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a bizarre lizard of uncertain affinities.
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Aaron M. Bauer,8 Joseph J. Bevitt,9 Adolf Peretti,10 and Susan E. Evans11
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SUMMARY

Oculudentavis khaungraae was described based on a tiny skull trapped in amber. The slender tapering
rostrum with retracted narial openings, large eyes, and short vaulted braincase led to its identification
as the smallest avian dinosaur on record, comparable to the smallest living hummingbirds. Despite its
bird-like appearance, Oculudentavis showed several features inconsistent with its original phylogenetic
placement. Here, we describe a more complete specimen that demonstrates Oculudentavis is actually
a bizarre lizard of uncertain position. The new specimen is described as a new species within the genus
Oculudentavis. The new interpretation and phylogenetic placement highlight a rare case of convergent
evolution in skull proportions but apparently not in morphological characters. Our results re-affirm the
importance of Myanmar amber in yielding unusual taxa from a forest ecosystem rarely represented in
the fossil record.

INTRODUCTION

In a recent paper, Xing et al.1 described a tiny skull (Hupoge

Amber Museum, HPG-15-3) from amber deposits in north-

western Myanmar. The skull, the holotype of a new genus and

species Oculudentavis khaungraae, has a long tapering rostrum

with retracted narial openings, a long-toothed mandible with a

short symphysis, a large eye supported by prominent scleral

ring, an unpaired median frontal, and a triradiate postorbital.

The broad, rather rounded, parietal lacks a parietal foramen

and has supratemporal processes that descend vertically to

meet short quadrates with well-developed lateral concavities.

Xing et al.1 coded the characters of Oculudentavis into a Meso-

zoic avian data matrix2 and found it to be a stem-avian, one node

crownward of the Jurassic Archaeopteryx.

GRS-Ref-28627 is a second Myanmar amber specimen pre-

serving a skull of smaller size to that of HPG-15-3 and a partial

postcranial skeleton (Figures 1, 2A–2J, and S1). Like the

holotype of Oculudentavis, it has a long rostrum, a large orbit,

a short postorbital region, and a long-toothed mandible.

Although there are some proportional differences between the

skulls as preserved, the anatomical features of individual bones

strongly indicate that GRS-Ref-28627 is attributable to the genus

Oculudentavis (Figures 2 and 3) but represents a different spe-

cies. Moreover, many of its characters are in conflict with the

interpretation ofOculudentavis as a stem bird. Instead, the char-

acters indicate that Oculudentavis is a lizard, albeit a highly un-

usual one.

The interpretation of HPG-15-3 as a lizard rather than a bird

has already been made; one metanalysis discussed its phyloge-

netic placement using an ad hoc revision of diagnostic features

of diapsid clades but without testing the position of Oculudenta-

vis in a phylogenetic analysis.3 In a subsequent version of the pa-

per, their hypothesis was tested and confirmed using an amniote

data matrix3 but with very limited sampling of squamates. In

response to the first critique,3 the original authors added
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Oculudentavis to an amniote dataset4 and recovered Oculuden-

tavis as well nested among a group of enantiornithine birds,5

arguing that placement of this taxon with squamates only occurs

if all avian taxa are removed. Herein, the phylogenetic allocation

of Oculudentavis is tested in rigorous phylogenetic analyses us-

ing data derived from the holotype of O. khaungraae (HPG-15-3)

and additional data from the new specimen (GRS-Ref-28627).

Our analyses of an amniote dataset6 with some additional taxa

scored by us recovered Oculudentavis as a squamate reptile

and not as a bird. We then explored the relationships of Oculu-

dentavis within lizards using a comprehensive squamate data-

set7 with additional taxa (STAR Methods). In this paper, we cor-

rect the original description of this taxon and explore the amniote

morphological dataset to determine whether convergent evolu-

tion of the skull of Oculudentavis with that of birds is supported

by specific morphological characters. Additionally, both speci-

mens were segmented digitally to provide a detailed description

of the individual bones and to understand better the similarities

and differences between them. The two specimens were also

compared using retrodeformation methods. Based on this

Figure 1. Oculudentavis naga (GRS-Ref-

286278) displaying the superb preservation

of bone and soft tissue

(A) Dorsal; (B) lateral; (C) ventral views. Scale bar

represents 10 mm. Diptera associated with the

lizard skeleton were identified as Phoridae, Platy-

pezidae, Ceratopogonidae, or Brachycera (Empi-

doidea). See also Figures S1–S7 and Data S1.

information, we provisionally place GRS-

Ref-28627 in a new species. If new spec-

imens are recovered in the future, they

may help to determine whether the

observed differences represent interspe-

cific variation, intraspecific variation, or

preservational artifact.

RESULTS

Systematic paleontology
Reptilia Laurenti, 1768

Lepidosauromorpha Benton, 1983

Squamata Oppel, 1811

Genus Oculudentavis Xing et al.1

Type species Oculudentavis khaungraae

Xing et al.1

Note: The retraction8 of the original

description of this taxon1 does not affect

the nomenclatural availability of Oculu-

dentavis khaungraae under the Interna-

tional Code of Zoological Nomenclature

(chapters 3 and 4), as retraction of a paper

by itself has no nomenclatural conse-

quence.9–11 Using O. khaungraae as an

example, there have been recommenda-

tions that the code needs to be modified

to cover names and nomenclatural acts

contained in retracted papers and to

include a rule that can be applied automatically without the ne-

cessity of submitting a case.12 Nonetheless, at the present

time, the current regulations stand.

Diagnosis of the genus Oculudentavis

Oculudentavis can be identified as a lizard by having a pleuro-

dont dentition with posterolingual tooth replacement, a short

quadrate with a lateral conch, a streptostylic quadrate suspen-

sion, a ‘‘hockey stick’’-shaped squamosal, a reduced quad-

rate-pterygoid contact, an enclosed vidian canal (posterior

opening within the basisphenoid), a prootic with an alar process

and a prominent crista prootica, and a braincase in which the

metotic fissure is subdivided into a small ovoid lateral opening

of the recessus scalae tympani and a posterior vagus foramen

(differentiating it from archosaurs, where the metotic fissure be-

comes enclosed, following a totally different development).13

The genus Oculudentavis can be diagnosed by the following

apomorphic characters. Some of these characters are reworded

here from the original diagnosis of O. khaungraae1 and some

from a subsequent paper,3 which now includes characters that
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only apply to O. khaungraae: jugal expanded horizontally

creating a wide ventral orbital flange; jugal bar cross-section

strongly angled dorsolaterally-ventromedially;1 22 to 23 teeth

in maxilla, about four of which are located beneath the orbit; vo-

mers contact both the premaxillary and maxillary shelves; large

unpaired median premaxilla with a long dorsal crest along nasal

process that is continued onto the dorsal surface of the nasals

along most of its length; premaxilla replaces maxilla in anterolat-

eral part of rostrum; ring-shaped lacrimal fully enclosing large

lacrimal foramen; short vaulted parietals partially fused; and

presence of a flat surface (forming a platform) on the dorsolabial

side of the posterior third of the dentary.

