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Abstract: The geological timescale before 720 Ma uses rounded absolute ages rather than specific events recorded in rocks to
subdivide time. This has led increasingly to mismatches between subdivisions and the features for which they were named.
Here we review the formal processes that led to the current timescale, outline rock-based concepts that could be used to
subdivide pre-Cryogenian time and propose revisions. An appraisal of the Precambrian rock record confirms that purely
chronostratigraphic subdivision would require only modest deviation from current chronometric boundaries, removal of which
could be expedited by establishing event-based concepts and provisional, approximate ages for eon-, era- and period-level
subdivisions. Our review leads to the following conclusions: (1) the current informal four-fold Archean subdivision should be
simplified to a tripartite scheme, pending more detailed analysis, and (2) an improved rock-based Proterozoic Eon might
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comprise a Paleoproterozoic Era with three periods (early Paleoproterozoic or Skourian, Rhyacian, Orosirian),
Mesoproterozoic Era with four periods (Statherian, Calymmian, Ectasian, Stenian) and a Neoproterozoic Era with four
periods (pre-Tonian or Kleisian, Tonian, Cryogenian and Ediacaran). These proposals stem from a wide community and could
be used to guide future development of the pre-Cryogenian timescale by international bodies.

Received 15 December 2020; revised 5 June 2021; accepted 7 June 2021

The term ‘Precambrian’, or more traditionally ‘pre-Cambrian’
(Glaessner 1962), is an informal geological term that refers to the
time before the beginning of the Cambrian Period at c. 0.54 Ga
(Peng et al. 2020). The two pre-Cambrian eonothems (Archean and
Proterozoic) have long pedigrees (Sedgwick 1845; Logan 1857;
Dana 1872) but were introduced formally only after extensive
discussion among members of the Subcommission on Precambrian
Stratigraphy (SPS), which was tasked with Kalervo Rankama as
chair in 1966 to standardize Precambrian nomenclature (Trendall
1966). James (1978), summarizing discussions within the sub-
commission, outlined five categories of proposals: (1) subdivision
by intervals of equal duration (Goldich 1968; see also Hofmann
1990, 1992; Trendall 1991); (2) subdivision by major magmatic-
tectonic cycles (Stockwell 1961, 1982); (3) subdivision by
stratotypes (Dunn et al. 1966; see also Crook 1989); (4) subdivision
by breaks in the geological record defined by radiometric ages
(James 1972); and (5) subdivision based on Earth evolution
concepts (Cloud 1976). One result of those early discussions was
that an approximate chronological age of 2500 Mawas assigned to a
somewhat transitional Archean–Proterozoic boundary (James
1978). However, further subdivision of the Precambrian in a
comparable manner to that achieved for younger rocks, although
favoured by some (Hedberg 1974), proved unworkable (James
1978) due to (1) the relatively fragmentary nature of the
Precambrian rock record, much of which is strongly deformed
andmetamorphosed, and (2) a scarcity of age-diagnostic fossils. For
this reason, a mixed approach was applied: Global Standard
Stratigraphic Ages (GSSAs) were introduced to subdivide
Precambrian time, but the absolute ages of periods were chosen to
bracket major magmatic-tectonic episodes (Plumb and James 1986;
Plumb 1991). Since that decision was ratified, all of pre-Cryogenian
Earth history and its geological record has been subdivided using
geochronology rather than chronostratigraphy.

The principal Precambrian subdivisions now comprise the
informal Hadean and formal Archean and Proterozoic eons
(Fig. 1a), which, following the GSSA concept, are defined as
units of time rather than stratigraphic packages. The Hadean Eon
refers to the interval with no preserved crustal fragments that
followed formation of the Earth at c. 4.54 Ga (Patterson 1956;
Manhes et al. 1980). Because the Hadean Eon left no rock record on
Earth (other than reworked mineral grains or meteorites), it cannot
be regarded as a stratigraphic entity (eonothem) and has never been
formally defined or subdivided. It is succeeded by the Archean Eon,
which is usually taken to begin at 4.0 Ga and is itself succeeded at
2.5 Ga by the Proterozoic Eon. The Archean Eon is informally
divided into four eras (Eoarchean, Paleoarchean, Mesoarchean and
Neoarchean; e.g. Bleeker 2004a), although a three-fold subdivision
is widely favoured (Van Kranendonk et al. 2012; Strachan et al.
2020). The Proterozoic Eon is currently subdivided into three eras
(Paleoproterozoic, Mesoproterozoic and Neoproterozoic) and ten
periods (Siderian, Rhyacian, Orosirian, Statherian, Calymmian,
Ectasian, Stenian, Tonian, Cryogenian and Ediacaran). The era
names were conceived after a proposal from Hans Hofmann in 1987
(Hofmann 1992; Plumb 1992), while the period names derive from
discussions within the SPS (Plumb 1991). The three Proterozoic
eras were originally proposed to begin at 2.5 Ga (Proterozoic I),
1.6 Ga (Proterozoic II) and 0.9 Ga (Proterozoic III), respectively
(Plumb and James 1986). However, the beginning of the

Neoproterozoic Era was subsequently moved to 1.0 Ga in the
final proposal (Plumb 1991).

The ages of Precambrian boundaries were selected to delimit
major cycles of sedimentation, orogeny and magmatism (Plumb
1991; Fig. 1a). However, knowledge has improved considerably
over the past thirty years due to: (1) increasingly precise and
accurate U–Pb zircon dating; (2) improved isotopic and geochem-
ical proxy records of tectonic, environmental and biological
evolution; and (3) new rock and fossil discoveries. As a result,
some of these numerical boundaries no longer bracket the events for
which they were named. The International Commission on
Stratigraphy (ICS) began to address this problem in 2004 when
they ratified the basal Ediacaran GSSP (Global Stratotype Section
and Point) on the basis of the stratigraphic expression of a global
chemo-oceanographic (and climatic) event in a post-glacial
dolostone unit in South Australia (Knoll et al. 2004). Latest
geochronology and chronostratigraphy confirm that all typical
Marinoan ‘cap dolostone’ units were deposited contemporaneously
at 635.5 Ma (Xiao and Narbonne 2020). The Ediacaran GSSP is
therefore one of the most highly resolved system-level markers in
the entire geological record.

The chronostratigraphic (re)definition of the Ediacaran Period
(and System) replaced the provisional GSSA (650 Ma) that had
been used to mark the end of the Cryogenian Period. This revision
allowed the Marinoan ‘snowball’ glaciation (c. 645–635 Ma) to be
included within the geological period that owed its name to that and
Sturtian glaciations. The 850 Ma age marking the beginning of the
Cryogenian was subsequently found to be much older than
consensus estimates for the onset of widespread Sturtian ‘snowball’
glaciation at c. 717 Ma (Macdonald et al. 2010; Halverson et al.
2020), and so it was also removed, following a proposal from the
Cryogenian Subcommission (Shields-Zhou et al. 2016). A globally
correlative stratigraphic horizon at or beneath this level has not yet
been proposed by the Cryogenian Subcommission, although an
approximate placeholder age of c. 720 Ma for the boundary,
pending a ratified GSSP, has been written into the international
geological timescale (Fig. 1). Despite the lack of a GSSP, the age
revision of the Cryogenian Period by 130 million years has been
quickly accepted by the geological community worldwide,
presumably because the new ages match better the natural
phenomena for which it was named.

With respect to both the Cryogenian and Ediacaran GSSPs as
well as the earlier ratification of the Precambrian–Cambrian
boundary GSSP (Brasier et al. 1994), establishment of a rock-
based or chronostratigraphic concept permitted relatively easy
consensus around an approximate, stratigraphically calibrated age,
before more prolonged and detailed discussions could take place
towards eventual GSSP proposal and ratification. In the light of
rapidly expanding knowledge about Precambrian Earth history,
these three precedents serve to illustrate how the GSSA approach
could be replaced by a more natural, chronostratigraphic framework
(e.g. Bleeker 2004a, b; Van Kranendonk et al. 2012; Ernst et al.
2020). Identified shortcomings with the inflexible GSSA approach
include: (a) a lack of ties to the rock record and broader Earth and
planetary history; (b) the diachronous nature of the tectonic events
on which the current scheme (Fig. 1a) is based; and (c) the lack of
any major sedimentological, geochemical and biological criteria
that can be used to correlate subdivision boundaries in stratigraphic
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Fig. 1. (a) Current geological timescale (after Strachan et al. 2020). (b) Timescale proposal of Van Kranendonk et al. (2012) retaining original colour scheme. Golden spike symbols represent ratified (yellow) and potential
(pale) GSSP levels. Clock symbols represent ratified Proterozoic and recommended Archean GSSAs. (c) Proposed chronostratigraphic subdivision of the geological timescale (this paper). (a–c) depict subdivisions of
decreasing duration from left to right: eons, eras and periods. Note that era and period boundary ages are only approximate ages and would inevitably change in any internationally agreed chronostratigraphic scheme. Period
names in italics represent suggested changes to existing nomenclature. If the first period of the Paleoproterozoic Era were renamed (here as the Skourian Period; cf. Oxygenian Period of Van Kranendonk et al. 2012), we
recommend that the term ‘Siderian’ be retained for the final period of the Archean Eon.
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records. The nomenclature of Proterozoic periods is thus commonly
out of step with the concepts or phenomena for which they were
named, while the underlying basis for both era and period
nomenclature is neither universally accepted nor widely understood.

An alternative stratigraphic scheme for the Precambrian was
therefore proposed by Van Kranendonk et al. (2012) based on
potential GSSPs (Fig. 1b). Following the rationale of Cloud (1972),
the approach taken was to base a revised Precambrian timescale as
closely as possible around geobiological events, such as changes to
oceans, atmosphere, climate or the carbon cycle that would be near
instantaneous compared to changes in geotectonic processes. We
agree with the rationale pursued by Van Kranendonk et al. (2012),
which followed an earlier proposal of Bleeker (2004a), while noting
that some newly proposed subdivisions represent a radical departure
from standard practice. This is illustrated by the proposal of a new
and exceptionally long ‘Rodinian’ Period between 1800 and
850 Ma (Van Kranendonk et al. 2012), which replaced five of the
pre-existing Proterozoic periods. The principle of naming a
geological period after a hypothetical supercontinent is not widely
accepted.

