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Abstract

Deep gray matter nuclei are the synaptic relays, responsible to route signals between

specific brain areas. Dentate nuclei (DNs) represent the main output channel of the

cerebellum and yet are often unexplored especially in humans. We developed a mul-

timodal MRI approach to identify DNs topography on the basis of their connectivity

as well as their microstructural features. Based on results, we defined DN

parcellations deputed to motor and to higher-order functions in humans in vivo.

Whole-brain probabilistic tractography was performed on 25 healthy subjects from

the Human Connectome Project to infer DN parcellations based on their connectivity

with either the cerebral or the cerebellar cortex, in turn. A third DN atlas was created

inputting microstructural diffusion-derived metrics in an unsupervised fuzzy c-means

classification algorithm. All analyses were performed in native space, with probability

atlas maps generated in standard space. Cerebellar lobule-specific connectivity iden-

tified one motor parcellation, accounting for about 30% of the DN volume, and two

non-motor parcellations, one cognitive and one sensory, which occupied the

remaining volume. The other two approaches provided overlapping results in terms

of geometrical distribution with those identified with cerebellar lobule-specific con-

nectivity, although with some differences in volumes. A gender effect was observed

with respect to motor areas and higher-order function representations. This is the

first study that indicates that more than half of the DN volumes is involved in non-

motor functions and that connectivity-based and microstructure-based atlases

provide complementary information. These results represent a step-ahead for the

interpretation of pathological conditions involving cerebro-cerebellar circuits.
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1 | INTRODUCTION

The brain is the principal organ of the nervous system and is com-

posed of several different neuron types that are structurally and

functionally well-organized to create specialized tissues (Voogd &

Ruigrok, 2012). Glial cells and neurons are spatially organized in

layers which mainly compose the outer part of the brain, the

cortex. Axons and dendrites, instead, are organized in coherent

bundles belonging to the inner part of the brain, the white matter.

Other gray matter structures, called deep gray matter nuclei, are

identifiable within the white matter and are extremely important

because they are synaptic relays, meaning that they represent areas

where neurons make synapses achieving information transfer

and integration. Hence, these regions are responsible to route

signals, transported along the axons, to and from specific areas of

the brain.

Cerebellar nuclei represent important synaptic areas, which are

often unexplored in in vivo imaging studies of the human brain.

Indeed, they are crucial hubs for cerebro-cerebellar and spino-

cerebellar communication (H�amori, 1977; Voogd & Ruigrok, 2012).

The biggest cerebellar nuclei are the two dentate nuclei (DN), which

are the farthest from the cerebellar midline and one at either hemi-

sphere. Most of the efferent cerebellar connections towards the cere-

bral cortex synapse in the DN then convey in the superior cerebellar

peduncle and pass through the contralateral red nucleus to end in the

thalamus (Voogd & Ruigrok, 2012). Commonly, the DNs are known to

be involved in sensorimotor processes but recent functional imaging

investigations have revealed that they play a role also in non-motor

functions (Alahmadi et al., 2017; Bharti et al., 2020; Habas, Guillevin, &

Abanou, 2011; Zhang et al., 2015). This finding is in line with the

recent understanding that the cerebellum is connected to cognitive

and associative cortical areas, as supported by either tract-tracing

techniques (Kelly & Strick, 2003; Middleton & Strick, 1994;

Schmahmann & Caplan, 2006; Schmahmann & Pandya, 1995; Strick,

Dum, & Fiez, 2009a) or diffusion MRI tractography studies of the

cerebro-cerebellar loop (Kim, Im, Kim, & Park, 2019; Palesi

et al., 2015, 2016, 2017).

To characterize the DN topography, histochemical and viral tract-

tracing studies have demonstrated that in animals (e.g., rats, cats, and

apes) the DNs present a topographical organization based on their

cerebellar cortical connectivity (Matano, 2001; Obadiah, 2015). Two

distinct zones can be identified: one rostro-dorsal and one ventro-

caudal, associated to motor and non-motor functions, respectively.

This result represents a step forward in our understanding of the role

of cerebellar nuclei on brain function; nevertheless, given that the

cerebellar cortical organization in humans is much more complex than

in animals, one has to question what is the DN topography in

this case.

To our knowledge, only a study using noninvasive methods has

been performed in humans in-vivo to assess DN topography (Steele

et al., 2017). Here, sub-millimeter diffusion MR images of the cere-

bellum of six volunteers were acquired on a 7 T scanner. Probabilis-

tic tractography was used to parcellate DNs in humans on the basis

of the cerebellar region that was mostly connected: motor rostro-

dorsal and non-motor ventro-caudal areas were identified. This was

a promising result because supported the fact that the DNs present

a topography reflecting different functional properties, but the

main limit was that this study focused only on DN connectivity with

the cerebellum instead of considering the whole-brain. Further-

more, tractography suffers of some intrinsic limitations and a multi-

modal approach could provide a mean of validating results. Worth

considering that in the last decade machine learning has been

widely applied to MRI analysis either to support clinical diagnosis

or to improve images accuracy and has been proven to be capable

to segment specific brain structures, including recently the DNs, as

a whole, with a higher accuracy compared to other automatic

methods (Gaviraghi et al., 2021).

