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Biallelic and monoallelic variants in PLXNA1 are implicated
in a novel neurodevelopmental disorder with variable cerebral
and eye anomalies
Gabriel C. Dworschak et al.#

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive
inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development.
METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe
genotype–phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments
in zebrafish to characterize the embryonic role of plxna1a and plxna1b.
RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye
anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of
missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a
and plxna1b in the development of the central nervous system and the eye.
CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental
syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the
extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the
intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
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INTRODUCTION
Plexins are a large family of cell surface receptors for the axon
guidance molecules semaphorins. Plexin-A1 and its co-receptor
Neuropilin-1 (NRP1) bind different classes of semaphorins.1–4 The
Plexin cytoplasmic domain contains two segments (C1 and C2)
that have sequence similarity to GTPase-activating protein (GAP)
and form a functional GAP domain.5 Before semaphorin binding,
plexin is an inactive monomer or dimer in which the RapGAP
activity is autoinhibited.6 Semaphorin-induced dimerization of the
plexin extracellular region promotes formation of the activating
dimer of the cytoplasmic region, which converts the GAP domain
to the active state through an allosteric mechanism.6–8 The Plexin-
A1 GAP domains show dual specificity for Rac and Rap GTPases.9

Plxna1 null mice exhibit different axonal abnormalities (e.g.,
abnormal proprioceptive neuronal and oligodendrocyte morphol-
ogy, slight defasciculation of optic chiasm, aberrant crossing of
commissural axons, agenesis of corpus callosum [CC], and defects
in the olfactory and neuroendocrine reproductive systems).10–13

Additionally, Plxna1 null mice exhibit neuronal abnormalities with
rarefied interneurons in developing cortex and a decreased
cortical thickness.14 Recently, van der Klaauw et al. implicated
rare monoallelic variants in plexins and semaphorins in the
expression of severe obesity.15 They found 40 rare variants in 13
plexin and semaphorin genes. Notably, nine variants were
associated with neurodevelopmental phenotypes in the respec-
tive patients. Previously, three studies reported monoallelic de
novo variants in PLXNA1 to be associated with infantile-onset
epilepsy, intellectual disability with autism spectrum disorder
(ASD), epileptic encephalopathy, or schizophrenia in the respec-
tive patients.16–19

Here, we describe four families with rare biallelic and three
families with rare/novel monoallelic de novo variants in PLXNA1.
The observed clinical phenotypes establish a range of neurological
disease associated with presumably pathogenic variant alleles at
this locus. Shared phenotypic features comprise global develop-
mental delay, brain and eye anomalies. Seizures were predomi-
nantly reported in patients with monoallelic variants. Morpholino
knockdown of the zebrafish homologs plxna1a and plxna1b in
zebrafish larvae causes anomalies of the central nervous system
and the eye as observed in our patients.

MATERIALS AND METHODS
Exome sequencing
Exome sequencing and subsequent analysis was performed by established
procedures (see Supplementary information). GeneMatcher20,21 and
matchbox22 facilitated the identification of additional patients with biallelic
and monoallelic pathogenic variants in PLXNA1.

3D modeling of protein structure
The 3D protein structural models were built using I-Tasser.23 Sequences
were trimmed from the N-terminal (1,020 amino acids) for prediction of the
respective Plexin-A1 amino acid changes. Structural comparison of variants
were done in Chimera after superimposing the structure of mutant onto
the wild-type structure using SuperPose (superpose.wishartlab.com).
Amino acid conservation was obtained from the Consurf server.24

Zebrafish husbandry and embryo maintenance
Zebrafish were maintained and raised according to national law and
recommendations by Westerfield25 in our fish facility in Bonn, Germany.
Zebrafish larvae (zfl) of wild-type AB/TL strain and transgenic Tg(-3.1ngn1:
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GFP)26 were obtained by natural spawning and raised at 28 °C on a 14-hour
light–10-hour dark cycle.

