
SOFTWARE TOOL ARTICLE

Ultraplex: A rapid, flexible, all-in-one fastq demultiplexer

[version 1; peer review: awaiting peer review]

Oscar G Wilkins1,2, Charlotte Capitanchik 1, Nicholas M. Luscombe 1,3,4,
Jernej Ule 1,2

1The Francis Crick Institute, London, UK
2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
3UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
4Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan

First published: 07 Jun 2021, 6:141
https://doi.org/10.12688/wellcomeopenres.16791.1
Latest published: 07 Jun 2021, 6:141
https://doi.org/10.12688/wellcomeopenres.16791.1

v1

Abstract
Background: The first step of virtually all next generation sequencing
analysis involves the splitting of the raw sequencing data into
separate files using sample-specific barcodes, a process known as
“demultiplexing”. However, we found that existing software for this
purpose was either too inflexible or too computationally intensive for
fast, streamlined processing of raw, single end fastq files containing
combinatorial barcodes.
Results: Here, we introduce a fast and uniquely flexible demultiplexer,
named Ultraplex, which splits a raw FASTQ file containing barcodes
either at a single end or at both 5’ and 3’ ends of reads, trims the
sequencing adaptors and low-quality bases, and moves unique
molecular identifiers (UMIs) into the read header, allowing
subsequent removal of PCR duplicates. Ultraplex is able to perform
such single or combinatorial demultiplexing on both single- and
paired-end sequencing data, and can process an entire Illumina HiSeq
lane, consisting of nearly 500 million reads, in less than 20 minutes.
Conclusions: Ultraplex greatly reduces computational burden and
pipeline complexity for the demultiplexing of complex sequencing
libraries, such as those produced by various CLIP and ribosome
profiling protocols, and is also very user friendly, enabling
streamlined, robust data processing. Ultraplex is available on PyPi and
Conda and via Github.

Keywords
Demultiplexing, fastq, iCLIP, UMI, ribosome profiling

Open Peer Review

Reviewer Status AWAITING PEER REVIEW

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

https://wellcomeopenresearch.org/articles/6-141/v1
https://orcid.org/0000-0001-9590-2792
https://orcid.org/0000-0001-5293-4778
https://orcid.org/0000-0002-2452-4277
https://doi.org/10.12688/wellcomeopenres.16791.1
https://doi.org/10.12688/wellcomeopenres.16791.1
https://github.com/ulelab/ultraplex
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.16791.1&domain=pdf&date_stamp=2021-06-07

Corresponding author: Oscar G Wilkins (oscar.wilkins@crick.ac.uk)
Author roles: Wilkins OG: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing – Original Draft Preparation; Capitanchik C: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation; Luscombe NM: Funding Acquisition, Project
Administration, Supervision, Writing – Review & Editing; Ule J: Conceptualization, Funding Acquisition, Project Administration, Resources,
Supervision, Writing – Original Draft Preparation
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Wellcome Trust (215593 to OW, and Joint Investigator Award 215593 to JU and
NML) and by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001002), the UK Medical Research
Council (FC001002), and the Wellcome Trust (FC001002). NML is a Winton Group Leader in recognition of the Winton Charitable
Foundation's support towards the establishment of the Francis Crick Institute, and also receives core funding from the Okinawa Institute
of Science & Technology Graduate University.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Wilkins OG et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Wilkins OG, Capitanchik C, Luscombe NM and Ule J. Ultraplex: A rapid, flexible, all-in-one fastq
demultiplexer [version 1; peer review: awaiting peer review] Wellcome Open Research 2021, 6:141
https://doi.org/10.12688/wellcomeopenres.16791.1
First published: 07 Jun 2021, 6:141 https://doi.org/10.12688/wellcomeopenres.16791.1

This article is included in the The Francis Crick

Institute gateway.