Oculudentavis differs from all other known lizards in possess-

ing the following unique combination of characters: premaxilla

forming exclusively the tip of the rostrum and the anterolateral

border of the nares; elongated paired nasals that slot into a trian-

gular frontal recess; no parietal foramen, supratemporal

processes angled vertically downward; strongly triradiate post-

orbital with long squamosal process reaching posterior margin

of parietal; very large suborbital fenestra; palatal dentition on

the pterygoids—differing from the interpretation in Li et al.,3

which also reported teeth on the palatine, the presence of which

we have been unable to confirm; in dentary, dorsal and ventral

margins of the Meckelian fossa meet to close fossa, but do not

fuse; and short postdentary region with coronoid bearing a

low, posteriorly set process, short deep adductor fossa, and

long slender retroarticular process.

Oculudentavis further differs from all squamates except Hue-

huecuetzpalli in having a long tapering rostrum3 composed of

premaxilla, maxillae, and elongated paired nasals that slot into

a triangular frontal recess; fromall squamates except forHuehue-

cuetzpalli, varanids, lanthanotids, monstersaurs, andmosasaurs

in the retracted narial openings,3 although in all butHuehuecuetz-

palli a reduction of the nasals occurs; from all squamates except

chameleons in having a prefrontal with an anterolateral shelf

(‘‘boss’’ in Gauthier et al.7) that overhangs maxilla and lacrimal;

from all squamates except for the pygopodid Lialis in its very

long slender mandible composed mainly of shallow elongate

dentary and relatively short post-dentary portion; and from all

squamates except for some anguimorphs in the presence of

posterolingual tooth replacement. The closed (but not fused)

Meckelian fossa is shared mainly with iguanians, differing from

the open fossa of most anguimorphs, lacertoids, and scincoids

and the closed and fused fossa of gekkotans, dibamids, gym-

nophthalmids, xantusiids, some scincids, and some iguanians.

Thepremaxilla,maxilla, andnasal arenot fused intoasingleunit

as was described in the original description of O. khaungraae.1

Oculudentavis khaungraae

Holotype

Hupoge Amber Museum, HPG-15-3, a complete skull preserved

in amber (Figures 2K–2T, 3B, 3D, and S1). After its publication,

we were given access to scan data of the holotype but do not

have the authority to make it publicly available, although a

rendering of this specimen can be accessed here: https://

tinyurl.com/Oculudentavis-A-10420.

Type locality

Cenomanian 98.8 ± 0.6 Ma,14 Aung Bar mine, Tanai Township

(Myitkyina District, Hukawng Valley, Kachin province), northern

Myanmar.

Diagnosis

Jugal process ofmaxilla that reaches caudally to at least the level

of mid-orbit;1 short squamosal process of the postorbital; large

braincase with long, unexpanded basipterygoid processes on

the basisphenoid; medial flange of pterygoid diverges postero-

laterally along the entire length; interpterygoid vacuity heart

shaped; premaxilla much longer than wide; recurved anterior

marginal teeth (on premaxilla); and a well-developed flattened

surface on the dorsolabial margin of the posterior portion of

the dentary.

Oculudentavis naga new species
Holotype

Peretti Museum Foundation, GRS-Ref-28627, a skull and ante-

rior postcranial skeleton (Figures 1, 2A–2J, 3A, 3C, and S1).

Three-dimensional model of new specimen available at https://

tinyurl.com/Oculudentavis-L-10420.

Type locality

The holotype specimen ofOculudentavis naga (GRS-Ref-28627)

and the holotype of O. khaungraae (HPG-15-3) were recovered

from the same mine (Aung Bar mine, 26� 090 N, 96� 340 E).
Etymology

Combination ofOculudentavis (oculus = eye, dentes = teeth, and

avis = bird)1 and Naga, the name of one of the many ethnic tribes

living in the Burmese amber mines area. The Naga are

mentioned in historical chronicles for their prominent role in

amber trading. Divided into many sub-groups scattered across

the hills and jungle of India (in Nagaland and other states) and

in the Tiger valley region of Burma (where amber deposits are

found), the Naga tribes are also reputed for their rich and fasci-

nating culture.

Diagnosis

The holotype of O. naga (skull length = 14.2 mm) is somewhat

smaller than that of O. khaungraae (skull length = 17.3 mm).

Oculudentavis naga differs from O. khaungraae in having a jugal

process of the maxilla that reaches caudally to less than 25% of

orbit length; in having a long squamosal process of the postor-

bital; in having a relatively smaller braincase, with short, distally

expanded basipterygoid processes (versus longer, unexpanded

processes); and in having anterior palatal rami of pterygoids

parallel, diverging posteriorly just behind the fossa columellae,

interpterygoid vacuity nearly rectangular (versus divergent pter-

ygoids, heart-shaped vacuity), rostral part of premaxilla shorter

and proportionally wider than that of O. khaungraae, and less

conspicuous platform on the dorsolabial surface of the poste-

rior third of the dentary.

Notes

There are also differences between the two specimens in the ro-

busticity of the postorbital (greater in O. khaungraae); the height

Figure 2. Comparison of the two specimens of Oculudentavis, each bone digitally segmented

Synchrotron HRCT ofO. naga (A–J) and O. khaungraae (K–T). (A and K) Anterior view, (B and L) posterior view, (C, M, I, and S) dorsal view, (D, N, J, and T) ventral

view, (E and O) left lateral view, (F, G, P, and Q) right lateral view, and (H and R) medial view are shown. See also Figures S1–S7 and Data S1.
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of the premaxillary crest (greater in O. naga); the extent of the

nasal emargination of the frontal (greater in O. naga); the pres-

ence of a large anterior palatine fenestra (O. naga); the length

and height of the coronoid process (larger and taller in

O. naga); the shape of the quadrate conch (more angular in

O. khaungraae); and in the overall shape of the rostrum (more

pointed in O. khaungraae) and postorbital skull (more vaulted in

O. khaungraae). Oculudentavis naga also displays a very large

palatal fenestra between the vomers and palatines. This region

is poorly preserved in the holotype of O. khaungraae, and the

presence or absence of the fenestra cannot be determined.

However, it is possible that at least some of these differences be-

tween the two specimens are due to a combination of individual

variation, taphonomical deformation (also rendering some ele-

ments difficult to segment precisely), and perhaps sexual dimor-

phism (comparing amale of one species with a female of another

could exaggerate interspecific differences like the premaxillary

crest height). With only a single specimen of each species, indi-

vidual variation is impossible to assess. Also note that the skull of

O. khaungraae was reported as measuring 14 mm in length,1

whereas our own measurement of the specimen gives a length

of 17.3 mm.

Description

In its bird-like shape (vaulted cranium and tapering rostrum), the

skull of Oculudentavis khaungraae appears strikingly different

from that of any known lizard (Figure 4). The bird-like appearance

is less striking in O. naga, which has a less compressed rostrum

(Figure 2).