Knockdown with morpholino oligonucleotides microinjections
and mRNA rescue
The human PLXNA1 gene has two zebrafish orthologs (plxna1a,
ENSDARG00000105452; and plxna1b, ENSDARG00000114823).27 Knockdown
was performed using specific Morpholino® oligonucleotides (MO) synthe-
tized by GeneTools, LLC. We designed one MO targeting a splice site (splice
blocking [SB]) and one MO targeting the AUG translational start site
(translational blocking [TB]) for each of the orthologs. In one-cell or two-cell
embryos 2.2 ng (1.7 nL/embryo) of plxna1a SB MO (5’-AAGGAGATGCAGA
TACTTACACACT-’3), 2.9 ng plxna1a TB MO (5’-CCCCTACCATACGGCAG
CATTTTTC-’3), 4.4 ng plxna1b SB MO (5’-AGCAGATAATTCTCTTACCGAGA
TC-’3), 1.5 ng plxna1b TB MO (5’-GCCACATATCTGCACTGGTCCTTGA-’3), or
4.4 ng of standard control MO (5’-CCTCTTACCTCAGTTACAATTTATA-‘3) was
injected into the yolk. plxna1b SB MO and plxna1b TB MO were established
previously in a model for wound healing but not early embryonic
development.28,29

For messenger RNA (mRNA) rescue experiments, 150 pg of in vitro
transcribed human PLXNA1 mRNA was co-injected into the yolk of one-cell
embryos together with plxna1a SB MO. PLXNA1 mRNA was transcribed
from complementary DNA (cDNA) clone HsCD00863277 (Harvard Medical
School) containing NM_032242.3 using the mMESSAGE mMACHINE T7
Ultra Kit (Thermo Fisher Scientific). Prior to transcription, the orf of clone
HsCD00863277 was changed into the stop codon of NM_032242.3 using
the mutagenesis In-Fusion HD Cloning kit (Takara).

RNA isolation and reverse transcription polymerase chain reaction
To test splice-blocking effect of the designed plxna1a SB MO, total RNA
was extracted from pools of 20 larvae with TRIzol reagent (Thermo Fisher
Scientific). Then, 1 µg of RNA was used for cDNA synthesis with iScript™
Reverse Transcription Supermix (Bio-Rad). Polymerase chain reaction (PCR)
was performed with plxna1a forward primer (5’- GATGAAGAAGATCTTGGT
GAACT-‘3) and intron-spanning plxna1a reverse primer (5’- AAGAACC
AGCTGGACTTCAG-‘3); for control eef1α1 was used as housekeeping gene.30

Imaging and phenotyping
Zfl were phenotyped at 2 days postfertilization (dpf) using a ZEISS
Stemi508 for brightfield imaging. The timepoint of 2 dpf was chosen since
the phenotype was most prominent. The phenotype category is defined by
the presence of at least two of the following features: hydrocephalus,
general hypopigmentation, reduced head or eye size. Diameter of head
and eyes was measured with NIS-Element Viewer software. To account for
variation and growth effects, eye size was calculated as diameter
normalized to head.31 Zfl were anesthetized at 2 dpf with 0.03% tricaine
(Sigma-Aldrich), fixed in 1.25% low-melting agarose for fluorescence
imaging with a ZEISS Axio Zoom.V16 stereo microscope. Phenotypic
differences and dorsal root ganglions (DRG) in Tg(-3.1ngn1:GFP) were
analyzed with the ZEN 2.3 software. To account for variation in embryo
size, DRG were counted in somites cranial of the yolk sac and thereby
normalized.

Statistical analyses
Two-tailed Student’s t-test, Mantel–Cox, and two-way analysis of variance
(ANOVA) were used for analysis using GraphPad Prism version 6. Survival
was analyzed using Kaplan–Meier survival curves.

