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Abstract

Machine learning approaches to medical image synthesis have shown
outstanding performance, but often do not convey uncertainty informa-
tion. In this chapter, we survey uncertainty quantification methods in
medical image synthesis and advocate the use of uncertainty for improv-
ing clinicians’ trust in machine learning solutions. First, we describe basic
concepts in uncertainty quantification and discuss its potential benefits in
downstream applications. We then review computational strategies that
facilitate inference, and identify the main technical and clinical challenges.
We provide a first comprehensive review to inform how to quantify, com-
municate and use uncertainty in medical synthesis applications.
Key words: uncertainty quantification; medical image synthesis; deep
learning; approximate inference; Bayesian neural networks

1 Introduction

Machine learning has had a pivotal impact on medical image synthesis, which
describes the task of synthesising an image of a target modality. In this chapter,
we adopt a generic definition of the task in order to encompass both traditional
synthesis problems of generating images from available ones of different modal-
ities [1, 2, 3, 4, 5], and reconstruction problems in which the creation of images
is performed from raw acquisition data1. Figure 1 illustrates this categorisa-
tion and the far-reaching impact of machine learning methods in a number of
synthesis applications.

∗Department of Medical Physics, UCL, Gower Street, London WC1E 6BT, UK
†Centre for Medical Image Computing, UCL, Gower Street, London WC1E 6BT, UK
‡Department of Computer Science, UCL, Gower Street, London WC1E 6BT, UK
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1This class of problems are usually referred to as inverse problems in imaging. From a

statistical standpoint, an inverse problem can also be interpreted as a generating process [6, 7].
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As machine learning applications in image synthesis progress towards clinical
translation, the question of their safety at the “bedside” becomes paramount
[34, 35]. In particular, deep learning methods [36], which have recently demon-
strated great promise in image synthesis (see Figure 1), often produce unex-
pectedly erroneous results in deployment domains when they deviate from the
training one. Cohen et al. [34] provide several examples of such catastrophic
failures in which the deep learning synthesis model overfits to biases in the
training data and, as a result, either removes an existing focal pathology (e.g.
lesions, tumours, etc) or hallucinates spurious ones (see Figure 2), rendering
the outputs unusable for subsequent clinical decisions. More recently, Antun
et al. [35] have shown that well-established deep learning approaches to under-
sampled MR reconstruction are unstable under small perturbations to the input
data (see Figure 3). To make matters worse, such unreliable predictions are of-
ten perceptually realistic, thus increasing the risks of letting such failures go
undetected and slip into the hands of clinicians. So long as the instability of
machine learning models remains a challenge in image synthesis, we will be in
need of an effective means to quantify the risks of failures and to ultimately
prevent failures from arising.

(a) A translation removing tumours (b) A translation adding tumours

Figure 2: Examples of failures under data shifts in deep learning based FLAIR-
T1 MR synthesis. Images of healthy subjects and those with tumours are shown
in green and red. In (a), the model is only trained on images of healthy subjects
and as a result ends up removing a tumour in the test domain. In (b), the
model is trained only on images of tumour patients and tested on healthy cases,
leading to the creation of a synthetic tumour, which is not present in the original
image. Source: [34].

It has been argued that uncertainty quantification provides a powerful frame-
work to address this challenge [41]. So far, the overwhelming majority of meth-
ods in synthesis (mainly, machine learning based ones but also others) deliver a
single prediction, but leave users with no measure of its reliability. The ramifi-
cations and the forms of synthesis failures depend on the specifics of the down-
stream processing and the decision-making that consumes the synthesised im-
ages. This necessitates quantifying the risks of using synthesised images in a
way that is tailored to its clinical end use. Furthermore, the users may desire
to understand the sources from which the risks originate (e.g. the test case is

3



(a) Target (b) Target (Zoomed) (c) Deep Learning (d) Compressed Sensing

Figure 3: Examples of instabilities produced by neural networks for under-
sampled Magnetic Resonance Imaging (MRI) reconstruction. In (a), small struc-
tured perturbations (in the form of text and symbols) are introduced (e.g. “CAN
YOU SEE IT ♠”). In (c) and (d), the reconstructions from MRI Variational
Network (MRI-VN) [37] and state-of-the-art classical methods (i.e. compressed
sensing [38, 39, 40]) are shown, respectively. MRI-VN is moderately unstable
with respect to structural changes; such instability coincides with the inability
to reconstruct details. Note that MRI-VN has not been trained with images
containing any of the letters or symbols used in the perturbation. Source: [35].

under-represented in the training data vs. inherently ambiguous), so they can
act accordingly to mitigate them. Uncertainty quantification allows us to for-
malise these practical challenges in the language of probability theory and to
design potential solutions [42, 43]. While the wider machine learning commu-
nity has begun to realise the importance of quantifying uncertainty information
[44], this topic has yet to receive the attention it deserves in image synthesis.

The scope of this chapter is to identify current and future challenges in un-
certainty quantification for medical image synthesis along with possible uses in
clinical practice. Throughout the chapter, although primarily focusing on uncer-
tainty quantification in deep learning methods, we survey “classical” approaches
(i.e. approaches developed prior to the advent of deep learning), because many
of the concepts we cover are generally applicable to machine learning approaches.
We also discuss modelling challenges from the standpoint of machine learning
developers. We discuss whether uncertainty information should be directly com-
municated to clinicians or used as a part of the background safety mechanism
within the system. Furthermore, we query to what extent risk management
should depend on the specific synthesis task of interest and its downstream
usage in practice. For example, the diagnosis of different conditions and dif-
ferent deployment environments (e.g. A&E vs standard practice) may require
synthesised images of different quality and hence different degrees of reliability.

In this chapter, we provide the first comprehensive review of uncertainty
quantification in medical image synthesis. Moreover, we highlight the main re-
search gaps and foreseeable challenges. The rest of the chapter is structured as
follows. In §2 we provide background on uncertainty quantification. In §3 we dis-
cuss traditional and deep learning approaches for handling uncertainty. Lastly,
in §4 we discuss the technical (and practical) challenges associated with quan-

4



tifying uncertainty, and the obstacles in translating uncertainty-aware methods
into clinical practice.