In this contribution, we outline the geological basis behind
current chronometric divisions, explore how boundaries might
differ in any future chronostratigraphic scheme, identify where
major issues might arise during the transition to that scheme, and
propose where some immediate changes to the present scheme
could be easily updated/formalized, as a framework for future GSSP
development. We note that this is not only a matter of academic
interest for geologists. Establishing a robust, coherent and intuitive
stratigraphic nomenclature will be of great importance for
improving understanding of Earth’s history in schools, universities
and the wider community.

The formal process of timescale definition

The International Commission on Stratigraphy (ICS), a constituent
scientific body of the International Union of Geological Sciences
(IUGS), is the formal international body that defines precisely
global units (eonothems, erathems, systems, series, stages) of the
International Chronostratigraphic Chart, that, in turn, are the basis
for the units (eons, eras, periods, epochs and ages) of the
International Geological Timescale. A total of 17 bodies of
international experts (subcommissions) are tasked with achieving
consensus subdivision of specific portions of Earth history,
generally geological periods, that can then be ratified through
voting by first ICS and then IUGS officers, leading to formal
amendment of international geological timescale charts. Formal
chronostratigraphic subdivision is eventually achieved through
ratification of a specific, but globally correlative level in one
sedimentary succession in the world, referred to as a ‘golden
spike’ or more formally as a GSSP (Global Stratotype Section and
Point). As mentioned above, a purely chronometric subdivision of
Proterozoic time was ratified in 1991 (Plumb 1991), following an
arduous process begun in 1966 (Trendall 1966). Although
Archean GSSAs were agreed among members of a subsequent
Precambrian Subcommission, and appear on international geo-
logical time charts, they have not been formally defined or ratified
(Robb et al. 2004).

Following ratification of a chronostratigraphic definition and
GSSP for the terminal Proterozoic Ediacaran Period in 2004 (Knoll
et al. 2004, 2006a, b), the Neoproterozoic Subcommission (2004–
12) was set up to explore further subdivision below the newly
named system. This work resulted in the establishment of the
Cryogenian and Ediacaran subcommissions in 2012, and formal
ratification of a chronostratigraphic definition for the Cryogenian
base in 2016 (Shields-Zhou et al. 2016). Further subdivision of pre-
Cryogenian Neoproterozoic time was left jointly to the Precambrian

and Cryogenian subcommissions, whereby in 2020 the Precambrian
Subcommission formally changed its name to the Precryogenian
Subcommission. Considering the exponential increase in strati-
graphically relevant information pertaining to the pre-Cryogenian
rock record, as well as the wide range of disciplines involved in its
study worldwide, it no longer seems tenable to cover subdivision of
84% of Earth history within a single subcommission. The present
authorship represents a wide-ranging working group, which was set
up by the ICS in 2019 and tasked with preparing a formal
proposal on how chronostratigraphic subdivision of pre-Cryogenian
time might be expedited (Harper et al. 2019). A key part of this
process will be the formal removal of all current pre-Cryogenian
GSSAs by the IUGS, and their replacement by chronostratigraphi-
cally defined units, pending future discussion towards eventual
GSSP ratification.

Transitioning from a purely chronometric to a chronostratigraphic
scheme for pre-Cryogenian time will inevitably place more
emphasis on the rock record and on precise stratigraphic levels
within key successions and their global equivalents. In this regard,
we accept the arguments made by Zalasiewicz et al. (2004) that
units of time and strata are essentially interchangeable, once
boundary stratotypes and GSSPs are defined. Specifically, we
consider that it may not always be appropriate to use the terms
eonothem, erathem or system (for packages of strata deposited
during eons, eras and periods, respectively), considering the
enormously long time intervals and relatively incomplete rock
records of the pre-Cryogenian archive. As a consequence, we
mainly use time subdivisions below (eons, eras, periods), while
emphasizing that any future GSSPs would eventually need to be
defined using a level within a globally correlative boundary
stratotype section. Although the ages of period boundaries would
change in a more closely rock-based or chronostratigraphic scheme,
we support retention of all currently ratified period names. Existing
period names, borrowed from the Greek, were chosen to delimit
natural phenomena of global reach and we consider that any new
global nomenclature ought to follow this lead for consistency. For
this reason, we discourage the use of both supercontinent names and
regional phenomena in future international nomenclature.

Recent progress towards, and widespread acceptance of,
chronostratigraphic definitions for two Precambrian periods
suggest that the international community can act expeditiously to
address inadequacies of the chronometric scheme, while overcom-
ing the confusion generated by the informal erection of new periods
and unsupported concepts. Our intention here is to accelerate the
removal of GSSAs by helping to frame rock-based concepts and
establish approximate ages for eon-, era- and period-level
subdivision of pre-Cryogenian time, pending eventual ratification
of more detailed GSSP proposals.

Indicators of crustal, atmospheric and biological
evolution: implications for the geological timescale

Recent research has focused on understanding episodicity and
secular trends in the Precambrian geological record, recognizing
that the supercontinent cycle and mantle dynamics exert a
fundamental control on the evolution of not only the Earth’s
lithosphere, but also the atmosphere and biosphere, via a series of
complex, incompletely understood feedbacks (e.g. Worsley et al.
1985; Lindsay and Brasier 2002; Bekker et al. 2010, 2014; Cawood
et al. 2013; Young 2013; Grenholm and Schersten 2015; O’Neill
et al. 2015; Hawkesworth et al. 2016; Van Kranendonk and
Kirkland 2016; Gumsley et al. 2017; Nance and Murphy 2018;
Alcott et al. 2019; Shields et al. 2019). Here we review recent
developments in the understanding of a wide range of indicators of
crustal, atmospheric and biological evolution and the attendant
implications for division of the geological timescale.
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Tectonic processes and the supercontinent cycle

Various workers have proposed that the Precambrian can be
subdivided on the basis of the dominant tectonic process at any one
time. Hawkesworth et al. (2016) suggested five intervals: (1) initial
accretion, core/mantle differentiation, development of magma
ocean and an undifferentiated mafic crust; (2) plume-dominated
tectonics (pre-subduction) at c. 4.5–3.0 Ga; (3) stabilization of
cratons and onset of ‘hot subduction’ between c. 3.0 and 1.7 Ga;
(4) the ‘Middle Age’ at 1.7–0.75 Ga; and (5) Rodinia break-up and
development of ‘cold subduction’ from 0.75 Ga onwards. Similarly,
Van Kranendonk and Kirkland (2016) suggested five intervals, each
of which starts with a pulse of mafic–ultramafic magmatism,
includes the formation of a supercontinent, and ends with an often-
protracted period of relative quiescence as the previously formed
supercontinent drifts and breaks apart. Following c. 4.03–3.20 Ga –
the period from the start of the preserved rock record to the onset of
modern-style plate tectonics – these stages are: (1) 3.20–2.82 Ga –
the onset of modern-style plate tectonics and the oldest recognized
Wilson cycle; (2) 2.82–2.25 Ga – commencing with major crustal
growth, emergence of the continents and formation of Superior-type
BIFs, and closing with magmatic slowdown and stagnant-lid
behaviour; (3) 2.25–1.60 Ga – global mafic/ultramafic magmatism
followed by global terrane accretion and the formation of Nuna;
(4) 1.60–0.75 Ga – partial break-up of Nuna and subsequent
formation of Rodinia during the Grenvillian and other orogenies;
(5) 0.75 Ga to present – break-up of Rodinia, the Pangaean
supercontinent cycle and present transition to Amasia (Mitchell
et al. 2012; Safonova and Maruyama 2014; Merdith et al. 2019).

Worsley et al. (1985) and Nance et al. (1986) pointed out that
processes associated with the supercontinent cycle can be tracked by
several isotopic proxies. One proxy that has emerged since their
pioneering studies relates to the U–Pb ages of zircon grains over the
past 4.0 Ga. Compilations of U–Pb zircon ages obtained from
orogenic granitoids and detrital sedimentary rocks record similar
peaks, which correspond broadly to the times of global-scale
collisional orogenesis and magmatism associated with the amalga-
mations of Superia, Nuna (Columbia), Rodinia, Gondwana and
Pangaea supercontinents or supercratons, respectively (Mitchell
et al. 2021). A recent compilation (Condie and Puetz 2019)
interprets these peaks to be pulses of crustal growth and revises their
timing to 2715, 2495, 1875, 1045, 625, 265 and 90 Ma (Fig. 2).
A kernel density estimate analysis (Vermeesch et al. 2016) of almost
600 000 detrital zircon grains (Spencer 2020) confirms similar
peaks at 2.69, 2.50, 1.86, 1.02, 0.61, 0.25 and 0.1 Ga, and troughs at
2.27, 1.55–1.28, 0.88–0.73, 0.38 and 0.20 Ga. Variations in the
mean initial ɛHf and δ18O values of detrital zircon grains in recent
sediments show negative troughs and positive peaks, respectively,
that correspond to times of supercontinent assembly (Cawood and
Hawkesworth 2014). Both proxies are consistent with extensive
crustal re-working at the time of assembly with more juvenile
contributions representing times of supercontinent break-up and
dispersal. Most importantly, all current major subdivisions of
geological time, 2.5 Ga, 1.6 Ga, 1.0 Ga, 539 Ma, 252 Ma and
66 Ma, sit within the downslope of troughs that follow peaks in
zircon abundance. Note, however, that the time between the ‘Nuna’
peak at 1.87 Ga and the currently defined Paleoproterozoic–
Mesoproterozoic boundary, which precedes a long-lived abundance

Fig. 2. Raw time-series plots from age histograms at 10 Ma intervals, regional weighting of ages, and U–Pb records accepted with absolute discordance
<70 Ma and 2σ uncertainty <70 Ma (after Condie and Puetz (2019). (a) U–Pb igneous zircon ages (n = 180 412); (b) U–Pb detrital zircon ages (n =
501 938); (c) Large Igneous Province (LIP) ages represented by 535 crustal provinces (no regional weighting, smoothed with 3-weight Gaussian kernel).
U–Pb zircon age peaks match intervals of supercontinent assembly (pale green), whereas troughs correspond to intervals of supercontinent tenure (generally
white) and break-up (pale brown) (after Condie and Aster 2010; Condie 2014). Major current and proposed chronostratigraphic boundaries (Fig. 1c) at
c. 2450, 1800, 1000, 540, 252 and 66 Ma follow zircon abundance peaks.
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trough, is anomalously long, and reflects protracted assembly of the
Nuna supercontinent.