In this study, therefore, we aimed to use a whole-brain MRI-

based multimodal approach to reconstruct and investigate the

topography of the DNs. Constrained spherical deconvolution

tractography (Tournier, Calamante, & Connelly, 2007) was per-

formed to reconstruct connections between DNs and both cerebral

and cerebellar cortices, in turns, deriving two independent

connectivity-based atlases of the DNs. Furthermore, a clustering

approach, based on a fuzzy c-means algorithm, was developed to

provide insights about DN topography based on diffusion MRI

microstructural properties. The final goal of this study was to com-

pare the atlases obtained with these three approaches and propose

a coherent sub-parcellation of the DNs in humans in-vivo, with par-

ticular focus on assessing the DNs percentage deputed to motor and

to non-motor functions. The resulting DN atlas would be of great inter-

est also for improving structural connectivity investigations in humans;

indeed, these cerebellar structures are currently not included in atlases

used for anatomically constrained tractography (Smith, Tournier,

Calamante, & Connelly, 2012). Given their role in the cerebro-cerebellar

connectivity, we believe they should be included in future tractography

studies as a synaptic gray matter structure, similarly to what is done

with the thalamus. Needless to say that a more correct anatomical

connectome of the brain would also impact studies that are investigat-

ing brain dynamics (Palesi et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Subjects

Minimal pre-processed images of 25 healthy subjects (16 females and

nine males) were downloaded from those acquired for the Human

Connectome Project (HCP; http://db.humanconnectome.org; Van

Essen et al., 2013), with age comprised between 26 and 35 years.

2.2 | MRI acquisition

The MRI protocol was setup on a Siemens MAGNETOM Skyra 3 T

scanner, adapted with high field gradients, using a 32-channel receive
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head coil. Diffusion weighted images (DWI) were acquired with a multi-

shell spin-echo EPI sequence with these parameters: TR = 5,520 ms,

TE = 89.5 ms, flip angle = 78�, FOV = 210 � 180 mm2, 111 axial

slices, 1.25 mm isotropic voxel, three b values of 1000, 2000, and

3000 s/mm2, 18 images with null b value (b0 images), and 90 iso-

tropically distributed diffusion directions per b values. A co-registered

3DT1-weighted image was also downloaded.

2.3 | MRI preprocessing and DN masks definition

Downloaded DWI data were already preprocessed for noise

removal and motion correction in native space. Diffusion tensor

(DT) and DT-derived metrics, such as Fractional Anisotropy (FA),

Mean Diffusivity (MD), Axial and Radial Diffusivity (AD, RD), were

calculated with FSL (FMRIB Software Library, https://fsl.fmrib.ox.

ac.uk/fsl/fslwiki; Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). Mean, Axial, and Radial Kurtosis (MK, AK, RK) maps

were extracted with DESIGNER (https://github.com/NYU-DiffusionMRI/

DESIGNER; Ades-Aron et al., 2018).

DN masks were extracted from b0 images using a convolutional

neural network (CNN) as described by Gaviraghi et al. (2021). This

automatic, machine learning based method was proven to be able to

extract more accurate DNs masks than other methods using standard

atlases and templates.

3DT1-weigthed images were segmented in native space in gray

matter (GM), deep GM nuclei, white matter (WM), and cerebrospinal

fluid using the 5ttgen algorithm (MRtrix3, https://www.mrtrix.org/;

Tournier et al., 2019). To improve the reliability of the segmentation

and tractography, DN masks were added to the deep GM mask per

each subject. Then, WM-GM interface was also calculated.

Those 3DT1-weighted images were warped to the standard

MNI152 template (Fonov et al., 2011) by concatenating an affine

(12 dof, FLIRT, FSL; Jenkinson, Bannister, Brady, & Smith, 2002) and

a nonlinear (FNIRT, FSL; Andersson, Jenkinson, & Smith, 2010)

transformation.

The transformation matrix “subject-to-MNI space” was then

inverted (MNI-to-subject) to be applied to specific atlases to warp

them back to the subject space for the subsequent DN parcellation

work (Sections 2.5 and 2.6).

2.4 | Whole-brain tractography

The fiber orientation density function was evaluated in native space

separately for each tissue using the multi-tissue multi-shell approach

(Dhollander, Raffelt, & Connelly, 2016; Jeurissen, Tournier,

Dhollander, Connelly, & Sijbers, 2014). Then, a whole-brain probabilis-

tic anatomically constrained tractography (Smith et al., 2012) was

performed with 30 million streamlines seeded dynamically from the

WM-GM interface and cropped to the WM mask. Other parameters

were: step of 0.0625 mm (corresponding to half of voxel-size), maxi-

mum length of 250 mm, and maximum angle of 45� between two

subsequent points of the same streamline, to avoid unrealistic torsions

and backpropagations.

2.5 | Cerebellar lobule-specific connectivity to
the DN

To define masks of different cerebellar lobules, the “Spatially unbi-

ased atlas template of the cerebellum and brainstem” (SUIT;

Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009) was

warped to the subject space applying the MNI-to-subject transfor-

mation. We then merged some of the parcellations based on their

known function, creating a final atlas with six parcellations per hemi-

sphere: lobules I–VI (motor area), Crus I–II (cognitive area), lobule

VII, lobule VIIIa, lobule VIIIb, and lobules IX–X (visuo-spatial func-

tions; Figure 1). The vermis was discarded because it is directly con-

nected with the fastigial nucleus instead of the DNs (Voogd &

Ruigrok, 2012).

From the whole-brain tractography, we selected tracts terminat-

ing in each of the identified cerebellar parcellation and connected

to their ipsilateral DN. Based on anatomy, no structural internal con-

nection between the two cerebellar hemispheres exists (Pollok

et al., 2006), hence an excluding region of interest (NOT-ROI) was

placed aligned with the medial plane of the cerebellum to avoid spuri-

ous inter-hemispheric streamlines (Figure 1).

This step provided a lobule-specific connectivity map, defining a

set of streamlines per cerebellar lobule departing from each of the six

parcellations of the cerebellar cortex, which was used to generate the

first subject-specific topography map of each DN, on the basis of their

structural connectivity with the ipsilateral cerebellar cortex.

