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Abstract 
Background: The first step of virtually all next generation sequencing 
analysis involves the splitting of the raw sequencing data into 
separate files using sample-specific barcodes, a process known as 
“demultiplexing”. However, we found that existing software for this 
purpose was either too inflexible or too computationally intensive for 
fast, streamlined processing of raw, single end fastq files containing 
combinatorial barcodes. 
Results: Here, we introduce a fast and uniquely flexible demultiplexer, 
named Ultraplex, which splits a raw FASTQ file containing barcodes 
either at a single end or at both 5’ and 3’ ends of reads, trims the 
sequencing adaptors and low-quality bases, and moves unique 
molecular identifiers (UMIs) into the read header, allowing 
subsequent removal of PCR duplicates. Ultraplex is able to perform 
such single or combinatorial demultiplexing on both single- and 
paired-end sequencing data, and can process an entire Illumina HiSeq 
lane, consisting of nearly 500 million reads, in less than 20 minutes. 
Conclusions: Ultraplex greatly reduces computational burden and 
pipeline complexity for the demultiplexing of complex sequencing 
libraries, such as those produced by various CLIP and ribosome 
profiling protocols, and is also very user friendly, enabling 
streamlined, robust data processing. Ultraplex is available on PyPi and 
Conda and via Github.
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Introduction
Next generation sequencing (NGS) has greatly reduced the 
cost of obtaining large amounts of sequence data, as hundreds 
of millions, or even billions, of reads can be generated in a sin-
gle sequencing run (Goodwin et al., 2016). However, despite a 
greatly reduced cost per read, the cost of each sequencing run is  
still high. To reduce the cost per sample, a single sequenc-
ing run will typically involve multiplexing of multiple sam-
ples. To enable identification of which sample a given read is 
derived from, sample-specific “barcodes” (short, defined DNA  
sequences) are introduced during library preparation. Follow-
ing sequencing, software is required to detect these barcodes  
and split the reads into separate files. Only after demultiplex-
ing can read alignment and other downstream analysis be  
performed.

For commercial library preparation methods (for example,  
Lexogen Quant-seq or Illumina Truseq), demultiplexing is typi-
cally performed during the generation of fastq files from the 
raw read data. For Illumina sequencing, the software used for 
this is Bcl2fastq. However, many in-house library preparation  
protocols use custom barcodes that are introduced via adaptors 
in such a way that they are present at 5’ and/or 3’ ends of reads, 
such as iCLIP (individual nucleotide crosslinking and immu-
noprecipitation) (Huppertz et al., 2014; König et al., 2010)  
or related protocols to study protein-RNA interactions and RNA 
methylation (Lee & Ule, 2018), as well as ribosome profil-
ing and many others (Sugimoto et al., 2015). In such cases of 

‘complex multiplexed libraries’, demultiplexing is typically  
performed at a later stage, using a fastq file consisting of all 
the raw reads as input. In addition to barcodes, iCLIP-style 
reads contain unique molecular identifiers (UMIs), which 
enable removal of PCR duplicates and may be spread across  
multiple positions in the read (König et al., 2010; Smith et al., 
2017; Figure 1A). Furthermore, combinatorial barcoding may 
be used, where each sample is identified by a unique combi-
nation of 5’ and 3’ barcodes. This allows more samples to be  
multiplexed on a single lane, can reduce technical variation by  
enabling earlier mixing of samples and enables incorporation of 
extra UMI nucleotides to increase UMI complexity, thus reduc-
ing the chance of UMI saturation at signal peaks (Blazquez  
et al., 2018).

Over the last decade, great effort has been made to improve the 
accuracy and speed of demultiplexing algorithms (Aronesty,  
2013; Kong, 2011; Lab, 2014; Liu, 2019; Martin, 2011; Murray  
& Borevitz, 2018; Roehr et al., 2017; Schubert et al., 2016).  
However, despite the large number of software packages 
being available for demultiplexing, we found that only iCount  
demultiplex (König et al., 2010) was capable of demultiplex-
ing lanes featuring experimental barcodes split over the 5’ and 
3’ of single end reads and additionally allowing that differ-
ent 5’ barcodes may have different sets of accompanying 3’  
barcodes (Table 1). For such libraries, using any of the 
other available options would require the demultiplexer to  
be run multiple times, with different settings for each  