RESULTS
Biallelic and monoallelic PLXNA1 variants
In four families, we identified seven patients with biallelic variants
in PLXNA1 segregating with the disease (Fig. 1a). Clinical findings
are summarized in Table 1; detailed case reports can be found in
the Supplementary information. Six patients showed global
developmental delay (6/7) whereas one patient had isolated
language regression (1/7). Three patients had cerebral anomalies
(3/7). Brain magnetic resonance image (MRI) studies of patient D:II-
1 showed dysmorphic ventricular system and prominent
Virchow–Robins (perivascular) spaces at the level of the semiovale

in both hemispheres. MRI studies of his sister (D:II-2) showed
agenesis of the CC and colpocephaly (Fig. 1d, g, h). While the
affected patients II-1 and II-3 in family C had unremarkable
cerebral MRI studies, their affected sister (C:II-2) showed a
dysplastic “mega CC.” Three patients had ASD (3/7), and four
had eye anomalies (4/7) comprising optic disc hypoplasia without
visual deficits, strabismus, and ptosis in (D:II-1, D:II-2); ptosis in (C:II-
2); and nystagmus in (C:II-3). Three patients showed craniofacial
dysmorphisms (3/7). Only one patient presented with seizures (1/
7); patient A:II-1 had 15 episodes of febrile and nonfebrile seizures
between 15 months and 4.5 years of age.
In three further patients, we identified monoallelic de novo

variants in PLXNA1 (Fig. 2a). Clinical findings are summarized in
Table 1; detailed case reports can be found in the Supplementary
information. All three patients showed global developmental
delay (3/3) and craniofacial dysmorphisms (3/3). Two had
hypotonia (2/3) and two had cerebral anomalies (2/3). MRI studies
of patient H:II-1 showed periventricular leukoencephalopathy,
basal ganglia calcifications, and infratentorial atrophy. MRI studies
of patient G:II-1 showed enlarged ventricular system, mild
thinning of the CC, delayed myelination, hypoplasia of the
brainstem, and agenesis of the posterior pituitary (Fig. 2c, d). All
three had eye anomalies (3/3) characterized by enophthalmia (H:II-
1), optic disc hypoplasia with impaired vision (G:II-1), and ptosis (F:
II-1). Notably, all three patients presented with seizures (3/3)
including neonatal-onset atonic seizures (H:II-1), childhood-onset
generalized tonic–clonic seizures (G:II-1), and neonatal-onset
absence-like seizures (F:II-1).
Besides the above reported patients, we identified four

additional patients with biallelic and five additional patients with
monoallelic variants in PLXNA1. In all patients, the clinical
significance of the identified variants remains uncertain. In one
of the patients with biallelic variants (family J) and in three of the
patients with monoallelic variants (families M, N, and P), either no
parent or only one parent was available for segregation analysis.
Patient L:II-3, carrying a rare de novo variant, showed severe
muscular hypotonia during the neonatal period prompting exome
analysis; however, his hypotonia had resolved spontaneously at six
months of age and the family was lost to follow up. Analogous
family O was lost to follow up and the outcome of pregnancy of O:
II-1 remains unknown. In family B we identified compound
heterozygous missense variants; although the inheritance pattern
appears plausible, both variants are fairly common with a minor
allele frequency (MAF) of 0.1%. Additionally, the phenotype in this
patient appears exceptional with the presence of inflammatory
changes in the cerebrospinal fluid (CSF) that are not otherwise
observed in other subjects herein. For these reasons, these
variants have been classified as variants of unknown significance
(VUS). A detailed description of all additional patients can be
found in the Supplementary information, Figures S1, S2.