Despite the compression of the rostrum, the two species share

many characters that distinguish them from other lizards. The

nares are bounded by the premaxilla anterodorsally, the maxilla

posteroventrally, and by the nasals posteriorly. The location of

the nares is also the same, being placed at mid-length of the

Figure 3. Comparison of the two specimens

ofOculudentavis, details of the lacrimal and

dentary

Right side view of the orbit showing the ring-like

lacrimal bone (salmon color) in situ in (A) O. naga

and (B) O. khaungraae (orbit view here is

posterolateral to show the orbital elements more

clearly). Dorsolingual view of the dentary in (C) O.

naga and (D) O. khaungraae is shown. Scale bar

represents 1 mm.

antorbital region and in having an elon-

gated oval shape. The orbit is more intact

in O. khaungraae, being nearly circular. In

both species, the longest axis of the orbit

is about 1/3 the total length of the skull

and the orbit is complete and separated

from the temporal fenestrae by a com-

plete postorbital bar. The parietal supra-

temporal processes are aligned with the

long and slender vertical supratemporals

and fail to meet the squamosals ventrally.

There is a complete circumorbital series

in both specimens—jugal (ventrally),

lacrimal (anteriorly), prefrontal (antero-

dorsally), frontal (dorsal), postfrontal (posterodorsally), and post-

orbital (posteriorly).

Premaxilla (Figures 2, S2A–S2B, S2I, and S2J). The upper jaw

comprises an unpaired median premaxilla with slender, pointed

teeth (9 inO. khaungraae and�10 inO. naga; count refers to one

side of the element). Themore anterior premaxillary teeth appear

recurved in O. khaungraae, but the equivalent teeth in O. naga

are partially obscured. Both species have a long crest along

the premaxillary nasal process (the crest was considered tapho-

nomic in O. khaungraae),1 which continues onto the nasals. The

palatal shelf is broad and flat and has two narrow palatal pro-

cesses that bound a large premaxilla-vomer fenestra in

O. naga, which has a less deformed palate. The palatal pro-

cesses of the premaxilla are also visible in O. khaungraae, but

not the intervening fenestra (see below).

Maxilla (Figures 2, S2C–S2E, and S2K–S2M). The maxilla of

both species has a low, medially curved facial process, a long

rostral component, and a suborbital ramus that does not reach

the posterior margin of the orbit—extending up to one-quarter

of the orbit length in O. naga and to about mid-orbit in

O. khaungraae. It is excluded from the orbital rim by the jugal.

The maxillary teeth are conical and pointed. There are 24 to 25

tooth maxillary loci in O. naga and 27–29 in O. khaungraae. The

maxilla has two horizontal facets: one to support the prefrontal

and another for the jugal.

Nasal (Figures 2, S2F, and S2N). The paired nasals form a

rhomboid plate, and combined with the maxilla, they define a

long tapering rostrum with retracted narial openings. The nasals

are paired, but they exhibit partial fusion along the crest and

remain separated posterior to the crest.

Prefrontal (Figure2).Theprefrontalscompriseaflatanterodorsal

plate and a weakly concave orbital plate, contacting the ring-

shaped lacrimal ventrally. The anterodorsal plate seems less
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developed inO. khaungraae than O. naga. The lateral edge of the

anterodorsal plate projects as a short angular (O. naga) or ridge-

like (O. khaungraae) shelf that overhangs the lacrimal and maxilla.

This shelf is autapomorphic among lizards, with a ridge, crest, or

boss in this position variably present (e.g., some iguanians,

including chameleons; some Phrynosoma; and some Anolis).

Lacrimal (Figures 3A and 3B). The lacrimal of both species is

unique among lizards and is one of several distinctive features

that demonstrates their close relationship. It forms a ring,

completely enclosing a large lacrimal foramen.

Jugal (Figures 2, S2G, S2H, S2O, and S2P). In both species,

the jugal forms a dorsomedially expanded flange that provides

ventral support to the large eye. The orientation of the jugal is un-

usual for squamates, being dorsomedially inclined. The postor-

bital process of the jugal is short (distorted on the right side of

O. naga).

Frontal (Figures 2, S3A, and S3E). In both species, the un-

paired median frontal has weak sub-olfactory processes and a

deep V-shaped anterior emargination that receives the nasals.

The frontal is overlapped extensively by the nasals, reaching

the level of the mid-orbit in O. naga and somewhat less in

O. khaungraae. The supraorbital margins are subparallel and

diverge posterolaterally, establishing a broad contact with the

anterior margin of the parietal. The structure of the posterome-

dial margin of the fronto-parietal suture is unclear in both speci-

mens (Figure 2, dashed lines).

Parietal (Figures 2, S3B, and S3F). The parietals are short and

partially fused (separated posteriorly). They have a rounded

lateral profile, lack a parietal foramen, and have short supratem-

poral processes that curve ventrally rather than posteriorly to

meet the supratemporals. This portion of the skull contacts the

short paroccipital processes of the otoccipital. Li et al.3 argued

that the small opening in the midline of the parietals in the holo-

type ofO. khaungraae corresponds to a parietal foramen, but it is

irregular and appears to be an artifact of breakage.

Postfrontal (Figure 2). The postfrontal is a small, splint-like

bone, lateral to the frontal and the parietal in O. khaungraae

but of uncertain structure and position in O. naga. The postfron-

tals are very reduced in both species and were not noticed in the

original description of O. khaungraae.

Postorbital (Figures 2, S3C, and S3G). The postorbital is a

strongly triradiate bone with a long (O. naga) or short

(O. khaungraae) posterior process that contacts the squamosal

posteriorly. The postorbital differs in the two species: the postor-

bital squamosal process tapers gradually in the O. naga holo-

type, while the tapering appears more abrupt in the

O. khaungraae specimen. Due to the proportionally thicker post-

orbital, the right side of O. khaungraae shows a more extensive

contact between the postorbital and the descending process

of the parietal, entirely covering the braincase laterally and

almost completely closing the upper temporal fenestra. Howev-

er, on the left side, it is clear that this fenestra remained open. In

O. naga, the upper temporal fenestra looks larger, but the skull

table of this specimen is very depressed and the postorbital is

more gracile, so the differences in configuration of the

upper temporal bar may be exaggerated by taphonomic

deformation.

Squamosal (Figures 2, S3D, and S3H). In both species, the

typically squamate hockey-stick-shaped squamosal lacks an

ascending process and lies between the supratemporal, the

postorbital, and the quadrate.

Supratemporal (Figures 2, S3B, and S3F, articulated with the

parietal). The supratemporal is also reduced to a slender vertical

splint of bone that contacts the lateral margin of the parietal

supratemporal process, separating it from the squamosal.