Page 2 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

mailto:oscar.wilkins@crick.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.16791.1
https://doi.org/10.12688/wellcomeopenres.16791.1
https://wellcomeopenresearch.org/gateways/crick
https://wellcomeopenresearch.org/gateways/crick
https://wellcomeopenresearch.org/gateways/crick

Introduction
Next generation sequencing (NGS) has greatly reduced the
cost of obtaining large amounts of sequence data, as hundreds
of millions, or even billions, of reads can be generated in a sin-
gle sequencing run (Goodwin et al., 2016). However, despite a
greatly reduced cost per read, the cost of each sequencing run is
still high. To reduce the cost per sample, a single sequenc-
ing run will typically involve multiplexing of multiple sam-
ples. To enable identification of which sample a given read is
derived from, sample-specific “barcodes” (short, defined DNA
sequences) are introduced during library preparation. Follow-
ing sequencing, software is required to detect these barcodes
and split the reads into separate files. Only after demultiplex-
ing can read alignment and other downstream analysis be
performed.

For commercial library preparation methods (for example,
Lexogen Quant-seq or Illumina Truseq), demultiplexing is typi-
cally performed during the generation of fastq files from the
raw read data. For Illumina sequencing, the software used for
this is Bcl2fastq. However, many in-house library preparation
protocols use custom barcodes that are introduced via adaptors
in such a way that they are present at 5’ and/or 3’ ends of reads,
such as iCLIP (individual nucleotide crosslinking and immu-
noprecipitation) (Huppertz et al., 2014; König et al., 2010)
or related protocols to study protein-RNA interactions and RNA
methylation (Lee & Ule, 2018), as well as ribosome profil-
ing and many others (Sugimoto et al., 2015). In such cases of

‘complex multiplexed libraries’, demultiplexing is typically
performed at a later stage, using a fastq file consisting of all
the raw reads as input. In addition to barcodes, iCLIP-style
reads contain unique molecular identifiers (UMIs), which
enable removal of PCR duplicates and may be spread across
multiple positions in the read (König et al., 2010; Smith et al.,
2017; Figure 1A). Furthermore, combinatorial barcoding may
be used, where each sample is identified by a unique combi-
nation of 5’ and 3’ barcodes. This allows more samples to be
multiplexed on a single lane, can reduce technical variation by
enabling earlier mixing of samples and enables incorporation of
extra UMI nucleotides to increase UMI complexity, thus reduc-
ing the chance of UMI saturation at signal peaks (Blazquez
et al., 2018).

Over the last decade, great effort has been made to improve the
accuracy and speed of demultiplexing algorithms (Aronesty,
2013; Kong, 2011; Lab, 2014; Liu, 2019; Martin, 2011; Murray
& Borevitz, 2018; Roehr et al., 2017; Schubert et al., 2016).
However, despite the large number of software packages
being available for demultiplexing, we found that only iCount
demultiplex (König et al., 2010) was capable of demultiplex-
ing lanes featuring experimental barcodes split over the 5’ and
3’ of single end reads and additionally allowing that differ-
ent 5’ barcodes may have different sets of accompanying 3’
barcodes (Table 1). For such libraries, using any of the
other available options would require the demultiplexer to
be run multiple times, with different settings for each

Figure 1. The Ultraplex workflow. A: An example read from a typical iCLIP/ribo-seq library, consisting of twin barcodes, UMIs present at
multiple positions, a 3’ sequencing adaptor, and a read derived from a small RNA fragment. B: Flow diagram of the processing of an example
read, using combinatorial demultiplexing with single end sequencing data.

Page 3 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

https://github.com/tomazc/iCount
https://github.com/tomazc/iCount

intermediate file, increasing time and pipeline complexity. While
the iCount demultiplex algorithm offers the greatest flexibility,
it is limited by speed (a full lane can take more than eight hours
to process), which presents a significant bottleneck in the analy-
sis pipeline. Others have used Flexbar for demultiplexing
iCLIP data (Busch et al., 2020); however, Flexbar is unable
to perform combinatorial 5’ and 3’ demultiplexing on sin-
gle end data, and does not allow different 5’ barcodes to be
associated with different sets of 3’ barcodes.

