Similarly, for m = 2, since σ1σ2 = σ−1
2 σ1σ2σ1:

(σ1σ2)3dσ−2
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ2σ1σ2σ
−2
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ1σ2σ
−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ
−1
2 σ1σ2σ1σ

−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ
−1
2 σ1

=(σ1σ2)3(d−1)σ2σ1σ2σ
−1
2 σ1

=(σ1σ2)3(d−1)σ2σ1σ1.

Note that these braids can also be eliminated for being 2-component links. For

m = 3 if d > 1, since σ2σ1 = σ−1
1 σ2σ1σ2:

(σ1σ2)3dσ−3
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ2σ1σ2σ
−3
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ1σ2σ
−2
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ
−1
2 σ1σ2σ1σ

−2
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ
−1
2 σ1σ2σ

−1
1 σ−1

2

=(σ1σ2)3(d−1)σ1σ2σ1σ
−1
2 σ−1

2 σ1σ2σ1σ
−1
1 σ−1

2

=(σ1σ2)3(d−1)σ2σ1σ2σ
−2
2 σ1
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=(σ1σ2)3(d−1)σ2σ1σ
−1
2 σ1

=(σ1σ2)3(d−2)σ1σ2σ1σ2σ1σ2σ2σ1σ
−1
2 σ1

=(σ1σ2)3(d−2)σ1σ2σ1σ2σ1σ2σ
−1
1 σ2σ1σ2σ

−1
2 σ1

=(σ1σ2)3(d−2)σ1σ2σ1σ1σ2σ1σ
−1
1 σ2σ1σ1

=(σ1σ2)3(d−2)σ1σ2σ1σ1σ2σ2σ1σ1.

In all these cases β can be written as a product of positive generators. Thus

β is strongly quasipositive, and hence, not smoothly slice. The only case that

remains is when d = 1 and m = 3. In this case, β̂ is the unknot, as illustrated

by the isotopy pictured Figure 3.4.

Figure 3.4: A smooth isotopy of the closure of the braid (σ1σ2)3σ−3
1 σ−1

2 .

Remark 3.2.3. Chantraine’s restriction on the Thurston-Bennequin number

[Cha10] states that if Λ− is cobordant to Λ+, then

tb(Λ−)− tb(Λ+) = −χ(L)

where L is the Lagrangian cobordism.

In the case that Λ is the unstabilized unknot, since for concordance χ(L) =

0, and we know that tb(Λ) = −1, we can eliminate all stabilized Legendrian

unknots with tb < −1 from concordance both to and from Λ. In other words,

the only Legendrian unknot concordant to U is U .
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Thus, if, the Legendrian knot Λ 6= U satisfies U ≺ Λ ≺ U , and Λ is a

3-braid, then it must be of Murasugi type 1.

3.3 Using Gompf’s 3-dimensional 2-plane field

invariant

Next, we will prove an obstruction to the concordance U ≺ Λ ≺ U coming

from the d3 invariant of Σ2(Λ′), proved in Theorem 4.16 of [Gom98], and apply

it to the case where Λ′ is a transverse knot which is the closure of a 3-braid of

Murasugi type 1, that is of the form

(σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−an
2

for d ∈ Z, a1, . . . , an ≥ 0, and some ai > 0.

For a given contact 3-manifold (M, ξ), we can define the d3 invariant on

the homotopy type of the 2-plane field:

Theorem 3.3.1. [Gom98] Suppose we have a contact 3-manifold (M, ξ), and

suppose we have an almost complex 4-manifold (X, J) such that ∂X = M ,

with ξ induced by the complex tangencies: ξ = (TM) ∩ J(TM). Let σ(X)

denote the signature of X, and let χ(X) denote the Euler characteristic of X.

For c1(ξ) a torsion class, the rational number

d3(ξ) =
c2

1(X, J)− 3σ(X)− 2χ(X)

4

is an invariant of the homotopy type of the 2-plane field ξ.

Using Theorem 3.1.5, we prove a restriction to d3(ξ) for such (Σ2(Λ′), ξ):

Theorem 3.3.2. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , then

the contact 2-fold cyclic branched cover (Σ2(Λ′), ξ) of S3 branched over the

positive transverse push-off Λ′ of Λ has

d3(ξ) = −1

2
.
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Proof. Suppose we have a Legendrian knot Λ satisfying U ≺ Λ ≺ U . Consider

a transverse push-off Λ′ in S3 of Λ and Σ2(Λ′), the cyclic double cover of S3

branched over Λ′. By Theorem 3.1.5, there is a filling (X,ω) of Σ2(Λ′) which

embeds in R4.

Now we will compute d3(ξ) using X. We begin with σ(X), which is the

signature of the intersection form QX . Let S be any surface in X and take the

class [S] ∈ H2(X). Then since S embeds in X and X embeds in R4, S embeds

in R4 and has self-intersection 0. Thus QX ≡ 0, and σ(X) = 0.

Next we want to find c2
1(X, J). We know c1(X, J) ∈ H2(X,Z) and by

Poincaré duality, H2(X) ∼= H2(X, ∂X). Thus, let us consider a properly em-

bedded surface F ⊂ X such that

[F ] = PD(c1(X, J)) ∈ H2(X, ∂X).

Consider the exact sequence

0→ H2(X)→ H2(X, ∂X)→ H1(∂X).

Note that for Σ2(K), the branched double cover of a knot K,

|H1(Σ2(K))| = det(K) where the determinant of a knot is the Alexander

polynomial evaluated at −1. Thus H1(∂X) is finite and [∂F ] ∈ H1(∂X), thus

∂(d[F ]) = 0

for some d > 0, for instance d = det(K), in H1(∂X). So d[F ] = [S] for some

closed surface S ⊂ X, and

[F ]2 = [F ] · 1

d
[S] =

QX(F, S)

d
∈ 1

d
Z.

Since QX = 0, we have c1(X, J)2 = [F ]2 = 0.

Finally, we compute the Euler characteristic of X. Note that X is the

branched double cover of a properly embedded disk D in B4, X = Σ2(D).



3.3. Using Gompf’s 3-dimensional 2-plane field invariant 53

Thus if we let ν(D) denote a neighbourhood of D in X, we compute:

χ(X) = 2χ(B4 \ ν(D)) + χ(ν(D))− χ(B)

where B is a circle bundle over D. Thus,

χ(X) = 2 · 0 + 1− 0 = 1.

Thus,

d3(ξ) =
c2

1(X, J)− 3σ(X)− 2χ(X)

4

=
0− 3(0)− 2(1)

4

= −1

2
.

Next, we will use this result to restrict our braid candidates. We do this

using Theorem 1.1 of the work of Ito [Ito17]:

Theorem 3.3.3. [Ito17] If a contact 3-manifold (M, ξ) is a p-fold cyclic contact

branched covering of (S3, ξstd) branched along a transverse link K, then

d3(ξ) = −3

4

∑
ω: ωp=1

σω(K)− p− 1

2
sl(K)− 1

2
p

where σω(K) is the Tristam-Levine signature of K, given by (1− ω)A + (1−

ω)AT where A is the Seifert matrix of K, and sl(K) is the self-linking number

of K.

To compute the classic or Murasugi signature of the closure of a braid, we

will use the following lemma of Erle [Erl99]:

Lemma 3.3.4. [Erl99] Let β̂ denote the closure of the 3-braid

β = (σ1σ2)3dσ−a11 σb12 . . . σ−am1 σbm2
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where d ∈ Z, m ≥ 1, and ai, bi ≥ 1. Then the signature of β̂ is

σ(β̂) = −4d+
m∑
i=1

(ai − bi).

The Murasugi signature of a knot agrees with the Tristam-Levine signa-

ture for ω = −1 by definition, see [Con19]. Thus Erle’s formula can be applied

to Ito’s formula for double covers. Doing so results in the following obstruction

to Lagrangian concordance:

Theorem 3.3.5. If Λ 6= U is a Legendrian knot which satisfies U ≺ Λ ≺ U ,

and Λ′, the transverse pushoff of Λ, is the closure of a 3-braid β, then, up to

conjugation,

β = (σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−an
2

for some d ∈ Z, a1, . . . , an ≥ 0, and some ai > 0, and
∑
ai = n+ 4.

Proof. Let Λ be a Legendrian knot which satisfies U ≺ Λ ≺ U , and Λ′ be a

transverse pushoff of Λ. Suppose Λ′ is the closure of a 3-braid. Let (Σ2(Λ′), ξ)

be a cyclic double cover of S3 branched over Λ′. Then from 3.3.3 and 3.3.2,

we get that

−1

2
= d3(ξ) = −3

4

∑
ω:ω2=1

σω(K)− 2− 1

2
sl(K)− 1

2
2.

By Lemmas 3.2.1 and 3.2.2, the braid β whose closure is Λ is a Murasugi

type 1 braid, that is

β = (σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−an
2

for some d ∈ Z, a1, . . . , an ≥ 0, and some ai > 0. Then we can compute the

algebraic length of β. Recall that the algebraic length of a braid is given by

n+−n− where n+ is a the sum of of the positive exponents in the braid word,

and n− is the sum of the negative exponents in the braid word. Thus we have

len(β) = 6d+ n−
∑n

i=1 ai.
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The self-linking number of Λ′ can be computed from this algebraic length

and is given by:

sl(Λ′) = len(β)− (number of strands of β) = 6d+ n−
n∑
i=1

ai − 3.

To apply Erle’s formula (Lemma 3.3.4) for signature to Λ, we first convert

β to the form

(σ1σ2)3dσ−a11 σb12 . . . σ−am1 σbm2 .

This can be done with a series of braid manipulations.

We know σ1 = σ−1
2 σ−1

1 σ2σ1σ2, thus we get:

σ1σ
−a
2 = σ−1

2 σ−1
1 σ2σ1σ2σ

−a
2

= (σ−1
2 σ−1

1 σ2)σ1σ
−(a−1)
2

. . .

= (σ−1
2 σ−1

1 σ2)aσ1

= σ−1
2 σ−a1 σ2σ1

Additionally, we know σ2σ1 = σ−1
1 σ2σ1σ2. We apply these manipulations

to β:

β = (σ1σ2)3d(σ1σ
−a1
2 )(σ1σ

−a2
2 ) . . . (σ1σ

−an
2 )

= (σ1σ2)3d(σ−1
2 σ−a11 σ2σ1)(σ−1

2 σ−a21 σ2σ1) . . . (σ−1
2 σ−an1 σ2σ1)

= (σ1σ2)3dσ−1
2 σ−a11 σ−1

1 σ2σ1σ2σ
−1
2 σ−a21 σ−1

1 σ2σ1σ2 . . . σ
−1
2 σ−an1 σ−1

1 σ2σ1σ2

= (σ1σ2)3dσ−1
2 σ

−(a1+1)
1 σ2σ

−a2
1 σ2σ

−a3
1 . . . σ2σ

−an
1 σ2σ1σ2

= σ1σ2(σ1σ2)3dσ−1
2 σ

−(a1+1)
1 σ2σ

−a2
1 σ2σ

−a3
1 . . . σ2σ

−an
1 σ2

= (σ1σ2)3dσ1σ2σ
−1
2 σ

−(a1+1)
1 σ2σ

−a2
1 σ2σ

−a3
1 . . . σ2σ

−an
1 σ2

= (σ1σ2)3dσ−a11 σ2 . . . σ
−an−1

1 σ2σ
−an
1 σ2
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Then applying Erle’s formula, we get the signature:

σ(Λ′) = −4d+
n∑
i=1

(ai − 1).

Thus,

−1

2
= d3(ξ)

−1

2
= −3

4
σω(K)− 2− 1

2
sl(K)− 1

2
2

−1

2
= −3

4
(−4d+

n∑
i=1

(ai − 1))− 1

2
(6d+ n−

n∑
i=1

ai − 3)− 1

−2 = −3(−4d+
n∑
i=1

ai − n)− 2(6d+ n−
n∑
i=1

ai − 3)− 4

−4 = −
n∑
i=1

ai + n.

Another restriction of the braid word follows naturally:

Corollary 3.3.6. If Λ 6= U is a Legendrian knot which satisfies U ≺ Λ ≺ U ,

and if Λ′, the transverse pushoff of Λ, is the closure of a 3-braid of the form

β = (σ1σ2)3dσ1σ
−a1
2 . . . σ1σ

−an
2 ,

then d = 1.