2 Troublesome Uncertainty Landscape

Uncertainty quantification has recently begun to attract attention in the medical
imaging community [45, 46, 47, 48, 49]2. To date, however, the subject remains
severely under-explored for image synthesis applications3.

This section is structured as follows. In §2.1 we attempt to answer the
question: “What is uncertainty quantification?”, and we present a taxonomy
of uncertainty with an emphasis on the distinction between aleatoric and epis-
temic uncertainty. In §2.2 we motivate why we should care about quantifying
uncertainty. Lastly in §2.3 we propose a case study where we exemplify how an
existing synthesis framework may benefit from uncertainty quantification.

2.1 What Is Uncertainty Quantification?

Imagine you were given a machine learning model Fθ(·) that takes a query
instance xq (e.g. an input magnetic resonance (MR) image) and makes a pre-
diction ŷq = Fθ(xq) about a target image of interest yq (e.g. a computed tomog-
raphy (CT) image), where yq and ŷq denote the target output variable and its
estimate from the model Fθ(·), respectively. The model Fθ(·) is parametrised by
a (possibly high-dimensional) vector θ, which is optimised based on the training
dataset consisting of N pairs of inputs and target outputs D := {(xi, yi)}Ni=1. In
a supervised learning setting, we assume the existence of some θ that controls
the dependence between the input and output p(D|θ) (i.e. the likelihood of
θ). Synthesising a Computed Tomography (CT) from an MR image is a prob-
lem of predictive inference: given a set of data D and a query xq, what is the
associated prediction ŷq? In the framework of probabilistic machine learning,
inference involves several learning and approximation steps, and all the errors
and uncertainties incurred at these steps contribute to the uncertainty of the
output ŷq. Below, we present a taxonomy of different uncertainty types and
explain their differences and interrelations (see Table 1).

Predictive uncertainty is a measure describing the degree of ambiguity
(or confidence) in the model’s output ŷq for a given input xq. For example,
we may report the 95% confidence interval for each pixel (i.e. capturing two
standard deviations on either side of the mean estimate, under the Gaussian

2See Abdar et al. [44] for a comprehensive review on uncertainty-aware methods in deep
learning; medical image classification, segmentation and registration are also thoroughly dis-
cussed.

3Although under-explored for image synthesis applications, uncertainty quantification is an
important, ongoing research topic within the machine learning community, and for instance,
just recently complementary yet alternative formal definitions (to the ones we provide in this
chapter) on model bias, model variance, and aleatoric and epistemic uncertainty have been
proposed [50].
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Table 1: Uncertainty types and their distributional forms. Model M denotes one
element from model class M, e.g. a neural network Fθ(·) with the associated
parameter vector θ.

Uncertainty Type Distributional Form Ambiguity in
Predictive p(ŷ|x) the model’s output
Aleatoric p(y|x) the data formation pro-

cess
Epistemic - Structural p(M|D) the model specification
Epistemic - Parametric p(θ|D) the estimation of the

model parameters

assumption) along with the synthetic image as a measure of predictive uncer-
tainty. The confidence interval can then be used to assess the variability of the
prediction (e.g. the smaller the interval, the more certain the model is about
the prediction). Predictive uncertainty is represented in, what is known as, the
(posterior) predictive distribution p(ŷq|xq).

One is often interested not only in quantifying predictive uncertainty, but
also in understanding its sources [51, 52], which are useful in identifying the
factors from which predictive uncertainty arises. In medical image synthesis,
Tanno et al. [53] have shown how disentangling the constituents of uncertainty
yields a form of interpretation of predictive uncertainty. The sources of predic-
tive uncertainty are typically further categorised into aleatoric and epistemic
uncertainty [54, 55, 56, 57, 58].

Aleatoric uncertainty — from the Latin word alea meaning a die — refers
to the uncertainty inherent to a problem or an experimental setup that cannot be
reduced by additional physical or experimental knowledge [59]. It is also referred
to as data, intrinsic or irreducible uncertainty in collected measurements caused
by the presence of stochasticity (e.g. measurement noise [60], data transmission
and storage errors). For instance, when synthesising CTs from MR images,
aleatoric uncertainty stems from the fact that there are multiple plausible CT
solutions for a single MR image. Uncertainty of aleatoric nature is summarised
by the underlying conditional distribution p(yq|xq) of the task, which describes
the inherent stochasticity in the system output yq for the given input xq. Such
uncertainty is irreducible by collecting more data under experimental settings.
If we wish to reduce aleatoric uncertainty (e.g. the noise in the acquired data),
we might have to switch to a different acquisition protocol.

Epistemic uncertainty — from Ancient Greek “επιστηµη” meaning knowl-
edge — refers to the uncertainty arising from a lack of knowledge or statistical
evidence (i.e. the “epistemic” state of the decision maker). It is often further
decomposed into two sources: structural and parametric uncertainty.

Structural uncertainty (or model inadequacy) refers to the uncertainty about
whether the model is structurally correct. It is also referred to as model spec-
ification uncertainty or architecture uncertainty [61]. In fact, we might even
be uncertain about whether we have chosen the correct model class in the first

6



place. Perhaps, the current model class does not explain the data well, and if it
is inadequate, we may need to construct a different one. It is expressed as the
plausibility of the true target process to lie in the specified model class M. It
is thus described by a distribution p(θ ∈ M|D) which quantifies how probable it
is that model M (e.g. a neural network (NN) Fθ(·) with the parameter vector
θ) is within the model classM, given the data D. Model uncertainty is strictly
related to multi-model inference [62], which subsumes Bayesian model compar-
ison, selection and averaging, as there may exist a multitude of model classes
that explain the data equally well. Is linear regression appropriate? Or a neural
network? If the latter, how many layers should it have? In medical image syn-
thesis, we often assume that the hypothesis space Θ is correctly specified and
neglect the risk of model misspecification.