2.6 | Subthalamic-specific connectivity to the DN

The second subject-specific DN topography map was defined based

on the DN connectivity to the cerebral hemisphere, rather than cere-

bellar cortex. Most of the cerebellar output connections pass through

the DN and synapse into the contralateral thalamus before reaching

the cerebral cortex. Because our tractography was anatomically con-

strained, only monosynaptic streamlines were reconstructed. Thus,

we used the contralateral thalamus as target to study the connections

between the DNs and the contralateral cerebral cortex. Thalamic

parcellation in native space was defined by applying the MNI-to-subject

transformation to the atlas defined by Behrens, Johansen-Berg,

et al. (2003); Behrens, Woolrich, et al. (2003), whose classification was

made on the basis of connectivity between the thalamus and the

cerebral cortex. Since primary motor and pre-motor regions were merged

for the cerebellar cortex parcellation, we did the same for the thalamus

where six ROIs were identified: motor, prefrontal, sensory, posterior

parietal, occipital, and temporal (Figure 1).

Subthalamic-specific tracts were selected from the whole-brain

tractography using the DN and the contralateral subthalamic areas as

target ROIs.
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2.7 | Connectivity-based topography atlases of
the DN

For each subject, the cerebellar lobule-specific and subthalamic-

specific topography atlases of DNs were created following several

steps, as described below. The same steps performed to reconstruct

the cerebellar lobule-specific atlas were repeated, as reported in

square brackets, to reconstruct the subthalamic-specific atlas.

First, a track-density image (TDI), namely an image whose intensity

is proportional to the number of streamlines passing through each

voxel, was calculated for each of the parcellation-specific tract

(Calamante, Tournier, Jackson, & Connelly, 2010). Then, TDI maps were

masked with the ipsilateral (contralateral) DN and for each voxel of the

mask a “membership vector” was defined by the connection strength

of each cerebellar lobule (thalamus-parcellation) to each DN voxel

(Figure 2a). The “membership vector” had as many components as the

number of parcellations, and the number associated to each component

corresponded to the number of streamlines per parcellation that ended

in that specific voxel. This vector was used to assign to each voxel of

the DN the parcellation most likely to be connected to it, following a

winner-takes-all rule (Figure 2b). The association was supported by the

comparison between the resulting DN parcellations and the distribution

connectivity maps, computed from the “membership vector” compo-

nent specific to each parcellation (Figure 2c).

After membership assignment, the number of streamlines of

tracts connecting the DNs to each parcellation and volume of each

parcellation were calculated for each subject.

2.8 | Microstructure-based topography atlas of
the DN

An unsupervised clustering approach was performed on diffusion-

derived metrics to generate a topography map of the DNs where

parcellations are obtained on the basis of voxel-wise local microstruc-

tural features. All diffusion-derived metrics were masked with the DN

masks to obtain a dataset of microstructural features: each data point

represented a voxel of the DN, with a vector of features per voxel

generated from maps of different microstructural properties. For each

subject, each feature was normalized to its maximum and the inter-

quartile range method (Gholizadeh et al., 2019) was applied to replace

outliers with median values.

The resulting dataset was used as input to a fuzzy c-means

(FCM) clustering algorithm in MATLAB routine (Fuzzy Logic

toolbox—Data Clustering, https://it.mathworks.com/help/fuzzy/

fcm.html; Bezdek, 1981). Differently from the k-means algorithm,

which is a hard clustering method, the decision boundary of the

fuzzy c-means is softer and the output for each data point is the

probability of belonging to each cluster. After several tests, qualita-

tively optimal results were obtained using three clusters as the

number of parcellations, while the fuzziness parameter was set as

default (m = 2; Campello & Hruschka, 2006). To create a topogra-

phy map of the DNs based on the clustering of microstructural fea-

tures, each DN voxel was assigned to the most probable cluster

selected with a maximum likelihood algorithm.

Volumes of each cluster were calculated for each subject.

F IGURE 1 Atlases and NOT-ROI used to identify cerebellar and thalamic connectivity with the DNs. All maps were in standard MNI152
space (radiological view) and were superimposed on the standard T1 weighted image. Panel A shows the sagittal NOT-ROI (fuchsia), used to
avoid false positives in tractography, and the cerebellar parcellations: lobules I–VI (yellow), Crus I–II (green), lobule VIIb (violet), lobule VIIIa (blue),
lobule VIIIb (orange), and lobules IX–X (red). Panel B shows the thalami parcellation based on the atlas described by Behrens et al. (2003, 2003):
motor (blue), prefrontal (green), sensory (fucshia), posterior parietal (yellow), occipital (violet), and temporal (orange)
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2.9 | Inter-subject topography atlases of the DNs

DN topography maps of all subjects were warped to a common

space to achieve inter-subject DN topography based on structural

connectivity and microstructural features. Since DNs are small

structures within the large brain volume, the SUIT ROI-driven

normalization algorithm was used (www.diedrichsenlab.org/

imaging/suit_function.htm#norm_dentate), where the DNs masks

have been inputted to drive the warping to the common SUIT space

for the cerebellum, forcing a good overlap between deep cerebellar

nuclei of different subjects in common space. Normalized DN

masks of all subjects were visually inspected to confirm alignment

across subjects.

For each subject, a numeric label was associated to each

parcellation of the cerebellar lobule-specific and subthalamic-specific

topography map. Then, their inter-subject topography atlases were

created assigning, to each voxel of the DNs, the mode of the numeri-

cal label across all subjects, as a standard approach when averaging

categorical values.

To create the inter-subject topography map based on micro-

structural features, we first defined a regulatory function (bottom-

up hierarchic classifier) that tooks as input the atlas found with the

fuzzy c-means algorithm, to provide up to three nonordered

clusters for each subject. Given that DNs were separated into three

parcellations only in a subset of subjects, a posteriori we reduced

the number of clusters to two in order to improve reproducibility.

In this way, a medial and a lateral cluster were identified and

labeled in the same order for all subjects. Then, the mode of the

values across subjects was calculated to generate the inter-subject

microstructure-based atlas.