Proof. Suppose we have such a Λ and Λ′. It follows that Λ′ is slice, thus the

signature of Λ′ must vanish. Applying Theorem 3.3.5 to Erle’s formula for

signature, we get:

σ(Λ′) = −4d+
n∑
i=1

ai − n

0 = −4d+ (n+ 4)− n

d = 1.
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Corollary 3.3.7. If Λ is a Legendrian knot which satisfies U ≺ Λ ≺ U , and

Λ′, the transverse pushoff of Λ, is the closure of a 3-braid β, then the algebraic

length of β is 2.

Proof. If β is of Murasugi type 1, then we have the restrictions coming from

Theorem 3.3.2 and Corollary 3.3.6. Thus, the algebraic length of β is

len(β) = 6d+ n−
n∑
i=1

ai = 6 + n− (n+ 4) = 2.

Otherwise, β is not of Murasugi type 1, then Λ = U and

β = (σ1σ2)3σ−3
1 σ−1

2

which has algebraic length 6− 4 = 2.



Chapter 4

From open book decompositions

to Weinstein diagrams

4.1 Open Book Decompositions and Lefschetz

Fibrations

We begin this section by discussing open book decompositions and their rela-

tionship to Lefschetz fibrations. We begin with the definition of a Dehn twist,

a well studied self-homeomorphism of a surface:

Definition 4.1.1. Let F be any surface. Let α be a simple closed curve in

F . Then a right-handed Dehn twist τα about α acts on a neighbourhood of α,

N = α× (0, 1) ⊂ F , by (θ, t) 7→ (θ + 2πt, t) while fixing F \N . A left-handed

Dehn twist about α is τ−1
α , see Figure 4.1.

For notation, let

τα1α2 = τα1 ◦ τα2 = τα1τα2

denote the composition of Dehn twists. If α is a curve and f is an orientation

preserving surface homeomorphism then τf(α) = f ◦ τα ◦ f−1.

Open books provide a particularly useful perspective on contact manifolds.

By work of Giroux [Gir02], and Thurston and Winkelnkemper [TW75], there is

a correspondence between contact structures and open book decompositions.

For details, see [Etn06].
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Figure 4.1: A right handed and left handed Dehn twist on the red curve in the
torus.

Definition 4.1.2. An open book decomposition of a 3-manifold M is a pair

(B, π) where

1. B is an oriented link in M , called the binding of the open book and

2. π : M \B → S1 is a fibration of the complement of B such that preimages

π−1(t) correspond to the interior of a compact surface F ⊂M satisfying

∂F = B. F is called the page of the open book decomposition.

Definition 4.1.3. Alternatively, an abstract open book is a pair (F, φ) where

1. F is a surface with non-empty boundary and

2. φ is a diffeomorphism of F with φ|∂F = id, φ is called the monodromy of

the open book.

To obtain a manifold M from an abstract open book, we take the mapping

torus F × [0, 1]/ ∼, where (x, 1) ∼ (φ(x), 0), and for each boundary component

of F , glue in a solid torus S1 ×D2 via a diffeomorphism which identifies each

circle of the form {x} × [0, 1]/ ∼ for x ∈ ∂F with {y} × ∂D2 for y ∈ S1. The

core of the solid tori form the binding B.
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Definition 4.1.4. Given two open book decompositions, (F, φ) and (F ′, φ′)

we define the Murasugi sum (F, φ) ∗ (F ′, φ′) to be an open book decomposi-

tion constructed as follows: choose arcs α and α′ in F and F ′ with product

neighbourhoods R and R′ respectively. Then let

F ∗ F ′ := F ∪R=R′ F
′

glued by ∂α× I 7→ α′ × ∂I and α× ∂I 7→ ∂α′ × I. And let

φ ∗ φ′ = φ ◦ φ′.

If (F, φ) supports a contact manifold (M, ξ) and (F ′, φ′) supports a contact

manifold (M ′, ξ′), then (F, φ) ∗ (F ′, φ′) supports the contact connected sum

(M#M ′, ξ#ξ′).

Definition 4.1.5. Let X be a compact, oriented symplectic 4-manifold, let

Σ be a compact oriented manifold with dimension 2. A Lefschetz fibration

π : X → Σ is a smooth surjective map which is a locally trivial fibration except

at finitely many isolated, nondegenerate critical points with distinct values on

the interior of Σ. In local coordinates near a critical point, the fibration is

modelled by π(z1, z2) = z2
1 + z2

2 . The Lefschetz fibration is symplectic if the

fibers are symplectic submanifolds.

Let x0 ∈ Σ be a critical value. Let x ∈ Σ be a generic value. Take a

path x → x0 ⊂ Σ. In a fiber π−1(x) of a generic value x, there is a closed

curve C called a vanishing cycle which collapses after parallel transport along

this path. π−1(x0) can be identified with π−1(x) by collapsing C to singular

ordinary double point.

A Lefschetz fibration π : X → Σ where X is a Weinstein domain is a

Weinstein Lefschetz fibration if its generic fiber F is also a Weinstein domain

and if X is obtained by attaching critical Weinstein handles along attaching

Legendrians Λi ⊂ F ×S1 ⊂ ∂(F ×D2) obtained by lifting the vanishing cycles

Ci ⊂ F .
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Remark 4.1.6. Suppose we have an open book decomposition π : M → S1

of a contact 3-manifold (M, ξ) with monodromy given by positive Dehn twists

τα1 , . . . , ταk about some curves α1, . . . , αk in F . Then we can build a Lefschetz

fibration π : X → D2 of the Stein filling X of M where total monodromy, given

as the composition of the τi Dehn twists about vanishing cycles Ci collapsing

in the critical surfaces π−1(xi), must agree with the monodromy of the open

book. As long as the fiber F has a Weinstein structure, X also has a Weinstein

structure corresponding to the attachment of critical Weinstein handles along

the corresponding vanishing cycles.

4.2 Obtaining Weinstein Lefschetz fibrations

In this section, we find a way to draw a Weinstein diagram in Gompf standard

form which represents a Weinstein manifold XΛ whose boundary is Σ2(Λ′)

where Λ′ is the closure of a 3-braid with algebraic length 2. In particular, the

Weinstein diagram will consist of a knot in S1 × S2. We begin by expressing

Σ2(Λ) as a particular open book decomposition, for which we need the following

lemma:

Lemma 4.2.1. Any quasipositive 3-braid of algebraic length 2 is conjugate to

σ1Bσ1B
−1 for some braid B.

Proof. Suppose we have some quasipositive 3-braid of algebraic length 2, call

it A. Then A is the product of two conjugates of positive generators of the

braid group,

A = BiσiB
−1
i BjσjB

−1
j

for i, j ∈ {1, 2}. For k ∈ {i, j}, if k = 1, let Bk = B′k, and if k = 2, since

σ2 = σ−1
1 σ−1

2 σ1σ2σ1, let B′k = Bkσ
−1
1 σ−1

2 . Then

A = B′1σ1B
′−1
1 B′2σ1B

′−1
2
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α

β

Figure 4.2: The curves α (red), β (blue), and an example of a curve γ (green) on
the torus with one boundary component. Here γ is the curve of slope
(3, 4).

Now we can conjugate by B′−1
1 :

A = B′−1
1 (B′1σ1B

′−1
1 B′2σ1B

′−1
2 )B′1

= σ1B
′−1
1 B′2σ1B

′−1
2 B′1

So we take B = B′−1
1 B′2.

Proposition 4.2.2. Let Λ′ be a transverse knot which is the closure of a

quasipositive 3-braid of algebraic length 2. The double cover of S3 branched

over Λ′, (Σ2(Λ′), ξ) has an open book decomposition (F, φ) where F is a torus

with one boundary component, and φ = τατγ. Here, α is the curve of slope

(1, 0) and γ is some essential simple closed curve in F , see Figure 4.2.

Proof. To prove this, we will use the construction from Plamenevskaya [Pla06],

described in more detail by Onaran [Ona14] and coming from a proof by Alex-

ander [Ale20]. When a contact manifold (M, ξ) is the branched double cover

of a transverse link L which is the closure of a (2k + 1)-stranded braid given

by a braid word on 2k generators and their inverses, σ1, σ
−1
1 , . . . , σ2k, σ

−1
2k , we

can think of L as a transverse link in the standard contact structure ξstd on

S3. S3 has a planar open book decomposition with trivial monodromy and we

arrange it so that the pages are transverse to the braid L. Then we may lift

the contact structure on the double cover Σ2(L) of S3 branched over L. The

contact structure is compatible with the open book decomposition (Fk,1, φ)

where Fk,1 is the genus k, 1 boundary component surface obtained by taking
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Figure 4.3: A torus with one boundary component is the double cover of a planar
page branched over 3 points

each planar page branched over the three points where they intersect L (see

Figure 4.3), and φ is given by Dehn twists corresponding to the braid word

which are the lifts of the half twists of L in S3.

Thus the monodromy of the open book comes from the braid monodromy:

each generator σi in the braid corresponds to a Dehn twist τi along a curve in

Fk,1.

Let Λ′ be a transverse knot which is the closure of a quasipositive 3-braid

of algebraic length 2. The double cover of S3 branched over Λ′, (Σ2(Λ′), ξ) has

an open book decomposition (F, φ).

Since Λ′ is a 3-braid, F := F1,1 is a torus with one boundary component

with σ1 corresponding to a Dehn twist about α and σ2 corresponding to a

Dehn twist about β as seen in Figure 4.2. φ is given by Dehn twisting along

these curves corresponding to the braid monodromy of Λ′.

By Lemma 4.2.1, Λ′ is the closure of of a braid of the form σ1Bσ1B
−1 for

some braid B up to conjugation.

The first σ1 corresponds to a Dehn twist about α, τα.

The braid Bσ1B
−1 corresponds to a series of Dehn twists

µ1 ◦ · · · ◦ µm ◦ τα ◦ µ−1
m ◦ · · · ◦ µ−1

1
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where the µi ∈ {τ±1
α , τ±1

β } correspond to the braid generators in B. Then since

(µ1 ◦ · · · ◦ µm) ◦ τα ◦ (µ−1
m ◦ · · · ◦ µ−1

1 )

=(µ1 . . . µm) ◦ τα ◦ (µ1 . . . µm)−1

=τµ1...µm(α),

we choose γ := µ1 . . . µm(α).

Thus the monodromy φ of the open book decomposition is given by Dehn

twists along α, the curve of slope (1, 0), and some essential simple closed curve

γ.

Corollary 4.2.3. Let Λ′ be a transverse knot which is the closure of a quasi-

positive 3-braid of algebraic length 2. The double cover of S3 branched over

Λ′, (Σ2(Λ′), ξ) has Weinstein filling XΛ with the following property. XΛ has a

Weinstein Lefschetz fibration π : XΛ → D2 with generic fiber F , a torus with

one boundary component and monodromy given by vanishing cycles which are

Dehn twists along the curves α and γ where α is the (1, 0) curve and γ is some

essential simple closed curve in F , see Figure 4.2.

Proof. Let Λ′ be a transverse knot which is the closure of a quasipositive alge-

braic length 2 3-braid. By Proposition 4.2.2, the double cover of S3 branched

over Λ′, (Σ2(Λ′), ξ) has an open book decomposition (F, φ) where F is a torus

with one boundary component, and φ is given by Dehn twisting along the

curves α and γ where α is the (1, 0) curve and γ is some essential simple clo-

sed curve in F , see Figure 4.2. Then we may construct a Weinstein Lefschetz

fibration by attaching handles along the lifts of vanishing cycles corresponding

to α and γ in a generic fiber F , as described in Remark 4.1.6.

Remark 4.2.4. Repeated Dehn twists about τα, τβ, τ−1
α and τ−1

β of the curve

α of slope (1, 0) and β of slope (0, 1) on the curve α in Figure 4.2 results in a

curve with some slope (p, q) in the torus with one boundary component F1,1.