We set out to create a demultiplexer suitable for processing the
types of reads found in complex multiplexed libraries, with-
out the caveats of existing software. Importantly, we wanted
this software to run as quickly and efficiently as possible.
We therefore required fully multithreaded operation, to take
advantage of modern CPU architectures, and all processing to
be performed in a single read-write cycle, so as to avoid read/
write bottlenecks. By testing it on iCLIP libraries, we dem-
onstrated that the resulting software, Ultraplex, meets all of
these requirements. Thus, Ultraplex has broad applicability by
greatly reducing the processing time for complex multiplexed
libraries.

Methods
Implementation
Our software needed to be efficient, multithreaded and capable
of performing all desired processing steps in a single read-write
cycle (Figure 1B). To this end, we utilised the high perform-
ance fastq decompression and parsing of dnaio and Cutadapt,
and also used its reader/worker implementation and quality/
adapter trimmer cython functions (Martin, 2011). However, we
developed bespoke solutions to demultiplexing, UMI detection
and the writing of processed fastqs to enable fully multithreaded
operation (at the time of writing cutadapt demultiplexing was

single-threaded only), and allow more flexible demultiplexing
(Figure 2).

NGS data typically consists of hundreds of millions of reads.
For efficient performance, it is therefore essential to mini-
mise the number of function calls required for each read that is
processed. For this reason, Ultraplex first generates all pos-
sible DNA sequences (including those with undefined “N”
bases) of the same length as the barcodes (ignoring UMIs),
then tests each sequence against each user-defined barcode to
find the best matches (reads with more than one best match
are discarded). By storing these precalculated best matches in
a python dictionary, each read can be matched to its correct
barcode or barcode pair at approximately O(1) efficiency. Typi-
cally barcodes are <= 5 bases, meaning the sequence-barcode
best match function is called at most 3,125 (55) times dur-
ing dictionary generation, rather than 108–109 times if barcode
matches were calculated for each read individually, as was the
case in iCount demultiplexer.

Current multiplexing approaches use barcodes of the same type
(i.e. 5’ or 3’), of consistent length, with 5’ or 3’ barcodes present
at the same position within the read relative to the 5’ or 3’
end, respectively (Figure 3). Such consistent design of mul-
tiplexing is important to ensure that all reads have mutually
exclusive barcodes. We designed Ultraplex to enable flex-
ible demultiplexing of any complex libraries that follow these
described prerequisites. For data in which barcodes may be at
unknown positions, however, alternative algorithms are required.

Ultraplex allows UMIs of different barcodes to vary in length
(Figure 3). It optionally allows each 5’ barcode to be paired with
an array of 3’ barcodes, provided these 3’ barcodes are con-
sistent, but 3’ barcodes linked to different 5’ barcodes do not

Table 1. A comparison of feature sets of various demultiplexers.

Software Combinatorial
demultiplexing for both
single- and paired-end data

Unique 3’
barcodes for
each 5’ barcode

Remove
adaptors

Quality
trim

Move UMIs
to read
header

Multi-threaded

Cutadapt No No Yes Yes Yes Yes

Demultiplex No N/A No No No No

Flexbar 3.0 No No Yes Yes Yes Yes

FASTX-Toolkit No N/A Yes Yes No No

Btrim No Yes Yes Yes No No

Axe No Yes No No No No

deML No Yes No No No No

AdaptorRemoval2 No Yes Yes Yes No Yes

iCount demultiplex Yes Yes Yes No Yes No

Ultraplex Yes Yes Yes Yes Yes Yes

Page 4 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

Figure 2. The Ultraplex pipeline. The major steps of the Ultraplex pipeline are outlined. Steps that use modified code based on Cutadapt
are indicated.