2.10 | Atlas comparison

To further investigate the comparison between the different topogra-

phy atlases of DNs found with different approaches, we computed

the DICE similarity coefficient (DSC) between all the parcellations of

the three atlases in standard space. The DSC between two

parcellations was computed doubling the intersection volume over

the sum of the two volumes (Prados et al., 2015)

DSC A,Bð Þ¼2
A\Bj j
Aj jþ Bj j

2.11 | Statistical analysis of DN properties

Parcellations of the DNs were quantitatively assessed in terms of their

microstructural features to determine differences or similarities

between left and right side and parcellations; normative values were

also determined for future studies.

Statistical tests were performed using SPSS software version

21 (IBM, Armonk, New York).

All features previously calculated (number of streamlines and vol-

umes as well as diffusion-derived metrics) were tested for normality

(Shapiro–Wilk test). Most of them were nonnormally distributed, thus

a nonparametric Wilcoxon test for paired variables was applied to

assess statistically significant differences between the left and right

side. Furthermore, mean FA, MD, and MK were calculated for each

connectivity-based DN atlas and a nonparametric Friedman test was

applied to assess whether significant differences between microstruc-

tural features exist between different parcellations. Lastly, as an

exploratory investigation all these features were compared with a

F IGURE 2 Simplified
graphical representation for the
creation of the DNs topography
atlases. As an example, the case
of a mask with four voxels
(a) associated to three different
parcellations (b) is considered.
Panel A reports the four voxels
with their “membership vectors”:
red numbers indicate the number
of streamlines connecting the
first parcellation to each voxel,
blue numbers indicates those
connecting the second
parcellation to each voxel, and
black numbers those connecting
the third parcellation to each
voxel. Panel B shows the final
topography atlas obtained with
the winner-takes-all algorithm.
Panel C shows the distribution
connectivity maps for each
specific parcellation, which are
used to support the result in B
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non-parametric Mann–Whitney test (p < .05) between females and

males, in order to assess whether gender-related differences exist.

3 | RESULTS

Connectivity-based and microstructure-based topography atlases of

the DNs were successful in demonstrating parcellations consistent

with predicted expectations from animal work. Motor and cognitive/

associative areas were identified based on connectivity with cerebel-

lar and thalamus parcellations. Underlying microstructure features also

identified distinct regions with main differences between the lateral

and medial parcellations of DNs. Left and right DNs were symmetrical

in terms of their quantitative properties.

3.1 | Cerebellar lobule-specific topography atlas of
the DN

An example of cerebellar lobule-specific topography atlas of the DNs

in a random chosen subject is shown in Figure 3a.

Group atlas in SUIT cerebellar space showed an overall good

agreement between subjects as shown by Figure 4a. Although we

started from six parcellations, only three were characterized by more

than 10,000 streamlines connecting them to specific cerebellar lob-

ules and with a parcellation volume >15% of the overall DN volume;

these three parcellations were those connecting the DN to lobules

I-VI, Crus I-II and lobules IX-X of the cerebellar cortex. Lobule VIIb

showed a few consistent overlapping voxels across subjects, while

lobules VIIIa and VIIIb did not identify a consistent area as their

connectivity produced smaller clusters or even isolated voxels

(Figure 4a). The main results in terms of statistical descriptive features,

averaged across all subjects, are summarized in Table 1 (streamlines)

and Table 2 (volumes).

In detail, for each DN, the biggest parcellation covered the most

lateral portion, accounted for about 40,000 streamlines and 40% of

the DN volume and was associated with the Crus I–II. The second

relevant parcellation was located rostro-medially to the biggest one,

accounted for about 20,000 streamlines and 30% of the DN volume

and was associated to lobules I–VI. The third parcellation occupied,

mainly caudally, the most medial area of the DN and was linked to

lobules IX–X, accounting for around 10,000 streamlines and 15% of

the DN volume.

The number of streamlines connecting the right Crus I–II and its

ipsilateral DN was statistically significantly higher (p < .001) than the

left one while no differences were identified between left and right

DNs volumes for any parcellation.

3.2 | Subthalamic-specific topography atlas of
the DN

An example of subthalamic-specific topography atlas of the DNs in a

random chosen subject is shown in Figure 3b.

Inter-subject subthalamic-specific topography atlas of the DNs

showed an overall good agreement between subjects as shown by

Figure 4b. Although we started from six parcellations, only two

were characterized by more than 300 streamlines connecting them

to specific subthalamic areas and with a parcellation volume >40%

of the overall DN volume; these two parcellations were those that

F IGURE 3 (a, b)
Connectivity-based and
(c) microstructure-based
topography atlases of the DNs in
a randomly chosen subject
(radiological view). Color code is
the same as the other figures.
Panel A shows the cerebellar
lobule-specific DN atlas, Panel B
shows the subthalamic-specific
DN atlas, while Panel C shows
the microstructure-based DN
atlas
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indirectly connect the DN to motor and prefrontal cortex. The

other subthalamic areas did not identify a consistent area as their

connectivity produced isolated voxels. The main results, averaged

across all subjects, are summarized in Table 1 (streamlines) and

Table 2 (volumes).