Indeed, the mapping class group of the torus with one boundary component
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is generated by the positive Dehn twists τα and τβ with presentation

〈τα, τβ | τατβτα = τβτατβ〉,

see [FM11] for details. Any diffeomorphism of F1,1 generated by τα and τβ

is equivalent to a Dehn twist along some non-separating curve with rational

slope
p

q
∈ QP1 = Q ∪ {∞}.

Table 4.1: Effect of a Dehn twist about α or β on (p, q) in the torus with one
boundary component.

Braid Generator Dehn twist Effect on (p, q)

σ1 τα (p, q) 7→ (p+ |q|, q)
σ−1

1 τ−1
α (p, q) 7→ (p− |q|, q)

σ2 τβ (p, q) 7→ (p, q − |p|)
σ−1

2 τ−1
β (p, q) 7→ (p, q + |p|)

Applying an additional Dehn twist about α or β has the result on (p, q)

as explained in Table 4.1. And given any (p, q) with p and q relatively prime,

a (p, q) curve can be obtained by applying τ±1
α and τ±1

β to (1, 0) according to

the Euclidean algorithm. For instance if q > p > 0, the Euclidean algorithm

gives:

q = nkp+ rk

p = nk−1rk + rk−1

rk = nk−2rk−1 + rk−2

. . .

r3 = n3r2 + r1

r2 = n2r1 + 1

r1 = n1.
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So if γ is the curve of slope (p, q) in the torus with one boundary component,

γ = τ−nkβ ◦ τnk−1
α ◦ τ−nk−2

β ◦ · · · ◦ τ−n1
β (α).

Lemma 4.2.5. Let Λ′ be a transverse knot which is the closure of a quasi-

positive 3-braid of algebraic length 2, B, and Λ 6= U . Then we can always

find a braid B′ equivalent to B up to conjugation such that the procedure in

Proposition 4.2.2 yields an open book decomposition with monodromy given

by Dehn twists along the curves α and γ of slopes (1, 0) and (p, q) respectively,

where 0 < p < q.

Proof. By Lemma 4.2.1, we know Λ is the closure of a braid of the form

σ1B0σ1B
−1
0 , and that after applying Proposition 4.2.2, (Σ2(Λ′), ξ) corresponds

to an open book decomposition (F, φ) where φ is given by a Dehn twist on α

and on γ, where

γ = (µ1 . . . µm)(α) = µ1 ◦ · · · ◦ µm(α),

where the µi ∈ {τ±1
α , τ±1

β } correspond to the braid generators in B0.

By Remark 4.2.4, γ corresponds to a curve of slope p
q
∈ QP1. Without

loss of generality, we may assume that q ≥ 0.

We know q 6= 0 since (p, q) = (1, 0) corresponds to

Σ2(Λ′) ∼= (S1 × S2)#RP3,

but Σ2(Λ′) must be a rational homology sphere so there is no such Λ′.

If p = 1, then if either q = 0 or q = 1, then

Σ2(Λ′) ∼= S3,

and so Λ′ is the unknot. Thus q ≥ 2.
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Notice the following equivalence of braids:

σ1B0σ1B
−1
0 =σk1(σ1B0σ1B

−1
0 )σ−k1

=σ1(σk1B0)σ1(B−1
0 σ−k1 ).

for any k ∈ Z.

The braid σk1B0 corresponds to the Dehn twists

τ kα ◦ µ1 ◦ · · · ◦ µm

and the braid (σk1B0)σ1(B−1
0 σ−k1 ) corresponds to the Dehn twists

(τ kα ◦ µ1 ◦ · · · ◦ µm) ◦ τα ◦ (µ−1
m ◦ · · · ◦ µ−1

1 ◦ τ−kα ).

These Dehn twists correspond to the single Dehn twist about the curve

τ kαµ1 . . . µm(α).

Since γ = µ1 . . . µm(α) corresponds to a (p, q) curve, applying an additional k

instances of τα to µ1 . . . µm(α) corresponds to the curve of slope

(p+ kq, q).

Thus, we can replace B0 with the braid B = σk1B0 where k ∈ Z satisfies

0 < p− kq < q. We have an equivalence of braids up to conjugation:

σ1B0σ1B
−1
0 = σ1Bσ1B

−1,

and Bσ1B
−1 corresponds to a curve γ with slope p′

q
with

0 < p′ = p− kq < q.
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4.3 Drawing Weinstein diagrams

We now want to obtain a Weinstein diagram for XΛ of the previous corollary.

To obtain the attaching spheres the 2-handles we will use the recipe laid out by

Casals and Murphy [CM19], which uses the following proposition to determine

the attaching maps as simplified contact surgery curves on the boundary:

Proposition 4.3.1. [CM19] Let (Y, ξ) be a contact manifold with open book

decomposition (F, φ) and let λ denote the Liouville form on F . Let S, L ⊂

(F, λ) be two exact Lagrangian submanifolds such that S is diffeomorphic to a

sphere. Suppose that the potential functions ψS and ψL where dψS = λ|S and

dψL = λ|L are C0-bounded by a small enough ε > 0, and consider the contact

manifold (Y ′, ξ′) obtained by performing (+1)-surgery along Λε
S, an ε-pushoff

of Λ by ψ, and (−1)-surgery along Λ5ε
S . Then:

1. there exists a canonical contact identification (Y, ξ) = (Y ′, ξ′) and

2. the Legendrian Λ3ε
L ⊂ (Y ′, ξ′) is Legendrian isotopic to Λ0

τS(L) ⊂ (Y, ξ).

In an analogous manner, performing contact (−1) and (+1)-surgeries along

Λε
S and Λ5ε

S in (Y, ξ) results in a contact manifold (Y, ξ) with a contact iden-

tification (Y, ξ) = (Y ′, ξ′) under which Λ3ε
L ⊂ (Y, ξ) is Legendrian isotopic to

Λτ−1
S (L) ⊂ (Y, ξ).

The recipe of [CM19] is designed to find the attaching spheres in the Wein-

stein diagram by finding the lifts of corresponding vanishing cycles consisting

of Dehn twists about some known spheres. In their paper, these vanishing

cycles are obtained from a bifibration. For our Lefschetz fibrations, we already

have the vanishing cycles in terms of Dehn twists, so we do not need all the

steps of the recipe. We list the relevant steps here.

Let π : (X,ω)→ D2 be a Weinstein Lefschetz fibration with generic fiber

F and vanishing cycles C1, . . . , Ck.

1. Choose a set of exact Lagrangian spheres L = {L1, . . . , Lr} in the ge-

neric fiber F for which we understand the Legendrian lifts in the front

projection of the contact boundary ∂(F ×D2).
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p

q − p

Figure 4.4: A Weinstein filling of Σ2(Λ′). The shaded blue and shaded green re-
present p and q− p parallel strands respectively of a single Legendrian
link in S1 × S2.

2. Express each τCi as a word in Dehn twists about the Lagrangian spheres

in the set L.

3. For each vanishing cycle Ci, we apply Proposition 4.3.1 to draw the front

projection of their Legendrian lifts Λi ⊂ ∂(F ×D2).

4. Then we consider the Legendrian link
⋃
i Λi determined by the cyclic

ordering of the indices i: we push the Legendrian component Λi in the

Reeb direction by height equal to its index i, and this gives a well-defined

link.

5. Simplify the Legendrian front projection of the link by applying Rei-

demeister moves, Gompf moves, handleslides, and handle cancellations.

These moves are described in Section 2.3.

We apply this recipe to obtain the general form of the Weinstein diagram

of a filling XΛ of Σ2(Λ′):

Theorem 4.3.2. Let Λ be a Legendrian knot which is the closure of a qua-

sipositive 3-braid of algebraic length 2. Let Λ′ be a positive transverse push

off of Λ. If Lemma 4.2.5 gives γ with slope (p, q), 0 ≤ p < q, then there is a

filling of Σ2(Λ′), the double cover of S3 branched over Λ′, given by the handle

decomposition consisting of a single 1-handle and a single 2-handle pictured

in Figure 4.4.

Proof. We apply the recipe of Casals and Murphy to the Weinstein Lefschetz

fibration obtained via Corollary 4.2.3.
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Figure 4.5: The annuli A1 and A2, and the fiber of the open book decomposition
(F0, φ0) given by the Murasugi sum (A1, τα) ∗ (A2, τβ). The curve α is
in red and the curve β is in blue.

Let Λ′ be a transverse knot which is the closure of a quasipositive 3-

braid of algebraic length 2. Then by Corollary 4.2.3, the double cover of

S3 branched over Λ′, (Σ2(Λ′), ξ) has Weinstein filling XΛ. XΛ has a Weinstein

Lefschetz fibration π : X → D2 with generic fiber F e torus with one boundary

component, and monodromy given by vanishing cycles which are Dehn twists

along the curves α and γ. α is the (1, 0) curve and γ is some (p, q) curve in F .

We apply Lemma 4.2.5 to ensure that the (p, q) curve satisfies 0 < p < q.

We apply the recipe of Casals and Murphy. Step 1: First we need a

set of Lagrangian spheres for which we understand the Legendrian lifts. We

will choose the curves α and β of slopes (1, 0) and (0, 1) respectively in F , see

Figure 4.2. To find the Legendrian lifts Λα and Λβ of α and β, we consider

the following. Let (F0, φ0) be the open book decomposition given by F0 := F

and φ0 the monodromy given by Dehn twists τα and τβ. This open book

decomposition is the Murasugi sum (A1, τα) ∗ (A2, τβ) where A1, A2 are annuli

with monodromy given by Dehn twists about their cores, α and β, see Figure

4.5. Thus,

(F0, φ0) = (S3#S3, ξstd#ξstd) = (S3, ξstd)

and the Legendrian lifts Λα and Λβ of α and β are the lifts of the cores of the

annuli A1 and A2. Λα and Λβ each correspond to the attaching sphere of a

critical 2-handle cancelling a subcritical 1-handle attachment, as in Figure 4.6.

Step 2 is to express α and γ as the images of α under words in Dehn

twists along α and β. α is as given. For γ it suffices to find a series of Dehn
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α

β

+1

−1
+1

−1

Figure 4.6: From left to right:
(1.) the Legendrian lifts Λα and Λβ of α and β,
(2.) The (+1) and (−1) surgery curves for a Dehn twist τα,
(3.) The (+1) and (−1) surgery curves for a Dehn twist τ−1

β .

twists about α and β on the curve (1, 0) to obtain the curve with slope (p, q)

in the torus with one boundary component. We obtain such a word using the

Euclidean algorithm. Following Table 4.1, (p, q) is obtained by some sequence

of the Dehn twists τα and τ−1
β . As in Remark 4.2.4, we perform the Euclidean

algorithm to obtain successive coefficients ni ∈ Z+:

q = nkp+ rk

p = nk−1rk + rk−1

rk = nk−2rk−1 + rk−2

. . .

r3 = n3r2 + r1

r2 = n2r1 + 1

r1 = n1.

Then,

τ−nkβ ◦ τnk−1
α ◦ τ−nk−2

β ◦ · · · ◦ τ−n1
β (α) = γ.

Step 3 is to use Proposition 4.3.1 repeatedly to obtain the Legendrian

lifts Λα and Λγ. Λα is given and consists of an unknotted Legendrian knot

which cancels the 1-handle labelled α in Figure 4.6.
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+1

−1

Figure 4.7: The Legendrian lift of τ−1
β (α). From left to right:

(1.) First the diagram given by Proposition 4.3.1,
(2.) we perform a handle slide of the blue curve over the (+1) curve,
(3.) and then we cancel out the parallel (+1) and (−1) surgery curves.

To find Λγ, we will draw the curve

Λ
τ
−nk
β ◦τ

nk−1
α ◦τ

−nk−2
β ◦···◦τ−n1β (α)

.

We apply Proposition 4.3.1 repeatedly to obtain the surgery diagram.

This means repeatedly adding in a (+1) and a (−1) surgery curve along either

α or β with heights determined by the proposition, see Figure 4.6, and sliding

over the current handle to cancel them out. We will see that applying an

τ−1
β will increase the number of strands going through the topmost 1-handle

labelled β in Figure 4.6, and applying τα will increase the number of strands

going through the bottom 1-handle labelled α in Figure 4.6.

To begin, the lift of τ−1
β (α) is given by Figure 4.7.