Strontium isotopes

The effect of crustal processes on seawater composition is recorded
by the 87Sr/86Sr ratios of marine authigenic minerals, mostly
carbonates. High 87Sr/86Sr values are attributed to times of
increased exhumation of old, radiogenic, crystalline rocks that
accompanied supercontinent amalgamation and disaggregation,
while low 87Sr/86Sr values signify reduced exhumation of old
crustal domains that occur during supercontinent break-up,
accompanied by enhanced ocean ridge hydrothermal activity, rift-
related magmatism and sea-level rise (Veizer 1989). Although
commonly used seawater 87Sr/86Sr curves (Veizer 1989; Shields
and Veizer 2002; Shields 2007) imply that continental weathering
had little influence before the end of the Archean, recent studies
(e.g. Satkoski et al. 2016) suggest that continental weathering of
relatively radiogenic crust may have been more important than
previously suspected during the Archean. Two prolonged peaks in
the Sr isotope composition of seawater correspond with the
Paleoproterozoic–Mesoproterozoic and Neoproterozoic–Phanerozoic
transitions (Shields 2007; Kuznetsov et al. 2010, 2018). These
intervals of enhanced continental weathering of more radiogenic
rocks coincide with the amalgamation of Nuna and Gondwana,
respectively (e.g. Cawood et al. 2013; Nance and Murphy 2018).
The widespread orogenies that accompanied amalgamation of
Rodinia do not feature prominently in the seawater Sr isotope curve,
likely because these orogens primarily involved juvenile arcs in

external orogens (e.g. Cawood et al. 2013; Spencer et al. 2013;
Kuznetsov et al. 2017) rather than old radiogenic crustal domains.
The dominant influence of lithology over weathering rates on the
87Sr/86Sr record is consistent with the observed negative covariation
between the 87Sr/86Sr and detrital zircon εHf(t) records
(Hawkesworth et al. 2016).

Strontium isotope stratigraphy is widely used as a chemostrati-
graphic tool (McArthur et al. 2020). Although the Precambrian
seawater curve is still poorly constrained (Kuznetsov et al. 2018),
the broad contours of Tonian–Cryogenian seawater 87Sr/86Sr trends
are now well established (Zhou et al. 2020), dominated by a long-
term rise in 87Sr/86Sr (from c. 0.7052 to 0.7073; Fig. 3). However,
strontium isotope chemostratigraphy in the Neoproterozoic (and
earlier) is severely limited by the small number of stratigraphic
intervals containing limestones that are sufficiently well preserved
(i.e. with high Sr/Ca and low Rb/Sr) to record reliably the 87Sr/86Sr
of contemporaneous seawater. Therefore, the record is constructed
typically from small numbers of data points from discrete intervals
in different successions. When combined with limited age control
on most samples, the result is an irregular record with a large
number of temporal gaps and limited verification of trends among
coeval successions (Fig. 3). Moreover, due to the near absence of
syn-glacial carbonate strata, no proxy data for seawater exist for
the Cryogenian glacial intervals (i.e. c. 717–660 and c. ≥640–
635.5 Ma). Nevertheless, due to the prominent rise in 87Sr/86Sr
through the Neoproterozoic (Fig. 3), the strontium isotopic record
can potentially distinguish between the early Tonian (i.e.
c. >820 Ma), late Tonian (c. 820–720 Ma) and Cryogenian
non-glacial intervals (c. 660–650 Ma).

Fig. 3. A reconstructed curve of the radiogenic strontium isotope composition of Neoproterozoic seawater (blue line) superimposed on carbonate carbon
isotope values (after Zhou et al. 2020). Seawater 87Sr/86Sr evolution reflects changes to strontium inputs to the oceans via weathering and hydrothermal
exchange that are in turn linked to episodes of continental assembly and break-up (top of figure) and weathering of LIPs (red bars). Rising seawater
87Sr/86Sr through the Neoproterozoic Era can be used for global stratigraphic correlation and future chronostratigraphic subdivision.
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Carbon isotopes

The carbon isotope record, mainly derived from marine
carbonates, has considerable potential for subdivision of the
Proterozoic geological record despite the absence of skeletal
calcite (Cramer and Jarvis 2020). A widespread positive anomaly
is referred to the Lomagundi-Jatuli carbon isotope excursion
(LJE), which started before c. 2.22 Ga and ended by 2.06 Ga
(Karhu and Holland 1996; Melezhik et al. 2007; Martin et al.
2013; Bekker 2014). Later negative carbon isotope anomalies in
carbonate and organic carbon records have been reported at about
2.0 Ga (Kump et al. 2011; Ouyang et al. 2020), 1.6 Ga (K. Zhang
et al. 2018; Kunzmann et al. 2019) and 0.93 Ga (Park et al. 2016),
however whether they have local or global extent is not yet
established. In contrast, globally correlative, high-amplitude,
carbon isotope excursions are commonplace throughout the
ensuing late Tonian, Cryogenian, Ediacaran and early Cambrian
times (Shields et al. 2019).

The early Neoproterozoic carbon isotope record is identified by
its sustained intervals of high δ13Ccarb≥ +5‰ (Fig. 4; Kaufman
et al. 1997; Halverson et al. 2005). The shift towards the high
δ13Ccarb values appears to be transitional, with moderate fluctua-
tions (≤4‰) in δ13Ccarb beginning in the late Mesoproterozoic
(Knoll et al. 1995; Bartley et al. 2001; Kah et al. 2012) and
continuing into the early Neoproterozoic (Kuznetsov et al. 2006).

However, due to a paucity of earliest Neoproterozoic marine
carbonate successions globally and poor age control on those
successions that do exist, the δ13Ccarb record for the interval
c. 1100–850 Ma is still poorly constrained (Kuznetsov et al. 2017).
Available data indicate that significant δ13Ccarb excursions could
have taken place during this interval, but values remained between
−5‰ and 5‰ (Fig. 4), while 87Sr/86Sr fluctuated between 0.7052
and 0.7063 (Fig. 3; Cox et al. 2016; Kuznetsov et al. 2017; Gibson
et al. 2019; Zhou et al. 2020).

The shift towards higher sustained δ13Ccarb (≥5‰) values is
recorded in the Little Dal Group and equivalent strata of
northwestern Canada (Fig. 4; Halverson 2006; Macdonald et al.
2012; Thomson et al. 2015). However, this trend to high δ13Ccarb

values is punctuated by a discrete interval of near zero to negative
δ13Ccarb values, referred to as the Bitter Springs Anomaly (BSA)
(Fig. 4; Halverson et al. 2005) after the Bitter Springs Formation in
the Amadeus Basin of central Australia where it was first reported
(Hill and Walter 2000). The BSA is well documented in central
Australia, Svalbard, northwestern Canada, Ethiopia (Swanson-
Hysell et al. 2012, 2015; and references therein) and possibly India
(George et al. 2018). It is constrained by U–Pb zircon CA-TIMS
ages to have initiated after 811.5 Ma (Macdonald et al. 2010) and
terminated prior to 788.7 Ma (MacLennan et al. 2018). Using a
thermal subsidence-type age model applied to the Svalbard
stratigraphic record, Halverson et al. (2018) estimated the BSA to

Fig. 4. The Neoproterozoic geological
timescale (after Halverson et al. 2020).
Negative carbon isotope anomalies/
excursions provide useful
chronostratigraphic references for
subdivisions of the Neoproterozoic
timescale: BSA, Bitter Springs
Anomaly; RA, Russøya anomaly; GA,
Garvellach anomaly; TA, Trezona
Anomaly; SE, Shuram Excursion;
BACE, Basal Cambrian Carbon Isotope
Excursion. Minimum biostratigraphic
ranges are also shown for
Trachyhystrichosphaera aimika,
Cerebrosphaera globosa (C. buickii),
and the Cycliocyrillium simplex
assemblage. Available absolute age
constraints spanning the Cryogenian
have multiplied in recent years and
provide globally consistent estimates for
the ages of the onset and end of the
Sturtian and Marinoan glaciations. Here
we show directly or closely stratigraphic
radiometric age constraints using three
approaches (volcanic zircon or
baddeleyite U–Pb ages determined by
isotope dilution thermal ionization mass
spectrometry [ID-TIMS]; in-situ U–Pb
ages determined by secondary ion
mass-spectrometry [SIMS], sensitive
high-resolution ion-microprobe
[SHRIMP] or laser-ablation indicatively
coupled plasma mass-spectrometry
[LA-ICPMS]); and sedimentary Re-Os
ages determined using ID-TIMS.
Dashed lines indicate synglacial ages.
Age compilation is modified from
Halverson et al. (2020); Rooney et al.
(2020) and Nelson et al. (2020).
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have begun c. 810 Ma and ended c. 802 Ma, for a duration of 8
million years.