In detail, for each DN, the biggest parcellation accounted for

about 46% of the DN volume and was associated with projections

to the ventrolateral and ventroanterior part of the thalamus and,

indirectly, with the cerebral motor cortex. The second relevant

parcellation counted for about 45% of the DN volume and was

F IGURE 4 Inter-subject topography atlases of the DNs in the MNI152 space (radiological view). Panel A shows cerebellar lobule-specific
parcellations of the left and right DNs: the medial portion is associated with lobules IX–X (red), more laterally with lobules I–VI (yellow), the most
lateral portion is associated with Crus I–II (green), the ventral part is associated with lobule VII (violet). Panel B shows subthalamic-specific
parcellations of the left and right DNs: the medial part is associated with prefrontal cortex (green) while the lateral part is associated with motor
cortex (blue). Panel C shows left and right DN parcellations based on microstructural metrics: the biggest cluster (cluster 1) occupies the lateral
part of the DNs (red) while the other cluster (cluster 2) occupies the medial part of DNs (light blue)

TABLE 1 Number of streamlines between cerebellar and thalamic parcellations and DNs

Atlas Parcellation

Left DN Right DN

p valueMean ± SD Range Mean ± SD Range

Cerebellar lobule-specific

(�103)

Lobule I–VI 18.9 ± 7.9 12.5–24.2 18.4 ± 7.7 13.8–22.2 .968

Crus I–II 38.0 ± 12.4 29.0–45.0 49.6 ± 13.6 38.1–54.8 <.001

Lobule VII 9.2 ± 4.6 6.4–10.4 8.0 ± 4.2 5.5–10.6 .128

Lobule VIIIa 2.7 ± 2.2 1.1–4.3 2.3 ± 2.1 0.9–2.8 .288

Lobule VIIIb 2.0 ± 2.9 0.4–1.9 1.6 ± 2.4 0.3–1.6 .427

Lobule IX–X 11.8 ± 8.1 6.6–13.4 13.4 ± 6.1 9.2–16.8 .109

Subthalamic-specific

(�103)

Motor 0.33 ± 0.31 0.10–0.49 0.40 ± 0.34 0.19–0.47 .019

Prefrontal 0.39 ± 0.31 0.14–0.60 0.41 ± 0.31 0.17–0.54 .476

Sensory 0.05 ± 0.04 0.03–0.07 0.04 ± 0.05 0.01–0.05 .002

Posterior parietal 0.06 ± 0.06 0.01–0.09 0.08 ± 0.07 0.03–0.11 .014

Occipital 0.001 ± 0.002 0–0.001 0.003 ± 0.003 0–0.006 .001

Temporal 0.03 ± 0.02 0.01–0.04 0.02 ± 0.02 0.01–0.03 .333

Note: Across-subject mean number of streamlines that reached the left and right DNs. The number of streamlines are expressed in �103. Range is defined

as 25th to 75th percentiles. Bold p values (Wilcoxon test) are statistically significant and considered meaningful.
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associated with projections to the mediodorsal part of the thalamus

and, indirectly, with the prefrontal cortex.

The right DN showed significantly higher number of streamlines

connected with the contralateral motor area (p < .019) and smaller

volume associated with the contralateral prefrontal cortex (p = .030).

3.3 | Microstructure-based atlas of the DN

An example of microstructure-based atlas of the DNs in a random

chosen subject is shown in Figure 3c.

Inter-subject microstructure-based atlases of the DNs were

obtained using as input voxel-wise feature vectors of FA, MD, AD,

RD, MK, AK, RK metrics computed from DWI data. Results show that

this method divided the DNs in two parcellations, despite asking the

algorithm to find up to 3.

The main results, averaged across all subjects, are summarized in

Table 2 and shown in Figure 4c.

For each DN, the biggest parcellation accounted for about 55% of

the DN volume and was located laterally, whereas the second parcellation

counted for about 45% of the DN volume and was located medially.

No statistically significant differences were identified between

left and right DN volumes.

3.4 | Atlas comparison

Inter-subject DSC between each parcellation of different topography

DN atlases are reported in Figure 5. Panel A reports DSC for the left

DN, while panel B reports those for the right DN. From left to right,

each row shows DSC between cerebellar lobule-specific and

subthalamic-specific parcellations, then between cerebellar lobule-

specific and microstructure-based parcellations, and between

subthalamic-specific and microstructure-based parcellations.

Overall, DSC ranged between 0 and 1. The highest value (0.60) was

found between right Crus I-II and the lateral parcellation when cerebellar

lobule-specific and microstructure-based topography atlases were com-

pared, while the smallest values (<0.1) were found comparing lobule VIIb

with the parcellations of the other two approaches. The highest DSC

values were found when parcellations representing either the connectivity

with lobules I-VI or Crus I–II were overlapped to the others.

3.5 | Diffusion-derived metrics in cerebellar
lobule-specific DN parcellations

Given the outcome of the subthalamic-specific connectivity,

we decided to assess microstructural features only for the DN

parcellations obtained with cerebellar lobule-specific connectivity.

Across subjects mean values of diffusion-derived metrics (FA,

MD, and MK) in cerebellar lobule-specific parcellations are reported in

Table 3. We choose those parameters because they were the less

correlated diffusion-derived metrics in the computed set of FA, MD,

AD, RD, MK, AK, RK. Those three metrics are shown for a randomly

chosen subject in Figure 6.

All metrics demonstrated statistically significant differences

between cerebellar lobule-specific parcellations of the DNs. FA was

significantly different only between parcellations of the right DN

(p = .013), while MD and MK values were significantly different

between both left and right DNs parcellations (p < .001).