Next, assuming n1 > 1, applying more twists τ−n1−1
β results in the series

of diagrams in Figure 4.8. In τ−n1
β (α), there are now n1 strands going through

the 1-handle labelled β and 1 strand going through the 1-handle labelled α.

We now apply τα to τ−n1
β (α), resulting in the series of diagrams in Figure

4.9. In τατ
−n1
β (α), there are now n1 strands going through the 1-handle labelled

β and n1 + 1 strands going through the 1-handle labelled α.

Now assuming n2 > 1, we apply τn2−1
α to τατ

−n1
β (α). We obtain the

diagrams in Figure 4.10. In the last diagram showing τn2
α τ−n1

β (α), we can

count n1 strands going through the handle labelled β and n1n2 + 1 strands

going through the handle labelled α.
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+1

−1

Figure 4.8: Shaded pink ribbons represent n1 − 1 parallel (+1) and (−1) curves
given by Proposition 4.3.1. Describing these 8 diagrams in order:
(1.) τ−1

β (α),
(2.) (+1) and (−1) curves added in,
(3.) we slide the blue curve over the lowest of the parallel (+1) curves,
(4.) Reidemeister 3,
(5.) Gompf 5,
(6.) Reidemeister 3,
(7.) Repeat steps 3-6 with remaining (+1) curves, and
(8.) we cancel the (+1) and (−1) curves to obtain τ−n1

β (α).

We continue to apply successive τ−niβ and τ
nj
α twists to the curve. In

doing so, we obtain the diagrams of Figure 4.11. Applying τ−niβ results in the

top row of diagrams, and applying τ
nj
α results in the bottom row of diagrams.

The count of strands passing through the 1-handles after each successive step

correspond to the ri in the Euclidean algorithm.

In the case that n1 = 1, the diagrams in Figure 4.8 reflected horizontally

give the τn2
α τ−1

β (α), reflected versions of Figures 4.9 and 4.10 give τ−1
β τn2

α τ−1
β (α)

and τ−n3
β τn2

α τ−1
β (α) respectively. In general, we still end up with the diagrams

of Figure 4.11, with τ−niβ resulting in the top row of diagrams, and τ
nj
α resulting

in the bottom row of diagrams.

Since p < q, the final Dehn twist applied will be a τ−1
β , so the final diagram

will correspond to the bottom right of Figure 4.11, with q strands going through

the top 1-handle and p strands going through the bottom 1-handle. We have

found a Legendrian representative for Λγ.

We can proceed with Step 4. Since we are dealing with only 2 curves, we
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−1

+1

Figure 4.9: Shaded pink ribbons represent n1−1 parallel curves. Describing these
11 diagrams in order:
(1.) τ−n1

β (α),
(2.) (+1) and (−1) curves added in,
(3.) we slide the blue curve over the orange (+1) curve,
(4.) Reidemeister 3,
(5.) Gompf 5,
(6.) Reidemeister 3 and we separate the bottom most blue curve from
the pink ribbon (which now represents n1 − 2 parallel strands),
(7.) we slide the blue curve over the orange,
(8.) Reidemeister 3,
(9.) Reidemeister 3,
(10.) repeat steps 7-9 with the remaining strands in the pink ribbon,
(11.) we cancel the (+1) and (−1) orange curves to obtain τατ

−n1
β (α).

can choose the cyclic ordering. We place Λγ above Λα. The resulting Weinstein

diagram is the top left diagram of Figure 4.12.

Step 5 is to simplify the handle diagram. We do so following Figure 4.12

by some knot isotopies, a handle slide, and cancelling the bottom 1-handle

with Λα. The resulting diagram has one 2-handle winding about a single 1-

handle q times. We can see this in the attaching curve in the bottom right of

4.12 which is colour coded: the blue shaded region represents p parallel curves

and the green shaded region represents q − p parallel curves.
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−1

+1

Figure 4.10: Shaded pink ribbons represent n1 − 1 parallel curves, shaded orange
regions represent n2−1 parallel curves, shaded green region represents
(n1 − 1)(n2 − 1) curves. Describing these 11 diagrams in order:
(1.) τατ

−n1
β (α),

(2.) (+1) and (−1) curves added in,
(3.) slide the blue curve over the topmost of the parallel (+1) curves,
(4.) Reidemeister 3,
(5.) Gompf 5,
(6.) n1 − 1 handleslides of the orange curve over the blue curves in
the pink ribbon (see Appendix A),
(7.) repeated applications of Reidemeister 3 followed by repeated
applications of Gompf 5 (see Appendix A),
(8.) repeated applications of Reidemeister 3,
(9.) repeated applications of Gompf 5,
(10.) repeat steps 3-9 with the remaining strands in the orange
ribbon,
(11.) we cancel the (+1) and (−1) curves to obtain τn2

α τ−n1
β (α).

In the next section, we will call the Weinstein diagram in Gompf standard

form obtained in Theorem 4.3.2 method D(Λ) for the knot Λ, where D(Λ)

depicts a filling of Σ2(Λ′).

Example 4.3.3. We will apply this procedure to a particular knot.

The transverse m(820) knot [BNMea] is the closure of the braid σ1σ
3
2σ1σ

−3
2

[CDGW]. We conjugate this braid word by σ1σ
−3
2 and obtain an equivalent
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−1

+1

−1

+1

Figure 4.11: Coloured ribbons represent some number of parallel strands. In the
top row, we apply Dehn twists τ

nj
α and see the resulting diagram

(the step by step procedure follows from Figure 4.10). In the bottom
row, we apply Dehn twists τ−niβ , and see the resulting diagram (the
step by step procedure consists of the same diagrams as the top row,
reflected about a horizontal axis).

Figure 4.12: The blue shaded region represents p parallel curves and the green
shaded region represents q − p parallel curves. 1. The Weinstein
diagram obtained after Step 4 of the recipe, 2. handleslide the blue
curves over the red curve, 3. cancel the bottom 1-handle with the
red curve, 4. perform a series of Reidemeister moves on the parallel
blue curves (see Appendix A).
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+1

−1

Figure 4.13: D(m(820)), the Weinstein diagram for the filling of the double cover
of the transverse m(820) knot, following Theorem 4.3.2.

braid:

σ1σ
3
2σ1σ

−3
2 = σ1σ

−3
2 (σ1σ

3
2σ1σ

−3
2 )σ3

2σ
−1
1 = σ1σ

−3
2 σ1σ

3
2.

By Corollary 4.2.3, the double cover of S3 branched over this knot has a

Weinstein Lefschetz fibration π : X → D2 with generic fibre F , e torus with

one boundary component containing vanishing cycles given by α and τ−3
β (α)

which are curves of slope (1, 0) and (1, 3) respectively.

Following the steps in the proof of Theorem 4.3.2, we obtain the lift of

the (1, 3) curve and the surgery diagram D(m(820)), as in Figure 4.13.



Chapter 5

Nonvanishing symplectic

homology

5.1 The Chekanov-Eliashberg Differential

Graded Algebra

In this section, we introduce the Chekanov-Eliashberg differential graded al-

gebra and describe how to compute it for links in #m(S1 × S2). We will

then compute the DGA of the knot in D(Λ), the Weinstein diagram built in

the previous chapter, and use it to show that the symplectic homology of the

Weinstein manifold obtained by attaching a 2-handle along the Legendrian

attaching sphere in D(Λ) is nonzero.

5.1.1 The DGA for Knots

We begin by describing how to compute the Chekanov-Eliashberg DGA for

K, a Legendrian knot in R3. We consider K in the Lagrangian projection,

Π(K), which we obtain from the front projection via Theorem 2.2.4. We

assume the strands of Π(K) meet orthogonally at crossings. We will fix a

point ∗ on Π(K) distinct from the double points, and label the crossings, which

correspond to the Reeb chords of K, with letters a1, . . . , an. We will define the

classic Chekanov-Eliasberg DGA [Che02, ENS+02] (AK , ∂K) in three steps: 1.

algebra, 2. grading, 3. differentials.
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The algebra AK is the associative, noncommutative, unital algebra over

Z generated by a1, . . . , an, t, t
−1 with the relation t · t−1 = t−1 · t = 1. We write

this as

AK = Z〈a1, . . . , an, t, t
−1〉.

This is generated as a Z-module by words in the letters a1, . . . , an, t, t
−1 with

multiplication given by concatenation. The empty word is the unit 1.

The grading associates a degree to each generator of AK , and the grading

of a word in the generators is the sum of the gradings of the letters in the

word. The grading of t is given by

|t| = 2rot(K),

and the grading of t−1 is

|t−1| = −2rot(K).

For grading on the ai, we consider the path ζi running along Π(K) from the

overcrossing at ai to the undercrossing, avoiding the base point ∗. Let the

number of counterclockwise rotations of the tangent vector of ζi from beginning

to end be denoted rot(ζi). The grading of ai is defined to be:

|ai| = 2rot(ζi)−
1

2
.

Finally to define the differential of the algebra, we begin by placing addi-

tional labels at each crossing representing Reeb signs and orientation signs, as

in Figure 5.1.

We now describe a set of immersed disks: Let D2
n = D2 − {x, y1, . . . , yn},

where D2 is the closed unit disk in R2 and x, y1, . . . , yn are points in ∂D2

appearing in counterclockwise order. If b0, b1, . . . , bn take values in {a1, . . . , an},

define the set

∆(b0; b1, . . . bn) = {u : (D2
n, ∂D

2
n)→ (R2

xy,Π(K)) : satisfying (1. - 4.)}/ ∼,
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−

−
+ +

Figure 5.1: On the left, the Reeb signs of the quadrants near a crossing. On the
right, the orientation signs, which are negative in the shaded qua-
drants and positive otherwise. The orientation signs are determined
on whether we have a positive or negative crossing.

where ∼ is reparametrization, and

1. u is an immersion,

2. u sends the boundary punctures to crossings in Π(K),

3. u sends x to b0, and a neighbourhood of x is mapped to a quadrant of b0

labelled with a positive Reeb sign,

4. for i = 1, . . . , n, u sends yi to bi, and a neighbourhood of yi is mapped

to a quadrant of bi labelled with negative Reeb sign.

Let γi denote the path from bi to bi+1. Let t(γi) be tk where k is the number

of times γi crosses ∗, counted with sign according to the orientation of Λ. Let

w(u) := t(γ0)b1t(γ1)b2 . . . bnt(γn),

and

ε(u) =
n∏
i=0

ε(bi),

where ε(c) for a corner c is the orientation sign of the quadrant that u covers

at c. Let ∂K : AK → AK be defined as follows: for generators a ∈ {a1, . . . an},

let

∂K(a) =
∑

n≥0,b1,...bndouble points,
u∈∆(b0;b1,...bn)

ε(u)w(u).

See Figure 5.2 for an example of some disks counted by the differential.
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•a

Figure 5.2: The immersed disks counted by the differential at the point a in a
trefoil. The yellow and orange disks each have a single switch at a
negative corner. The red disk has three.

Let ∂K(t) = ∂K(t−1) = 0, and extend ∂K by the signed Leibniz rule:

∂K(ww′) = (∂Kw)w′ + (−1)|w|w(∂Kw
′).

For further details and examples, see [EN18].

Another way to choose a grading is to choose a Maslov potential : a locally

constant map

m : L \ {F−1(cusps), base points} → Z

which increases by 1 when we pass through a cusp of F (L) going upwards and

decreases by 1 when going through a cusp downwards. Then the grading of a

crossing a is given by m(a−)−m(a+) where a− and a+ are the more negatively

sloped and the more positively sloped strands at a, respectively.

This is particularly useful in the case of links, where the previous definition

of grading is not well-defined for crossing between different components.

5.1.2 With 1-handles

Now we extend the DGA computations to Legendrian links in #m(S1 × S2)

following [EN15]. Let L be a knot in #m(S1 × S2). L is normally given in

the front projection, with matching balls or walls to represent 1-handles (as

in Gompf normal form). We begin by redrawing the front diagrams in the

Lagrangian projection Π(L). This means using a verion of Ng’s resolution

from Theorem 2.2.4 [Ng03] along with the additional 1-handle half twist from

Definition 2.3 of [EN15]. This half twist is depicted in Figure 5.3. For Λ, the
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1
2

3
41

2

3
4

Figure 5.3: A half twist we add at a 1-handle to go from the front projection
of a knot to its the Lagrangian resolution. At a crossing the more
negatively sloped strands corresponds to the overcrossing strand.

closure of a 3-braid of algebraic length 2, Λ, D(Λ) has Lagrangian resolution

as in Figure 5.5.