Figure 3. Examples of compatible and incompatible barcodes. “N” bases are randomers which would typically be used as UMIs. “b”
bases are barcode bases. Compatible barcodes must have the same number of “b” bases, which must be at the same position relative to the
5’ or 3’ end of the read for 5’ and 3’ barcodes, respectively. Blue boxes indicate problematic regions of barcode.

need to be consistent with each other. All other existing demul-
tiplexers would require multiple runs for such complex demul-
tiplexing, increasing pipeline complexity and run-time,
and therefore Ultraplex increases the flexibility, convenience
and speed of demultiplexing.

When single end sequencing is used with samples contain-
ing 3’ barcodes, only cDNAs which are short enough will
contain the 3’ barcode in the sequencing read (e.g. inserts of
maximal length of ~90 nt will be possible for SR100, depend-
ing on barcode length). Ultraplex allows for combinatorial

Page 5 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

demultiplexing with single end data (with the above caveats),
which is not possible in most other demultiplexers (Table 1). To
reduce the likelihood of erroneous detection of 3’ barcodes during
single end operation, Ultraplex requires by default that at least
three nucleotides of the 3’ sequencing adaptor are detected
and trimmed for a 3’ barcode to be assigned; this ensures that
the end of the forward read genuinely corresponds to the end
of the insert, and should thus contain a 3’ barcode. Moreover,
it can also demultiplex paired end sequences in which a 3’
barcode is present at the 5’ end of the reverse read, with the
forward and reverse reads stored in separate FASTQ files.
Ultraplex uses the forward read to detect the 5’ barcode, and
the reverse read to detect the 3’ barcode.

We envisage that most users of Ultraplex will run the software
on a high-performance computing cluster (HPCC). HPCCs typi-
cally have large amounts of free storage space and have many
separate computational nodes, on which multiple jobs can be
run in parallel. To take advantage of this, we added two addi-
tional running modes, “ultra”, which writes uncompressed
temporary files and then compresses after concatenation,
and “sbatch compression”, which uses SLURM to send each
compression job to a separate HPCC node. As such, the sbatch
compression mode can only be used in conjunction with ultra
mode, and can only be run on HPCCs with SLURM job man-
agement. The use of these two modes reduces run time by a
further ~30%. These combined improvements bring an >40x
increase in speed as compared to iCount, currently the only
alternative tool for single-step demultiplexing of single end
sequencing libraries featuring combinatorial barcodes.

Operation
Ultraplex is a command-line tool which can be installed
via pip or conda. It requires at least two input arguments: a
comma-separated values (.csv) file of barcodes, and a compressed
fastq file. A simple command would be:

ultraplex -b my_barcodes.csv -i my_fastq.fastq.gz

The first column of the barcode csv file should correspond to
the 5’ barcodes; additional columns (separated by commas) cor-
respond to any 3’ barcodes which are linked to the 5’ barcode.
Optionally, each barcode can be assigned a sample name
using a colon spacer (5’ barcodes cannot be assigned a sam-
ple name if linked to 3’ barcodes, as this would be ambiguous).
N characters denote positions that correspond to UMIs. An
example barcode csv could be as follows:

NNNATGCNN
NNNATTANNN:sample_2
NNNGCGGN,NNAA:sample_3,NNNTT

This barcode csv corresponds to four samples: two with only
a 5’ barcode, and two with a shared 5’ but unique 3’ barcode.
Only samples 2 and 3 are explicitly named. Note the consist-
ency of the positioning of barcodes relative to the 5’ or 3’ ends
(Figure 3).

There are many optional arguments: -d (output directory for
files), -m5 and -m3 (the number of mismatches allowed dur-
ing 5’ and 3’ barcode detection), -q (the minimum phred quality
during 3’ quality trimming), -t (number of threads used dur-
ing operation), -a (the 3’ adaptor for the forward read), -o (an
output filename prefix), -sb (sbatch compression for slurm
clusters), -u (ultra mode, described above), -l (the minimum
length of the read to be written out), -i2 (a second fastq for
paired-end demultiplexing), -a2 (the sequencing adaptor to be
trimmed for the reverse read), -inm/--ignore_no_match (does
not write out reads which are not matched to sample).