TABLE 2 Volume of DN parcellations according to connectivity- and microstructure-based topography atlases

Atlas Parcellation

Left DN Right DN

p valueMean ± SD Range Mean ± SD Range

Cerebellar lobule-specific Lobule I–VI 28.9 ± 8.6 23.1–34.1 27.4 ± 11.4 18.9–37.9 .737

Crus I–II 39.5 ± 14.3 30.4–50.3 41.7 ± 10.7 32.3–48.0 .737

Lobule VII 8.0 ± 7.0 1.9–11.3 8.7 ± 8.1 1.5–14.1 .968

Lobule VIIIa 3.0 ± 2.9 0.9–5.0 2.3 ± 2.4 0.4–3.6 .150

Lobule VIIIb 4.2 ± 4.5 0.8–6.5 2.2 ± 3.2 0.1–3.4 .020

Lobule IX–X 16.4 ± 8.4 10.7–22.8 17.8 ± 8.1 12.8–21.2 .545

Subthalamic-specific Motor 45.9 ± 19.8 34.5–61.2 53.4 ± 15.8 39.9–67.8 .069

Prefrontal 44.8 ± 19.4 29.4–53.7 37.2 ± 16.0 25.5–47.3 .030

Sensory 3.8 ± 4.1 1.0–5.3 1.7 ± 1.9 0.4–1.8 .005

Posterior parietal 4.7 ± 5.7 0.8–5.3 7.0 ± 7.2 2.6–8.6 .026

Occipital 0.1 ± 0.1 0.0–0.0 0.1 ± 0.1 0.0–0.0 .138

Temporal 0.7 ± 0.8 0.0–1.1 0.6 ± 0.1 0.0–0.7 .485

Microstructure-based Cluster 1 (lateral) 56.0 ± 24.6 45.0–69.8 53.7 ± 29.4 35.2–81.1 .716

Cluster 2 (medial) 44.0 ± 24.7 30.2–55.0 46.3 ± 29.4 18.9–64.8 .716

Note: Across-subject mean volumes in left and right DNs. Values are expressed in percentage of the overall DN volume. Range is defined as 25th to 75th

percentiles. Bold p value (Wilcoxon test) is statistically significant.
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3.6 | Gender-related effect on connectivity and
microstructure features

Gender-related differences were found mainly in the left DN, as

reported in Table 4.

The number of the streamlines between the left DN and the ipsi-

lateral Crus I-II was significantly higher in males with respect to

females, while the number of those connecting the left DN and the

contralateral motor cortex was significantly higher in females with

respect to males.

Volume of the two parcellations defined with the microstructure-

based atlas was strongly dependent on gender for the left DN: the lat-

eral cluster was larger in males while the medial cluster was larger in

females.

Diffusion-derived metrics in cerebellar lobule-specific parcellations

demonstrated statistically significant differences in the left and right

F IGURE 5 Inter-subject DICE similarity coefficient (DSC) representation. Panel A shows DSC values for left DN parcellations, while panel B
shows DSC values for right DN parcellations. From left to right, are shown DSC values between cerebellar lobule-specific and subthalamic-
specific parcellations (left), cerebellar lobule-specific and microstructure-based parcellations (center), subthalamic-specific and microstructure-
based parcellations (right)

TABLE 3 Microstructure features of the DN connectivity-based parcellations

Metric Lobule I–VI Crus I–II Lobule VII Lobule VIIIa Lobule VIIIb Lobule IX-X p value

Left DN FA 0.276 ± 0.048 0.292 ± 0.038 0.277 ± 0.052 0.318 ± 0.103 0.320 ± 0.102 0.276 ± 0.053 .210

MD (�10�3 mm2/s) 0.805 ± 0.171 0.753 ± 0.164 0.756 ± 0.164 0.758 ± 0.172 0.767 ± 0.189 0.820 ± 0.177 <.001

MK 1.155 ± 0.056 1.213 ± 0.078 1.213 ± 0.097 1.215 ± 0.100 1.195 ± 0.087 1.165 ± 0.059 <.001

Right DN FA 0.294 ± 0.045 0.308 ± 0.026 0.315 ± 0.076 0.328 ± 0.083 0.362 ± 0.088 0.274 ± 0.029 .013

MD (�10�3 mm2/s) 0.818 ± 0.175 0.76 ± 0.164 0.734 ± 0.163 0.738 ± 0.172 0.742 ± 0.178 0.827 ± 0.179 <.001

MK 1.150 ± 0.072 1.221 ± 0.093 1.227 ± 0.110 1.202 ± 0.127 1.194 ± 0.097 1.147 ± 0.068 <.001

Note: Across-subject mean diffusion-derived metrics (fractional anisotropy [FA], mean diffusivity [MD], mean kurtosis [MK]) in lobule-based parcellations. Bold

p values (Friedman test) are statistically significantly different.
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Lobule VIIIa. FA and MK were lower in females while MD was higher in

females with respect to males.

4 | DISCUSSION

The present study represents one of the few investigations focused

on the topography of the DN based on its structural connectivity to

cerebellar lobules or subthalamic nuclei as well as on its microstruc-

tural properties, and assessing whether such DNs parcellations com-

partmentalize motor and non-motor functions. The main observation

is that using three different parcellation approaches it was possible to

identify two or more DN parcellations, in humans in-vivo, on the basis

of structural connectivity and microstructural features. Our findings

also suggest that, globally, in both left and right DNs, the non-motor

representation is predominant on the motor one. It is to note that,

although the predominance of the higher-order functions representa-

tion is maintained, the motor component is predominant in females

than males.

Previous studies on animals (Matano, 2001; Obadiah, 2015) have

demonstrated a dichotomy in the DN role by identifying one rostro-

dorsal and one ventro-caudal zone related to motor and non-motor

functions, respectively. A similar parcellation was also identified in

humans by Steele et al. (2017). Here, we reconstructed two different

structural atlases of human DNs based on their connectivity either

with cerebellar or cerebral cortex, by performing a state-of-the-art

probabilistic tractography. A third atlas, which identified two different

clusters, was obtained by inputting diffusion-derived metrics in a

unsupervised clustering algorithm reflecting underlying microstruc-

tural properties.