The DGA of L in #m(S1×S2) has a subalgebra called the internal DGA,

generated from Reeb chords of L in each of the 1-handles. Let r denote the

rotation number of L. We consider a 1-handle through which pass n strands.

We label these strands from 1 to n from top to bottom on the left and from

bottom to top on the right. Let m(1), . . . ,m(n) denote the Maslov potentials

for each of these strands, as defined on the previous page, such that this Maslov

potential satisfies the following conditions on the front projection of L:

1. The same Maslov potential is assigned to the left and right sides of the

same strand connected through a 1-handle, this potential is even if the

strand is oriented left to right and odd otherwise.

2. At a cusp, the upper component has Maslov potential one more than the

lower component.

Let (An, ∂n) denote the differential graded algebra with algebra over the

coefficient ring Z[t1, t
−1
1 ] freely generated by {c0

i j|1 ≤ i < j ≤ n} ∪ {cpi j|1 ≤

i, j ≤ n, p ≥ 1}. Let c0
i j = 0 for i ≥ j.

The gradings are given by |ti| = −2r, |t−1
i | = 2r, and |cpi j| = 2p − 1 +

m(i)−m(j) for all i, j, and p. Then the differential is defined on the generators

by:

∂n(c0
i j) =

n∑
m=1

σiσmc
0
i mc

0
m j
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∂n(c1
i j) = δi j +

n∑
m=1

σiσmc
0
i mc

1
m j +

n∑
m=1

σiσmc
1
i mc

0
m j

∂n(cpi j) =

p∑
l=0

n∑
m=1

σiσmc
l
i mc

p−l
m j

where p ≥ 2, σi = (−1)m(i) for all i, and δi j is the Kronecker delta. We extend

∂n by the signed Leibniz rule as before. We do the same procedure for each

1-handle.

The full DGA is generated by the internal subalgebras (An, ∂n) (one for

each 1-handle), as well as by the Reeb chords at crossings labelled a1, . . . , an

which we call the external generators. If a corresponds to a crossing in the

front diagram, a has grading |a| = m(So)−m(Su) where So is the overcrossing

strand and Su is the undercrossing strand.

The differential for these external generators is again a signed count of

immersed disks. Disks are not allowed to pass through the 1-handle, but we

allow negative corners on either side of the 1-handle. Such a corner on the

Reeb chord between the ith and jth strands is denoted c0
i j, i < j, see Figure

5.4. The sign associated to an immersed disk is determined by the product of

the orientation signs at its corners. For a corner at c0
i j, the orientation sign

is: +1 for a corner reaching the handle from the right, and (−1)m(i)−m(j) for a

corner reaching the handle from the left. For a corner at a crossing, we choose

the convention that all orientation signs are +1, except if the crossing has even

degree, the south and east corners have degree −1.

i

j i

j

Figure 5.4: A negative corner at a 1-handle between the ith and jth strands, de-
noted c0

i j in the computation of the differential.
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5.1.3 Cyclically composable Reeb chords

We want to compute invariants of a Weinstein manifold given its surgery pre-

sentation in terms of Legendrian links. From the perspective of Legendrian

surgery, and in order to use results of [BEE12, Ekh19], we need to define the

algebra over a ring with idempotents ei in bijection with the connected compo-

nents of the link Li to ensure that Reeb chords will be cyclically composable.

Since in our examples, L is always a knot, we take the DGA defined over the

base ring Ze1.

In [EL19], such a version of the DGA is defined. Etgü and Lekili further

show that this internal DGA is finitely generated up to quasi-isomorphism, by

a subalgebra generated by only the elements cki j where k = 0 or k = 1.

We will compute this version of the Chekanov-Eliashberg DGA in the next

section, where we will call it (AL, ∂L).

5.2 Computing the Chekanov-Eliashberg DGA

from D(Λ)

In this section, we compute the Chekanov-Eliashberg DGA of the knots in the

diagrams D(Λ) of the previous chapter, drawn in S1 × S2.

Let q denote the number of strands entering the 1-handle of D(Λ). Let

p denote the number of negatively sloped overstrands in D(Λ). We begin by

labelling the crossings, which correspond to generating Reeb chords of the

DGA. We label crossings in the Lagrangian resolution of D(Λ) which come

from crossings in the front diagram (ie. any crossing on the left side of the

diagram) with ai, with the left most crossing labelled a. We label crossings

which come from the 1-handle twist of the Lagrangian resolution with bi, so

that the indices increase from left to right from the bottom row upwards. We

place a marked point at the minimum of the highest strand exiting the 1-handle

on the left, and we label the marked point t. See for example the partially

labelled Figure 5.5 when Λ is a closure of a 3-braid with an algebraic length

2. See also the fully labelled examples of the Lagrangian resolution of D(Λ),
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where Λ is the m(820) knot, in Figure 5.7, and where Λ is the 10155 knot, in

Appendix B.

1
...

p

...

q

a ai bj

b1
. . . . . .bp bq−1t

•

Figure 5.5: D(Λ). There are p− 2 parallel curves in the blue band, and q − p− 2
curves in the green band. The a and bi generators of the DGA are
labelled. The other crossing are labelled ai if they are in the region on
the left, and bj if they are in the region on the right.

We can now compute the Chekanov-Eliashberg DGA (AK , ∂K). Since

there are no cusps, we give each strand the Maslov number 0. The generators

are t, a, a1, . . . , ak, b1, . . . , bl, c
0
i j for 1 ≤ i < j ≤ q, and c1

i j for 1 ≤ i, j ≤ q.

The gradings of the generators are as follows:

|t| = |a| = |ai| = |bi| = 0

|c0
i j| = 1

|c1
i j| = −1

The differentials of generators of the internal DGA are:

∂(c0
i j) =

q∑
m=1

c0
i mc

0
m j

∂(c1
i j) = δi j +

q∑
m=1

c0
i mc

1
m j +

q∑
m=1

c1
i mc

0
m j

where δi j = e1 if i = j and is 0 otherwise.

The differentials of the external DGA are given by the count of immersed

disks. Notably, ∂a, from the leftmost crossing of Figure 5.5, has one contribu-
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ting disk to its left labelled c0
p p+1 in the differential. Each of the differentials

∂bi for i = {1, . . . , q − 1} count two disks, one to the right of bi and one to

the left, except ∂bp = c0
q−p q−p+1 which only counts one disk to the right. For

ai and bj where j > q − 1, the differential counts at least 2 disks, including at

least one which contributes a term of the form µc0
i′ j′ or c0

i′ j′µ where µ is a, or

some ai or bj. We extend ∂L by the signed Leibniz rule as before.

Lemma 5.2.1. Let K be the Legendrian knot of a diagram D(Λ). Let q be the

number of strands passing through the 1-handle. Then the terms a, b1, . . . , bq−1

do not appear in any differentials of the Chekanov-Eliashberg DGA AK/Z〈e1〉

as degree 1 monomials.

Proof. Suppose a appears in the differential of some generator µ. Then there

is an immersed disk with a negative corner at a. The boundary of this immer-

sed disk must follow one of the strands from a to the left. Suppose it’s the

overcrossing strand. Then the strand immediately enters the 1-handle, so a

appears in the differential in a word of the form µ1ac
0
i pµ2 or µ1c

0
i paµ2, where

i < p and µi is some other string of generators, possibly none. Likewise if it’s

the undercrossing strand, we immediately reach the 1-handle to the left of the

crossing, so a appears in the differential in a word of the form µ1ac
0
i p+1µ2 or

µ1c
0
i p+1aµ2, i < p+ 1.

We can make an equivalent argument for any of the bi following their

overcrossing and undercrossing strands to the left or right, as we see that we

do not meet any negative corners until we reach the 1-handle.

Since we have quotiented out the constant terms (any monomials of the

form e1) and the differential on products is generated by the Leibniz rule:

the only way to obtain a monomial of smaller degree is if there is a constant

term in one of the differentials, but no such term exists. Thus a, b1, . . . , bq−1

cannot appear as a degree 1 monomial in the differential of some product of

generators.

Example 5.2.2. In this example, we fully compute the internal and external

DGA of D(Λ) for a particular knot Λ. Consider the case where Λ is the m(820)
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knot. We saw in Example 4.3.3 that D(Λ) is the diagram on the left in Figure

5.6. The Lagrangian resolution of D(Λ) is the diagram on the right of Figure

5.6.

;

Figure 5.6: The Lagrangian resolution for D(Λ), where Λ is the m(820) knot.

We can then label the crossings which generate the DGA as in Figure 5.7.

a
a1

b1 b2

b3

1

2

31

2

3
•
t

Figure 5.7: The external Reeb chords generating the DGA of L in D(m(820))
labelled.

The generators are t, a, a1, b1, b2, b3, c0
i j for 1 ≤ i < j ≤ 3, and c1

i j for

1 ≤ i, j ≤ 3.

Then the gradings of the generators are:

|t| = |a| = |a1| = |b1| = |b2| = |b3| = 0

|c0
i j| = 1

|c1
i j| = −1

We get following differentials for the labelled Reeb chord generators:

∂a = c0
1 2

∂a1 = c0
1 3 + ac0

2 3

∂b1 = c0
2 3

∂b2 = c0
1 2 + c0

2 3
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∂b3 = c0
1 3 + b2c

0
2 3 + c0

2 3b1,

along with differentials for the internal generators as follows:

∂c0
1 2 = 0

∂c0
1 3 = c0

1 2c
0
2 3

∂c0
2 3 = 0

∂c1
1 1 = e1 + c0

1 2c
1
2 1 + c0

1 3c
1
3 1

∂c1
1 2 = c0

1 2c
1
2 2 + c0

1 3c
1
3 2 + c1

1 1c
0
1 2

∂c1
1 3 = c0

1 2c
1
2 3 + c0

1 3c
1
3 3 + c1

1 1c
0
1 3 + c1

1 2c
0
2 3

∂c1
2 1 = c0

2 3

∂c1
2 2 = e1 + c0

2 3c
1
3 2 + c1

2 1c
0
1 2

∂c1
2 3 = c0

2 3

∂c1
3 1 = 0

∂c1
3 2 = c1

3 1c
0
1 2

∂c1
3 3 = e1 + c1

3 1c
0
1 3 + c1

3 2c
0
2 3.

Another fully computed example of a DGA can be found in Appendix B

for a slightly more complicated Λ.

We can now use the Chekanov-Eliashberg DGA to compute symplectic

invariants of the Weinstein manifold given by handle attachments along D(Λ).

5.3 Nonvanishing symplectic homology

Symplectic homology (and cohomology) are very useful invariants of exact

symplectic manifolds with contact type boundary, introduced by Viterbo in

[Vit99]. It can be used to prove the existence of closed Hamiltonian orbits

and Reeb chords, and the wrapped Fukaya category [FSS08] is built using the

wrapped Floer cohomology, which are modules over the symplectic cohomo-
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logy ring for non-compact symplectic manifolds. See [Sei06] for a survey on

symplectic homology. Work of Bourgeois and Oancea first related symplectic

homology to linearized contact homology [BO09] and a way to compute sym-

plectic homology via the Chekanov-Eliashberg DGA was established by Bour-

geois, Ekholm, and Eliashberg in [BEE12, Ekh19]. In this section, we will

summarize the results of [BEE12]. We begin with Corollary 5.7 of [BEE12]

which states:

Theorem 5.3.1. [BEE12]

SH(X) = LHHo(L)

where LHHo(L) is the homology of the Hochschild complex associated to the

Chekanov-Eliashberg differential graded algebra of L over Q.