Palate (Figures 2, S4A, and S4D). In the palate of

O. khaungraae, the premaxilla-vomer fenestra is totally obliter-

ated (due to compression). In this respect, O. naga has a more

intact rostrum, more clearly exhibiting the premaxilla-vomer

fenestra and the very large fenestra exochoanalis. The suborbital

fenestra is oval in both specimens and is bounded by the same

bones: palatines anteromedially, ectopterygoids laterally, and

pterygoids posteriorly, although the sutures between these

bones are not easy to identify. It also looks as if the ectopterygoid

barely contacts the palatine inO. naga, but the degree of contact

is ambiguous in O. khaungraae. The shape of the interpterygoid

vacuity differs between the two species. Pterygoid teeth are pre-

sent and are arranged in a row on the anteromedial process of

the pterygoid, just posterior to the inferred suture with the pala-

tine. There are about 3 to 4 on each bone in O. khaungraae; the

Figure 4. Cranial disparity of typical lepidosaurs to demonstrate the atypical skulls of Oculudentavis

(A) Sphenodon punctatus, Rhynchocephalia UF11978; (B) Anelytropsis papillosus UF-H-86708, Dibamidae; (C) Sphaerodactylus caicosensis UF95971, Gekkota;

(D) Smaug swazicus NMB-R9201, Cordyliformes; (E) Eugongylus albofasciolatus CAS159825, Scincidae; (F) Varanus sp. UF71411, Varanidae; (G) Rieppeleon

brevicaudatus CAS168891, Iguania; (H) Boaedon fuliginosus CAS85747, Serpentes; (I)Oculudentavis naga GRS-Ref-28627; (J) O. khaungraae HPG-15-3. Scale

bar represents 10 mm.

ll
OPEN ACCESS

6 Current Biology 31, 1–12, August 9, 2021

Please cite this article in press as: Bolet et al., Unusual morphology in the mid-Cretaceous lizard Oculudentavis, Current Biology (2021), https://doi.org/
10.1016/j.cub.2021.05.040

Article



same area is fragmented in O. naga, but small projections on

both pterygoids can be interpreted as pterygoid teeth.

Quadrate (Figures 2, S4B, and S4E). The quadrate is distinc-

tively low in position and small in size in both species. The quad-

rate is stouter in O. khaungraae (with a more prominent head)

than in O. naga, but the overall shape is similar in both speci-

mens, with a shallow conch, a slightly curved medial pillar, and

a lateral tympanic crest that has a 90-degree angulation along

its length. The quadrate suspension in both species is character-

istically squamate.

Braincase (Figures 2 and S5). By comparison with that of

O. khaungraae, the braincase of O. naga is unevenly dorsoven-

trally compressed, so that the right side is more damaged than

the left and the posteroventral margin is abnormally low. None-

theless, comparison of the two braincases shows more similar-

ities than differences, notably thewell-developed crista prootica,

short alar processes, slender basipterygoid processes, short ba-

sisphenoid, enclosed vidian canals opening posteriorly within

the basisphenoid, robust parasphenoid rostrum (base only pre-

served in O. naga), short uncrested supraoccipital with a visible

processus ascendens (mineralization uncertain), and short pa-

roccipital processes. The parasphenoid rostrum is well pre-

served in O. khaungraae, being longer than the basipterygoid

processes, and almost entirely divides the interpterygoid vacu-

ity. In O. naga, the parasphenoid rostrum is represented only

by its base, possibly due a fracture or weak mineralization. How-

ever, there are differences in the orientation, length, and distal

shape of the basipterygoid processes in the two species.

Epipterygoid (Figure 2). These elements are poorly preserved

and displaced in both species. They are columnar and still in

articulation within the fossa columellae of the pterygoid, this

articulation being another uniquely squamate character. In the

holotype of O. naga, a portion of the left epipterygoid remains

attached to the alar process.

Scleral ossicles (Figures 1, S4C, and S4F). In both species, the

orbit contains a large ring of ‘‘spoon-shaped’’ scleral ossicles

that supported a large eye. The ossicle count is 14 in both spec-

imens. Due to the distinctive shape of the ossicles, they overlap

at both their inner edges (which would have surrounded the iris

and the pupil) and the outer edges, leaving oval gaps between

ossicles in the middle of the sclerotic ring. Although the skull of

O. khaungraae is 1.23 longer than that ofO. naga, the scleral os-

sicles are proportionally larger in O. khaungraae, being 1.53

larger than those of O. naga.

Dentary (Figures 2, 3C, 3D, and S6). Both species have a long

shallow mandible of which the straight dentary forms the major

part (�75%) and a large number of sharp, weakly pleurodont

teeth (29 to 30 in both specimens). Both species also have a large

number of lateral neurovascular foramina (10–12), and the den-

tary in each specimen has parallel upper and lower margins.

Thesymphyseal regiondoesnot extendbeyond the second tooth

locus in either specimen. The lower margin of the dentary curves

dorsomedially and closely approaches the subdental shelf, thus

restricting theMeckelian fossa but without fusion. TheMeckelian

fossa remains open posteriorly, where it is overlapped by the

splenial. The dorsolabial surface of the posterior one-third of

the dentary bears a flattened, shelf-like surface.

Splenial (Figures 2 and S6). The splenial is very slender and

does not extend anteriorly beyond the posterior one-third of

the dentary, closing only the posterior part of the Meckelian

fossa in both species. Posteriorly, the splenial does not extend

beyond the level of the coronoid eminence.

Coronoid (Figures 2 and S6). The postdentary region is short,

including a coronoid with a low, posteriorly set, coronoid

eminence. The coronoid looks significantly larger in the holotype

of O. naga than in the holotype ofO. khaungraae, especially in the

development of the anterolateral and anteromedial processes.

However, these differences could be due to damage during

deformation, making it difficult to establish clear bone bound-

aries (e.g., between surangular and coronoid), as this was one

of the most problematic regions to segment in both specimens.

Angular (Figures 2 and S6). This is a very reduced and slender

bone, limited to the posteroventral side of the jaw.

Compound bone (Figures 2 and S6). There is no obvious su-

ture between the surangular and the articular or prearticular in

either specimen. Both specimens have a long retroarticular

process and a short, deep adductor fossa. It is uncertain

whether the coronoid reached the anterior margin of the

adductor fossa.

Although only part of the postcranial skeleton is preserved in

O. naga, it shows a short neck with eight cervical vertebrae

that are amphicoelous, atlantal arches bearing posterior zyg-

apophyses, and a pectoral region comprising a T-shaped inter-

clavicle, medially expanded clavicles, and a typically squamate

scapulocoracoid with scapular, scapulocoracoid, and primary

coracoid fenestrae.

Vertebrae (Figures S7A and S7B). Eight cervical vertebrae are

preserved, including the atlas and the axis, as well as a small

number of dorsal vertebrae (using the traditional anatomical defi-

nition whereby the first dorsal vertebra is that with a rib that

meets the sternum, contra Gauthier et al.7). The atlantal arches

are not fused, and they have well-developed postzygapophyses.

The axis preserves the dens, which is already fused in place. The

vertebrae are amphicoelous and notochordal, with low neural

spines. There are simple semicircular intercentra visible in the

anterior part of the neck, with only a weak ventromedian keel

(Figure S7). As in living gekkotans, these elements are free and

intercentral in position. The first visible cervical rib is on cervical

six, but there may have been ribs more anteriorly. There are no

gastralia.

Clavicle (Figure S7C–S7E). The clavicles are expanded medi-

ally and have a well-defined clavicular fenestra completely en-

closed by bone. The clavicles are separated at the ventral

midline by tip of the T-shaped interclavicle. Dorsally, the clavi-

cles appear to extend above the level of the scapula blade,

possibly meeting a suprascapular cartilage.

Scapulocoracoid (Figures S7C–S7E). Both scapulocoracoids

are preserved and display an anterior primary coracoid emargi-

nation, an emarginated scapular blade, and a large circular scap-

ulocoracoid emargination. Dorsal to the scapula, there is an

irregular mass that may represent the suprascapular cartilage.

Sternum (Figure S7D). Only the anterior border of the cartilage

sternum is preserved, suggesting it was rhomboid.