Large Igneous Provinces (LIPs)

Plume-generated LIP magmatism could help to define natural
Precambrian (and Phanerozoic) boundaries through their likely
effects on the surface environments (Horton 2015; Ernst and Youbi
2017; Ernst et al. 2020). Examples include the Archean–Proterozoic
boundary LIPs (2460–2450 Ma Matachewan and coeval events
in Karelia-Kola and Pilbara cratons), Rhyacian–Orosirian LIPs
(2058 Ma Bushveld and Kevitsa events), Orosirian–Statherian
(1790 Ma LIPs on many cratons), Statherian–Calymmian
(1590 Ma LIPs), Calymmian–Ectasian (1385 Ma LIPs on many
cratons), Ectasian–Stenian (c. 1270 Mackenzie and 1205 Ma
Marnda Moorn LIPs), Stenian–Tonian (c. 1005 Ma Sette Daban
event or c. 925 Ma Dashigou event) and Tonian–Cryogenian
(720 Ma Franklin LIP and other related LIPs (Ernst and Youbi
2017). Despite the difficulty of matching the isotopic record with
LIP emplacement and weathering, the c. 720 Ma Tonian–
Cryogenian boundary, now defined by the start of the Sturtian
glaciation, has been linked to the Franklin LIP of northern Laurentia
(Fig. 3; Macdonald et al. 2010; Cox et al. 2016; Ernst and Youbi
2017; Macdonald and Wordsworth 2017) and other LIP fragments
(Ernst et al. 2020), potentially through enhanced weathering due to
increased runoff during continental break-up and the related tropical
emplacement of more easily weathered Ca- and Mg-rich flood
basalts (Donnadieu et al. 2004). This suggestion builds on the
recognition that LIPs are coeval with many Phanerozoic chrono-
stratigraphic boundaries and that, although regional in scale, LIPs
can have global environmental effects and leave a recognizable
signature in global sedimentary records. Thus, while LIPs are not
‘golden spikes’ in themselves, they can represent proxies for golden
spikes in the sedimentary record (Ernst et al. 2020), which bodes
well for Proterozoic stratigraphic correlation along Phanerozoic lines.

Palaeontological constraints

Early attempts at biostratigraphy used distinctive forms and textures
of stromatolites, which were once thought to be age-diagnostic
microbialites (Riding 2011). However, evident trends are now more
frequently interpreted to reflect changing environments and a
general tendency towards greater biological control over calcium
carbonate precipitation through time (Grotzinger 1990; Arp et al.
2001; Riding 2008). Few, if any, sharp temporal divisions can be
identified globally in stromatolite type or microbially induced
sedimentary structures (MISS). Therefore, supposedly age-diag-
nostic sedimentary textures, like stromatolite fabrics, have lost
favour among Precambrian biostratigraphers as body fossil records
have gained in popularity and abundance. Although simple
leiospheres and other microscopic organic remains are known
from Archean sedimentary rocks (Javaux et al. 2010), the oldest
biostratigraphically significant fossils are macroscopic organic-
walled forms known from Paleoproterozoic rocks (Han and
Runnegar 1992; Javaux and Lepot 2018), now dated to
c. 1870 Ma (Fralick et al. 2002; Schneider et al. 2002; Pietrzak-
Renaud and Davis 2014). These simple coils and spirals, similar in
appearance to Grypania spiralis (e.g. Walter et al. 1976; Sharma
and Shukla 2009), are not diagnostically eukaryotic in affinity.
Decimetre-sized seaweed-like compressions (Zhu et al. 2016) and
ornamented acritarchs occur in rocks as old as c. 1.6 Ga (e.g. Miao
et al. 2019) and are widely considered to be the first convincing
fossilized eukaryotes (Javaux and Lepot 2018).

Molecular clock analyses place the origin of crown-group
eukaryotes sometime in the Mesoproterozoic or late
Paleoproterozoic (e.g. Berney and Pawlowski 2006; Parfrey et al.

2011; Eme et al. 2014; Betts et al. 2018). Some phylogenetic data
suggest that the first photosynthetic eukaryotes may have emerged
in freshwater habitats (Blank 2013; Sánchez-Baracaldo et al. 2017),
which may lower their preservation potential in the rock record. The
Stenian–Tonian transition interval is increasingly being viewed as a
time of crown-group eukaryote diversification (e.g. Knoll et al.
2006a, b; Butterfield 2015; Cohen and Macdonald 2015; Xiao and
Tang 2018). Latest Mesoproterozoic and earliest Neoproterozoic
rocks are the first to preserve fossils with clear similarities to
particular modern eukaryotic clades, including red and green algae,
fungi, amoebozoans and stramenopiles (Butterfield et al. 1994;
Porter et al. 2003; Butterfield 2004; Nagovitsin 2009; Loron and
Moczydłowska 2017; Loron et al. 2019a, b; Tang et al. 2020),
though the taxonomic affinities of most early Neoproterozoic fossils
remain enigmatic. A number of eukaryotic innovations also appear
in the sedimentary record during this time, including scales, tests,
biomineralization and eukaryovory (Porter and Knoll 2000; Cohen
and Knoll 2012; Porter 2016; Cohen et al. 2017a, b). In addition,
eukaryote-derived sterane biomarkers appear for the first time
around 810 Ma (Brocks 2018; Zumberge et al. 2020).

Given these evolutionary innovations, it is not surprising that late
Mesoproterozoic/early Neoproterozoic fossil assemblages are
largely distinct from those of early Mesoproterozoic age (Sergeev
et al. 2017), and that several organic-walled microfossils have been
proposed as index fossils for this interval. These include the
acritarch Trachyhystrichosphaera aimika (spheroidal vesicles with
sparse, irregularly distributed, hollow processes), which is found in
more than 20 sections worldwide in Stenian and Tonian strata, aged
c. 1150–720 Ma (Butterfield et al. 1994; Tang et al. 2013; Riedman
and Sadler 2018; Pang et al. 2020) and Cerebrosphaera globosa
(=C. buickii), robust spheroidal vesicles with distinctive wrinkles,
common in late Tonian units c. 800–740 Ma (Hill and Walter 2000;
Grey et al. 2011; Riedman and Sadler 2018; Cornet et al. 2019)
(Fig. 4).

Several other distinctive fossils from c. 780–740 Ma sedimentary
rocks have potential for subdividing the Tonian, but there are too
few occurrences known at present to have confidence in their
ranges (Riedman and Sadler 2018). Many long-ranging early
Neoproterozoic and late Mesoproterozoic taxa may be biostrati-
graphically useful with respect to their last appearances, and in this
regard it is worth noting that Riedman and Sadler (2018) found that
the disappearance of many ornamented taxa in the late Tonian
occurred just before or around the time when distinctive vase-
shaped microfossils appear. The vase-shaped microfossils, con-
strained to the time from c. 790–730 Ma (Riedman and Sadler 2018;
Riedman et al. 2018), provide the most promising biostratigraphic
marker for subdividing Tonian time and might be useful in defining
the Cryogenian GSSP (Strauss et al. 2014), although the extent to
which the stratigraphic range is controlled by taphonomic factors is
not yet clear.

Reassessment of the pre-Cryogenian timescale and
recommendations for future development

The embryonic nature of Proterozoic bio- and chemostratigraphy
outlined above illustrates that ratification of pre-Cryogenian GSSPs
lies far in the future and beyond the scope of the current review,
which is focussed on a template for agreed rock-based criteria to
permit the removal of current GSSAs and their replacement with
interim chronostratigraphic units, bounded by approximate ages.
Development of a natural Precambrian timescale, especially for
periods (systems), is still a ‘work in progress’, but we consider
nevertheless that improved rock-based subdivision is already
possible, desirable and overdue. In working towards this aim, it is
important not to overlook the merits of the established chronometric
scheme, which has served geologists well over the last 30 years.

G. A. Shields et al.

Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/doi/10.1144/jgs2020-222/5357385/jgs2020-222.pdf
by guest
on 10 August 2021



Indeed, it would appear that most boundaries would change by only
small degrees. In order for future units of time (and strata) to be both
widely acceptable and scientifically meaningful, they need to be
fully defined conceptually, as has been done for the Cryogenian,
Ediacaran and Cambrian periods, before they can be pinned down
numerically.

There is general agreement that the boundary definitions for the
Hadean, Archean, Proterozoic and Phanerozoic eons help to broadly
delimit four distinct parts of Earth history that are characterized by
particular tectonic and biogeochemical regimes. Similarly, the eras
of the Proterozoic Eon are recognized to be distinct intervals of
tectonic, environmental and biological significance. The goal of any
revision of the Precambrian geological timescale should therefore
be to minimize disruption to both the current international timescale
and existing regional and national stratigraphic norms. In this vein, it
is pertinent to recall the advice given by James (1978, p. 200),
following Trendall (1966), that:

(1) the classification should be the simplest possible that will
meet immediate needs [as] every additional complexity provides
a basis for disagreement or rejection; (2) The subdivision of time
embodied in the classification should reflect major events in
Earth’s history, yet not be in such a form as to inhibit critical
review of that history; (3) The classification must be acceptable
to most students of the Precambrian; (4) The nomenclature
should not be identified closely with one particular region; and
(5) The subdivision scheme should be accompanied by
operational criteria, so that assignment to the classification will
be guided by objective rather than theoretical considerations.

It is in this spirit that we explore below how an improved rock-
based geological timescale might depart from the existing
chronometric timescale.

Archean Eon (c. 4.0 to 2.45 Ga)

The Archean Eon witnessed early crustal formation and thickening,
leading to the formation and emergence of the first cratons and
platform sedimentation. It is characterized by granite-greenstone
terranes and the extrusion of ultramafic lavas (komatiites), which are
extremely uncommon in post-Archean rocks (Arndt 2008; Sossi
et al. 2016). Apart from the recognized granite-greenstone terranes
and younger platform covers, the Archean is characterized by high-
grade, polymetamorphic granite-gneiss complexes.