Results
We benchmarked Ultraplex against iCount for a sequencing lane
of 482,988,240 single end reads, consisting of 30 multiplexed
iCLIP samples, where 17 have only a 5’ barcode, and the
remainder have both 5’ and 3’ barcodes. Our testing was run on
a high-performance computing cluster where each CPU node
is an 8-core Intel E5-2640 Haswell CPU running at 2.6GHz,
with hyperthreading enabled (two threads per core), running
Linux 3.10.0–957.1.3.el7.x86_64. iCount was run with addi-
tional flags --min_adapter_overlap 3 -mis 1 -ml
0 and Ultraplex with -mt 3 -m5 1 -q 0 -l 17. Using
Ultraplex with both ultra and sb modes, 16 threads and
64GB memory, the lane was demultiplexed in 21.7 minutes,
but we could push this as low as 15.6 minutes by allowing 32
threads and 128GB memory (Figure 4A). Given 64GB memory
and matched settings, iCount took 662 minutes (~ 11 hours).
Even without ultra and sb modes enabled, Ultraplex only took
32.5 minutes. We also tested Ultraplex with lower resources;
given eight threads and 16GB memory, the lane was demulti-
plexed in 43.4 minutes with ultra and sb modes enabled, and
64.7 minutes without. This demonstrates that even with modest
resource allocation, Ultraplex is a very fast demultiplexer.

Next we compared the output of iCount and Ultraplex to check
consistency. Reassuringly, Ultraplex gave exactly the same
results over the four different test runs. Comparing iCount
to Ultraplex, the number of reads assigned per barcode were
mostly the same, bar a few samples where iCount assigned
slightly more reads (Figure 4B). To explore this, we further fil-
tered reads with cutadapt quality trimming removing 3’ nucle-
otides with PHRED score of less than 30, kept reads with a
minimum length of 20 nucleotides, and mapped them to the
human genome using STAR. The biggest deviance between
iCount and Ultraplex assigned reads was found for the sample
NNNNCCGGANNN. For this sample, only 0.99% (2090/211347)
of the iCount-specific reads mapped to the genome, and 90%
(1898/2090) of these were assigned as “spliced”, meaning the
read had to be split to be mapped, indicative of low-quality
mapping. The remaining 99.01% of the iCount-specific reads
were determined by STAR to be too short to map. When com-
paring the total number of mapped reads for all samples
(both unique and multi-mapped), we found the final results of
Ultraplex and iCount were near-identical (Figure 4C,D). Thus,
Ultraplex produces essentially identical results to iCount, but is
>40x faster.

Page 6 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

Conclusions
The processing of iCLIP-style sequencing libraries consists
of many sequential steps, which requires complex pipelines
(Busch et al., 2020; Chakrabarti et al., 2018). By perform-
ing multiple processing steps in one read/write cycle, and by
using a multi-threaded and computationally efficient method,
Ultraplex greatly improves the speed and ease of the initial steps
of demultiplexing the fastq file. In our testing we find Ultra-
plex to be up to 40 times faster than the currently used iCount
software. Furthermore, Ultraplex allows for extremely flex-
ible demultiplexing, simplifying the analysis when multiple

Figure 4. Performance of Ultraplex vs. iCount demultiplex. A: Runtime in minutes of iCount vs. Ultraplex (UP) with various parameters.
B: Number of demultiplexed reads per barcode assigned by Ultraplex and iCount. C,D: Number of uniquely mapped and multimapped
reads per sample after STAR mapping of the 30 iCLIP samples demultiplexed using Ultraplex or iCount.

samples with varying barcode arrangements are sequenced
together. By removing the largest time bottleneck in the CLIP
analysis workflow, we now make it possible to go from multi-
plexed fastq to sample crosslinks in a matter of hours using a
pipeline such as nf-core/clipseq (Ewels et al., 2020).

Data availability
Underlying data
ArrayExpress: Ultraplex: An ultra-fast, flexible, all-in-one
fastq demultiplexer. Accession number E-MTAB-10349; https://
identifiers.org/arrayexpress:E-MTAB-10349.