Figure 1. The Ultraplex workflow. A: An example read from a typical iCLIP/ribo-seq library, consisting of twin barcodes, UMIs present at 
multiple positions, a 3’ sequencing adaptor, and a read derived from a small RNA fragment. B: Flow diagram of the processing of an example 
read, using combinatorial demultiplexing with single end sequencing data.
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intermediate file, increasing time and pipeline complexity. While  
the iCount demultiplex algorithm offers the greatest flexibility, 
it is limited by speed (a full lane can take more than eight hours 
to process), which presents a significant bottleneck in the analy-
sis pipeline. Others have used Flexbar for demultiplexing  
iCLIP data (Busch et al., 2020); however, Flexbar is unable 
to perform combinatorial 5’ and 3’ demultiplexing on sin-
gle end data, and does not allow different 5’ barcodes to be  
associated with different sets of 3’ barcodes.

We set out to create a demultiplexer suitable for processing the 
types of reads found in complex multiplexed libraries, with-
out the caveats of existing software. Importantly, we wanted 
this software to run as quickly and efficiently as possible.  
We therefore required fully multithreaded operation, to take 
advantage of modern CPU architectures, and all processing to 
be performed in a single read-write cycle, so as to avoid read/
write bottlenecks. By testing it on iCLIP libraries, we dem-
onstrated that the resulting software, Ultraplex, meets all of 
these requirements. Thus, Ultraplex has broad applicability by 
greatly reducing the processing time for complex multiplexed  
libraries.

Methods
Implementation
Our software needed to be efficient, multithreaded and capable 
of performing all desired processing steps in a single read-write 
cycle (Figure 1B). To this end, we utilised the high perform-
ance fastq decompression and parsing of dnaio and Cutadapt,  
and also used its reader/worker implementation and quality/
adapter trimmer cython functions (Martin, 2011). However, we 
developed bespoke solutions to demultiplexing, UMI detection 
and the writing of processed fastqs to enable fully multithreaded 
operation (at the time of writing cutadapt demultiplexing was 

single-threaded only), and allow more flexible demultiplexing  
(Figure 2).

NGS data typically consists of hundreds of millions of reads. 
For efficient performance, it is therefore essential to mini-
mise the number of function calls required for each read that is 
processed. For this reason, Ultraplex first generates all pos-
sible DNA sequences (including those with undefined “N”  
bases) of the same length as the barcodes (ignoring UMIs), 
then tests each sequence against each user-defined barcode to 
find the best matches (reads with more than one best match 
are discarded). By storing these precalculated best matches in 
a python dictionary, each read can be matched to its correct  
barcode or barcode pair at approximately O(1) efficiency. Typi-
cally barcodes are <= 5 bases, meaning the sequence-barcode 
best match function is called at most 3,125 (55) times dur-
ing dictionary generation, rather than 108–109 times if barcode 
matches were calculated for each read individually, as was the  
case in iCount demultiplexer.

Current multiplexing approaches use barcodes of the same type 
(i.e. 5’ or 3’), of consistent length, with 5’ or 3’ barcodes present 
at the same position within the read relative to the 5’ or 3’  
end, respectively (Figure 3). Such consistent design of mul-
tiplexing is important to ensure that all reads have mutually 
exclusive barcodes. We designed Ultraplex to enable flex-
ible demultiplexing of any complex libraries that follow these 
described prerequisites. For data in which barcodes may be at 
unknown positions, however, alternative algorithms are required.

Ultraplex allows UMIs of different barcodes to vary in length  
(Figure 3). It optionally allows each 5’ barcode to be paired with 
an array of 3’ barcodes, provided these 3’ barcodes are con-
sistent, but 3’ barcodes linked to different 5’ barcodes do not  

Table 1. A comparison of feature sets of various demultiplexers.

Software Combinatorial 
demultiplexing for both 
single- and paired-end data

Unique 3’ 
barcodes for 
each 5’ barcode

Remove 
adaptors

Quality 
trim

Move UMIs 
to read 
header

Multi-threaded

Cutadapt No No Yes Yes Yes Yes

Demultiplex No N/A No No No No

Flexbar 3.0 No No Yes Yes Yes Yes

FASTX-Toolkit No N/A Yes Yes No No

Btrim No Yes Yes Yes No No

Axe No Yes No No No No

deML No Yes No No No No

AdaptorRemoval2 No Yes Yes Yes No Yes

iCount demultiplex Yes Yes Yes No Yes No

Ultraplex Yes Yes Yes Yes Yes Yes 
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Figure 2. The Ultraplex pipeline. The major steps of the Ultraplex pipeline are outlined. Steps that use modified code based on Cutadapt 
are indicated.