Interclavicle (Figure S7D). The interclavicle is T-shaped and

quite robust.

Humerus (Figure S7D). The proximal portion of the left humer-

us is present, preserving the humeral head and the lateral

tuberosity.
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Soft tissue (Figure 1; Data S1, Gular scales in Oculudentavis).

Both specimens also preserve soft tissue. The head and body

are covered in small, granular scales, with large rectangular supra-

labial and infralabial scales, tiny scales covering the eyelid, and a

nostril placed anterior to the midpoint of each retracted narial

opening (Figures 1 and 2) in O. naga. There are no osteoderms.

On the ventral surface of the head in O. naga, along the midline,

the epidermal scales are raised and form a line of evenly spaced

short ridges. Posterior to this midventral line, the skin of the gular

region is thrown into a series of narrow linear folds. This folded re-

gion underlies the hyoid ceratobranchials and may demonstrate

the resting anatomy of loose gular skin that could be inflated, for

example in territorial display, in associationwith hyoidmovements.

Phylogenetic and morphospace position

To test the interpretation of squamate status for Oculudentavis,

we scoredbothspecimens into twodatasets: (1) an amniotedata-

set that includes archosauromorphs and lepidosauromorphs6

with the addition of a non-avian theropod, a crocodylomorph,

two stem-birds, and a crown-bird (Figure 5A) and (2) a large

morphological data matrix focused on Squamata7 with the inclu-

sionofmoleculardata (Figures5Cand5D;DataS1,Combinedev-

idence tree for squamate dataset using the ordered scheme and

Combined evidence tree for squamate dataset using the unor-

dered scheme).15 In the phylogenetic analysis of the amniote da-

taset, GRS-Ref-28627 andHPG-15-3 consistently and unequivo-

cally group as sister taxa, a position compatible with attribution of

Figure 5. Phylogenetic trees showing the position of Oculudentavis

(A) Phylogenetic tree showing the position ofOculudentavis using an amniote dataset;6 (B) photograph of the holotype ofO. naga; (C) simplified phylogenetic tree

showing the position of Oculudentavis using a squamate dataset7 combined with a molecular dataset15 treating some morphological characters as ordered; (D)

simplified phylogenetic tree showing the position ofOculudentavis using the same dataset as in (C) but with all characters unordered; (E) simplified phylogenetic

tree showing the position of Oculudentavis using the same dataset as (C) but removing molecular data. In (C)–(E), crown groups were collapsed and are rep-

resented by silhouettes. Sphenodon punctatus, Anelytropsis papillosus (Dibamidae), Sphaerodactylus klauberi (Gekkota), Smaug giganteus (Cordylidae), Xan-

tusia vigilis (Xantusiidae), Tribolonotus gracilis (Scincidae), Bachia flavescens (Lacertoidea), Lacerta bilineata (Lacertoidea), Blanus cinereous (Amphisbaenia),

Varanus komodoensis (Anguimorpha), Physignathus cocincinus (Iguania), and Ophiophagus hannah (Serpentes) are shown. Node values indicate Bremer

support; nodes with no support were recovered in the implied weights analyses. See also Data S1.
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GRS-Ref-28627 toOculudentavis, and this genus always clusters

with squamates (Figure 5A). Both specimens show an unequivo-

cal suite of unique squamate characters. A phylogenetic analysis

constraining Oculudentavis as a bird, but without any defined

location, resulted in Oculudentavis being placed basal to a clade

formed by Archaeopteryx+Confusiusiornis+Columba. This anal-

ysis found four trees that were 28 steps longer than the 9 trees

of the unconstrained analysis (1,164 steps [constrained] versus

1,136 steps [unconstrained]). The same constrained and uncon-

strained analyseswere run using impliedweights (k = 20). In these

analyses, the tree distortion in the constrained analysis increased

from 33.58 to 34.92. Both implied weights analyses recovered

only one tree. If the difference in fit is scaled with the best score,

the difference is 0.0246 in the case of equal weights, whereas

for implied weights, it is 0.0349.

As it stands in the present phylomorphospace plot, a subtle

convergence is apparent between birds, squamates, and drepa-

nosaurs (Data S1, 2D phylomorphospace using the amniotes ma-

trix), rather than betweenOculudentavis and birds. Morphological

convergence betweenOculudentavis andbirdswasmore obvious

in our initial results (not shown) but gradually became diffuse as

more information was added from improved segmented models.

Adding the third axis (PCO3) does not showaclearer convergence

between birds and squamates orOculudentavis (DataS1, 3Dphy-

lomorphospace using the amniote matrix). An analysis corre-

sponding to the skull characters alone, which was expected to

concentrate the convergent features between Oculudentavis

and birds, also failed to show any convergence. Orienting the

3D plot of the skull dataset to see PCO1 against PCO3 (Data

S1, 3D phylomorphospace using the amniote matrix) again shows

some convergence between birds and squamates as awhole, but

not Oculudentavis in particular.

The phylogenetic analysis of Gauthier et al.’s squamate matrix

(combined with molecular data) with additive characters re-

covers Oculudentavis as sister to dibamids (Figure 5C). Jucara-

seps is the only identified wildcard taxon, causing a polytomy for

non-dibamid squamates. An analysis of the same matrix using

unordered characters recovers Oculudentavis as forming part

of the stem of Squamata, specifically as sister to Scandensia

(Figure 5D). Finally, removing the molecular data (and thus using

morphology alone) places Oculudentavis as sister to mosasaurs

(Figure 5E), which are on the stem of ‘‘Scleroglossa’’ (non-igua-

nian squamates).