Thus, in order to compute the symplectic homology SH(X), we first com-

pute

LHHo+(L) :=

̂
LHO

+

(L)⊕ L̂HO
+

(L),

defined as follows. We consider the DGA AL defined in the previous section and

generated by cyclically composable monomials of Reeb chords. Let LHO(L) =

AL. Let

LHO+(L) := LHO(L)/Z〈e1〉

be the subalgebra of LHO(L) generated by non-trivial cyclically composable

monomials of Reeb chords. Let

̂
LHO

+

(L) := LHO+(L)

and let

L̂HO
+

(L) := LHO+(L)[1],

that is LHO+(L) with grading shifted up by 1. Now, given a monomial w =

c1 . . . cl ∈ LHO+(L), we denote the corresponding elements in

̂
LHO

+

(L) and
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L̂HO
+

(L) as w̌ = č1 . . . cl and ŵ = ĉ1 . . . cl, respectively. The hat or check

may mark a variable in the monomial which is not the first one, in which case

the monomial is the word obtained by the graded cyclic permutation which

puts the marked letter in the first position. Let S : LHO+ → L̂HO
+

denote

the linear operator defined by the formula:

S(c1 . . . cl) := ĉ1c2 . . . cl + (−1)|c1|c1ĉ2 . . . cl + · · ·+ (−1)|c1...cl|c1c2 . . . ĉl.

Then the differential dHo+ : LHHo+ → LHHo+ is given by

dHo+ =

ďLHO+ dM Ho+

0 d̂LHO+

 .

The maps in the matrix on generators are as follows:

1. If w ∈ LHO+(L) is a monomial, then

ďLHO+(w̌) :=
r∑
j=1

v̌j,

where dLHO+(w) := ∂AL(w) =
∑r

j=1 vj for monomials vj.

2. If c is a chord and w is a monomial such that cw ∈ LHO+(L), then

d̂LHO+(ĉw) = S(dLHO+(c))w + (−1)|c|+1ĉ(dLHO+(w)).

3. If w = c1 . . . cl ∈ LHO+(Λ), then

dM Ho+(ŵ) := č1 . . . cl − c1 . . . čl.

Remark 5.3.2. Note that dM Ho+ is zero on linear monomials.

Now we can define LHHo(L) := LHHo+(L) ⊕ C(L) where C(L) is the

vector space generated by a single element τ1 of grading 0.
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Then the differential dHo : LHHo(L)→ LHHo(L) is defined as:

dHo =

dHo+ 0

δHo 0

 .

For any chord c, we define δHo(č) := ncτ1 where nc is the count of the zero-

dimensional moduli space of holomorphic disks asymptotic to ∞ at c. If w is

a nonlinear monomial, then δHo(w̌) = 0.

Then we have the following:

Proposition 5.3.3. [BEE12] d2
Ho = 0 and the homology

LHHo(L) = H∗(LH
Ho(L), dHo)

is independent of choices and is a Legendrian isotopy invariant of L.

We apply Theorem 5.3.1 to the diagrams D(Λ) obtained in Section 4.3 to

obtain the following theorem:

Theorem 5.3.4. Let Λ 6= U be a Legendrian knot which is the closure of

a quasipositive 3-braid of algebraic length 2. Let Λ′ be a positive transverse

push off of Λ. Then there is a filling of Σ2(Λ′), the double cover of S3 branched

over Λ′, which has nonvanishing symplectic homology.

Proof. Let XΛ be the filling of Σ2(Λ) given by the Weinstein handle decompo-

sition depicted in D(Λ). We will show that

SH(XΛ) = LHHo(L)

is nonzero by finding a (w̌, v̂, aiτi) ∈
̂
LHO

+

(L)⊕L̂HO
+

(L)⊕C(L) = LHHo(Λ)

such that dHo((w̌, v̂, aiτi)) = 0 but (w̌, v̂, aiτi) /∈ Im(dHo).

First, we consider the Chekanov-Eliashberg DGA AL = LHO(L) of the

link L in the Weinstein diagram D(Λ). Recall that D(Λ) is constructed via

surgery on a (p, q) and a (1, 0) curve in the torus with one boundary component,
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and consists of the attaching curves of a single 2-handle and a single 1-handle.

Since Λ 6= U , by Lemma 4.2.5, we choose p and q satisfing 0 < p < q.

The attaching sphere of the 2-handle winds around the 1-handle q times.

As in section 5.2, we will write ai (or a) to denote generators coming

from crossings present in the front diagram, bj to denote generators coming

from crossings formed by the Lagrangian resolution, and c0
i j, c

1
i j to denote

generators coming from the internal Reeb chords within the 1-handle. In

particular, consider the generators a and bj’s as labelled in Figure 5.5. The

differential for a and the bj’s are as follows:

∂a = c0
p p+1

∂b1 = c0
q−1 q + c0

p−1 p

∂b2 = c0
q−2 q−1 + c0

p−2 p−1

. . .

∂bp−1 = tc0
q−p+1 q−p+2 + c0

1 2

∂bp = c0
q−p q−p+1

∂bp+1 = c0
q−p−1 q−p + c0

q−1 q

. . .

∂bq−1 = c0
1 2 + c0

p+1 p+2

Note that every c0
i j appears in these differentials twice, with the marked point

giving an extra t coefficient only to the term c0
q−p+1 q−p+2 in ∂bp−1 when p > 1.

Note also that for any i 6= j, ∂bi 6= ∂bj. This is because otherwise, we

would have q − p − 1 = p − 1, so q = 2p. We know q and p are necessarily

relatively prime, so we must have q = 2 and p = 1. Then the diagram D(Λ)

consists of a Legendrian winding around the 1-handle twice with one crossing

in D(Λ) and one additional crossing in the Lagrangian resolution. Thus, there

is only one crossing labelled with a b, so i = j, a contradiction.
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Let

c := ta+

q−1∑
i=1

εit
sibi

where we choose si ∈ {0, 1} and εi ∈ {−1, 1} using the following procedure:

1. Let c0 := a +
∑q−1

i=1 bi. Rearrange the terms in sum c0 = a +
∑q−1

i=1 bi in

terms of the differentials of the generators so that matching terms are

adjacent and relabel with the index ij:

∂(c0) =(c0
p p+1) + (c0

p p+1 + c0
i0 j0

) + (c0
i0 j0

+ c0
i1 j1

) + . . .

+ (tc0
q−p+1 q−p+2 + c0

1 2) + (c0
1 2 + c0

p+1 p+2) + · · ·+ (c0
q−p q−p+1)

=∂a+ ∂bi1 + · · ·+ ∂biq−1

=∂a+

q−1∑
j=1

∂bij

2. Let j′ satisfy bp−1 = bij′ . Then for j < j′ let si = 1, and for j ≥ j′, let

si = 0. If p = 1, si = 0 for all i.

3. Let εi = (−1)j.

Then ∂A (c) = 0.

Consider the element (č, ĉ, τ1) ∈ LHHo(L). Then ∂A (c) = dLHO(c) = 0,

so dLHO+(c) = 0. Thus we obtain the following:

ďLHO+(č) = 0,

d̂LHO+(č) = 0,

dM Ho+(ĉ) = 0

by Remark 5.3.2. Finally, δHo counts the zero-dimensional moduli space of

holomorphic disks asymptotic to Reeb chords at ∞. These are disks with

boundary consisting of a smooth curve along the front diagram that does not

pass through a negative corner. Since the curves in D(Λ) pass monotonically
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left to right, any such boundary would necessarily have a negative corner at

the 1-handle. Thus,

δHo(c) = 0.

Thus we conclude that dHo(č, ĉ, τ1) = 0.

To see that (č, ĉ, τ1) /∈ Im(dHo), note that in the image of dLHO+ is gene-

rated by the differentials of the generators of AL/Z〈e1〉. Thus we can apply

Lemma 5.2.1, and we know that the terms a, b1, . . . , bq−1 do not appear in any

differentials of the Chekanov-Eliashberg DGA AL/Z〈e1〉 as degree 1 monomi-

als. Thus c /∈ Im(dLHO+).

Example 5.3.5. Following the above proof, for the m(820) knot with differen-

tial algebra given by 5.2.2, the cycle c is given by a− b2 + b1.

For an example in which the coefficient t appears in the differential of c,

see the case of the 10155 knot in Appendix B.

5.4 The Main Theorem

We will use the filling with nonzero symplectic homology of the previous section

along with a result of McLean [McL09] to prove the main theorem.

McLean’s result is based on the work of Viterbo in [Vit99]. Specifically,

from Viterbo functoriality which says that a codimension 0 exact embedding

of a symplectic manifold with boundary into another induces a transfer map

on the symplectic homologies between them. More precisely,

Theorem 5.4.1. [Vit99] Suppose (W,dλ) is an exact symplectic manifold with

a Liouville vector field which is transverse at the boundary. Suppose W0 ↪→ W

is an embedding of a compact codimension 0 submanifold. Then there exists

a natural homomorphism

SH∗(W,dλ)→ SH∗(W0, dλ).

Moreover, this map, along with the natural map on relative singular homology
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H∗(W,∂W )→ H∗(W0, ∂W0) forms the following commutative diagram:

H∗+n(W,∂W ) H∗+n(W0, ∂W0)

SH∗(W,dλ) SH∗(W0, dλ)

McLean checked that this transfer map was in fact a unital ring map and

proved the following theorem (Cor 10.5 in [McL09]) which we will use in the

proof of the main theorem:

Theorem 5.4.2. [McL09] Let X and W be compact convex symplectic ma-

nifolds. Suppose W is subcritical. Suppose SH(X) 6= 0. Then X cannot

be embedded in W as an exact codimension 0 submanifold. In particular, if

H1(X) = 0, then X cannot be symplectically embedded into W .

We are ready to conclude the main theorem:

Theorem 5.4.3. Let U be the standard tb = −1 unknot. Let Λ be a Le-

gendrian knot satisfying U ≺ Λ ≺ U , and Λ 6= U . Then Λ cannot be smoothly

the closure of a 3-braid.

Proof. We proceed by contradiction. Suppose Λ 6= U is smoothly the closure of

a 3-braid which satisfies U ≺ Λ ≺ U . Λ must be quasipositive. Λ has a positive

transverse push off Λ′ of the same topological knot type. By Remark 1.0.12, Λ′

is transversely isotopic to a quasipositive 3-braid. By Corollary 3.3.7, Λ must

have algebraic length 2. By Theorem 4.3.2, D(Λ) is the Weinstein diagram of

a filling of Σ2(Λ′), call it XΛ. By Theorem 5.3.4, XΛ has nonzero symplectic

homology.

Next, we’ll show that XΛ embeds in B4 as a codimension 0 exact subman-

fold. Recall the construction from the proof of Theorem 3.1.6. In particular,

we will need the submanifold V of Σp(C
′), where C ′ is the symplectic approx-

imation of the Lagrangian concordance cylinder of U ≺ Λ ≺ U . Here we fix

p = 2. Then we have ∂V = Σ2(Λ′) ∪ S3. In the proof of Theorem 3.1.6, we
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showed that any 4-manifold constructed by gluing a filling of Σ2(Λ′) to V must

embed in a blow-up of B4.

Let X be the branched double cover of B4 branched over the symplectic

disk bounding Λ′. Then the manifold we get by gluing X to V along Σ2(Λ′) is

B4. Then we obtain the following Mayer-Vietoris sequence:

H3(B4) H2(Σ2(Λ′)) H2(X)⊕H2(V ) H2(B4)

Σ2(Λ′) is a rational homology sphere, thus H2(Σ2(Λ′),Q) = 0. Then since

H3(B4,Q) = H2(X,Q) = H2(B4) = 0, we have that

H2(V,Q) = 0.

Now instead take W = XΛ ∪V to be the manifold obtained by gluing XΛ

to V . We obtain the following Mayer-Vietoris sequence:

H2(Σp(Λ
′)) H2(XΛ)⊕H2(V ) H2(W ) H1(Σp(Λ

′))

From D(Λ), we see that XΛ is constructed via attaching a single 1-handle

and a single 2-handle to a 0-handle. The 2-handle is attached along a curve

which runs along the 1-handle nontrivially. Thus H2(XΛ,Q) = 0. And since

H2(Σp(Λ
′),Q) = H2(V,Q) = H1(Σp(Λ

′),Q) = 0,

H2(W,Q) = 0.