Figure 3. Examples of compatible and incompatible barcodes. “N” bases are randomers which would typically be used as UMIs. “b” 
bases are barcode bases. Compatible barcodes must have the same number of “b” bases, which must be at the same position relative to the 
5’ or 3’ end of the read for 5’ and 3’ barcodes, respectively. Blue boxes indicate problematic regions of barcode.

need to be consistent with each other. All other existing demul-
tiplexers would require multiple runs for such complex demul-
tiplexing, increasing pipeline complexity and run-time,  
and therefore Ultraplex increases the flexibility, convenience  
and speed of demultiplexing.

When single end sequencing is used with samples contain-
ing 3’ barcodes, only cDNAs which are short enough will 
contain the 3’ barcode in the sequencing read (e.g. inserts of 
maximal length of ~90 nt will be possible for SR100, depend-
ing on barcode length). Ultraplex allows for combinatorial  
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demultiplexing with single end data (with the above caveats), 
which is not possible in most other demultiplexers (Table 1). To 
reduce the likelihood of erroneous detection of 3’ barcodes during  
single end operation, Ultraplex requires by default that at least 
three nucleotides of the 3’ sequencing adaptor are detected 
and trimmed for a 3’ barcode to be assigned; this ensures that 
the end of the forward read genuinely corresponds to the end 
of the insert, and should thus contain a 3’ barcode. Moreover,  
it can also demultiplex paired end sequences in which a 3’ 
barcode is present at the 5’ end of the reverse read, with the 
forward and reverse reads stored in separate FASTQ files. 
Ultraplex uses the forward read to detect the 5’ barcode, and  
the reverse read to detect the 3’ barcode.

We envisage that most users of Ultraplex will run the software 
on a high-performance computing cluster (HPCC). HPCCs typi-
cally have large amounts of free storage space and have many 
separate computational nodes, on which multiple jobs can be  
run in parallel. To take advantage of this, we added two addi-
tional running modes, “ultra”, which writes uncompressed 
temporary files and then compresses after concatenation, 
and “sbatch compression”, which uses SLURM to send each  
compression job to a separate HPCC node. As such, the sbatch 
compression mode can only be used in conjunction with ultra 
mode, and can only be run on HPCCs with SLURM job man-
agement. The use of these two modes reduces run time by a 
further ~30%. These combined improvements bring an >40x 
increase in speed as compared to iCount, currently the only 
alternative tool for single-step demultiplexing of single end  
sequencing libraries featuring combinatorial barcodes.

Operation
Ultraplex is a command-line tool which can be installed 
via pip or conda. It requires at least two input arguments: a  
comma-separated values (.csv) file of barcodes, and a compressed 
fastq file. A simple command would be:

ultraplex -b my_barcodes.csv -i my_fastq.fastq.gz

The first column of the barcode csv file should correspond to 
the 5’ barcodes; additional columns (separated by commas) cor-
respond to any 3’ barcodes which are linked to the 5’ barcode.  
Optionally, each barcode can be assigned a sample name 
using a colon spacer (5’ barcodes cannot be assigned a sam-
ple name if linked to 3’ barcodes, as this would be ambiguous). 
N characters denote positions that correspond to UMIs. An  
example barcode csv could be as follows:

NNNATGCNN
NNNATTANNN:sample_2
NNNGCGGN,NNAA:sample_3,NNNTT

This barcode csv corresponds to four samples: two with only 
a 5’ barcode, and two with a shared 5’ but unique 3’ barcode. 
Only samples 2 and 3 are explicitly named. Note the consist-
ency of the positioning of barcodes relative to the 5’ or 3’ ends  
(Figure 3).

There are many optional arguments: -d (output directory for 
files), -m5 and -m3 (the number of mismatches allowed dur-
ing 5’ and 3’ barcode detection), -q (the minimum phred quality  
during 3’ quality trimming), -t (number of threads used dur-
ing operation), -a (the 3’ adaptor for the forward read), -o (an 
output filename prefix), -sb (sbatch compression for slurm 
clusters), -u (ultra mode, described above), -l (the minimum 
length of the read to be written out), -i2 (a second fastq for  
paired-end demultiplexing), -a2 (the sequencing adaptor to be 
trimmed for the reverse read), -inm/--ignore_no_match (does  
not write out reads which are not matched to sample).