Distortion of the specimens

Xing et al.1 considered their specimen of Oculudentavis khaun-

graae to be skeletally mature, and this is probably true of the

O. naga holotype, given the tight connections between bones,

the closed parietal and basicranial fontanelles, the conjoined

scapula and coracoid, the sutured humeral epiphysis, and the

fused dens of the axis. O. khaungraae has a relatively larger eye

than O. naga and appears to have a much shallower rostrum

and a more vaulted parietal, but the latter two differences may

be artifacts of preservation. Both specimens have undergone

compression but in different ways and in different parts of the

skull. The specimen of O. khaungraae has suffered compression

of the rostrum. The ‘‘dented’’ prefrontals and the out-turnedmaxil-

lary teeth on the right side provide clear evidence of this, as does

the fact that the teeth of the left dentary have pushed through the

maxilla of that side. In an anterior view of theO. khaungraae skull,1

the jaw outlines are seen to be distorted, and the twisting of the

dentary is seen clearly in the disarticulated right mandible. In

contrast, O. naga has experienced compression of the orbital re-

gion and posterior skull, as shown by the upward displacement of

the dorsal tip of the left postorbital, the broken jugal, and the

disparity in height between the dorsal edge of the scleral ring

and the frontal (suggesting the eyeballs may have been pushed

outward when the headwas compressed). Together, these points

of damage exaggerate the differences in height between the

rostrum, orbit, and postorbital skull in the two specimens. Thus,

the proportional differences between the skulls could be due to

a combination of interspecific differences (e.g., premaxillary

length) as well as differences in size, taphonomy, and even sexual

dimorphism.16 Although sexual dimorphism primarily relates to

discussion of intraspecific variation, it is also relevant to interspe-

cific comparison. Given two closely related sexually dimorphic

species (e.g., within the extant Basiliscus or Trioceros), compari-

son between a male of one and a female of the other would exag-

gerate the interspecific differences. Oculudentavis naga has a

taller premaxillary crest, giving the rostrum a deeper (and less

bird-like) appearance. The more pronounced premaxillary crest

could, potentially, be a sexually dimorphic trait (e.g., if the

O. naga specimen is male), if not meaningful at interspecific level.

Based on the observed deformations of the skulls described

above and obvious asymmetries between left and right sides,

we used new retrodeformation methods on landmark data of

the two specimens to provide a proof of concept that some of

Figure 6. Heatmaps displaying the possible

degree of deformation in Oculudentavis

species

O. khaungraae HPG-15-3 (A and B) and O. naga

GRS-Ref-28627 (C and D). The shape variation

(degree of deformation) between the original and

retrodeformed 3D surface is color coded, with

yellow and dark blue representing no deformation

and high deformation, respectively. Heatmaps

indicating the amount of retrodeformation provide

a good visual aid to display the regions where a

specimen would have been deformed and what its

overall shape would have looked like prior to

deformation. All changes are based on observed

distortions in the specimens themselves. See also

Data S1.

ll
OPEN ACCESS

Current Biology 31, 1–12, August 9, 2021 9

Please cite this article in press as: Bolet et al., Unusual morphology in the mid-Cretaceous lizard Oculudentavis, Current Biology (2021), https://doi.org/
10.1016/j.cub.2021.05.040

Article



the differences between the skulls of O. khaungraae and O. naga,

including the more bird-like appearance of the former, could, at

least in part, be an artifact of lateral compression of the rostrum.

The heatmap plots on the retrodeformedmeshes support the pro-

posal that some of the overall proportional differences between

the O. khaungraae and the O. naga holotypes can be explained

by taphonomic deformation (Figure 6). The O. khaungraae heat-

map displays greater deformation of the rostrum (Figures 6A

and 6B), whereas the O. naga heatmap shows that most of the

deformation was concentrated on the vault of the skull (Figures

6C and 6D).

Retrodeformation methods permit the marked differences

between specimens (based on observable distortions and asym-

metries) to becorrected, resulting inmore similar skull proportions.

This is congruent with the highly distinctive features shared by

these two specimens and supports the generic allocation. More-

over, the bird-like appearance of O. khaungraae becomes less

striking once this deformation is corrected. However, considering

the osteological differences in the palate and postorbital bones,

we have opted to place these two specimens into separate spe-

cies. This may be re-assessed if further specimens are recovered.

DISCUSSION

The morphological features described above and the phyloge-

netic analyses support the identification of GRS-Ref-28627 as a

second species of the genus Oculudentavis, which is an unusual

squamate rather than a bird. Using a squamate dataset

combining both morphological and molecular data, the phyloge-

netic placement of both species of Oculudentavis within Squa-

mata is markedly different, depending on how the data are

treated. If the characters are treated as ordered, the two speci-

mens form a sister clade to the limb-reduced, vestigial-eyed,

fossorial Dibamidae, near the base of Squamata (Figure 5C;

Data S1, Combined evidence tree for squamate dataset using

the ordered scheme). If characters are treated as unordered,

then Oculudentavis is recovered on a rather populated stem of

Squamata (Figure 5D;DataS1,Combined evidence tree for squa-

mate dataset using the unordered scheme), which mainly com-

prises early-middle Cretaceous taxa. This position fits the results

recovered in the analysis of the amniote dataset phylogenetic

analysis, where Oculudentavis is on the stem of Squamata, one

node above the Cretaceous Huehuecuetzpalli. When molecular

data are removed,Oculudentavis is recovered as sister to mosa-

saurs, on the stemof ‘‘Scleroglossa.’’ Unfortunately, the ancestral

skullmorphologyofmosasaurs is poorly known.There is currently

no confirmed pre-Cretaceous record formosasaurians, andmost

early-mid Cretaceous mosasaurian taxa have poorly preserved,

or absent, skulls. Oculudentavis shares a long ascending nasal

process of the premaxilla and retraction of the narial openings

with mosasaurs but differs from them in most other respects,

including (in Oculudentavis) the shape of the quadrate, the short

parietal, absence of a parietal foramen, ventrally oriented supra-

temporal processes, broad vomers, long dentary, amphicoelous

vertebrae, and fenestrated scapula.17,18

It is notable that many of the characters that diagnose Oculu-

dentavis are not unusual among stem birds and/or their modern

descendants: large median premaxilla; long tapering rostrum

composed of premaxilla, maxillae, and elongated paired nasals;

retracted narial openings; co-ossified vaulted parietals and me-

dian frontal; no parietal foramen; large orbit containing promi-

nent scleral ossicles; short paroccipital processes; and short

postdentary region with coronoid bearing a low, posteriorly set

process and long slender retroarticular process. However,

convergence between lizards (as a whole) and birds is only

weakly illustrated in the phylomorphospace analysis (Data S1,

2D phylomorphospace using the amniotes matrix). Given the

obvious differences in postcranial morphology between birds

and lizards, we repeated the phylomorphospace analysis using

only skull characters. However, limiting the morphospace to

the cranial material did not reveal a clearer pattern of conver-

gence (Data S1, 3D phylomorphospace using the amniote ma-

trix). Although a degree of convergence can be observed in the

plot of PCO1 against PCO3 (as shown in the 3D phylomorpho-

space of the cranial dataset; Data S1, 3D phylomorphospace us-

ing the amniote matrix), it concerns birds and squamates as a

whole, not Oculudentavis in particular. These results suggest

that the similarity between the holotype of Oculudentavis khaun-

graae and the skull of birds has more to do with the proportions

of the skull (e.g., the large orbits, vaulted skull roof, or elongate

rostrum) as exaggerated by deformation than with the presence

of shared derived character states, at least regarding the

amniote matrix used.

The absence of substantial postcranial material for Oculuden-

tavis limits our ability to reconstruct its lifestyle. The large eyes

Figure 7. Oculudentavis naga prior to being trapped in tree resin

Scientific illustration by Stephanie Abramowicz.
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with small pupils (Figures S4C and S4F) suggest Oculudentavis

was diurnal, dwelling in photopic light environments,1,19,20 and,

given its entrapment in amber,may have been arboreal (Figure 7),

but this remains speculative. The mechanical advantage of a liz-

ard jaw depends on the ratio between the distance of the jaw

joint to the point of application of the adductor muscles (in-lever)

and the length of the jaw as a whole (out-lever).21 Jaws in which

the tooth row is of similar length to the distance between the co-

ronoid process and the jaw articulation will deliver a stronger bite

than one in which the tooth row is several times longer than the

post-coronoid jaw, as it is in Oculudentavis. The long shallow

dentary, sharp conical teeth, low coronoid process, weak

mandibular symphysis, restriction of adductor muscle origin to

lateral parietal margins, and the short mandibular adductor fossa

are suggestive of a weak bite force. Coupled with the long retro-

articular process, for the attachment of the depressor mandibu-

lae, this implies a feeding strategy requiring fast jaw opening but

limited power—perhaps for snapping at fast-moving small in-

sects (e.g., ants or flies; Figure 1). This would be consistent

with the large eyes and tapering rostrum.