Parametric uncertainty denotes the uncertainty related to the estimation of
the model parameters under a given model specification, assuming that the form
of the model faithfully captures reality. Consider a scenario in which we choose a
complex model (with ≈ 60 million parameters) but we lack a sufficient amount of
training data (as is often the case in medical image synthesis) to train our model
on. In this case, we will likely struggle to constrain the model’s parameters. Out
of all the “functions” our model can represent, which one should we choose?
Parametric uncertainty is described by the posterior distribution p(θ|D) over
the unknown parameters θ of the specified model Fθ(·), given the data D. The
more “peaked” p(θ|D) is (i.e. the more concentrated the probability mass is in
a small region in Θ), the less uncertain the decision maker should be. In other
words, high parametric uncertainty arises when the predictions obtained from
several “plausible” parameter settings disagree the most.

Many technical and practical problems with uncertainty quantification boil
down to estimating these distributions in various settings. For complex mod-
els such as NNs, these distributions are mostly intractable, necessitating the
development of efficient and effective approximations. In medical imaging syn-
thesis, the “ground truth” for these distributions of interest, p(ŷ|xq), p(y|xq),
p(θ|D), and p(M|D) are often not explicitly available, rendering the exact evalu-
ation of uncertainty estimation very challenging [63]. We shall describe efficient
strategies for tractable approximations in §3.

2.2 Why Should We Care?

Uncertainty quantification offers a principled and consistent framework that
provides reliability measures of the model’s output, which potentially can shed
valuable insight for downstream applications. In this regard, we argue that
uncertainty quantification could assist the translation of medical image synthesis
technologies into clinical practice while improving clinicians’ trust [64]. Below
we present four use cases of estimated uncertainty information in a variety of
settings: quality check, propagating uncertainty, shedding insight and improving
predictive performance. We also present the safety implications of deploying
machine learning based image synthesis applications in clinical practice.
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Quality Check

Taking contrast enhancement of CTs as an exemplary synthesis application, one
may be interested in whether the model generalises in new environments. One
may want to asses if the model can reliably enhance the CTs of all relevant
sub-populations that are not well-represented in the training data. Or, one may
want to know how the model would behave if the acquisition parameters of
the CT scanner or even its type were to change in the deployment site due to
some operational reasons. How would the model perform if the CTs of patients
with rare conditions or diseases were to be taken? Ideally, we would collect
enough validation data in all these possible scenarios and assess the model’s
performance. Such an approach, however, is impractical. To make matters
worse, several works have shown that deep learning models often overestimate
their confidence in the synthesis process. First, Cardoso et al. [4] warn about the
“risks” of the model being overconfident, and possibly propagating large errors
to downstream analysis. Then, Cohen et al. [34] and Antun et al. [35] warn
about the dangers of machine learning models hallucinating image features, and
advocate the need for a quality check for image-to-image translation and MR
image reconstruction.

To address these questions, we can look at recent works. Tanno et al. [53]
have suggested that predictive uncertainty, if quantified correctly, provides a
surrogate performance metric that could reliably inform the clinicians when
not to trust the model’s predictions. They propose a Bayesian image quality
transfer via convolutional neural networks (CNNs) [65] and demonstrate the
usefulness of uncertainty modelling by measuring the deviation from the ground
truth on standard metrics. The standard deviation map highly correlates with
reconstruction errors, which shows their potential as a surrogate measure of
accuracy. More recently, Tanno et al. [66] show that predictive uncertainty can
be used to define a binary classifier, discriminating “risky” predictions from the
“safe” ones. In a different synthesis task, Reinhold et al. [67] propose a Bayesian
deep learning method that learns how to translate a CT into an MR image and
to quantify uncertainty, which is then used as a proxy for anomaly detection.
On the basis that high pixel-wise uncertainty occurs in pathological regions
of the synthetic CT, Reinhold et al. [68] use uncertainty quantification for
unsupervised anomaly segmentation. Klaser et al. [69] propose a novel multi-
resolution cascade 3D network for end-to-end full-body MR to CT synthesis
yet include uncertainty quantification as a measure of safety. Lastly, Nair et
al. [46, 70] investigate several uncertainty metrics for quality control in lesion
segmentation of multiple sclerosis.

Propagating Uncertainty

Clinical researchers may use predictive uncertainty in downstream analysis, or
include it in the pipeline of medical image analysis, which generally comprises
a sequence of inference tasks (e.g. synthesis, registration and segmentation).
The uncertainty quantified at the image level is passed to subsequent tasks
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in the form of an uncertainty map (e.g. pixel-wise variance). Recent works
have explored this prospective use. Tanno et al. [53] propagate uncertainty
into downstream quantities in the context of diffusion MRI super-resolution,
by computing the expectation and variance of mean diffusivity and fractional
anisotropy with respect to the predictive distribution. Mehta et al. [71] show
how the performance of a downstream task in a medical image analysis pipeline
can be improved if uncertainty estimates are propagated: the output of each
module (including the associated uncertainty) is used as an input to the subse-
quent one across cascaded inferential tasks. The paper studies several medical
image pipelines, each of which cascades two different inferential tasks (e.g. two-
stage Magnetic Resonance Imaging (MRI) synthesis and brain tumour segmen-
tation). Experimental results indicate that propagating the synthesised image
along with its associated uncertainty map to the downstream tumour segmen-
tation network improves the downstream performance in comparison to only
propagating the synthesised image.

Shedding Insight

In a scenario where the synthesis error is consistently high on certain image
structures, decomposing predictive uncertainty into aleatoric and epistemic un-
certainty provides high-level “explanations” for a model’s behaviour. For in-
stance, such a decomposition allows quantifying how much uncertainty arises
from (i) the inherent difficulty to reconstruct image structures (i.e. uncertainty
of aleatoric nature); (ii) the unfamiliarity of such image structures due to their
limited representation in the training data (i.e. uncertainty of epistemic nature).
If the epistemic uncertainty is high but the aleatoric one is low, this indicates
that collecting more training data would be beneficial. On the contrary, if
the epistemic uncertainty is low and the aleatoric one is high, then we need
to regard such errors as inevitability, and abstain from predictions to ensure
safety or account for errors appropriately in subsequent analysis. Data-driven
approaches for uncertainty quantification also present an additional technical
challenge: the selection and collection of the training data and the evaluation of
its completeness and accuracy. Disentangling the constituents of predictive un-
certainty may suggest how to collect the training data, and the extent to which
it is informative and exhaustive. Tanno et al. [66] show that the decomposition
of the effects of aleatoric and epistemic uncertainty in the predictive uncertainty
provides additional explanations of the performance of the considered methods.