Structural modeling and in silico analysis of Plexin-A1 protein
variants
The observed distribution of both biallelic variants and mono-
allelic variants over the Plexin-A1 domains appears to be
nonrandom (Fig. 3). Structural models showed a sequence identity
of 83%, coverage of 64% and normalized Z-score of 3.09. Z-score
values >1 are considered indicative of correctly folded and good
modeled structures and a close approximation of the native
structure.32 From the structural modeling of mutated Plexin-A1,
we observed that all modeled (n= 4) biallelic and all modeled
(n= 3) monoallelic variants likely cause a distortion in the native
protein (Figure S3). Superimposition of mutant p.(Arg1495Trp)
onto the wild-type structure showed a gain of helix in the mutant
protein in close proximity to the variant location (Fig. 3d). The
UniProt protein database reports ten putative disulfide bonds in
the Plexin-A1 protein. A truncated protein resulting from the
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p.(Leu525Argfs*23) or the p.(Gln517*) may therefore lack five of
those disulfide bonds (515–532; 521–563; 524–541; 535–547;
598–617). In silico analyses using SIFT, CADD, and PolyPhen-2
predicted all monoallelic de novo variants and most biallelic
variants to be damaging. ConSurf analysis predicted residues at all
positions of the three monoallelic missense variants (p.[Arg1185],
p.[Arg1495], and p.[Arg1748]) to be exposed, suggesting that they
have a functional role (Fig. 3c). The intracellular residues
p.(Arg1495) and p.(Arg1748) are evolutionarily conserved based
on their ConSurf analysis suggesting that these residues react
highly sensitively if altered.

Knockdown of PLXNA1 homologs plxna1a and plxna1b leads to
anomalies of zebrafish central nervous system development
The zebrafish protein Plexin-A1a has a slightly higher amino acid
sequence homology with the human Plexin-A1 protein compared
to Plexin-A1b (82% vs. 73%, calculated with CLUSTAL_omega from
EMBL-EBI). Here, knockdown of plxna1a and plxna1b in developing
zebrafish larvae (zfl) with a splice blocking (SB MO) and a
translational blocking morpholino (TB MO) for each of the two
paralogs resulted in an overlapping phenotype. Since Plexin-A1a

shows the higher homology to human Plexin-A1 and since the
knockdown with plxna1a SB MO resulted in the most intense
phenotype with an only mildly increased mortality (Fig. 4a), we
focused on this MO for further analysis. Following the plxna1a
knockdown, we observed hydrocephalus in midbrain and
hindbrain ventricles, generalized hypopigmentation, reduced
head size (Fig. 4b, d), reduced eye diameter (Fig. 4d, f), and
slightly increased mortality. This phenotype was observed in
approximately 80% of plxna1a SB MO morphants (n= 270) but
only in 1% of control MO-injected zfl (n= 222, p < 0.0001 [two-
way ANOVA]) at 2 dpf (Fig. 4b). The measured eye size was
normalized to head length to account for variation of embryo
size.31 This ratio was significantly lower in plxna1a SB MO
morphants compared to controls (0.31 ± 0.007 vs. 0.48 ± 0.02,
p < 0.0001 [two-way ANOVA] N= 3) (Fig. 4f). Although we
observed a reduced head length following the knockdown of
plxna1a compared to controls, reduction of eye size was still
significant after normalization. Efficiency of knockdown with the
plxna1a SB MO was demonstrated by reverse transcription
polymerase chain reaction (RT-PCR) with a decrease of wild-type
plxna1a expression and presence of an alternative band without
exon 5, but no change in eef1α1 expression as control (Figure S5).
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Fig. 1 Families with biallelic PLXNA1 variants. a Pedigrees and Sanger sequencing results of four families with biallelic variants in PLXNA1.
b–h Photographs and brain magnetic resonance image (MRI) of affected siblings of family D. b, c D:II-1 showing mild microphthalmia,
depressed nasal bridge, short neck, and hypopigmented stains that were absent in both parents. d T1 axial MRI of D:II-1 showing dysmorphic
ventricular system most prominent in posterior horns (arrow). e, f D:II-2 showing strabismus, sparse lateral eyebrows, flattened nasal bridge,
large earlobes, and hypopigmented lesions on the torso measuring less than 1 cm. g, h Axial T2 FLAIR MRI of D:II-2 showing dysmorphic
ventricular system (arrow in g), and frontal steer horn sign typically seen in corpus callosum (CC) agenesis in the T2 coronal (h).
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Similarly, RT-PCR for the plxna1b SB MO confirmed its efficiency
(data not shown) as previously demonstrated.29