Thus W must be minimal, so W is B4, which is subcritical. Since XΛ has a

Weinstein structure, it is exact and convex.

This contradicts Theorem 5.4.2. Thus if Λ satisfies U ≺ Λ ≺ U , Λ 6= U ,

then Λ is not smoothly the closure of a 3-braid.

In other words, we have shown:

Corollary 5.4.4. Let U be the standard tb = −1 unknot. The only Le-
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gendrian knot Λ which satisfies U ≺ Λ ≺ U and is smoothly the closure of a

3-braid is U .

Proof. ≺ is reflexive and Theorem 5.4.3 eliminates all other 3-braid closures.

Additionally the following result about contact embeddings follows from

the proof of Theorem 5.4.3. The double covers of S3 branched over a quasipo-

sitive transverse knot Λ′ which is the closure of a 3-braid of algebraic length

2 form an infinite family of contact manifolds which are rational homology

spheres but do not embed in R4 as contact type hypersurfaces, motivated by

the work of Mark and Tosun [MT20].

Corollary 5.4.5. Let Σ2(Λ′) be the double cover of S3 branched over a qua-

sipositive transverse knot which is the closure of a 3-braid of algebraic length

2. Suppose Λ′ is not the unknot. Then Σ2(Λ′) does not embed as a contact

type hypersurface in R4.

Proof. Suppose Σ2(Λ′) be the double cover of S3 branched over a quasipositive

transverse knot Λ′ which is the closure of a 3-braid of algebraic length 2.

Suppose Λ′ is not the unknot. Suppose Σ2(Λ′) embeds as a contact type

hypersurface in R4. Then it bounds a codimension-0 symplectic submanifold

of R4, call it X.

We now follow the same arguments as in the proof of Theorem 5.4.3, to

reach a contradiction. We have a Mayer-Vietoris sequence:

H3(R4) H2(Σ2(Λ′)) H2(X)⊕H2(R4 \X) H2(R4)

So H2(X) = 0. Consider (R4 \X) which has boundary Σ2(Λ′). We can glue in

the filling XΛ of Σ2(Λ′) corresponding to the diagram D(Λ) of Theorem 4.3.2

along the boundary Σ2(Λ′). Let W := (R4 \X) ∪XΛ. By p. 311 of [Gro85],

W = R4#mCP2 for some m ≥ 0. We have another Mayer-Vietoris sequence:

H2(Σp(Λ
′)) H2(XΛ)⊕H2(B4 \X) H2(W ) H1(Σp(Λ

′)).
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Thus, H2(W ) = 0 and we know that W is R4. Thus XΛ embeds as an exact

codimension 0 submanifold of W = R4.

By Theorem 5.3.4, XΛ has nonzero symplectic homology. Thus by Theo-

rem 5.4.2, XΛ cannot embed in R4, a contradiction.

To see that these Σ2(Λ′) are indeed an infinite family, we distinguish

infinitely many of them by their first homology, which we can compute from

their Weinstein diagrams.

Proposition 5.4.6. There are infinitely many non homeomorphic manifolds

which are double covers of S3 branched over quasipositive transverse knots

which are the closures of 3-braids of algebraic length 2.

Proof. Consider the 3-braids βk := σ1σ
−k
2 σ1σ

k
2 for k ∈ Z, k ≥ 2. Let Λ′k be a

transverse knot which is the closure of βk. By Proposition 4.2.2, there is an

open book decomposition of the double cover of S3 branched over Λ′k, Σ2(Λ′k),

with pages consisting of tori with one boundary component and monodromy

φ = τατγ where α is a (1, 0) curve and γ is a curve with slope (1, k).

Figure 5.8: The Weinstein diagram of XΛ′k
with k strands entering the 1-handle

(left) and the corresponding surgery diagram of Σ2(Λ′k) (right).

Then by Theorem 4.3.2, Σ2(Λ′k) has a filling XΛ′k
with surgery diagram as

in Figure 5.8. We can replace the 1-handle in this diagram with a 0-framed

surgery on an unknot to obtain a surgery diagram of Σ2(Λ′k), as in Figure 5.8.

We call the unknot U and the other knot L. We see that U has linking number
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k with L, so their linking matrix is0 k

k tb(L)− 1


which has determinant −k2, thus

|H1(Σ2(Λ′k))| = k2.

Thus, Σ2(Λ′k) is not homeomorphic to Σ2(Λ′j) for j 6= k.



Chapter 6

Weinstein Complements of

Smoothed Toric Divisors

In this chapter, we outline the results obtained in collaboration with Bahar

Acu, Orsola Capovilla-Searle, Agnes Gadbled, Aleksandra Marinkovic̀, Emmy

Murphy, and Laura Starkston. These results were introduced in [ACSG+20a]

and their full proofs can be found in [ACSG+20b].

6.1 Existence of a Weinstein structure

Our work in [ACSG+20a, ACSG+20b] provides a connection between the study

of toric geometry and Weinstein handlebody theory. In particular our main

result is an algorithm which produces the Weinstein handlebody diagram in

Gompf standard form for a large class of 4-dimensional manifolds. These are

the complements of centered toric divisors smoothed at some of their normal

crossing singularities.

Symplectic divisors are co-dimension 2 symplectic submanifolds that may

have controlled singularities. Donaldson proved that every closed integral sym-

plectic manifold (M,ω) has a smooth symplectic divisor Poincaré dual to k[ω]

[Don96], and Giroux proved such a divisor can be chosen so that the comple-

ment has a Weinstein structure [Gir02, Gir17].

A toric manifold is a symplectic manifold with an effective Hamiltonian

action of the torus of the maximal dimension [Sym03]. The Hamiltonian action
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induces a moment map whose image is a Delzant polytope, ∆. The preimage

under the moment map of the facets of the Delzant polytope is a toric divisor,

a divisor fixed by the Hamiltonian action. In 4 dimensions, these toric divisors

consist of some number of transversally intersecting embeddings of CP1 and

initially have normal crossing singularities, which are nodes mapped to vertices

of the Delzant polytope in a one to one correspondence. Any of the nodes can

be smoothed so the divisor has fewer singularities. We call a toric divisor

which has been smoothed at some subset of nodes a smoothed toric divisor,

see Figure 6.1.

Figure 6.1: From left to right: the Delzant polytope for CP2, the preimage of the
facets of CP2 consisting of 3 transversally intersecting copies of CP1,
and the toric divisor in CP2 smoothed at one node.

We define a special class of smoothed toric manifolds as follows:

Definition 6.1.1. [ACSG+20a] For each vertex V of the Delzant polytope

of a toric manifold, we associate a ray R generated by the sum of the unit

edge vectors of ∆ adjacent to V and beginning at V . A toric manifold with a

chosen subset {V1, . . . , Vk} of the vertices is called {V1, . . . , Vk}-centered if the

corresponding rays R1, . . . , Rk all intersect at a common single point in the

interior of the Delzant polytope.

Figure 6.2 illustrates some examples of centered toric manifolds. With this

definition in mind, the first main results of the paper are as follows. We show

that if we have a {V1, . . . , Vk}-centered toric manifold, then the complement of

the toric divisor smoothed precisely at the nodes V1, . . . , Vk admits a Weinstein
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Figure 6.2: From left to right: the Delzant polytope for CP2 showing that it’s
centered with respect to all of its nodes, the Delzant polytope for
(CP1 × CP1, ωa,a) showing that it’s centered with respect to all of its
nodes, and the preimage of the facets of CP2, and the Delzant polytope
for (CP1 × CP1, ωa,b), a > b showing that it’s centered with respect to
two but not three of its nodes.

structure. We describe how to obtain the attaching spheres of the Weinstein

handles of such a complement:

Theorem 6.1.2. [ACSG+20b] Let (M,ω) be a toric 4-manifold corresponding

to Delzant polytope ∆ which is {V1, . . . , Vk}-centered. Let D denote the divisor

obtained by smoothing the toric divisor at the nodes V1, . . . , Vk. Then there

exist arbitrarily small neighborhoods N of D such that M \ N admits the

structure of a Weinstein domain.

Furthermore, M \ N is Weinstein homotopic to the Weinstein domain

obtained by attaching Weinstein 2-handles to the unit disk cotangent bundle

of the torus D∗T 2, along the Legendrian co-normal lifts of co-oriented curves

of slope s(V1), . . . , s(Vk). Here s(Vi) is equal to the difference of the inward

normal vectors of the edges adjacent to Vi in ∆.

We outline the proof of this theorem: The first main step is to embed

the model Weinstein structure on a 2-handle into a model neighborhood of the

node. Then we can apply the symplectomorphism coming from the appropriate

SL(2,Z) transformation to send this model to a node Vi. Let U denote the

complement of a neighborhood of the nodal divisor in the local model. The

second main step is to show how to glue the Weinstein structure on the handle

to the Weinstein structure of U in a neighborhood of the attaching region,
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in a way that avoids creating any additional critical points. The gluing we

perform will occur in a local neighborhood of the node Vi, and the Weinstein

structure outside of this neighborhood will agree with the canonical structure

on U . Therefore we will be able to repeat this gluing at each of the nodes

V1, . . . , Vn independently to obtain the global Weinstein structure. We will use

the centeredness condition to ensure that the Legendrian attaching spheres of

the 2-handles can be simultaneously Legendrian with respect to the contact

structure induced on ∂(D∗T ).

6.2 The Centeredness Condition

We then ask: how restrictive is the centeredness condition? If {V1, . . . , Vk} is

the set of all vertices of the polytope ∆, then we show that the polytope is

{V1, . . . , Vk}-centered if and only if it is monotone. This is very restrictive: ∆

must correspond to one of the 5 monotone toric 4-manifolds (up to rescale of

a symplectic form).

However, our examples come primarily from partially smoothed toric di-

visor complements, where not all but some nodes are smoothed. This way, we

can realize many different manifolds. In fact, we show an explicit construction

of a family of {V1, . . . , Vk}-centered toric 4-manifolds, for any k ∈ N:

Theorem 6.2.1. [ACSG+20b] There are infinitely many non-diffeomorphic

Weinstein manifolds obtained by taking the completion of the complement of

a neighborhood of a partially smoothed toric divisor in a toric 4-manifold.

This does not give a complete list of such toric manifolds, but shows the

existence an infinite family of examples. On the other hand, we also give an

infinite family of distinct slopes that cannot be realised as a subset of the

slopes of the vertices of any partially centered Delzant polytope.

Theorem 6.2.2. [ACSG+20b] For any K ≥ 2, there is no {V1, V2, V3, V4}-

centered Delzant polytope where

s(V1) = (1, 1), s(V2) = (1, 2), s(V3) = (−K,−1), s(V4) = (0,−1).
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By contrast, if one removes the partially centered requirement, any col-

lection of slopes can be realized by a Delzant polytope. We prove:

Proposition 6.2.3. [ACSG+20b] For any choice of primitive vectors

{(a1, b1), . . . , (ak, bk)} there is a Delzant polytope with at least k edges such

that there are k vertices whose slopes are precisely {(a1, b1), . . . , (ak, bk)}.

Thus, the centeredness criterion is a non-trivial constraint for toric mani-

folds on their combinatorial slope data. In the non-centered case, the comple-

ment of a neighborhood of the divisor does not in general support a Weinstein

structure. In fact, for many non-centered cases we can prove that the comple-

ment is not even exact.

Proposition 6.2.4. [ACSG+20b] Let (M,ω) be a symplectic toric manifold

and ∆ its Delzant polytope. Let V1, . . . , Vk be a subset of the vertices of ∆.

Assume that M fails to be {V1, . . . , Vk}-centered because either

(i) Two rays associated to two of the vertices {V1, . . . , Vk} are parallel, or;

(ii) There exists three vertices, {Vi1 , Vi2 , Vi3} such that for the associated rays

Ri1 , Ri2 , Ri3 , Ri1 intersects Ri2 at a point c1 ∈ int(∆) in the interior of

the polytope ∆ that does not belong to Ri3 .

Then the complement of its toric divisor smoothed at {V1, . . . , Vk} is not an

exact symplectic manifold (and in particular cannot support a Weinstein hand-

lebody structure).

There are other situations where a toric manifold may fail to be

{V1, . . . , Vk}-centered which do not fall the cases listed in Proposition 6.2.4.