Improving Predictive Performance

Bayesian approaches to machine learning models offer a number of theoretical as
well as practical advantages. They provide a potential solution to over-fitting,
and a principled and automatic way of selecting hyper-parameters [63, 72, 73].
Many techniques of regularisation arise in a natural way in the Bayesian frame-
work as the maximum a posteriori (MAP) estimator of certain posterior prob-
ability density functions. The need for regularisation is compelling in the con-
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text of deep learning based techniques, where nearly all models are severely
over-parameterised, due to a lack of abundant high-quality training samples.
Bayesian approaches also deliver quantifiable estimates of uncertainty of the
model parameters and predictions as well as quantitative comparisons between
predictions obtained by alternative models (e.g. different network architectures)
within the framework of model selection (e.g. using Bayes factor [74]). Further-
more, these approaches enable developing “optimal” estimators with respect to
suitable Bayesian risks within the Bayesian decision theory framework [75].

In order to fully realise these advantages, there remain computational chal-
lenges, which we shall discuss in detail in Section 3.

2.3 Uncertainty Quantification in Action

Lastly, we would like to end this section by illustrating how uncertainty could be
used in image synthesis applications. In fact, there are many scenarios in which
uncertainty quantification could be useful to clinicians. Here, we illustrate how
positron emission tomography (Positron Emission Tomography (PET))/MR im-
age reconstruction may benefit from uncertainty-aware attenuation correction
in PET. Clinical researchers have improved PET/MR reconstruction by gen-
erating a “pseudo-CT” and deriving the attenuation coefficients [3], which, in
turn, play a substantial role in PET reconstruction. The synthetic information
is implicitly used within the reconstruction pipeline to inform the attenuation
coefficients, and it is also customary for nuclear medicine physicians to visualise
the pseudo-CT for PET/MRI (CT in case of PET/CT) mainly to check the
movement artefact. In theory, one should check the plausibility of pseudo-CTs,
which is however rarely done in practice. Note that by detecting obvious arte-
facts (e.g. air in the middle of the brain because of a segmentation problem),
one may find the wrong bone density. What happens if the approach is unable
to correctly synthesise a CT from the MR image? This might be the case for
patients that have evident bone defects (e.g. low or high bone density). For
such an “outlier” patient, a notion of uncertainty over the pseudo-CT could
be useful as it would provide a background defensive mechanism that informs
the clinician not to use the pseudo-CT and attenuation maps as “too risky” to
trust for PET reconstruction. We may want our automated system to abstain
from using the pseudo-CT and request the assistance of a clinician when the
uncertainty is above a certain threshold.

3 Tools for Modelling Uncertainty

Now we turn to practical computational strategies for handling uncertainties
within the Bayesian framework [76, 77]. The main idea is as follows: all the
quantities, which appear in synthesis tasks are modelled probabilistically as
random variables with corresponding probability distributions (e.g. density for
continuous random variables). Within the Bayesian framework, there are two
fundamental building blocks: the likelihood (of the training data D) and the
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prior distribution. The training data set D consists either of a set of available
measurements y in data-to-image synthesis or a set of N pairs (xi, yi) in the
context of supervised learning. The prior distribution p(θ) of the parameter θ
specifies the prior knowledge we have before collecting the measurements. In
the context of standard data-to-image synthesis, θ is the target image and p(θ)
encodes the a priori knowledge we have about the sought-for image, whereas
in supervised learning, we seek to learn the posterior distribution p(θ|D) over
the parameters θ of the model Fθ(·). Learning consists of updating the prior
distribution p(θ) to the posterior distribution p(θ|D) defined as:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

, (1)

where the likelihood function of parameters θ, p(D|θ), is the probability of the
given training data set D given θ. The posterior distribution p(θ|D) over θ is
inferred by deductively updating the prior knowledge p(θ) we had, given the data
D we observed [78, 79]. Note that, in “machine learning parlance”, we usually
denote the input by x and the target output by y, whereas in the inverse problem
community, y denotes the observations (i.e. measurements that have undergone
through a corruption process) and x is the image to be reconstructed (and θ,
for instance, is the parameter vector of the neural network). Here we will follow
the machine learning notation.

To represent uncertainty about a prediction ŷq all possible configurations of
θ are considered, with each prediction being weighed by its posterior probability
p(θ|D). Thus, we compute the posterior predictive distribution p(ŷq|xq):

p(ŷq|xq)︸ ︷︷ ︸
Predictive

Uncertainty

=

∫
p(ŷq|xq, θ)︸ ︷︷ ︸

Aleatoric
Uncertainty

p(θ|D)︸ ︷︷ ︸
Epistemic

Uncertainty

dθ, (2)

which captures both aleatoric and epistemic uncertainty. The final prediction is
obtained by Bayesian model averaging ; or if stated differently, is made through
Bayesian marginalisation as the predictive distribution of interest no longer con-
ditions on θ. Intuitively, we can think of Eq. (2) as a weighted average (i.e.
the outcome of a reconstructed image) of many different hypotheses by their
plausibility given data — we would like to use every possible setting of θ —
rather than a single one. In the supervised learning setting, the challenges in
computing the posterior predictive distribution p(ŷq|xq) are two-fold: (i) esti-
mating the posterior distribution p(θ|D); (ii) integrating out θ. Since Bayesian
model averaging is often too hard, we either tend to approximate the integral
with a simple Monte Carlo (MC) approximation:

p(ŷq|xq) ≈
1

T

T∑
t=1

p(ŷq|xq, θ̂t), with θ̂t ∼ p(θ|D),

or, we adopt only the single prediction with the highest posterior distribution:

θmap = argmax p(θ|D). (3)
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This estimate is commonly known as the MAP estimate and is computationally
more tractable. Even though MAP involves the posterior distribution p(θ|D)
and looks like an application of the Bayes’ rule, it is not properly Bayesian.
In fact, it would put everything on one single hypothesis, that is, on a single
setting of the parameters Fθmap

(·). Accordingly, Eq. (2) would be computed
by using an approximate posterior distribution p(θ|D) ≈ δ(θ = θmap), where
δ is a Dirac delta distribution with all its mass at θmap, with the likelihood
being p(ŷq|xq, θmap). The difference between these two approaches relies on the
posterior distribution p(θ|D), but most importantly on how “sharp” it is. In
fact, there would be almost no difference if the posterior distribution happened
to be sharply peaked, and the likelihood p(ŷq|xq, θ) did not vary much in the
region where the posterior distribution places its mass. A Dirac delta may then
be a reasonable approximation of the posterior distribution in Eq. (2)4. If this is

not the case, averaging the predictions of many high performing models θ̂t (e.g.
neural networks) that “disagree” for some input cases can lead to a significant
improvement in accuracy [82, 81].