The observed phenotypic spectrum follows the previously
published spatiotemporal expression pattern from plxna1a/
plxna1b in situ hybridization studies.27 We confirmed the same
expression pattern performing immunohistochemistry with an
antibody that detects both Plexin-A1a and Plexin-A1b due to their
high similarity (Figure S4). Co-injection of human PLXNA1 RNA
together with the plxna1a SB MO did not result in a reduction of
mortality, but it could significantly rescue the morphologic
phenotype (Fig. 4e, b, f).
To assess the impact of the plxna1a knockdown on the central

nervous system and axonal outgrowth, we used the transgenic Tg
(-3.1ngn1:GFP) reporter line, showing GFP expression in pineal
gland, dorsal midbrain, hindbrain, Rohon-Beard sensory neurons,
and DRG.26 Following the plxna1a SB MO injection into Tg
(-3.1ngn1:GFP) zfl, morphants displayed hypoplasia of the tele-
ncephalon, mesencephalon, and cerebellum (Fig. 4g, h) as well as
dilatation of the ventricles (Fig. 4i, j). Additionally, morphants
showed a decrease of migrated DRG cells in the spinal cord above
the yolk. The respective somites lack axon outgrowth compared to
controls (Fig. 4k–m). To account for variation in embryo size we
normalized the DRG count to the yolk sac diameter (Figure S6).

Following the plxna1a knockdown the number of DRG at 2 dpf
was significantly reduced to 3.4 DRG/500 µm (n= 32) compared to
11.1 DRG/500 µm in controls (n= 43) (p < 0.0001 [unpaired t-test])
(Fig. 4m, Figure S6).

DISCUSSION
Neurodevelopmental disorders (NDDs) display extensive genetic
and phenotypic heterogeneity.33 With the implementation of
exome sequencing and family-based rare variant analyses,
examples of gene-first/genotype-driven approaches to character-
ize associated phenotypic spectrums have been illustrated for
NDDs.34,35 Here, we describe ten patients with NDD ranging from
1.9 years to 42 years from four families with biallelic variants and
three families with monoallelic de novo variants in PLXNA1.
Biallelic and monoallelic variants lead to a phenotypic spectrum
primarily affecting the central nervous system. Shared phenotypic
features comprise global developmental delay (9/10), congenital
anomalies of the brain (6/10), and eye anomalies (7/10). All three
patients with monoallelic de novo variants displayed seizures
(3/3), but only one of seven patients with biallelic variants (1/7).
The phenotypes observed in plxna1a and plxna1b zebrafish

morphants resemble the phenotypic spectrum we observed in the
herein reported patients. plxna1a SB MO morphants show a
reduced eye diameter when compared to controls (Fig. 4c–f),
indicating that plxna1a and plxna1b are important for eye
development analogous to the observed eye phenotypes in our
patients. Eye development in zebrafish appears to involve other
Plexins as well, since plxna2 knockdown also leads to reduced
relative eye diameter.5 Notably, we observed reduced pigmenta-
tion in plxna1a SB MO morphants compared to controls, which
may correlate with the skin abnormalities observed in patients D:
II-1, D:II-2, and E:II-1 respectively, presenting with hypo- and
hyperpigmented skin anomalies. Another phenotypic feature of
the plxna1a SB morphants is hydrocephalus (Fig. 4d, j). Here, we
report three patients (D:II-1, D:II-2, G:II-1) with an abnormal
dilatation of the ventricular system. Additionally, the patient
reported by Park et al. showed prominence of ventricles.16 plxna1a
SB MO morphants showed hypoplasia of forebrain, midbrain, and
hindbrain obtained in the transgenic reporter fish Tg(-3.1ngn1:
GFP) (Fig. 4j). Accordingly, six of our ten patients presented with
structural cerebral anomalies (C:II-2, D:II-1, D:II-2, E:II-1, G:II-1, H:II-1)
(Table 1, Fig. 4g, h). The temporal and spatial expression pattern of
Plexins in zfl has been studied in detail by Emerson et al.,
suggesting a dynamic role in neuronal development.27 plxna1a
and plxna1b are expressed in the optic vesicle, neural retina, optic
tectum, optic chiasm, hypothalamus, medulla oblongata, fore-
brain, and ventricle of zfl. Here we confirmed this expression
pattern (Figure S4). The phenotypic spectrum of plxna1a SB MO
morphants follows the expression pattern in early development of
zfl, suggesting a specific observation. Finally, we detected a
decrease of migrated DRG cells in the spinal cord. Consecutively,
the axon outgrowth is missing in the respective somites
supporting the role of PLXNA1 as a mediator of axon guidance.10