Our retrodeformation results (Figure 6) provide a proof of

concept that the bird-like appearance of the HPG-15-3 skull is

plausibly an artifact of lateral compression of the rostrum.

Furthermore, they also demonstrate that virtual retrodeformation

methods can provide a complementary procedure to aid tradi-

tional osteological analyses in fossil descriptions. Therefore,

herein (STAR Methods), we present a streamlined workflow for

virtual retrodeformation of taphonomically deformed specimens,

based on 3D landmark data.

With new lizard specimens emerging from the Myanmar

amber each year, new specimens of Oculudentavis may yield

additional material of the postcranial skeleton, notably the pelvic

region, distal parts of the limbs, and tail, providing further eco-

morphological data on this unusual lizard and further resolution

of its phylogenetic position.
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The holotype specimen of Oculudentavis naga was acquired from an authorized company that exports amber pieces legally

outside of Myanmar, following an ethical code that assures no violations of human rights were committed in the process of mining,

and commercialization. The referred specimenwas initially loaned on consignment to GRSduring a Bangkok show in 2018, for chem-

ical, physical and spectroscopic analysis. Following these tests, the specimen was returned to Myanmar by the Myanmarese owner,

and exported through a jewelry show in Yangon officially through a broker of GRS, whereupon it passed through definitive official

export channels, and subsequently entered the GRS collection in Switzerland. AP strongly affirms that no funds from the sale of

this amber specimen have been directed to support conflict in Kachin. A movie of the mine visit is available upon request from

AP. The Peretti Museum Foundation is an officially established, not-for-profit organization, founded in Switzerland by the Peretti fam-

ily. The Museum promises ethical compliance in connection with the acquisition of material and supports charity projects in mining

areas. TheMuseum actively supports research and knowledge, and provides a framework for expert collaboration and public access

to all type specimens and associated content for study and publication in academic literature and other outlets. The special legal

structure of the non-profit Peretti Museum Foundation law mandatorily guarantees under Swiss law that inventory of the foundation

with GRS Reference numbers can never be lost to science. A description and further details regarding the timing and a discussion of

the military escalation in the Tanai area, and details regarding the ethical acquisition of amber pieces from Myanmar are available at

the Museum website: https://www.pmf.org. The referred specimen has an authenticated paper trail, including export permits from

Myanmar. All documentation relevant to the acquisition of the holotype specimen of Oculudentavis naga is available in the Supple-

mental information section. Detail information of the ethical acquisition of amber pieces can be found in the following link: https://

372fddf1-abf8-4bcf-897d-e5819bb34d6e.filesusr.com/ugd/31bd21_fb8d0e5bcbe34ff0bb8294a260a21670.pdf.

METHOD DETAILS

Spectroscopy and stratigraphic data
Fourier-transform infrared (FTIR) spectrum data of the specimen was recorded and compared to a number of reference specimens

extracted directly from the Aung Bar mine by GRS staff, and to FTIR spectra of specimens obtained from other mines and localities

acrossMyanmar. Likewise, the inclusion pattern (bandingwith bubble flows, etc.) was compared to other self-collected (by A.P) Aung

Bar materials. FTIR matrix and inclusion analyses conclusively verify the indicated origin of the material from the Aung Bar mine.33

GRS representatives visited the mine shaft from which the specimen was recovered, and a GoPro recording was made of the trip

down the mine to the approximate location from which the specimen was found within the 1-2-m-thick amber-containing rock layer.

A miner was commissioned to recover a sample with GoPro recording of this amber-bearing rock for archiving and further analysis.

Stratigraphic analysis of the entire mine column is yet to be conducted.

Synchrotron Scanning
Microtomographic measurements of Oculudentavis naga were performed using the Imaging and Medical Beamline (IMBL) at the

Australian Nuclear Science and Technology Organization’s (ANSTO) Australian Synchrotron, Melbourne, Australia. For this investi-

gation, acquisition parameters included a pixel size of 5.8 3 5.8 mm, monochromatic beam energy of 28 keV, a sample-to-detector

distance of 100 cm and use of the ‘‘Ruby’’ detector consisting of a PCO.edge sCMOS camera (16-bit, 2560 3 2160 pixels) and a

NikonMakro Planar 100mm lens coupled with a 20 mm thick Gadox/CsI(Tl)/CdWO4 scintillator screen. As the height of the specimen

exceeded the detector field-of-view, the specimen was aligned axially relative to the beam and imaged using three consecutive

scans, each consisting of 1800 equally-spaced angle shadow-radiographs with an exposure length of 0.50 s, obtained every

0.10� as the sample was continuously rotated 180� about its vertical axis. Vertical translation of the specimen between tomographic

scans was 11 mm. 100 dark (closed shutter) and beam profile (open shutter) images were obtained for calibration before and after

shadow-radiograph acquisition. Total time for the scan was 52 min.

The raw 16-bit radiographic series were normalized relative to the beam calibration files and combined using IMBL Stitch software

to yield a 32-bit series with a field-of-view of 14.8 3 29.4 mm. Reconstruction of the 3-D dataset was achieved by the filtered-back

projection method and TIE-Hom algorithm phase retrieval34 using the CSIRO’s X-TRACT.35 The reconstructed volume data were

rendered and visualized using VGStudio Max.22

Phylogenetic analysis
The two specimens assigned toOculudentaviswere retrofitted into a character matrix for squamates, including phenotypic7 andmo-

lecular data.15 We were able to score 374 characters in Oculudentavis naga (GRS-Ref-28627; 61.3% scored), but only 302 in

O. khaungraae (HPG-15-3; 49.5% scored). The character scores that were available on both specimens are very similar, although

part of the large amount of missing data in O. khaungraae is due to the preservation of the specimen that makes it difficult to follow

suture lines. Fifteen characters have different scores for O. khaungraae and O. naga (see the detailed list in the Supplemental Infor-

mation). All analyses were performed with TNT.23 We searched for the best tree over all matrices with equal weights, treating char-

acters as either ordered (Figure 5C; Data S1, Combined evidence tree for squamate dataset using the ordered scheme) or unordered

(Figure 5D; Data S1, Combined evidence tree for squamate dataset using the unordered scheme). An additional search was run on a

version of the dataset that included just the morphological characters (Figure 5E; Data S1, Morphological tree for squamate dataset

using the ordered scheme). On each run we used a script to search with new technologies (xmult command), starting with 20 trees of

random addition, using exclusive and random sectorial searches,36 as well as 25 rounds of ratchet37 and tree drift,36 and fusing trees
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every five rounds. This procedure was repeated until 20 independent hits of minimal length were found. All the best trees, as well as

the strict consensus were stored. To calculate node support, we use a TBR swapping option as implemented in TNT to calculate

Bremmer support values holding trees up to 10 steps beyond the optimal tree (bsupp command). Wildcards were detected using

the prunnel command; wildcard terminals were removed from optimal trees found with all terminals activated, and the consensus

was calculated from that resulting pruned trees (i.e., character scores from wildcard terminals were considered).