3.1 Approximation Techniques

Although the posterior distribution p(θ|D) gives a complete probabilistic solu-
tion to the synthesis task — it combines both the prior knowledge with the given
data — a closed form expression for p(θ|D) is often unavailable in medical image
synthesis. There are several forms of intractable posterior distributions: (i) the
normalising constant is intractable (i.e. “analytically” intractable); (ii) the pos-
terior distribution is intractable due to an intractable likelihood (e.g. the data
generating process being too complex due to poorly understood physics). Gen-
erally, summary statistics (e.g. mean and variance or correlation) are sought.
However, these quantities require computing high-dimensional integrals, which
are computationally infeasible for most synthesis tasks. Thus, it is imperative
to employ numerical procedures to effectively explore the posterior distribu-
tion p(θ|D). These can roughly be divided into two groups: MC type meth-
ods and approximate inference techniques. MC type methods include Markov
chain Monte Carlo (MCMC), which constructs a Markov chain whose station-
ary distribution is the posterior distribution, and which uses ergodic averages
to approximate the statistics of interest, and sequential MC, which constructs
a finite sequence of importance samplers targeting a sequence of distributions
with the last being the posterior distribution.

Approximate inference methods include the Laplace approximation using a
local Gaussian approximation constructed at the MAP, Variational Inference
(VI) framing the approximation of the posterior distribution as optimising a
lower bound on the evidence with respect to a tractable family of simple distri-
butions (commonly referred to as a variational distribution), and expectation
propagation, which iteratively leverages the factorisation structure of the target

4However, this is hardly the case for neural network, which are highly under-specified by
the available data [80, 81].
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distribution.
Before we proceed further, it is useful to recall that the end goal is to ac-

curately approximate the posterior predictive distribution in Eq. (2). To do
so, it is important to have an accurate approximation of the posterior distribu-
tion in the regions that would contribute most to the Bayesian model averaging
integral in Eq. (2). Let’s imagine one samples two different settings of pa-

rameters of the network Fθ(·), namely θ̂1 and θ̂2, but both give rise to similar

functions Fθ̂1(·) and Fθ̂2(·). In this case, the second setting of parameters θ̂2

would not contribute much to estimating the integral in Eq. (2), and we should
seek functional diversity for a good approximation of Eq. (2) [83].

Monte Carlo Methods

In MC type methods, one generates samples from p(θ|D), which are then used
to produce representative reconstructions or to compute summary statistics.
Directly generating samples is generally very challenging. MCMC [84] meth-
ods (e.g. the Metropolis-Hastings algorithm or the Gibbs algorithm) generate
a Markov chain whose stationary distribution is the target distribution, and
is asymptotically exact. These methods can approximate the target distribu-
tion arbitrarily well, provided that one can run the chain for sufficiently long,
and thus have been established as the gold standard for exploring the poste-
rior state space. In practice, these methods are often easy to implement, but
their efficiency relies heavily on various algorithmic parameters (e.g. proposal
distribution and step-size). To make matters even worse, the scalability with
parameter dimensionality is often not very favourable and the convergence di-
agnosis remains largely an art rather than a science.

Consequently, despite their impressive progress in recent years (e.g. Hamil-
tonian Monte Carlo [85]), the use of MC methods in the context of medical im-
age synthesis (including image reconstruction) remains fairly limited. However
there are some exceptions. Pedemonte et al. [86] use a recent Riemann manifold
MCMC sampling scheme [85] to sample the posterior distribution of emission
rates given the photon counts for PET. The method obtains uncertainty in-
formation from all the processes involved in the reconstruction algorithm (i.e.
the observed data, the measurement noise and the background signal, the re-
construction process itself, and also possibly the hyperparameters). Moreover,
the tightening of the posterior distribution is also used as a reliability indica-
tor for estimating the required patient scan time. Weir et al. [87] propose an
approach for SPECT that samples the joint posterior distribution of the image
and hyperparameters using a Gibbs prior and the Metropolis-Hastings sampler
on simulated and phantom data. Similarly, Barat et al. [88] propose a Gibbs
sampler for PET with a nonparametric Dirichlet process mixture prior. How-
ever, even for medium-size medical image reconstruction, exploring the posterior
distribution with MCMC type methods can incur a prohibitively high compu-
tational expense, and thus is not practically feasible. As a rule of thumb, the
higher the dimensionality, the more complex the posterior distribution is, and
the slower the sampling procedure converges. For PET, Filipovic et al. [89]
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develop a Gibbs type sampler formed from a distance-driven Chinese restaurant
process (for clustering). Nonetheless, the procedure remains expensive: “The
computation time was 4 days for RCP-GS (30 runs × 250 sampler iterations),
compared to 1h20 for MR-MAP and 50min for OSEM (8 iterations × 27 sub-
sets)” [89].

Approximate Inference Schemes

Deterministic approximate inference techniques encompass a large variety of
methods such as the Laplace approximation [90], VI [91, 92, 93] (using mean-
field approximation [94], or the variational Gaussian approximation [95, 96] and
more recently stochastic VI [97]), and expectation propagation [98].