Accordingly, a recent report demonstrated impaired midline
crossing of axons in the CC in Plxna1 knockout mice at E17.5
and agenesis of the CC in newborn mice (P0.5).11 Here, we report
three patients (C:II-2, D:II-2, G:II-1) with CC anomalies. Analogously,
Belyk et al. suggested that polymorphisms in PLXNA1 are
associated with altered developmental trajectory of the CC
microstructure.36 Additionally, three patients had either signs of
congenital cranial neuropathies including sensorineural hearing
loss with or without agenesis of vestibulocochlear nerves (C:II-2, G:
II-1), unilateral facial palsy (G:II-1), and peripheral axonal neuro-
pathy (D:II-2). These features may be indicative of axonal
dysfunction and reflective of the role of PLXNA1 in axonal
guidance. Since the publication of the only two existing Plxna1
knockout mouse models in 2006 numerous articles describe
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CAGATC TGG

c.4483C>T
Arg1495Trp

Fig. 2 Families with monoallelic PLXNA1 variants. a Pedigrees and
Sanger sequencing results of three families with monoallelic de
novo variants in PLXNA1. b–d Photographs and brain magnetic
resonance image (MRI) of affected patient of family G. b G:II-
1 showing unilateral facial palsy, dysmorphic right auricle and
bilateral sensorineural hearing loss due to agenesis of vestibuloco-
chlear nerves requiring cochlear implants. c Midsagittal T1 MRI of G:
II-1 showing absent posterior pituitary and mild hypoplasia of
brainstem. d Coronal T2 MRI of G:II-1 showing mild dilatation of the
ventricular system, delayed myelination including the periventricu-
lar region.
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histopathological abnormalities affecting axonal and neuronal
phenotypes. While there are numerous links between the patients
reported here and our zebrafish model, others remain without
correspondence: for example, it remains unclear whether the
Plxna1-null mice are developmentally delayed or develop seizures.
Hence, the biallelic and monoallelic variants in PLXNA1 reported

here lead to a distinct overlapping phenotypic spectrum. So far
over 30 loci have been linked to disease genes presenting with
both recessive (biallelic) and dominant (monoallelic) inheritance

patterns.37 Investigations of allelic series suggested that allelic
heterogeneity may be explained in part by the functional
consequences of pathogenic variants, i.e., loss-of-function (LoF),
gain-of-function, or dominant-negative mechanisms.35 Recently,
Harel et al. reviewed 13 of these genes with allelic heterogene-
ity.38 For some of these genes, the gnomAD constraint metric
(probability of loss of function intolerance [pLI] score) for loss of
function is 0, basically indicating complete tolerance for hetero-
zygous LoF alleles. For example, individuals harboring a
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heterozygous deletion in ATAD3A are unaffected suggesting a
dominant-negative pathogenic mechanism or a gain-of-function
mechanism for de novo missense variants rather than haploin-
sufficiency.39 However, other genes with reported allelic hetero-
geneity, e.g., KIF1A, COL6A1, ROR2, and here PLXNA1 have a pLI
score of 1, despite the fact that some healthy parents are
heterozygous with LoF variants and affected patients carry
monoallelic de novo missense variants. Hence, functional con-
sequences of potentially pathogenic variant alleles alone cannot
explain allelic heterogeneity. Interestingly, for PLXNA1, gnomAD
reports in total 20 individuals with homozygous extracellular and
only two individuals with homozygous intracellular missense
variants (https://gnomad.broadinstitute.org/). Since the extracel-
lular Plexin-A1 domains comprise 1,245 amino acids and the
intracellular domains comprise only 629 amino acids (33%),
random distribution of homozygous missense variants should
have led to the observation of more intracellular homozygous
missense variants. This imbalance might suggest that intracellular
missense variants are less tolerated compared to extracellular
missense variants. Accordingly, we observed only one patient with
a homozygous intracellular missense variant of uncertain clinical
significance (K:II-3).
We hypothesize that the here reported biallelic LoF might lead to