Subdivision of the chronometric Archean Eon is not formalized
(Plumb 1991). Nevertheless, the Subcommission on Precambrian
Stratigraphy (SPS) voted in 1991 and 1995 to pursue formal
subdivision into four eras: Eoarchean (>3.6 Ga), Paleoarchean (3.6
to 3.2 Ga), Mesoarchean (3.2 to 2.8 Ga), and Neoarchean (2.8 to
2.5 Ga) (Fig. 1a); no reasons for the choice of these boundaries were
given. Since these subdivisions have not been formally ratified
(Robb et al. 2004), they are considered to be recommendations
only (Bleeker 2004a). An alternative tripartite chronostratigraphic
scheme was proposed by Van Kranendonk et al. (2012): the
Paleoarchean (4.03 to 3.49 Ga), Mesoarchean (3.49 to 2.78 Ga) and
Neoarchean (2.78 to 2.42 Ga); each composed of a number of
periods (Fig. 1b). The base of the Paleoarchean in the 2012 proposal
was defined by the age of the oldest extant rocks, the Acasta Gneiss
in Canada, while the base of the overlying Mesoarchean was
defined at the oldest microbially-influenced textures in stromatolites
of the North Pole Dome in western Australia (Van Kranendonk et al.
2003; Allwood et al. 2007), thus representing the oldest potential
‘golden spike’ (Fig. 1b). The Paleoarchean contained an ‘Acastan
Period’, the lower limit of which was defined by the oldest
preserved rocks (Acasta Gneiss, Canada; Stern and Bleeker 1998;
Bowring and Williams 1999) and an ‘Isuan Period’, starting at

3.81 Ga to represent when Earth’s oldest supracrustal suite in the
Isua Supracrustal Belt in Greenland was deposited.

The problem with using the oldest occurrence of a particular
sedimentary rock type to subdivide geological time is that it may
reflect chance preservation rather than any fundamental change in
geological processes, and older examples may be discovered. This is
exemplified by the choice of the Isua Supracrustal Belt, which
contains older metasedimentary rocks (Nutman et al. 1996) that
might blur the distinction between the Acastan and Isuan ‘periods.’
It also runs counter to the concept of the international geological
timescale as a correlative ‘stratigraphic’ framework, leading us to
support leaving the base of the Archean at c. 4.0 Ga, pending formal
definition of the Hadean–Archean boundary. A similar problem
arises with the placement of the base of the Mesoarchean at c.
3.49 Ga for the North Pole Dome stromatolites as the occurrence of
stromatolites is controlled by the particular environment, rather than
representing a definable moment in evolution. A less ambiguous
boundary for the base of the Mesoarchean might be the near-coeval
base of the oldest, well-preserved Barberton and Pilbara supracrus-
tal successions, although the global relevance of such a definition
still needs strengthening.

Van Kranendonk et al. (2012) also proposed changing the end of
the Archean to c. 2.42 Ga, based on the first widespread appearance
of ‘Huronian’ glacial deposits in the rock record (Gumsley et al.
2017; Young 2019; Bekker et al. 2020, 2021) and the approxi-
mately contemporaneous change to an oxygenated atmosphere
(Great Oxidation Episode or GOE; see Poulton et al. 2021 for the
nuanced texture of this event), which followed the end of the
world’s greatest development of banded iron formation (BIF). This
approach seems reasonable based on the rock record, which
constrains globally significant climatic and atmospheric changes to
this time (Gumsley et al. 2017). The GOE has been defined in
various ways, but in recent years has been presumed to begin when
atmospheric oxygen had accumulated to sufficient levels to prevent
the formation and/or preservation of mass-independent S-isotope
fractionation (MIF-S) in the lower atmosphere and sedimentary
rocks, respectively (Farquhar et al. 2000; Bekker et al. 2004).
However, its onset and duration are still inadequately constrained
(e.g. Luo et al. 2016; Poulton et al. 2021) and it may not have been
synchronous everywhere (Philippot et al. 2018; see for the rebuttal
to this view Bekker et al. 2020, 2021). Our alternative view is that
the end of the major phase of late Archean BIF deposition is of
greater significance in the context of the present discussion. The
Archean–Proterozoic boundary might therefore be best constrained/
defined by accurately dated tuffs (c. 2.45 Ga) at the top of the
Hamersley Group in Western Australia (Trendall et al. 2004); BIFs
in the Transvaal Basin of South Africa are approximately coeval
(Bekker et al. 2010; Lantink et al. 2019). This would imply
redefining the Siderian Period, named for the global peak in iron
formations in the sedimentary records, and moving it into the
Neoarchean (cf. Van Kranendonk et al. 2012), thereby addressing
also the criticism that a numerical boundary at 2.5 Ga splits this
important acme in iron formation deposition.

Complementary records of Archean change are provided by
geochemical and isotopic studies of magmatic rocks that appear to
indicate major secular changes in tectonic processes (Kamber and
Tomlinson 2019). On this basis, Griffin et al. (2014) concurred that
the Archean Eon is best divided into three eras: ‘Paleoarchean’
(4.0–3.6 Ga), ‘Mesoarchean’ (3.6–3.0 Ga) and ‘Neoarchean’ (3.0–
2.4 Ga). In this interpretation, during the ‘Paleoarchean’ Era,
Earth’s dominantly mafic crust acted as a stagnant-to-sluggish lid.
Dating of zircon grains from near the close of the era reveal subtle
geochemical signs of a change in tectonic regime interpreted as a
transition from granitoid production from oceanic plateaus to some
form of felsic magmatism in arc-like (subduction-related) settings
(Ranjan et al. 2020). It has been suggested that the subsequent
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‘Mesoarchean’ was dominated by major episodes of mantle
overturn and plume activity (Van Kranendonk 2011) that led to
development of the subcontinental lithospheric mantle and a steady
increase between c. 3.3 and 3.0 Ga in the K2O/Na2O ratios of TTG
(tonalite–trondhjemite–granodiorite) rock suites (Johnson et al.
2019). However, early evidence of subduction is also inferred at this
time, along with diapiric doming, in adjoining terranes of the
Pilbara Craton (Hickman 2004; Van Kranendonk et al. 2004).
Pre-3.0 Ga fluvial sediments imply at least some early regional
emergence on the Pilbara, Kaapvaal and Singhbhum cratons
(Heubeck and Lowe 1994).

The Neoarchean witnessed the continued transition to some form
of plate tectonics, and the development of significant volumes of
more felsic continental crust, characterized by the first K-rich
granitoids (Bédard 2018; Cawood et al. 2018). However, gravity-
driven doming and plume activity was still an active process in the
formation of granite-greenstone terranes c. 2.72–2.60 Ga (Jones
et al. 2020). Progressive cratonization is reflected in the
development of the first extensive platform covers after about
3.0 Ga, e.g. the Witwatersrand and Ventersdorp supergroups, and
also Pongola Group on the Kaapvaal Craton (Frimmel 2019), the
Mount Bruce Supergroup on the Pilbara Craton, and in Canada the
Central Slave Cover Group (Bleeker et al. 1999; Sircombe et al.
2001) and the oldest thick carbonate platform: the c. 2.79 Ga Steep
Rock Lake Group (Riding et al. 2014; Fralick and Riding 2015).
The first development of extensive sedimentary platforms overlying
stable cratons provides a logical interim boundary within the
Archean, and so the base of the Neoarchean could be placed at c.
3.1–2.9 Ga, which would bracket earliest evidence for widespread
but transient oxygenation of the surface marine environment (Anbar
et al. 2007; Riding et al. 2014; Ossa Ossa et al. 2019; Ostrander
et al. 2019). Increasing lithospheric stability is also supported by the
oldest extensive mafic dyke swarms between c. 2.8 and 2.7 Ga
(Evans et al. 2017; Cawood et al. 2018; Gumsley et al. 2020).

It seems significant that the youngest widespread granite-
greenstone terranes (e.g. Yilgarn, southern Superior craton and
Bulawayan) are coeval with the basalt-rich Fortescue and
Ventersdorp platform covers. We tentatively suggest that this
could form a basis for future subdivision of the Neoarchean,
potentially into three periods based on the rock records of a newly
defined Siderian Period (see above), the coeval Fortescue–
Ventersdorp groups and the Witwatersrand-Pongola groups,
respectively. Cratonization culminated in a globally stable ‘super-
craton’ regime around the traditional Archean–Proterozoic bound-
ary (Bleeker 2003; Cawood et al. 2018) with the oldest supercraton,
Superia, nearly assembled at the proposed Archean–Proterozoic
boundary. Depending on the outcome of further research on the
global distribution and timing of cratonization events, the term
Kratian, after the Greek root ‘kratos’ or strength, could be
considered a possible name for one of these older periods.

In summary: (1) we agree with previous workers (e.g. Van
Kranendonk et al. 2012; Griffin et al. 2014) that the current
chronometric subdivision of the Archean should be modified from
four to three rock-based eras by discontinuing use of the Eoarchean
as an era-level subdivision, (2) we suggest that the three remaining
eras could be of approximately equal duration, comprising the
Paleoarchean (c. 4.0–3.5 Ga), the Mesoarchean (c. 3.5–3.0 Ga) and
the Neoarchean (c. 3.0–2.45 Ga) and (3) we concur that the Siderian
should be moved to the terminal Neoarchean (Van Kranendonk
et al. 2012) and propose that it ends at c. 2.45 Ga (Fig. 1c).

Proterozoic Eon (c. 2.45 to 0.54 Ga)

The base of the Proterozoic Eon broadly corresponds to the change
to an Earth that had developed some aspects of modern plate
tectonics and was increasingly characterized by stabilized, emergent

continental (super)cratons. The chronometric base of the
Proterozoic Eon precedes quite closely widespread evidence for
glaciation, the GOE and a change from wholly anoxic oceans to a
more complex ocean redox structure characterized by variously
oxic, anoxic-ferruginous and anoxic-euxinic portions (Poulton et al.
2021). Consequently, the boundary must represent a planetary step
change that significantly transformed Earth’s biogeochemical
cycles, presumably accompanied by the development of novel
microbial pathways and metabolisms, leading eventually to larger
and more complex (eukaryotic) forms. The Proterozoic marine
sedimentary rock record is also marked by a greater diversity of
authigenic minerals (Hazen 2010; Hazen et al. 2011) and carbonate
textures (James et al. 1998; Shields 2002; Hodgskiss et al. 2018).