Page 7 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

https://nf-co.re/clipseq
https://identifiers.org/arrayexpress:E-MTAB-10349
https://identifiers.org/arrayexpress:E-MTAB-10349

Software availability
Source code available from: https://github.com/ulelab/ultraplex

Archived source code at time of publication: https://doi.org/
10.5281/zenodo.4651285 (Wilkins et al., 2021)

License: MIT

Software is also on PyPi and Bioconda.

Acknowledgements
We would like to thank Martina Hallegger for the use of
her sequencing lane in our testing and validation. We would
also like to thank Robert Goldstone for his comments.

References

 Aronesty E: Comparison of Sequencing Utility Programs. Open Bioinforma J.
2013; 7(1): 1–8.
Publisher Full Text

 Blazquez L, Emmett W, Faraway R, et al.: Exon Junction Complex Shapes
the Transcriptome by Repressing Recursive Splicing. Mol Cell. 2018; 72(3):
496–509.e9.
PubMed Abstract | Publisher Full Text | Free Full Text

 Busch A, Brüggemann M, Ebersberger S, et al.: iCLIP Data Analysis: A
Complete Pipeline from Sequencing Reads to RBP Binding Sites. Methods.
2020; 178: 49–62.
PubMed Abstract | Publisher Full Text

 Chakrabarti AM, Haberman N, Praznik A, et al.: Data Science Issues in
Studying Protein-RNA Interactions with CLIP Technologies. Annu Rev Biomed
Data Sci. 2018; 1(1): 235–61.
Publisher Full Text

 Ewels PA, Peltzer A, Fillinger S, et al.: The Nf-Core Framework for Community-
Curated Bioinformatics Pipelines. Nat Biotechnol. 2020; 38(3): 276–78.
PubMed Abstract | Publisher Full Text

 Goodwin S, McPherson JD, McCombie WR: Coming of Age: Ten Years of next-
Generation Sequencing Technologies. Nat Rev Genet. 2016; 17(6): 333–51.
PubMed Abstract | Publisher Full Text

 Huppertz I, Attig J, D’Ambrogio A, et al.: iCLIP: Protein-RNA Interactions at
Nucleotide Resolution. Methods. 2014; 65(3): 274–87.
PubMed Abstract | Publisher Full Text | Free Full Text

 Kong Y: Btrim: A Fast, Lightweight Adapter and Quality Trimming Program
for next-Generation Sequencing Technologies. Genomics. 2011; 98(2):
152–53.
PubMed Abstract | Publisher Full Text

 König J, Zarnack K, Rot G, et al.: iCLIP Reveals the Function of hnRNP
Particles in Splicing at Individual Nucleotide Resolution. Nat Struct Mol Biol.
2010; 17(7): 909–15.
PubMed Abstract | Publisher Full Text | Free Full Text

 Lab H: FASTX Toolkit. Cold Spring Harb. Lab. Cold Spring Harb. NY. 2014.
Reference Source

 Lee FCY, Ule J: Advances in CLIP Technologies for Studies of Protein-RNA
Interactions. Mol Cell. 2018; 69(3): 354–69.
PubMed Abstract | Publisher Full Text

 Liu D: Fuzzysplit: Demultiplexing and Trimming Sequenced DNA with a
Declarative Language. PeerJ. 2019; 7: e7170.
PubMed Abstract | Publisher Full Text | Free Full Text

 Martin M: Cutadapt Removes Adapter Sequences from High-Throughput
Sequencing Reads. EMBnet.journal. 2011; 17(1): 10–12.
Publisher Full Text

 Murray KD, Borevitz JO: Axe: Rapid, Competitive Sequence Read
Demultiplexing Using a Trie. Bioinformatics. 2018; 34(22): 3924–25.
PubMed Abstract | Publisher Full Text