nonsense-mediated decay (NMD) and the extracellular missense
variants lead to impaired dimerization of the Plexin-A1 receptor.
Both mechanisms would require two affected alleles in order to
affect downstream signaling, whereas the monoallelic intracellular
(de novo) missense variants might impair signaling through a
dominant-negative effect. Extracellular receptor dimerization and
ligand binding may be correct in the intracellular monoallelic
situation; however, these variants may harm the dimerized Plexin-A1
receptor macromolecule through a dominant-negative effect in the
intracellular domains (Figures S7, S8). However, this concept does
not implicate the action of the Plexin-A1 co-receptor NRP1 and
other protein–protein interactions of the receptor. Furthermore, two
of the previously published monoallelic de novo missense variants
reside in extracellular domains of Plexin-A116,17 analogous to the de
novo missense variant reported here in patient F:II-1. Finally, we
report one de novo LoF variant in a neonate with severe neonatal
hypotonia (L:II-3), which resides also in the extracellular domains of
Plexin-A1. While the hypotonia resolved spontaneously in this
patient, indicating that the identified Plexin-A1 variant might be

clinically insignificant, the family was lost to follow up and the
outcome remains unknown.
As outlined earlier, binding of semaphorins activates the

cytoplasmic GAP domain of Plexin-A1 and alterations of conserved
arginine residues in the GAP domain have been shown to diminish
this activity.9 Previously, Rohm et al. altered three arginine residues
—p.(Arg1429), p.(Arg1430), and p.(Arg1746)—of the murine protein
in cultured cells.9 The murine p.(Arg1746) is the orthologous amino
acid residue of the human p.(Arg1748). The data of Rohm et al.
suggest that the novel de novo p.(Arg1748Cys) change of patient H:
II-1 is functionally abolishing downstream signaling of Plexin-A1,
supporting our hypothesis on the pathogenic mechanism of
intracellular de novo missense variants in PLXNA1 (Figure S7).
Interestingly, we identified an additional missense variant altering an
arginine residue in close proximity to the Plexin-A1 GAP domains
(Fig. 3) in patient G:II-1. Hence, the same mechanism described by
Rohm et al. for the p.(Arg1748Cys) change may also apply to the
additional missense variant identified here. Remarkably, the
sequence of the Plexin-A1 GAP domain is highly similar to SYNGAP1,
a Ras/Rap GTPase-activating protein that is one of the most
frequently mutated genes in pediatric patients with intellectual
disability and seizures.40 In these children, the disease-causing
genetic mechanism is dominant de novo (MIM 612621) with the
majority of pathogenic variants in SYNGAP1 being LoF alleles.40

Hence, in support of the above-proposed concept, we might see a
dominant-negative effect in patients with monoallelic de novo
missense variants leading to impaired downstream GTPase-
activating function of the SYNGAP1 related protein Plexin-A1.
Notably, all monoallelic variants observed cluster toward the C-
terminal domains of Plexin-A1 harboring the two GAP domains
(Fig. 3). Analogously, seizures were observed in all three patients
with monoallelic de novo variants and only in one patient with
biallelic variants.
In conclusion, our study provides evidence that biallelic and

monoallelic variants in PLXNA1 result in a novel neurodevelop-
mental syndrome mainly comprising developmental delay and
brain and eye anomalies.