Paleoproterozoic Era (c. 2.45 to 1.8 Ga)

The Paleoproterozoic Era witnessed the transition from an Archean
tectonic regime of scattered, small cratons to a more conventional
form of plate tectonics (Bleeker 2003; Liu et al. 2021). Tectonic
collisions subsequently resulted in formation of Earth’s earliest
widely accepted supercontinent, Nuna or Columbia (Hoffman 1989,
1997; Rogers and Santosh 2002; Zhao et al. 2002; Bleeker 2003;
Payne et al. 2009; Evans and Mitchell 2011; Zhang et al. 2012;
Mitchell 2014; Yang et al. 2019; Kirscher et al. 2021), as evidenced
by c. 2.0–1.6 Ga orogenic belts on all present-day continents and
widespread seismically imaged dipping structures indicating a
global subduction network by this time (Wan et al. 2020).
Reassigning the Siderian to the Neoarchean requires a new period
to be defined and named for the earliest Paleoproterozoic. Van
Kranendonk et al. (2012) refer to this period as the Oxygenian
Period, although we consider Skourian, after the Greek word for
rust, to be a suitable, rock-based alternative (Fig. 1c).

The Paleoproterozoic sedimentary record provides clues to
significant events, some of which are likely to have been global
in scale and can probably be related to the large-scale tectonic
processes outlined above. Abundances of molybdenum, uranium,
selenium, sulfate and iodate increased in marine sedimentary rocks
in multiple Paleoproterozoic basins, indicating growth in ocean
reservoirs of those redox-sensitive species (Scott et al. 2008; Partin
et al. 2013; Hardisty et al. 2017; Kipp et al. 2017; Blättler et al.
2018). This trend has been interpreted as evidence of oxidative
weathering caused by atmospheric oxygenation during and after the
GOE together with expansion of oxic conditions in the marine
realm, which stabilized these elements as oxyanions in solution,
while titrating redox-sensitive iron, manganese and cerium out of
solution by oxidation (Tsikos et al. 2010; Warke et al. 2020a).
Accumulation of iron formations (IFs) peaked around the Archean–
Proterozoic boundary, but episodically continued until c. 1.8 Ga
(Klein 2005), after which major BIF deposits are scarce, but not
entirely absent (Bekker et al. 2010, 2014; Canfield et al. 2018).
Initially, the decline in the abundance of BIF was attributed to the
widespread development of euxinic waters on productive contin-
ental shelves at c. 1.84 Ga, which titrated ferrous iron in the form of
pyrite (Canfield 1998; Poulton et al. 2010; Poulton and Canfield
2011). However, ferruginous deeper oceans persisted throughout
most of the mid-Proterozoic (Poulton et al. 2010), and the paucity of
BIF through this period is likely also related to diminished
hydrothermal sources of iron after c. 1.8 Ga (Cawood and
Hawkesworth 2014). The disappearance of redox-sensitive detrital
minerals, such as pyrite, uraninite and siderite, has long been
attributed to the GOE (Holland 1984, 2006; Frimmel 2005; Van
Kranendonk et al. 2012), the onset of which is generally considered
to have been approximately contemporaneous with what some have
interpreted as the Earth’s first global-scale glaciations (Bekker and
Kaufman 2007; Brasier et al. 2013; Tang and Chen 2013; Bekker
2014; Young 2019; Bekker et al. 2020). The strongest evidence for
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a Paleoproterozoic Snowball Earth comes from South Africa, with
palaeomagnetic evidence of low-latitude glaciation in the
Makganyene Formation at c. 2.43 Ga (Evans et al. 1997;
Gumsley et al. 2017). This glaciation is considered to have occurred
shortly after the initial disappearance of MIF-S isotope fraction-
ation, as recorded in pre-glacial sediments in Karelia (Warke et al.
2020b; see also Bekker et al. 2020).

Paleoproterozoic glacial episodes were followed by the Earth’s
largest known positive δ13C excursion(s), the LJE, between c.
2.31–2.22 and c. 2.11–2.06 Ga (Martin et al. 2013, 2015), which
accompanied the first major evaporitic sulfate deposits (Melezhik
et al. 2005; Schroder et al. 2008; Brasier et al. 2011; Blättler et al.
2018) and permanent atmospheric oxygenation (Poulton et al.
2021). The LJE was in turn followed by the c. 2.06 Ga Shunga
Event that is characterized by a major accumulation of Corg- and
pyrite-rich sedimentary rocks and the generation of giant petroleum
deposits (Melezhik et al. 2004) as well as the first sedimentary
phosphorite deposits (Kipp et al. 2020). The Shunga Event
interestingly coincides with the emplacement of the Bushveld
(Kaapvaal Craton) and the Kevitsa (Karelia Craton) LIPs (e.g. Ernst
et al. 2020), which inspired the name of the chronometric Rhyacian
Period (2.3–2.05 Ga) after the Greek word rhyax (meaning streams
of lava; Plumb 1991). One potentially distinctive feature of the
middle Paleoproterozoic is a disputed tectono-magmatic lull
between c. 2.3 and 2.2 Ga (Spencer et al. 2018), during which
evidence for juvenile magmatism and orogenesis is scarce, but not
entirely absent (Partin et al. 2014; Moreira et al. 2018). Juvenile
magmatism reinitiated after c. 2.2 Ga (Condie et al. 2009; Spencer
et al. 2018) as well as episodic rifting, which eventually succeeded
in the break-up of the Superia supercraton. The chronometric
Rhyacian–Orosirian boundary (2050 Ma) possibly correlates also
with an abrupt increase in magnitude of a mass-independent O-
isotope anomaly of photochemical origin that is carried in
sedimentary sulfate minerals (gypsum/anhydrite and barite). The
observed step-like secular shift to a large (negative) Δ17O anomaly
is tentatively ascribed to a collapse without parallel in global gross
primary productivity (Crockford et al. 2019; Hodgskiss et al. 2019)
and the ushering in of a period of more muted isotopic variability
and low oxygen levels.

The first macroscopic organic-walled fossils, coiled forms similar
to Grypania spiralis, appear within the Orosirian strata by
c. 1.89 Ga (Han and Runnegar 1992; Javaux and Lepot 2018) to
be joined by large, more convincingly eukaryote-grade fossils by
the end of the era (Zhu et al. 2016; Miao et al. 2019). The
Paleoproterozoic fossil record contains the c. 1.89 Ga Gunflint
fossil microbes, which are taken to be the oldest unambiguous
evidence of either iron-oxidizing bacteria or oxygenic cyanobacteria
(Planavsky et al. 2009; Crosby et al. 2014; Lepot et al. 2017),
although older cyanobacterial fossils are known also from the
c. 2.0 Ga Belcher Group in eastern Hudson Bay (Hofmann 1975;
Hodgskiss et al. 2019).

A period of worldwide orogeny and major crustal growth
occurred during the Orosirian Period from c. 2.25 to 1.78 Ga and is
reflected in an exceptional zircon abundance peak (Fig. 2). This
peak reaches its acme between 1.90 and 1.85 Ga (Condie 1998,
2004; Puetz and Condie 2019; Condie and Puetz 2019) and is
interpreted to correspond to the formation of the supercontinent
Nuna. Nuna assembly started with c. 2.25–2.0 Ga collisional
orogenies in Amazonia, São Francisco, West Africa, Sarmatia and
Volgo-Uralia (Shumlyanskyy et al. 2021). The Laurentia portion of
Nuna largely assembled between c. 2.0 and 1.8 Ga, with the Rae
Craton serving as the upper plate (Hoffman 2014), starting with
the c. 1970 Ma Thelon orogeny (Bowring and Grotzinger 1992).
Accretionary orogenies continued through the Statherian, with the
c. 1.6–1.4 Ga final suturing events extending into the Calymmian in
Australia on the periphery of Nuna (Pourteau et al. 2018; Kirscher

et al. 2019, 2021; Yang et al. 2019; Gibson et al. 2020). The
protracted record of collisional orogenesis between c. 2.0 and
c. 1.4 Ga has historically led to difficulties in defining the boundary
between the Paleoproterozoic and the Mesoproterozoic. Thus, the
Precambrian Subcommission expressed ‘individual preferences…
from 1400 to 1800 Ma’ and eventually settled on 1600 Ma (Fig. 1a;
Plumb and James 1986).

The Statherian Period (c. 1.8–1.6 Ga) is currently defined as
marking the end of the Paleoproterozoic Era (Fig. 1a). It is
characterized by the widespread development of shallow-marine,
intracratonic, unmetamorphosed, sedimentary basins with expan-
sive carbonate deposits covering increasingly stable cratons
following Nuna amalgamation. However, the defining character-
istics of the Statherian Period are remarkably similar to those of the
ensuing Calymmian Period (see below), which represents the oldest
segment of the Mesoproterozoic Era as currently defined (Fig. 1a).
A number of Statherian successions, such as the c. 1.7–1.4 Ga
Changcheng-Jixian groups of the Sino-Korean or North China
Craton, are traditionally considered and mapped as
Mesoproterozoic successions (Zhao and Cawood 2012), despite
their deposition prior to 1.6 Ga. Other classic, mid-Proterozoic, but
pre-1.6 Ga units originally envisaged to fall within the chronometric
Proterozoic II (Plumb and James 1986) include the Tawallah and
McArthur groups of northern Australia (Rawlings 1999); the lower
Riphean Burzyan Group of the Urals, Russia (Puchkov et al. 2014;
Semikhatov et al. 2015); the Espinhaço Supergroup and Araí Group
of Brazil and coeval Chela Group of central Africa Chemale et al.
2012; Guadagnin et al. 2015); the Vindhyan and Cuddupah
supergroups of India (Ray 2006; Collins et al. 2015; Chakraborty
et al. 2020) and the Uncompahgre Group of SW Colorado, USA,
which was deposited during the late stages of the 1.71–1.68 Ga
Yavapai Orogeny (Whitmeyer and Karlstrom 2007).

Given a better understanding of the nature and timing of Nuna
assembly and continuing difficulties in differentiating between the
defining characteristics of the Statherian and Calymmian periods,
we recommend that the end of the Paleoproterozoic be provisionally
redefined at c. 1.8 Ga, with the Statherian placed in the
Mesoproterozoic (Puchkov et al. 2014), pending future definition
of GSSPs. This age follows latest Orosirian orogeny and
magmatism, and precedes the onset of widespread platform cover
after about 1.8 Ga. Redefinition of the end of the Paleoproterozoic
to c. 1.8 Ga also has the merit of linking it more closely to the
detrital zircon record (Fig. 2).