For example, the rays may all intersect at points outside the interior of the

polytope, or the directed rays may fail to intersect at all because of the pla-

cement of the vertices and the directions of the rays. In certain examples,

we prove that even though the complement of the {V1, . . . , Vk}-smoothing is

exact, it still does not admit a Weinstein structure.
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6.3 Drawing handlebody diagrams

As part of the proof of Theorem 6.3.2 we establish the Gompf standard handle

diagram for D∗F with no additional 2-handles attached. In [Gom98], Gompf

produced Weinstein handle diagrams which are diffeomorphic to D∗F , see

Figure 6.5. Although it was expected that these structures were Weinstein

homotopic to the canonical (Morse-Bott) Weinstein structure on the cotangent

bundle, the proof was lacking in the literature. When F = T 2, Weinstein

homotopy follows from a result of Wendl [Wen10]. Additionally, the case for

the contact boundary is proved by Ozbagci [Ozb19b, Ozb19a]. Because we

build off of this Weinstein homotopy in establishing our procedure, we first fill

this gap.

Figure 6.3: Weinstein handle diagrams which are Weinstein homotopic to the ca-
nonical Weinstein structure on the cotangent bundles of an orientable
surface (left), of a non-orientable surface (right).

Theorem 6.3.1. [ACSG+20b] The Gompf handlebody diagram for D∗F cor-

responds to a Weinstein structure which is Weinstein homotopic to the cano-

nical Weinstein structure on the cotangent bundle of F .

This allows us to develop a systematic procedure to take the Weinstein

manifolds produced by Theorem 6.1.2 and convert them into Weinstein hand-

lebody diagrams in Gompf standard form. Let F be a surface, and c a finite set
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of co-oriented curves in F . Then, we letWF,c denote the Weinstein 4-manifold

obtained by attaching 2-handles to D∗F along the Legendrian co-normal lifts

of the set of curves c. In the case that we have a smoothed toric divisor, the

curves c are given by the slopes as shown in Theorem 6.1.2. In either case, we

have the following theorem:

Theorem 6.3.2. [ACSG+20b] Let F be any surface and {γi}ni=1 a finite col-

lection of co-oriented curves in F . Then there is a procedure which produces a

Weinstein handle diagram in standard form representing a Weinstein manifold

W which is Weinstein homotopic to WF,c.

The steps of the procedure are carefully outlined in Section 8 of

[ACSG+20b] but we summarize them here:

1. If starting with a {V1, . . . , Vk}-centered toric manifold, for each vertex

Vi for i from 1 to k compute s(Vi) given by the difference of the inward

normals of the edges meeting at Vi.

2. Draw on the square diagram of a torus an oriented curve of slope s(Vi)

for each i. For general surface F , draw the curve on the appropriate

polytope.

3. Isotope all these curves in a consistent normal direction in the torus so

that they are as far as possible from the center of the square.

4. Cut the square along a line from the bottom left corner of the square to

the center and unfold it into a rectangle, representing J1(S1).

5. Satellite the curves which are parallel positive Reeb pushoffs of the 0-

section in the J1(S1) picture so that they are parallel positive Reeb

pushoffs of the attaching sphere of the 2-handle in the T ∗T 2 handlebody

diagram.

6. The Weinstein handlebody diagram can now be simplified using Reide-

meister moves, Legendrian handle slides and cancellations.
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We can say some things in general about the Weinstein manifolds con-

structed this way. In fact, using the Weinstein handle description our proce-

dure produces, we show that the symplectic invariants of the Weinstein mani-

folds appearing in Theorem 6.3.2 are non-trivial. In particular, we prove:

Proposition 6.3.3. [ACSG+20b] Any Weinstein 4-manifold X constructed

by attaching 1- or 2-handles to T ∗F for i = 1, . . . , k for any orientable surface

F , has nonvanishing symplectic homology.

Corollary 6.3.4. [ACSG+20b] Any Weinstein 4-manifold X constructed by

attaching 1- or 2-handles to T ∗F for i = 1, . . . , k for any orientable surface F ,

is not a flexible Weinstein manifold.

Finally, we apply the procedure to produce previously unknown Weinstein

handlebody diagrams of the complements of certain smoothed toric divisors.

Some examples of such diagrams include the following:

Figure 6.4: The Legendrian trefoil with tb = 1, also the Weinstein diagram of the
complement of any toric divisor smoothed in adjacent nodes of a blow
up.

Theorem 6.3.5. [ACSG+20b] The Weinstein handlebody diagram of the com-

plement of any toric divisor smoothed in adjacent nodes of a blow up is a

Legendrian trefoil with maximum Thurston Bennequin number, as in Figure

6.4.

Theorem 6.3.6. [ACSG+20b] The complement of a toric divisor in (CP1 ×

CP1, ωa,a) smoothed in opposite nodes is Weinstein homotopic to the cyclic

plumbing of two disk cotangent bundles of spheres, see Figure 6.5.
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Figure 6.5: The Weinstein handlebody diagram of the complement of the toric
divisor of CP1 × CP1 smoothed in two opposite nodes.

Figure 6.6: The Weinstein diagram of the complement the smooth cubic in CP2.

Theorem 6.3.7. [ACSG+20b] The Weinstein handlebody diagram of the com-

plement of a smooth cubic in CP2 is Figure 6.6.
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Handle moves on parallel

strands

In section 4, some computations involving Weinstein diagrams involve sliding a

single strand over multiple parallel strands or repeated Reidemeister or Gompf

moves. These moves were not included in the section so we construct them

here from elementary moves and demonstrate their intermediate steps.

+1

Figure A.1: Sliding parallel strands over a (+1) curve, the blue shaded region
representing some number of parallel strands. In order, we have
(1.) the set up,
(2.) separating out the bottom most blue strand,
(3.) sliding this strand over the (+1) surgery curve,
(4.) separating the next strand,
(5.) sliding over a second strand,
(6.) sliding over all strands.

Firstly, Figure A.1 demonstrates sliding a parallel set of strands over a

(+1) surgery curve. A similar move holds for sliding over a (−1) surgery curve

though this was not used in our computations in Chapter 4.

Figure A.2 demonstrates performing Gompf move 5 repeatedly on a set
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Figure A.2: Performing Gompf move 5 with parallel strands, the blue shaded re-
gion representing some number of parallel strands. In order, we have
(1.) the set up,
(2.) separating out the bottom most blue strand,
(3.) pushing the bottom crossing through the 1-handle (Gompf 5),
(4.) repeating step 3. with all other strands.

of parallel strands. For our computations in Chapter 4, we did not use Gompf

4 or 6, though a parallel version of these moves also works.

Figure A.3: Performing Reidemeister 3 with parallel strands, the grey shaded re-
gion representing some number of parallel strands. In order, we have
(1.) the set up,
(2.) separating out the bottom most strands,
(3.) Reidemeister 3,
(4.) Reidemeister 3 twice,
(5.) Reidemeister 3,
(6.) repeating these steps with all other strands.

Now we observe the three Reidemeister moves on parallel strands. Fi-

gure A.3 demonstrates performing repeated Reidemeister 3 moves with parallel
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Figure A.4: Performing Reidemeister 2 with parallel strands, the grey shaded re-
gion representing some number of parallel strands. In order, we have
(1.) the set up,
(2.) separating out the bottom most strands,
(3.) Reidemeister 2,
(4.) Reidemeister 2,
(5.) Reidemeister 3,
(6.) repeating these steps with all other strands,
(7.) the final result.

strands.

We use parallel stranded Reidemeister 3 moves in Figure A.4, which de-

monstrates performing repeated Reidemeister 2 moves with parallel cusping

strands.

Finally, Figure A.5 demonstrates performing repeated Reidemeister 1 mo-

ves with parallel strands. We use both parallel stranded Reidemeister 2 and 3

moves in the figure.

Note that the Reidemeister moves for parallel strands also follow from Pro-

position 5.9 of [NT04] where Ng and Traynor show that Legendrian satellites

are well-defined, meaning that if L and L′ are related by Legendrian isotopy,

then so too are their satellites S(L) and S(L′). Thus if a single stranded ver-

sion of the Legendrian Reidemeister moves preserves Legendrian isotopy, so

too must the parallel stranded version.
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Figure A.5: Performing Reidemeister 1 with parallel strands, the grey shaded re-
gion representing some number of parallel strands. In order, we have
(1.) the set up,
(2.) separating out the top most strand,
(3.) Reidemeister 3 on parallel strands,
(4.) Reidemeister 2 on parallel strands twice,
(5.) Reidemeister 1,
(6.) repeating these steps 2-5 with all other strands.
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The Chekanov-Eliashberg DGA

for another example

The 10155 knot [BNMea] is doubly slice, meaning that it appears as a cross

section of an unknotted S2 in S4 [LM15]. We can conclude from the main

theorem that it cannot be Lagrangian doubly slice. We will now demonstrate

the constructions of Section 4. and 5. explicitly for this example.

The transverse 10155 is the closure of the braid σ1σ
−2
2 σ1σ

−1
2 σ1σ2σ

−1
1 σ2

2

[CDGW].

By Corollary 4.2.3, its double cover has a Weinstein Lefschetz fibration

π : X → D2 with generic fibre F a punctured torus, and vanishing cycles given

by α and τβ−2α2β−1(α) which are curves of slope (1, 0) and (2, 5) respectively.

Following the steps in the proof of Theorem 4.3.2, we obtain the surgery

diagram D(10155), as in Figure B.1.

Figure B.1: A front diagram of D(Λ) where Λ is the knot 10155.
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The Lagrangian resolution of D(Λ) is given by Figure B.2. We label the

crossings of this diagram with the conventions described in Section 5.2.

a
a1

a2

a3
a4

a5

b1 b2 b3 b4

b5 b6 b7

b8 b9

b10

1

2

3

4

51

2

3

4

5 •
t

Figure B.2: The Lagrangian resolution of D(Λ) where Λ is the knot 10155. The
Reeb chords generating the external DGA and the strands entering
the 1-handles are labelled.

The generators are t, a, a1, . . . , a5, b1, . . . , b10, c0
i j for 1 ≤ i < j ≤ 5, and

c1
i j for 1 ≤ i, j ≤ 5. The gradings are:

|t| = |a| = |ai| = |bi| = 0

|c0
i j| = 1

|c1
i j| = −1

The differentials of generators of the internal DGA are:

∂(c0
i j) =

5∑
m=1

c0
i mc

0
m j

∂(c1
i j) = δi j +

5∑
m=1

c0
i mc

1
m j +

n∑
m=1

c1
i mc

0
m j

where δi j = ei = ej if i = j and is 0 otherwise.

The differentials of the generators of the external DGA are:

∂a = c0
2 3
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∂a1 = c0
2 4 + ac0

3 4

∂a2 = c0
2 5 + ac0

3 5 + a1c
0
4 5

∂a3 = c0
1 2a+ c0

1 3

∂a4 = c0
1 2a1 + c0

1 4 + a3c
0
3 4

∂a5 = c0
1 2a2 + c0

1 5 + a3c
0
3 5 + a4c

0
4 5

∂b1 = c0
1 2 + tc0

4 5

∂b2 = c0
3 4

∂b3 = c0
2 3 + c0

4 5

∂b4 = c0
1 2 + c0

3 4

∂b5 = b2c
0
4 5 + c0

3 5

∂b6 = b3c
0
3 4 + c0

2 4 + c0
4 5b2

∂b7 = b4c
0
2 3 + c0

1 3 + c0
3 5 + c0

3 4b3

∂b8 = b6c
0
4 5 + b3c

0
3 5 + c0

2 5 + c0
4 5b5

∂b9 = b7c
0
3 4 + b4c

0
2 4 + c0

1 4 + c0
3 4b6 + c0

3 5b2

∂b10 = b9c
0
4 5 + b7c

0
3 5 + b4c

0
2 5 + c0

1 5 + c0
3 4b8 + c0

3 5b5

Then the cycle in the symplectic homology of the filling depicted in D(Λ)

as described in the proof of Theorem 5.3.4 is given by (č, ĉ, τ1), where

c = ta1 − tb3 + b1 − b4 + b2.

We see that ∂c = 0.
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