DATA AVAILABILITY
All variants have been deposited into ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)
under Lupski Lab, Baylor-Hopkins CMG, Baylor College of Medicine, including
VCV000867235 through VCV000867245.

Fig. 4 Knockdown of plxna1a leads to cerebral anomalies and eye anomalies in zebrafish larvae. a Quantification of survival (N= 3), zfl
injected with plxna1a splice blocking Morpholino (SB MO) show a slight but significant reduction (71% with a p value <0.0001, two-way
analysis of variance [ANOVA]) of survival rate at 5 dpf compared to Ctrl MO (95%) and uninjected zfl (UI, 98%). Survival of plxna1a SB MO is not
significantly rescued by co-injection of wt plxna1 RNA (p value <0.0001, Mantel–Cox test). b The graph shows 100% of surviving zfl at 2 dpf.
79% of plxna1a SB MO-injected zfl show a central nervous system (CNS) phenotype as hydrocephalus, smaller head and eye size (p value
<0.0001, two-way ANOVA, N= 3) compared to 0% of UI and 1% of Ctrl MO-injected. The phenotype of plxna1a SB MO-injected zfl is
significantly rescued by co-injection of wild-type (wt) PLXNA1 RNA (50% vs. 79%) (p value <0.0001, two-way ANOVA). Data are presented as
means with standard error of the mean (SEM). c–e Brightfield images of zfl injected with Ctrl MO, plxna1a SB MO, or plxna1a SB MO+wt
human RNA. Hydrocephalus (asterisk), hypopigmentation, smaller head and eye size are visible. The phenotype of plxna1a SB MO-injected zfl
(d) is partially rescued by co-injection of wt PLXNA1 RNA (e). f Eye–head ratio of injected zebrafish larvae at 2 dpf. Measurement of the eye
(dotted line) and head (distance between anterior tip up to the otic vesicle) (continuous line) was performed as visualized (c). Injection of
plxna1b SB MO, plxna1a TB MO and plxna1a SB MO significantly reduced eye–head ratio (**p value 0.0024 or ****p value <0.0001; ordinary one-
way ANOVA, N= 3), while wt RNA injection in plxna1a SB MO-injected zfl significantly rescues the phenotypic effect (p value 0.016). Data are
presented as means with standard error of the mean (SEM). g Schematic of the CNS visible in dorsally mounted Tg(-3,1ngn1:GFP) zfl at 2 dpf.
Pink: forebrain, turquoise: midbrain, purple: cerebellum (part of hindbrain), black: eyes. h Schematic of adult human brain (adapted from
Midbrain. Blausen Medical. Retrieved on 29 February 2016. http://blausen.com/?Topic=9703). Pink: forebrain, turquoise: midbrain, purple:
hindbrain. i, j Tg(-3.1ngn1:GFP) zfl are mounted ventral and imaged from dorsal, the anterior to the left. The white arrows mark lateral borders
of the hindbrain ventricle and asterisk mark dilatation of the forebrain ventricle (j). plxna1a SB MO-injected zfl show a dilatation of the
ventricle at 2 dpf corresponding to the hydrocephalus seen in brightfield images. (j) Note the hypoplasia of telencephalon, mesencephalon,
and cerebellum compared to the control (i). c cerebellum, ot optic tectum, t telencephalon. k, l Tg(-3.1ngn1:GFP) zfl are mounted lateral,
anterior to the left. plxna1a SB MO-injected zfl have a reduced number of dorsal root ganglions (DRG) (white arrowheads) and corresponding
somites lack outgrowing axons (green arrowheads).m Quantification of DRG, normalized to yolk size (Figure S6). In plxna1a SB MO-injected zfl,
the number of DRG is significantly reduced (mean of 3.44 ± 0.49 DRG/500 µm, Ctrl MO 11.1 ± 0.38 DRG/500 µm. P value <0.0001, unpaired
t-test, N= 3). White scale bars in all figures: 200 µm. Black scale bars 1,000 µm. **p value <0.01 ****p value <0.0001.
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