Mesoproterozoic Era (c. 1.8 to 1.0 Ga)

The Mesoproterozoic Era represents a period of seeming overall
stability in Earth history, during which were long thought to be few
changes in the sedimentary record, biogeochemical cycling, climate
and biological evolution (Buick et al. 1995; Brasier and Lindsay
1998), making it particularly difficult to subdivide. As summarized
by Cawood and Hawkesworth (2014), the period from 1.7 to
0.75 Ga is characterized by a paucity of passive margins (Bradley
2008), anoxic-ferruginous and regionally euxinic marine environ-
ments (Poulton et al. 2004, 2010), an absence of significant Sr
isotope variations in the seawater record (Shields 2007; Kuznetsov
et al. 2017), few highly evolved εHf(t) values in zircon grains,
limited orogenic gold and volcanogenic massive sulphide ore (but
major sedimentary exhalative Pb-Zn) deposits, an absence of glacial
deposits and a paucity of massive iron formations. However,
significant developments include formation of the oldest econom-
ical phosphorite deposits at c. 1.6 Ga in India and Australia
(McKenzie et al. 2013; Crosby et al. 2014; Chakraborty et al. 2020;
Fareeduddin and Banerjee 2020) and the emplacement of c. 1.5–
1.2 Ga massif anorthosites and related intrusive rocks (Whitmeyer
and Karlstrom 2007; McLelland et al. 2010; Ashwal and Bybee
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2017). The development of massif anorthosite at this point was
attributed by Cawood and Hawkesworth (2014) to secular cooling
of the mantle to a temperature at which continental lithosphere was
strong enough to be thickened, but still warm enough to result in
melting of the lower thickened crust.

As currently defined, the early Mesoproterozoic Calymmian
Period (c. 1.6–1.4 Ga) and the middle Mesoproterozoic Ectasian
Period (c. 1.4–1.2 Ga) are both characterized by the progressive
development of new platform cover successions (Fig. 1a). In
northern Australia, the base of the Calymmian System is represented
by an unconformity that separates the overlying Nathan Group from
the underlying (Statherian) McArthur Group (Rawlings 1999).
Thick terrigenous basins that developed during the Calymmian
Period following the final amalgamation of Nuna include the Roper
Group, North Australia (Rawlings 1999), Belt-Purcell supergroups,
North America (Ross and Villeneuve 2003), Paraguaçu–Chapada
Diamantina groups, Brazil (Guadagnin et al. 2015) and the
Changcheng and Jixian groups, China (Qu et al. 2014).
Microbially influenced carbonates of the Jixian Group could
provide a suitable Calymmian ‘stratotype’. Deposition of the
upper Roper Group in Australia, Xiamaling Formation in North
China (Meng et al. 2011), Yurmatau Group in Urals, Russia
(Semikhatov et al 2015) and the Kibara Supergroup and equivalents
in central Africa (Fernandez-Alonso et al. 2012) during the Ectasian
accompanied the break-up of the core of supercontinent Nuna
(Evans and Mitchell 2011; Pisarevsky et al. 2014).

Although there is currently little to distinguish the Calymmian
and Ectasian periods, they are retained as separate entities in
Figure 1c. Potential rock-based markers for the Calymmian–
Ectasian boundary are elusive. Regional-scale, magmatic events
such as the c. 1.32 and 1.23 Ga dyke/sill swarms of North China
(Peng 2015; Zhai et al. 2015; Wang et al. 2016; Zhang et al. 2017),
the 1.32 Ga swarm of northern Australia (Yang et al. 2020;
Bodorkos et al. 2021), the c. 1.27 Ga Mackenzie dyke swarm in
Canada and the c. 1.12–1.08 Ga Ghanzi-Chobe-Umkondo and
Midcontinent Rift systems have not been linked to any global-scale
isotopic excursions that could be used for correlation. However, the
coincidence of widespread c. 1385 Ma LIPs and black shales has
been proposed as a potential rock-based marker for the Calymmian–
Ectasian boundary (S.H. Zhang et al. 2018. The C-isotope record is
relatively monotonous although some structure is emerging
(e.g. K. Zhang et al. 2018; Shang et al. 2019).

Increasingly convincing discoveries of fossil eukaryotes, in the
form of large, multicellular, organic-walled fossil fronds and
ornamented acritarchs (Zhu et al. 2016; Miao et al. 2019) first occur
in rocks that straddle the current chronometric Paleoproterozoic–
Mesoproterozoic boundary, indicating high potential for further
Mesoproterozoic fossil discoveries. Current fossil and molecular
evidence agree that crown group Archaeplastida (a group that
includes the red, green and glaucophyte algae) emerged during the
Mesoproterozoic Era (Butterfield 2000; Eme et al. 2014), or
possibly even earlier in non-marine environments (Sánchez-
Baracaldo et al. 2017). Multicellular eukaryotic algae appear
before 1.0 Ga in the form of isolated examples of red algae
(Bangiomorpha pubescens at c. 1.05 Ga) and green algae
(Proterocladus antiquus at c. 1.0 Ga) (Butterfield et al. 1994;
Tang et al. 2020), with putative earlier examples of red algae from
India (Rafatazmia chitrakootensis and Ramathallus lobatus) at
c. 1.6 Ga (Bengtson et al. 2017). Ornamented acritarchs are more
common eukaryote-grade fossils and some may prove useful for
biostratigraphy. For example, Tappania plana is a widely reported
Mesoproterozoic fossil taxon, which has been found in the Ruyang
Group of China (Yin 1997; Yin et al. 2018), Roper Group of
Australia (Javaux et al. 2001; Javaux and Knoll 2017), Siberia
(Nagovitsin 2009), the Belt Supergroup of USA (Adam et al. 2017)
and Singhora Group, India (Singh et al. 2019). Therefore, the

Mesoproterozoic Era, although often given the epithet ‘boring’,
marks the point in geological time when biostratigraphy becomes
possible.

The final period of the Mesoproterozoic was named ‘Stenian’
with reference to what was interpreted as a worldwide network of
linear orogenic belts that were grouped as ‘Grenvillian’ (Plumb
1991). Although the supposed continuity and contemporaneity of
these belts worldwide can be challenged in detail (e.g. Fitzsimons
2000), there is broad consensus that this period of collisional
orogenies led to formation of the supercontinent Rodinia by
c. 950 Ma (Li et al. 1999; Evans et al. 2016; Merdith et al. 2017a).
The type Grenvillian (NE Canada; Rivers 2015), the
Sveconorwegian (Scandinavia; Bingen et al. 2021), the Sunsas
(South America; Teixeira et al. 2010), the Natal-Namaqua (Africa;
Cornell et al. 2006) and the Albany-Fraser (Australia; Spaggiari
et al. 2015) orogenic belts all display similar records of high-grade
metamorphism and magmatism between c. 1200 and 1000 Ma (see
also Cawood and Pisarevsky 2017). Defining a chronostratigraphy
on the basis of high-grade metamorphic events is problematic, but
an interim arbitrary duration of c. 1200 to 1000 Ma (Figs 1a and c)
encompasses the main orogenic events across the ‘Grenvillian’ belts
and corresponds with a prominent spike in the detrital zircon record
(Fig. 2). Additionally, the end of the period marks the appearance of
multicellular red and green algae in the fossil record (Xiao and Tang
2018; Tang et al. 2020).

Neoproterozoic Era (c. 1.0 to 0.54 Ga)

The Neoproterozoic Era records a number of highly significant
events in Earth history (Shields 2017). New platform cover
successions were deposited during the final amalgamation, tenure
and break-up of Rodinia. Eukaryotes continued to diversify within
an environment characterized by rising, but unstable seawater
87Sr/86Sr (Zhou et al. 2020), high-amplitude δ13C excursions
(>8‰), climate perturbations, and episodic ocean oxygenation: the
‘Neoproterozoic Oxygenation Event’ (Och and Shields-Zhou
2012). Following a prolonged interval of unusually widespread
glaciation (Hoffman et al. 2017), the end of the era was marked by
the evolution of the unique Ediacaran multicellular biota, and
widespread orogenesis associated with the assembly of Gondwana
through the late Ediacaran to early Cambrian interval.

The subdivision of Neoproterozoic time has largely been
informed by (1) the occurrence and correlation of two widespread
glacial units now known to be of Cryogenian age (Thomson 1871,
1877; Reusch 1891; Kulling 1934; Lee 1936; Howchin 1901;
Mawson 1949) and (2) fossils of metazoan affinity that postdate
those glaciogenic deposits, but predate Cambrian strata (Glaessner
1962). Harland (1964) first proposed the term ‘infra-Cambrian’ or
‘Varangian’ for a terminal Precambrian system (Fig. 5) based on two
discrete diamictite units, the Smalfjord (Bigganjargga) and
Mortensnes formations on the Varanger Peninsula, NE Norway,
first described by Reusch (1891); Harland (1964) proposed that the
start of this new period should correspond to the base of the lower of
these two glacial horizons, believing them to be stratigraphic
equivalents of globally widespread glaciogenic units in, for
example, Greenland, Spitsbergen, Canada and Australia (Harland
1964). However, the two glacial units of the Varanger Peninsula
were later found to include an Ediacaran glaciogenic unit of only
regional extent (Rice et al. 2011), leading to abandonment of the
term ‘Varangian’ or ‘Varangerian’. Dunn et al. (1971) introduced
the terms ‘Sturtian’ and ‘Marinoan’, named after Sturt Gorge and
Marino Rocks near Adelaide in South Australia, for the two
Cryogenian glacial epochs recorded there, emphasizing their utility
as chronostratigraphic markers. Cloud and Glaessner (1982)
proposed the term ‘Ediacarian’ for the interval spanning from the
upper limit of these glacial deposits to the base of the Cambrian.
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This term also originates from South Australia (the Ediacaran Hills)
where Ediacara-type fossils were first recognized (Sprigg 1947).
Plumb (1991) penned the name ‘Cryogenian’ for the period that
included these widespread deposits and the term ‘Tonian’ (meaning
stretching in Greek and in reference to the onset of rifting, now
related to the break-up of Rodinia) for the preceding period, setting
the chronological boundary between them at 850 Ma. These terms
and GSSA boundaries were revised from previously suggested
period-rank subdivisions on the geological timescale by the
Subcommission on Precambrian Stratigraphy (Plumb and James
1986).