Cerebellar lobule-specific connectivity provided a DNs topogra-

phy atlas with three main clusters whose location was reproducible

between subjects. The biggest parcellation was located laterally and

dorso-caudally in both DNs and was the one connected with the Crus

I-II, which represent the most important (Strick, Dum, & Fiez, 2009b;

Voogd & Ruigrok, 2012) cognitive areas of the cerebellum. This

parcellation involved more than 40,000 streamlines and occupied

about 40% of the total volume of each DN. It is worth noting that this

finding might support the one reported by Palesi et al. (2015), which

asserted that almost 50% of the Crus I-II cortex was involved in the

cerebello-thalamo-cortical tract. Furthermore, our results suggest that

this parcellation may be affected by gender, as males showed a higher

number of streamlines connecting the cerebellar cortex to the left DN

compared to females. This may suggest that, although the higher-

order functions parcellation is the largest in all subjects, the relative

percentage between motor and higher-order functions areas depends

F IGURE 6 Diffusion-derived
metrics maps (FA, MD, and MK)
in a randomly chosen subject
(radiological view). Panel A shows
FA map, Panel B shows MD map,
while Panel C shows MK map
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on gender. The medial-caudal parcellation of both DNs occupied

about 15% of the DNs volume and involved connections with lobules

IX–X that represent non-motor areas, supporting mainly sensory func-

tions. Then, the rostral area between the previous ones represented

the motor related parcellation, namely the one connected with lobules

I-VI, and accounted for about 30% of DNs volume. The remaining vol-

ume was associated to mixed connections from lobules VIIb and lob-

ules VIII. These results indicate that the most represented parcellation

is related to high-level cognitive processes, the second is related to

motor functions, followed by a third parcellation mainly deputed

to sensory and associative functions. Globally, this implicates that

more than half of the DNs volume is involved in non-motor functions.

These finding are in agreement and further improve those reported by

Steele et al. (2017), which investigated only connectivity between

DNs and lobules I–VI and Crus I–II.

It is interesting to compare these results with those obtained with

the unsupervised fuzzy c-means algorithm, which identified two sepa-

rate clusters, one medial and one lateral, on the basis of microstruc-

tural features of each DNs voxel. These clusters are reproducible

across subjects and overlap quite well with those identified with cere-

bellar lobule-specific connectivity despite some differences in vol-

umes. Indeed, the lateral cluster includes the cognitive representation

of the DN, while the medial one comprises the sensory representa-

tion. It is interesting that the motor representation, as identified by

connectivity-based approaches, in the microstructure-based atlas is

either included in the lateral cluster, for the right DN, or in the medial

one, for the left DN. However, the volume of this lateral cluster is big-

ger than the one related to Crus I-II connectivity meaning that a mix-

ture of cognitive and motor representations always coexists within

it. This hypothesis seems to be confirmed by the fact that, in the left

DN, females showed a bigger medial cluster, which contains both the

sensory and motor components, while males showed a bigger lateral

cluster, which mainly supports higher-order functions. Furthermore,

mean values of diffusion-derived microstructure metrics in cerebellar

lobule-specific parcellations (Table 3) reveal the presence of a unique

trend for both DNs where motor and sensory (lobules IX–X)

parcellations have more similar microstructural features than Crus I–II.

Nevertheless, relative errors are quite large and mean values of fea-

tures overlap, which could explain the uncertainty of the inclusion of

the motor representation in either the lateral/medial cluster for right/

left DN. Higher resolution data, in terms of both geometrical and dif-

fusion characterization, could help understanding the source of this

left/right difference.

Moreover, the topography atlas based on cerebral and

subthalamic-specific connectivity represented the most challenging

approach that provided the worst reproducible DN atlas. This method

was able to define two main parcellations connected with the

mediodorsal, ventral anterior and ventro-lateral thalamic nuclei, which

are directly connected with the prefrontal cortex (the first two nuclei)

and the motor/premotor area (the last nucleus). Again, this atlas iden-

tified two separate components related to non-motor and motor func-

tions but the location of these clusters was not well defined across

different subjects. There were streamlines starting from adjacent

voxels that end in different areas of thalamus, making the generation

of the subthalamic-specific parcellation very sensible to this effect. As

shown in Figures 3b and 4b, those topography atlases are asymmetric

between left and right DNs. Different confounders might have an

influence on this result, which could be attributed to the fact that the

biophysical nature of the connections between each DN and its ipsi-

lateral cerebellar cortex or each DN and its contralateral thalamus is

substantially different, with methodological repercussions. In the for-

mer case, the connections are short, nondecussating and involving

fairly big areas, the cerebellar lobules. In the latter case, instead, we

are considering challenging long tracts that involve small areas (the

DN and subthalamic nuclei) and contain axonal fibers that pass

through a decussation point where dense fibers cross each other. Fur-

thermore, some axonal bundles may branch within the thalamus,

resulting in one single axon connecting to more than one subthalamic

nucleus. Recent study has highlighted the effect of different fiber ori-

entation distribution (FOD) in representing the underlying fiber

TABLE 4 Gender effect on
connectivity and microstructure features
of the DN parcellations Parameter

Females Males

p valueMean ± SD Mean ± SD

Streamlines LeftDN-CrusI-II (�103) 33.0 ± 10.5 46.9 ± 11.0 .008

Streamlines LeftDN-Thal-Motor (�103) 0.42 ± 0.35 0.18 ± 0.15 .043

Volume LeftDN-Lobule VIIIb 0.06 ± 0.05 0.01 ± 0.01 .002

Volume LeftDN-Cluster 1 (lateral) 0.49 ± 0.27 0.69 ± 0.14 .012

Volume LeftDN-Cluster 2 (medial) 0.51 ± 0.27 0.31 ± 0.14 .012

FA LeftDN-Lobule VIIIa 0.279 ± 0.072 0.388 ± 0.116 .023

MD LeftDN-Lobule VIIIa (�10�3 mm2/s) 0.813 ± 0.072 0.662 ± 0.251 .007

MK LeftDN-Lobule VIIIa 1.175 ± 0.083 1.286 ± 0.090 .008

FA RightDN-CrusI-II 0.300 ± 0.026 0.322 ± 0.020 .023

MD RightDN-Lobule VIIIa (�10�3 mm2/s) 0.792 ± 0.060 0.648 ± 0.253 .020

Note: Across-subject mean features (i.e., number of streamlines, volumes and diffusion-derived metrics)