Results
We benchmarked Ultraplex against iCount for a sequencing lane 
of 482,988,240 single end reads, consisting of 30 multiplexed  
iCLIP samples, where 17 have only a 5’ barcode, and the 
remainder have both 5’ and 3’ barcodes. Our testing was run on  
a high-performance computing cluster where each CPU node 
is an 8-core Intel E5-2640 Haswell CPU running at 2.6GHz, 
with hyperthreading enabled (two threads per core), running  
Linux 3.10.0–957.1.3.el7.x86_64. iCount was run with addi-
tional flags --min_adapter_overlap 3 -mis 1 -ml 
0 and Ultraplex with -mt 3 -m5 1 -q 0 -l 17. Using 
Ultraplex with both ultra and sb modes, 16 threads and  
64GB memory, the lane was demultiplexed in 21.7 minutes, 
but we could push this as low as 15.6 minutes by allowing 32 
threads and 128GB memory (Figure 4A). Given 64GB memory 
and matched settings, iCount took 662 minutes (~ 11 hours). 
Even without ultra and sb modes enabled, Ultraplex only took  
32.5 minutes. We also tested Ultraplex with lower resources; 
given eight threads and 16GB memory, the lane was demulti-
plexed in 43.4 minutes with ultra and sb modes enabled, and 
64.7 minutes without. This demonstrates that even with modest  
resource allocation, Ultraplex is a very fast demultiplexer.

Next we compared the output of iCount and Ultraplex to check 
consistency. Reassuringly, Ultraplex gave exactly the same  
results over the four different test runs. Comparing iCount 
to Ultraplex, the number of reads assigned per barcode were 
mostly the same, bar a few samples where iCount assigned 
slightly more reads (Figure 4B). To explore this, we further fil-
tered reads with cutadapt quality trimming removing 3’ nucle-
otides with PHRED score of less than 30, kept reads with a  
minimum length of 20 nucleotides, and mapped them to the 
human genome using STAR. The biggest deviance between 
iCount and Ultraplex assigned reads was found for the sample  
NNNNCCGGANNN. For this sample, only 0.99% (2090/211347) 
of the iCount-specific reads mapped to the genome, and 90% 
(1898/2090) of these were assigned as “spliced”, meaning the 
read had to be split to be mapped, indicative of low-quality  
mapping. The remaining 99.01% of the iCount-specific reads 
were determined by STAR to be too short to map. When com-
paring the total number of mapped reads for all samples 
(both unique and multi-mapped), we found the final results of  
Ultraplex and iCount were near-identical (Figure 4C,D). Thus,  
Ultraplex produces essentially identical results to iCount, but is  
>40x faster.
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Conclusions
The processing of iCLIP-style sequencing libraries consists 
of many sequential steps, which requires complex pipelines  
(Busch et al., 2020; Chakrabarti et al., 2018). By perform-
ing multiple processing steps in one read/write cycle, and by 
using a multi-threaded and computationally efficient method,  
Ultraplex greatly improves the speed and ease of the initial steps 
of demultiplexing the fastq file. In our testing we find Ultra-
plex to be up to 40 times faster than the currently used iCount 
software. Furthermore, Ultraplex allows for extremely flex-
ible demultiplexing, simplifying the analysis when multiple  

Figure 4. Performance of Ultraplex vs. iCount demultiplex. A: Runtime in minutes of iCount vs. Ultraplex (UP) with various parameters. 
B: Number of demultiplexed reads per barcode assigned by Ultraplex and iCount. C,D: Number of uniquely mapped and multimapped 
reads per sample after STAR mapping of the 30 iCLIP samples demultiplexed using Ultraplex or iCount.

samples with varying barcode arrangements are sequenced 
together. By removing the largest time bottleneck in the CLIP 
analysis workflow, we now make it possible to go from multi-
plexed fastq to sample crosslinks in a matter of hours using a  
pipeline such as nf-core/clipseq (Ewels et al., 2020).

Data availability
Underlying data
ArrayExpress: Ultraplex: An ultra-fast, flexible, all-in-one  
fastq demultiplexer. Accession number E-MTAB-10349; https://
identifiers.org/arrayexpress:E-MTAB-10349.
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Software availability
Source code available from: https://github.com/ulelab/ultraplex

Archived source code at time of publication: https://doi.org/ 
10.5281/zenodo.4651285 (Wilkins et al., 2021)

License: MIT

Software is also on PyPi and Bioconda.
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