The Laplace approximation is a classical approach to approximate the pos-
terior distribution. It constructs a Gaussian distribution based on the second-
order Taylor expansion of the log-posterior log p(θ|D) around the MAP estimate
θmap:

p(θ|D) ∝ exp

{
−1

2
(θ − θmap)

>
H(θmap) (θ − θmap)

}
, (4)

where H(θmap) = −∇2
θ log p(θ|D)|θ=θmap

denotes the Hessian of the (negative
log) posterior distribution estimated at the MAP estimate θmap. This approach
requires good differentiability of the negative log posterior distribution, and it
is thus not directly suitable for non-smooth priors (e.g. sparsity or total varia-
tion) which commonly appear in image reconstruction5; but most importantly,
computing the full Hessian Hθ is computationally demanding and memory-wise
infeasible, unless further fast approximations (e.g. diagonal + local rank, Kro-
necker or sparse (inverse) covariance) are employed. The low-rank assumption
is reasonable for severely ill-posed imaging problems. It is also worth noting
that often more accurate approximations can be obtained using the integrated
nested Laplace approximation [100]. Despite its simplicity, it has barely been
employed in medical image restoration or synthesis.

Most VI techniques were developed within the machine learning community,
where the aforementioned computational challenge is widely acknowledged. VI
is often based on approximately minimising the Kullback-Leibler (KL) diver-
gence6 [101] between the target distribution and the approximate surrogate
one. The divergence KL from q to p is defined by

KL(q‖p) =

∫
q(x) log

q(x)

p(x)
dx. (5)

VI then searches for an approximating distribution q∗ψ(θ) parametrised by ψ

5Various smoothing (e.g. Huber) can be used for non-smooth priors, but it can also signif-
icantly hinder the approximation; see [99] an illustration with the anisotropic total variation
prior.

6Note that the divergence is non-symmetric and does not satisfy the triangle inequality,
but it vanishes if and only if p equals to q almost everywhere.
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within an admissible family Q by minimising the KL divergence:

q∗ψ(θ) := argmin
qψ∈Q

KL (qψ(θ)‖p(θ|D)) . (6)

Introducing a prior distribution p(θ) and applying the Bayes rule allows us to
rewrite the optimisation of Eq. (6) as the maximisation of the Evidence Lower
BOund (ELBO) with respect to the variational parameters defining qψ(θ),

LVI :=

∫
qψ(θ) log p(D|θ)dθ −

∫
qψ(θ) log

qψ(θ)

p(θ)
dθ ≤ log p(D) (7)

The maximising functional LVI is a lower bound to the log evidence (i.e. the
normalising constant or marginal log-likelihood) p(D). Note that the ELBO plus
KL (qψ(θ)‖p(θ|D)) equals the marginal log-likelihood p(D), which is constant
with respect to the variational parameters ψ.

The computational tractability of VI is achieved by imposing suitable as-
sumptions on the approximating family Q, for instance, a fully-factorised (a.k.a.
mean-field) Gaussian QFFG defined by

QFFG =
{
q(θ) =

∏
i

N (θi;µi, σ
2
i )
}
,

where N (θi;µi, σ
2
i ) denotes a Gaussian distribution for the component θi with

mean µi and variance σ2
i . The parameters µi and σ2

i are variational parameters
that have to be optimised. Then maximisation is often carried out by coordinate
ascent type schemes, or stochastic gradient type algorithms [97]. The latter
requires an MC estimate of the gradient, which often has to be done carefully in
order to ensure low bias and low variance. It is worth noting that in a different
vein, suitable averaging of the stochastic gradient iterates can also be interpreted
as approximate inference [102, 103], though the covariance estimate may differ
in shape.

In contrast, expectation propagation [98] minimises the KL divergence de-
fined as KL(p‖q), which mathematically amounts to moment matching, and
its practicality relies on a factorised form of the posterior distribution and a
possible reduction to low-dimensional (often still delicate) numerical integra-
tion. The stability of the implementation relies heavily on the accuracy of the
quadrature rules, and an inaccurate quadrature can cause the nonconvergence of
the iteration. In this regard, Zhang et al. [99] develop an approximate Bayesian
inference technique based on expectation propagation for PET reconstruction
(with the anisotropic total variation prior), where the delicate issue of numerical
integration is studied in depth and the approach is showcased on medium-size
simulated phantom data.

Besides these established approximate inference techniques, there are sev-
eral others. One notable recent example is Stein Variational Gradient Descent
[104], which also performs moment matching but it does so implicitly [105].
Compared with MCMC type methods, deterministic approximations are often
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computationally more efficient, but may be limited in accuracy (and often with
little theoretical understanding [106]), yet they remain expensive for truly large-
scale problems arising in medical imaging, especially in the presence of strong
correlation between different entries.

More recently, attention has also been paid to blending start-of-the-art op-
timisation algorithms with uncertainty quantification. For example, Repetti et
al. [107] propose a method to analyse the confidence in specific structures in
MAP estimates using Bayesian hypothesis testing. The method holds potential
for large-scale problems, but remains to be evaluated clinically. In sum, ap-
proaches, which aim to quantify uncertainties, are mathematically principled,
but there remain computational challenges; various approximations have been
developed to address these challenges but a complete mathematical theory of
the mathematical-statistical properties of these methods is yet to emerge and
their potential in medical image analysis is to be evaluated.

3.2 Probabilistic Deep Learning

With the advent of deep learning, uncertainty quantification has resurfaced as
an important framework. In medical image synthesis, Bayesian deep learning
can provide the information about uncertainty associated with each prediction7.
Below, we review the basics of Bayesian neural networks (BNNs) — a sub-field
of Bayesian deep learning — which holds great potential for the image syn-
thesis community. We also discuss how to disentangle predictive uncertainty
into aleatoric and parametric uncertainty, and briefly mention several alterna-
tive approximations. Nonetheless, the aforementioned computational challenges
persist due to the high-dimensionality of the parameter vector and high degree
of nonlinearity within deep neural networks.

Bayesian Neural Networks

BNNs place a probability distribution on the parameters θ (which are now
treated as random variables) to encode the uncertainties associated with the
prediction [109, 110, 111]. We consider the posterior distribution over all possi-
ble settings of the model parameters given the observed data. Such probability
density encapsulates parametric uncertainty, and its spread of mass signifies the
ambiguity in selecting appropriate parameters. In recent years, there have been
significant efforts to characterise and approximate the posterior distribution
p(θ|D) [112, 113, 114], which, in practice, is intractable due to the difficult-
to-compute normalising constant. It is worth noting that many approximate
inference algorithms share the same approximating family Q. For instance, VI,
the diagonal Laplace approximation [115], probabilistic backpropagation [113],
stochastic expectation propagation [116], black-box alpha divergence minimisa-
tion [117], Rényi divergence VI [118], natural gradient VI [119], and functional
variational BNNs [120] all use a fully-factorised Gaussian family QFFG, which
itself is largely motivated by computational considerations.