The number, duration, and intensity of the glaciations have been
intensely debated (e.g. Kaufman et al. 1997; Kennedy et al. 1998;
Halverson et al. 2005), particularly in the light of the Snowball
Earth hypothesis (Hoffman et al. 1998; Hoffman and Schrag 2002;
Etienne et al. 2007; Fairchild and Kennedy 2007). Notwithstanding
these debates, the base of the Ediacaran System (Period) was
formally ratified in 2004 in South Australia (Knoll et al. 2004,
2006a, b) at the same stratigraphic level as originally proposed by
Cloud and Glaessner (1982) for their ‘Ediacarian’ period. The terms
Cryogenian and Tonian are now widely accepted for the two
preceding periods (Shields-Zhou et al. 2012, 2016), since a
proliferation of radioisotopic ages has largely resolved the question
of the number and timing of Neoproterozoic glaciations. It is now
well established that two discrete glaciations of global extent
occurred during the Cryogenian Period (i.e. between c. 717 and
c. 635 Ma), separated by a non-glacial interval (Fig. 4). Despite
initial reservations, the international community has generally
adopted the terms Sturtian and Marinoan to refer to these two
glacial episodes (‘cryochrons’, cf. Hoffman et al. 2017) of the
Cryogenian Period. This subdivision, though still informal, appears

justifiable in light of the geochronological evidence that (1) the
Sturtian glaciation is now thought to have begun at c. 717 Ma
(Macdonald et al. 2010, 2018; MacLennan et al. 2018) and ended at
c. 660 Ma (Rooney et al. 2015, 2020; Cox et al. 2018; Wang et al.
2019) synchronously worldwide, within the uncertainty of available
ages, and that (2) the Marinoan glaciation, though shorter-lived and
of uncertain duration (between about 4 and 17 Ma; Hoffmann et al.
2004; Condon et al. 2005; Prave et al. 2016; Bao et al. 2018; Nelson
et al. 2020) also ended synchronously at 635.5 Ma (Crockford et al.
2018; Zhou et al. 2019). The start of the Cryogenian Period has now
been changed to c. 720 Ma (Shields-Zhou et al. 2016) so as to
encompass only the glaciogenic sequences, pending proposal and
ratification of a GSSP.

According to the current timescale (Fig. 1a), the preceding
Tonian Period now lasts 280 million years. Having originally been
envisaged to encapsulate a period of lithospheric thinning
(supercontinent break-up), the Tonian covers the final amalgam-
ation of Rodinia (Evans et al. 2016; Merdith et al. 2017a) and a
prolonged interval of relative stability prior to the onset of major
break-up after 0.83 Ga, and perhaps as late as 0.75 Ga (Jing et al.
2020; Merdith et al. 2017b). A proliferation of sedimentary basins
in Rodinia between c. 850 and 800 Ma (e.g. the Centralian
Superbasin of Australia, the East Svalbard–East Greenland basin,
the Mackenzie Mountains–Amundsen and associated basins of
northern-northwestern Canada, the Nanhua rift basin of South
China and the Central Africa Copperbelt (Rainbird et al. 1996;
Lindsay 2002; Bull et al. 2011; Wang et al. 2011; Hoffman et al.
2012; Li et al. 2013), were originally interpreted to record an initial
phase of Rodinia break-up (Li et al. 1999; Macdonald et al. 2012),
perhaps related to insulation of the underlying mantle (Lindsay
2002) and/or the influence of a series of similarly aged mantle

Fig. 5. Evolution of stratigraphic terminology for the Neoproterozoic Era. Note that age ranges for subdivisions on previous timescales are based on current
age estimates. Triangle symbol (Δ) denotes the approximate levels of glaciations relevant to the timescale subdivisions. * denotes the term ‘Ediacarian’
introduced by Cloud and Glaessner (1982). Terminology after Dunn et al. (1971); Harland (1964, 1982, 1990); Plumb (1991); Van Kranendonk et al.
(2012) (GTS 2012); Knoll (2000) Strachan et al. (2020) (GTS 2020) and this paper as indicated.
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plumes and associated LIP events that impinged on Rodinia at this
time (Li et al. 1999, 2004). The existence of widespread basin-scale
evaporite deposits with ages ranging from c. 830 to 730 Ma
(Lindsay 1987; Prince et al. 2019) is consistent with rifting around
this time. Notwithstanding intracontinental rifting along the western
margin of North America (e.g. Macdonald et al. 2012), evidence of
extension leading to continental separation is lacking and true
break-up probably began in earnest only around the start of the
Cryogenian (e.g. Merdith et al. 2017a, b) or even in the Ediacaran
Period (e.g. Tegner et al. 2019), followed by a peak in passive
continental margin abundance at c. 600 Ma (Bradley 2008). Rodinia
existence as a supercontinent therefore coincided with the currently
defined Tonian Period, which was named for the tectonic stretching
that led to its break-up.

Division of the long Tonian into two periods is therefore
desirable, although at present most c. 850–800 Ma basins lack
adequate geochronological control. The post-800 Ma Tonian fossil
record is distinct from the pre-850 Ma record, and is marked by
the first appearance of mineralized scales and vase-shaped
microfossils in the fossil record, suggesting nascent stages of
biomineralization and heterotrophic protistan evolution, but
biostratigraphically useful fossils are currently too scarce to
achieve any robust subdivision. We consider that a new period
might conceivably cover the preceding interval of cratonization
from the final amalgamation to initial rifting events, i.e.
approximately ≤1.0 to ≥0.8 Ga, characterized by lower seawater
Sr isotope values and relatively muted carbon isotopic values,
followed by a revised Tonian Period from ≥0.8 to c. 0.72 Ga. We
tentatively propose either of the terms Kleisian (Fig. 1c) or
Syndian, following the Greek words respectively for the ‘closure’
or ‘connection’ that naturally followed the narrowing of oceans in
the final assembly phase of Rodinia.

Concluding remarks and agreed recommendations

1) The history of the Earth and its geological record can
reasonably be divided into its current four eons (Hadean, Archean,
Proterozoic and Phanerozoic), whereby the Hadean–Archean
boundary is taken to represent the start of the terrestrial rock
record at c. 4.0 Ga.

2) Two first-order (Archean and Proterozoic eon) and six
second-order (Paleoarchean, Mesoarchean, Neoarchean,
Paleoproterozoic, Mesoproterozoic, Neoproterozoic era) stratigraphic
intervals provide intuitive subdivision of post-Hadean to pre-
Phanerozoic time.We consider that the Archean Eon would be more
naturally subdivided into three informal units of equal duration
(Fig. 1c) instead of the current four eras, to be defined further after
detailed discussions by a commission of international experts.

3) Major transitions in Earth’s tectonic, biological and
environmental history occurred at approximately 2.5–2.3, 1.8–1.6
and 1.0–0.8 Ga. We consider, therefore, that current GSSAs at 2.5,
1.6 and 1.0 Ga could be replaced expeditiously by rock-based
Proterozoic eras beginning at or after c. 2.45, 1.8 and 1.0 Ga,
respectively, based around these major transitions, all of which
occurred following orogenic peaks and during times of waning
zircon production (post-acme, but not yet zenith) in line with
Phanerozoic boundaries.

4) We suggest that current period-level GSSAs be replaced by
improved rock-based concepts and interim chronostratigraphic units
as soon as practicable, continuing recent progress towards that goal,
illustrated, for example, by the establishment of an Ediacaran GSSP
in 2004 and chronostratigraphic definition of the base of the
Cryogenian at c. 720 Ma in 2016. Although all existing period
names could be retained in a future chronostratigraphic scheme,
some will need more conceptual underpinning, which would likely
result in movement of the Siderian Period into the Archean Eon.

5) We recommend that a future Paleoproterozoic Era contain
only three periods beginning at or after c. 2.45, 2.3 and 2.05 Ga,
respectively, so that the era begins near the end of major Archean
BIF deposition, the onset of widespread glaciation and the Great
Oxidation Episode, but ends close to the onset of a prolonged period
of cratonic, climatic and isotopic stability. We recommend that the
Statherian Period be moved into the Mesoproterozoic Era. Future
attention will likely focus on ensuring that rock-based periods
(Siderian, Rhyacian and Orosirian) bracket the natural phenomena
for which they were named (iron formation, magmatism and
orogenies, respectively). Since we propose that the Siderian Period
be moved into the Neoarchean, a new period, potentially the
Skourian Period (Fig. 6b), would become the first period of the
Paleoproterozoic Era.

6) We recommend that a revised Mesoproterozoic Era contain
four periods (Statherian starting at c. 1.8 Ga, Calymmian at
c. 1.6 Ga, Ectasian at c. 1.4 Ga and Stenian at c. 1.2 Ga) so that it
begins after major orogenic climax, but before putative eukaryote-
grade fossil assemblages, in the form of ornamented acritarchs and
megascopic fronds, and ends after the Grenville Orogeny near the
time of final stages of Rodinia supercontinent amalgamation.

7) We recommend that a revised Neoproterozoic Era contain
four periods: a pre-Tonian period starting at c. 1.0 Ga, Tonian at c.
0.80 Ga, Cryogenian at c. 0.72 Ga and an Ediacaran Period, which
has a ratified GSSP, dated at c. 635 Ma, so that it begins around
the final amalgamation of Rodinia and ends traditionally at the
Ediacaran–Cambrian boundary.We tentatively propose that the pre-
Tonian period be named the Kleisian Period (Fig. 1c), although
Syndian might also be considered.

8) These and further refinements of pre-Cryogenian time and
strata could be developed by new expert subcommissions to cover
the (1) pre-Ediacaran Neoproterozoic (currently, the Cryogenian
Subcommission), (2) Mesoproterozoic, (3) Paleoproterozoic and
(4) Archean and its boundary with the Hadean.
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