for the specified parcellation. Only features showing significant p values (Mann–Whitney test) between

females and males are reported.
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geometry (Canales-Rodríguez et al., 2019). Some variability of our

results may be introduced by the fact that we used a well-established

tractography package (MRtrix) and its default FOD (iFOD2), which

may have intrinsic limitations in representing some specific geometri-

cal configurations. Furthermore, it is to remember that tractography

has intrinsic limitations always affecting the reconstruction of both

unexplored as well as known connections, with the main drawbacks

being the inability to discern directionality of signal propagation along

the reconstructed pathways, the reconstruction of false positive tracts

or the inability to reconstruct true tracts (false negative), and the diffi-

culty of reconstructing crossing and polysynaptic tracts (Maier-Hein

et al., 2017; Nath et al., 2020; Schilling et al., 2019).

Aside of how to define the DN atlas, interesting considerations

come from microstructural properties of DN parcellations, which dem-

onstrates a substantial left–right symmetry of DNs atlases, and con-

firmed differences between the two connectivity-based topography

approaches. In detail, the cerebellar lobule-specific connectivity shows

that the cognitive representation is bigger in volume than the motor

one with a significant increased number of streamlines connecting he

cerebellar cortex with the right DN. Instead, the subthalamic-specific

connectivity method identified similar volumes for the motor and the

prefrontal representations in the left DN, while the right DN was

characterized by a significant smaller volume for the prefrontal repre-

sentation and a significant increased number of streamlines con-

necting the motor area. These results may be due to the technical

challenges of the subthalamic-specific connectivity; on the other

hand, there could be a physiological selectivity of motor and premotor

functions that are attributed to each DN and are causing this asymme-

try in distribution. Future studies should try to untangle such ambigu-

ity that this study cannot resolve.

Lastly, it is not surprising that connectivity-based and

microstructure-based approaches provide similar but not identical atlases

because they intrinsically contain different but complementary informa-

tion. In particular, cerebellar lobule-specific connectivity was able to dis-

tinguish between motor and non-motor representations, while the

second demonstrated that motor related parcellation was characterized

by microstructural features similar to those of the sensory parcellation,

leading them to be indistinguishable. Further studies should better inves-

tigate this last open question in order to provide stronger and more spe-

cific evidence of microstructural organization underlying brain

functioning. In this context, emerging microstructural models, such as

SANDI (Palombo et al., 2020), might be useful to characterize neurite

specific proprieties both in white and gray matter structures.

It is worth noting that present parcellations coming from diffusion

MRI analyses might grow their significance by integrating them with

other techniques able to quantify specific biological features, such as

myelin or iron content. This procedure would allow to merge struc-

tural and molecular proprieties information providing a step ahead in

the interpretation of specific mechanisms underlying pathologies that

are known to affect DNs and cerebellar circuitry, such as cerebellar

ataxia and autistic spectrum disorders. Moreover, it is becoming

apparent that the cerebellum plays a key role in neurodegenerative

pathologies and other neurological diseases, for example, Alzheimer's

disease (Castellazzi et al., 2014; Palesi et al., 2018) and epilepsy

(Rolandi et al., 2021; Streng & Krook-Magnuson, 2020). For example,

it is known that the cerebellum and basal ganglia are connected

through a polysynaptic connection and that the cerebellum plays a

compensative role on the basal ganglia in Parkinson's disease (Simioni,

Dagher, & Fellows, 2016; Yu, Sternad, Corcos, & Vaillancourt, 2007).

A full characterization of the DNs in healthy and pathological condi-

tions will contribute to the investigation of mechanisms of damage

and repair in a number of different pathologies.

It is clear that all these findings will further improve our anatomi-

cal and physiological understanding of the cerebro-cerebellar loops,

also providing a more comprehensive structural characterization of

brain circuitry. Indeed, the DN atlas provided by this work could be

embedded into one of the tissue classes (e.g., the deep gray matter

class) used in anatomically constraint tractography framework or in

other tractography algorithms using anatomical priors (Schiavi

et al., 2020), if data is acquired with a voxel resolution comparable to

that of the HCP data. Moreover, using the DN atlas to define multiple

nodes within each DN might be useful to identify specific DN connec-

tions with cerebellar lobules deputed to specific functions. This

knowledge will also support the development of new tools and brain

signal models for understanding and predicting brain functioning

(Friston et al., 2019; Sanz Leon et al., 2013). In the last years, indeed,

growing investigations have developed complex and multiscale

approaches with the common goal of employing brain structural pro-

prieties, such as diffusion MRI, to predict brain functional dynamics at

single subject's level in both normal and pathological conditions

(Palesi et al., 2020; Schirner, Mcintosh, Jirsa, & Deco, 2018; Zimmer-

mann et al., 2018).

5 | CONCLUSION

For the first time, the topography of the human DNs was defined on

the basis of their own connectivity both with the cerebellar cortex

and the thalamus, which is the main relay towards the cerebral cortex,

as well as by exploiting their microstructural features. Our findings

demonstrated that more than half of the DNs volume is involved in

non-motor functions, and two distinct regions were consistently iden-

tified: one deputed to high-level cognitive processes and one identi-

fied with sensory functions. It is to note that these components were

affected, although only in the left DN, by gender: females demon-

strated a more developed motor component while males showed a

larger area supporting higher-order functions. Although connectivity-

based and microstructural-based parcellations were in agreement, it is

to note that the resulting atlases contained different and complemen-

tary information. We speculate that these results should be incorpo-

rated into current knowledge on the structural and functional

significance of the cerebro-cerebellar loops in humans, also providing

novel insights that could be applied for interpretating pathological

conditions affecting these circuits.
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