7See Wilson [108] for a note motivating Bayesian deep learning.
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We only review the two most popular schemes used in image synthesis, that
is, VI and Monte Carlo dropout (MCDO), and omit to review MCMC ap-
proaches to BNNs (e.g. stochastic gradient MCMC) [121, 122, 123, 124], which
remain computationally inefficient due to the evaluation of an ensemble model
for the computation of the posterior distribution. We also do not review meth-
ods that construct Gaussian approximations to the posterior distribution from
a few iterates along the optimisation trajectory obtained by stochastic gradient
descent methods of a deterministic neural network [103]. To the best of our
knowledge, these methods have yet to be applied to medical image synthesis.

VI recasts intractable inference as an optimisation problem: we replace
marginalisation with the optimisation of Eq. (7), which is (unbiasedly) esti-
mated by randomly selecting a mini-batch set B of M data-pairs and using
T ≥ 1 MC samples (with θ̂t ∼ qψ(θ)) [112]8,

L̂VI =
N

M

∑
i∈B

1

T

T∑
t=1

log p
(
xti|yti , θ̂t

)
−KL (qψ(θ)‖p(θ)) . (8)

Currently, the most efficient technique to compute the gradients ∇ψL̂VI is the
so-called reparametrisation trick [125], which employs a deterministic depen-
dence of the ELBO with respect to ψ to back-propagate. To this end, we
rewrite qψ(θ) using a differentiable transformation θ̂t = g(ψ, ε̂t) with ε̂t ∼ p(ε)
and p(ε) being an underlying, parameter-free distribution (e.g. the standard
Gaussian distribution). We can then use MC integration over p(ε) to evaluate
the expectations, yet the value depends on θ and we can hence propagate gra-
dients through g(·). The reparametrisation can be carried out either explicitly
[126, 127] or implicitly [128]. Once we obtain q∗ψ(θ) by maximising Eq. (8), we
perform inference on a new query by approximating the predictive distribution
in Eq. (2) as:

p(ŷq|xq,D) ≈
∫
p(ŷq|xq, θ)q∗ψ(θ)dθ := q∗ψ(ŷq|xq). (9)

In practice, we approximate the optimal variational distribution q∗ψ(yq|xq) with
MC integration:

q̂∗ψ(ŷq|xq) :=
1

T

T∑
t=1

p(ŷq|xq, θ̂t), with θ̂t ∼ q∗ψ(θ). (10)

Barbano et al. [129, 130] propose a scalable and efficient framework rooted in
VI formalism to jointly quantify aleatoric and epistemic uncertainties in un-
rolled optimisation. The framework is showcased on CT reconstruction with
both sparse view and limited angle data, and the estimated uncertainty is ob-
served to capture the variability in the reconstructions, caused by the restricted
measurement model, and by missing information, due to limited angle geometry.

8Note that we assume that the KL term can be computed deterministically as a closed
form solution might exist; otherwise it can be sampled similarly.
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Gal & Ghahramani [114] propose a MCDO method, which approximates
p(θ|D) with a multiplicative Bernoulli distribution. It defines an approximate
posterior distribution q(θ) over an NN with weight matrices Wi ∈ RKi×Ki−1

and bias vectors bi ∈ RKi for each layer by

Wi = Mi · diag
(

[zi,j ]
Ki
j=1

)
zi,j ∼ Bernoulli (pi) for i = 1, . . . , L, j = 1, . . . ,Ki−1

(11)

where probabilities pi and Mi are variational parameters and the binary variable
zi,j = 0 corresponding to the unit j in layer i− 1 are dropped as input to layer
i. The minimisation of the variational objective becomes

LMCDO :=
1

N

N∑
i=1

‖yi − ŷi‖22 + λ

L∑
i=1

(
‖Wi‖22 + ‖bi‖22

)
. (12)

MCDO has been interpreted as VI [56]. Although the MCDO objective is not
strictly an ELBO [131], we do sometimes refer to it as such. Analogously, other
stochastic regularisation techniques [132, 133, 134] can also be reinterpreted as
VI. Schlemper et al. [135] explore the applicability of MCDO to architectures,
which are commonly used in medical image synthesis to model uncertainty for
accelerated MR reconstructions. More generally, the majority of the works
in medical image synthesis uses MCDO to approximate predictive uncertainty
[135, 53, 71]. Indeed, MCDO is one of the most popular approximate inference
schemes for complex deep learning models like CNNs, or Recurrent Neural Net-
works (RNNs) [136, 137]. Nonetheless, despite the impressive progress of BNN
techniques, these technologies remain severely under-explored within medical
image synthesis.

How to Measure Predictive Uncertainty?

Eq. (2) gives the mechanism to synthesise medical images and represents the
full information of uncertainty of the imaging task. Here we differentiate met-
rics that summarise predictive uncertainty. The total uncertainty of the pos-
terior predictive distribution p(ŷq|xq,D) is commonly measured by its variance
V[ŷq|xq]. See Fig. 4 for results of a CNN model for diffusion MRI, which show
the predictions of mean diffusivity (MD) and fractional anisotropy (FA), and
their associated predictive uncertainty maps. The figure displays high corre-
spondence between the root mean squared error (RMSE) maps and the pre-
dictive uncertainty on both FA and MD of a test subject, demonstrating the
utility of the uncertainty map as a surrogate of prediction accuracy. It also
shows strong correlation between the intensity value of the prediction and the
predictive uncertainty, being in agreement with the observation that the error
map itself correlates strongly with the intensity values.