 Wilkins OG, Capitanchik C, Chakrabarti N: ulelab/ultraplex: Ultraplex release.
(Version 1.1.4). Zenodo. 2021.
http://www.doi.org/10.5281/zenodo.4651285

 Roehr JT, Dieterich C, Reinert K: Flexbar 3.0 - SIMD and Multicore
Parallelization. Bioinformatics. 2017; 33(18): 2941–42.
PubMed Abstract | Publisher Full Text

 Schubert M, Lindgreen S, Orlando L: AdapterRemoval v2: Rapid Adapter
Trimming, Identification, and Read Merging. BMC Res Notes. 2016; 9: 88.
PubMed Abstract | Publisher Full Text | Free Full Text

 Smith T, Heger A, Sudbery I: UMI-Tools: Modeling Sequencing Errors in
Unique Molecular Identifiers to Improve Quantification Accuracy. Genome
Res. 2017; 27(3): 491–99.
PubMed Abstract | Publisher Full Text | Free Full Text

 Sugimoto Y, Vigilante A, Darbo E, et al.: hiCLIP Reveals the in Vivo Atlas
of mRNA Secondary Structures Recognized by Staufen 1. Nature. 2015;
519(7544): 491–94.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 8 of 8

Wellcome Open Research 2021, 6:141 Last updated: 07 JUN 2021

https://github.com/ulelab/ultraplex
https://doi.org/10.5281/zenodo.4651285
https://doi.org/10.5281/zenodo.4651285
https://opensource.org/licenses/MIT
https://pypi.org/project/ultraplex/
https://anaconda.org/bioconda/ultraplex
http://dx.doi.org/10.2174/1875036201307010001
http://www.ncbi.nlm.nih.gov/pubmed/30388411
http://dx.doi.org/10.1016/j.molcel.2018.09.033
http://www.ncbi.nlm.nih.gov/pmc/articles/6224609
http://www.ncbi.nlm.nih.gov/pubmed/31751605
http://dx.doi.org/10.1016/j.ymeth.2019.11.008
http://dx.doi.org/10.1146/annurev-biodatasci-080917-013525
http://www.ncbi.nlm.nih.gov/pubmed/32055031
http://dx.doi.org/10.1038/s41587-020-0439-x
http://www.ncbi.nlm.nih.gov/pubmed/27184599
http://dx.doi.org/10.1038/nrg.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/24184352
http://dx.doi.org/10.1016/j.ymeth.2013.10.011
http://www.ncbi.nlm.nih.gov/pmc/articles/3988997
http://www.ncbi.nlm.nih.gov/pubmed/21651976
http://dx.doi.org/10.1016/j.ygeno.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/20601959
http://dx.doi.org/10.1038/nsmb.1838
http://www.ncbi.nlm.nih.gov/pmc/articles/3000544
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.ncbi.nlm.nih.gov/pubmed/29395060
http://dx.doi.org/10.1016/j.molcel.2018.01.005
http://www.ncbi.nlm.nih.gov/pubmed/31249738
http://dx.doi.org/10.7717/peerj.7170
http://www.ncbi.nlm.nih.gov/pmc/articles/6589082
http://dx.doi.org/10.14806/ej.17.1.200
http://www.ncbi.nlm.nih.gov/pubmed/29868827
http://dx.doi.org/10.1093/bioinformatics/bty432
http://www.doi.org/10.5281/zenodo.4651285
http://www.ncbi.nlm.nih.gov/pubmed/28541403
http://dx.doi.org/10.1093/bioinformatics/btx330
http://www.ncbi.nlm.nih.gov/pubmed/26868221
http://dx.doi.org/10.1186/s13104-016-1900-2
http://www.ncbi.nlm.nih.gov/pmc/articles/4751634
http://www.ncbi.nlm.nih.gov/pubmed/28100584
http://dx.doi.org/10.1101/gr.209601.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5340976
http://www.ncbi.nlm.nih.gov/pubmed/25799984
http://dx.doi.org/10.1038/nature14280
http://www.ncbi.nlm.nih.gov/pmc/articles/4376666