The two specimens of Oculudentavis were also coded into a general amniote data matrix6 to test their position in relation to both

birds (represented byArchaeopteryx,Confuciusornis, Columba), and squamates.Wealso added the non-avian theropodVelociraptor

mongoliensis and the crocodylomorph Crocodylus acutus. We were able to score 151 characters for Oculudentavis naga (49.2%

scored), and 108 ofO. khaungraae (35.1%scored).We searched for the best tree using impliedweights,38–40 increasing the concavity

value using a size of class interval of 10 from10 to 200. As the size of thematrix is average,we used TNT23with a traditional searchwith

200 trees of random addition (mult command). The reported tree corresponds to the single topology recovered under the different

values of concavity (Figure 5A). To test the cost of forcing Oculudentavis as a bird, we ran a search with equal weights in implied

weights constraining Oculudentavis as a bird, but without any defined location and compared its length with an unconstrained tree.

Phylomorphospace analysis
The phylomorphospace provides the position of taxa in a bidimensional (Data S1, 2D Phylomorphospace using the amniotes matrix)

or tridimensional (Data S1, 3D Phylomorphospace using the amniote matrix) morphospace distributed according to the values of the

distancematrix, with themorphological matrix as the source. All nodes and tips are connected by lines that represent the branches in

the phylogeny. One advantage of phylomorphospace plots is that they make it easier to recognize whether clades and/or ecological

groups plot in distinct areas of morphospace.

Phylomorphospace analyses using the morphological character matrices were run in Claddis package v. 0.2.024 in R.25 One phy-

logeny resulting from each dataset was selected to be used in plotting phylomorphospaces. They were dated using the ‘‘equal’’

method of the timePaleoPhy function in the package paleotree v. 3.3.0.26 The package Plotly v. 4.9.027 was used to generate an inter-

active plot of 3Dmorphospace. The packageGeomorph v. 3.1.028 was used to generate an interactive plot of 3D phylomorphospace,

of which reported figures (Data S1) are (modified) screenshots. The strength of association between characters and PCO axes was

calculated using Cram�er coefficients (see Kotrc and Knoll41) as adapted in Nord�en et al.,42 see Data S1, Cram�er coefficients and p

values.

Retrodeformation analysis
The rendered volume data for the twoOculudentavis species was exported as three-dimensional (3D) surface meshes using VGStu-

dio Max.22 A dense set of landmarks (containing landmarks, curve-semilandmarks, and 3D surface semilandmarks, see Data S1,

Distribution of 3D landmarks used in the retrodeformation) was placed across multiple regions in the 3D surface meshes to capture

detailed overall skull shape in each specimen, using Stratovan Checkpoint,30 before being exported as CSV files for further analyses.

Despite multiple similarities in osteological features between the two specimens assigned toOculudentavis, there are some overall

skull shape differences that could be easily attributable to deformations caused by taphonomic processes. Even though recently

developed analytical methods can virtually retrodeform fossil specimens, this has only been developed for taphonomically-induced

bilateral asymmetry.43 Here we present a virtual retrodeformation workflow for dorso-ventrally taphonomic deformations based on

3D landmark data, using the open-source software R.25

Landmark data and 3D surface meshes were imported into R using the file2mesh function in Morpho.29 We used the R package

ShapeRotator44,45 to place both skulls on the x,z plane, thereby facilitating all subsequent retrodeformation operations. Since each

Oculudentavis specimen exhibited deformations in different regions of the cranium, identified by asymmetries, distortions, and bone

displacements, we performed different retrodeformation operations on each specimen.

For theOculudentavis khaungraae specimen, we identified the premaxilla, maxilla and dentary as the points showing themaximum

effects of taphonomic deformation that contributed to its bird-like appearance, both laterally and dorso-ventrally. We first addressed

the lateral compression of the rostrum by increasing the distance between the landmark sets on the premaxilla, maxillae and the

skull’s lateral midline. We then addressed the dorso-ventral compression on the x,y plane, mostly affecting the nasal crest, premax-

illa, and maxillae.

ForOculudentavis naga, we identified a dorso-ventral compression of the vault. We first retrodeformed the orbits on the x,y plane to

a more ‘natural’ ellipsoid shape, as they had been highly affected by dorso-ventral compression. After obtaining a model with the

most likely orbit shape (as determined by the shape and proportions of the ring of scleral ossicles), we proceeded tomodel the defor-

mation effects on the nasals, prefrontals, frontals, and postfrontals. Finally, the supraoccipital was retrodeformed to be oriented in a

more vertical position than preserved, to reconstruct an accurate vault shape, as this region had been taphonomically deformed and

displaced at an angle relative to the rest of the vault.

After obtaining the retrodeformation models for both specimens, we used a thin-plate spline method46 to interpolate surface

changes from the 3D landmark data onto the 3D surface mesh, using the R function tps3d in Morpho. We visualized shape variation

between the original and retrodeformed 3D surfacemeshes by plotting heatmaps onto the retrodeformedmeshes, using the function

meshDist inMorpho.29 These heatmaps indicate the degree of deformation in different regions of the skulls, with yellow and dark blue

representing no deformation and high deformation respectively.
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Figure S1. Articulated skulls of Oculudentavis species with bone interpretation 

based on the digital segmentation. Related to Figures 1, 2. A–C, O. naga, D–K, O. 

khaungraae. Scale bar equals 2 mm.  



 

Figure S2. Segmented skull elements. Related to Figures 1, 2.  A–H, Oculudentavis naga; I–P, 

O. khaungraae. Lateral view of the premaxilla (A, I); dorsal view of the premaxilla (B, J). Left 

maxilla in lateral (C, K), occlusal (D, L), and medial (E, M) views. Nasals in dorsal view (F, N), and 

right jugal bones in lateral (G, O) and dorsal views (H, P). 



 

Figure S3. Segmented skull elements. Related to Figures 1, 2. A–D, Oculudentavis 

naga; E–H, O. khaungraae. Dorsal view of the frontal and nasal (A, E); dorsal view of 

the parietal (B, F); lateral view of the left (C), and right (G) postorbitals, and lateral 

views of the left squamosal (D, H).  



 

Figure S4. Segmented skull elements. Related to Figures 1, 2. A–C, Oculudentavis 

naga; D–F, O. khaungraae. Ventral view of the palatal bones (A, D); left quadrate (B); 

right quadrate (E); left scleral ossicle series (C, F). Related to Figures 1, 2. 



 

Figure S5. Segmented braincase. Related to Figures 1, 2. Oculudentavis naga (A–
E), O. khaungraae (F–J). Dorsal (A, F), posterior (B, G), anterior (C, H), lateral right 

side (D, I), and ventral (E, J) views.  



 

Figure S6. Segmented jaws. Related to Figures 1, 2. Oculudentavis naga (A–B), O. 

khaungraae (C–D). Lingual (A, C) and labial (B, D) views of the right ramus.  



 

Figure S7. Postcranial elements of Oculudentavis naga. Related to Figures 1, 2. 

Cervical vertebrae, right lateral view of cervical column (A) and right lateral view of 

atlas-axis (B), pectoral girdle (C–E), close up of the cervical column showing the 

intercentra in left lateral (F), and ventral (G) views.  
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