To elucidate the sources of uncertainty, the total uncertainty can be further
decomposed using the law of total variance:

V[ŷq|xq] = Vq∗(θ) [E(ŷq|xq, θ)]︸ ︷︷ ︸
∆E[ŷq ]

+Eq∗(θ) [V(ŷq|xq, θ)]︸ ︷︷ ︸
∆A[ŷq ]

, (13)
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Figure 4: Comparison between voxel-wise RMSE and predictive uncertainty
maps for FA and MD computed on a HCP test subject (min-max normalised
for MD and FA separately). Low resolution input, ground truth and the mean
of high resolution predictions are also shown. Source: [66].

where E(ŷq|xq, θ) and V(ŷq|xq, θ) are, respectively, the mean and variance of
the prediction ŷq according to p(ŷq|xq, θ). The first term ∆E[ŷq] measures epis-
temic uncertainty since it ignores any contribution to the variance of ŷq from
the stochasticity in the data xq. In contrast, the second term ∆A[ŷq] repre-
sents the average value of V(ŷq|xq, θ). This term ignores any contribution to
the variance of ŷq from θ and thus models aleatoric uncertainty. The impor-
tance of distinguishing between different forms of uncertainty has recently been
recognised in deep learning models [57, 53]. We describe one approach in this
direction by decomposing the predictive variance into aleatoric and epistemic
components. The epistemic uncertainty (of parametric nature) can be obtained
using BNNs and approximate inference schemes (e.g. VI or MCDO) thus it is
encapsulated in the approximate posterior distribution. Meanwhile, quantifying
aleatoric uncertainty can be captured by computing the variance of the likeli-
hood. This broad class of models, where the variance is a function of the input,
is often termed as input-dependent or heteroscedastic noise models [138, 139].
In practice, recent works rely on doubling the network architecture and mod-
elling the likelihood as a Gaussian distribution with input-dependent varying
variance (see Fig. 5), that is, p(ŷq|xq, θ) = N

(
ŷ; Fµθ1(x),Fσθ2(x)

)
, where Fµθ1(·)

and Fσθ2(·) refer to the “mean” and “covariance” networks respectively, with the
approximate posterior distribution being qψ(θ = {(θ1, θ2)}). Note that predic-
tive uncertainty can be also decomposed by using homoscedastic noise models
(i.e. constant variance across all spatial locations), but this approximation is
highly unrealistic in medical image synthesis.

One can estimate the variance of a quantity of interest derived from a syn-
thesised image and potentially decompose it into aleatoric and epistemic com-
ponents. Let f(·) be any reasonably behaved function, which transforms the
synthesised image ŷq into a quantity of interest, and we estimate the variance

19



Figure 5: Illustration of a heteroscedastic network with variational dropout,
with diagonal covariance. The top 3D-ESPCN estimates the mean and the bot-
tom one estimates the covariance matrix of the likelihood. Variational dropout
is applied to feature maps after every convolution, where Gaussian noise is in-
jected into feature maps Fout = µY + ε� σY , with ε ∼ N (0, I). Source: [66].

in the transformed domain (i.e. V[f(ŷq)|xq]). If f(·) is an identity map, that
is, f(ŷq) = ŷq, Eq. (13) can be approximated using T MC samples:

V̂[ŷq|xq] =
1

T

T∑
t=1

Fµ
θt1

(xq)F
µ
θt1

(xq)
> − F̄µ(xq)F̄

µ(xq)
>

︸ ︷︷ ︸
∆̂E(ŷq)

+

T∑
i=1

Fσθt2
(xq)︸ ︷︷ ︸

∆̂A(ŷq)

, (14)

where F̄µ(xq) =
1

T

∑T
t=1 Fµ

θt1
(xq) with {(θt1, θt2)}Tt=1 ∼ q∗ψ(θ). If f(·) is “com-

plicated” again we need to resort to MC sampling. Following Tanno et al.
[53], given {(θt1, θt2)}Tt=1 ∼ q∗ψ(θ) and {f t}Jj=1 ∼ p(ŷq|xq, θt1, θt2) we estimate the
propagated epistemic uncertainty ∆E[f(ŷq)] and propagated aleatoric ∆A[f(ŷq)]
uncertainty as

∆̂E [f(ŷq)] :=
1

T

∑
t

(f̄ t)2 −

 1

(J − 1)T

∑
j,t

f tj

2

, (15)

∆̂A [f(ŷq)] :=
1

(J − 1)T

∑
j,t

(f tj )
2 − 1

T

∑
t

(f̄ t)2, (16)

f̄ t :=
1

J

∑
j

f tj . (17)

Due to “double sampling”, these estimators tend to have higher variance than
the case where f(ŷq) = ŷq.

Instead of the variance of the posterior predictive distribution, we can also
use its entropy as a measure of the overall predictive uncertainty [140]. The
total uncertainty of the predictive distribution in Eq. (2) can then be quan-
tified as H(ŷq|xq), where H(·) denotes the differential entropy of a probabil-
ity distribution. This also allows decomposing predictive uncertainty into the
two forms of uncertainty. The expectation of H (ŷq|xq, θ) under q∗ψ(θ), that
is, Eq∗ψ(θ)[H(ŷq|xq, θ)], can be used to measure aleatoric uncertainty, and the
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difference between total and aleatoric uncertainty to quantify the epistemic un-
certainty:

H[ŷq|xq]−Eq∗ψ(θ)[H(ŷq|xq, θ)] := MI(ŷq, θ) , (18)

which is the mutual information [141] between the posterior distributions of the
model parameters θ and ŷq.

Figure 6: The reconstructions for sparse view CT with 32 directions (top) and
limited angle with [0, 90◦) (bottom). Source [130].

This decomposition allows us to separately quantify aleatoric and epistemic
uncertainties. We give an illustration in Fig. 6 for CT reconstructions [130].
It is observed that in both sparse view and limited angle CT reconstructions,
aleatoric uncertainty appears to dominate, with its overall shape close to the
mean (but of a smaller magnitude). Epistemic uncertainty is localised to cer-
tain regions (and is of a smaller magnitude), capturing artefacts due to limited
angle data. Thus, aleatoric and epistemic uncertainties provide complementary
information about the reconstructions, and might provide different insights into
their reliability.

Miscellaneous Approximations

Recent deep inferential machinery may also hold potential for the synthesis com-
munity. These techniques also employ deep neural networks but often obtain
the associated uncertainties differently from BNNs. Below we describe the most
influential ones. Adler et al. [142] employ a modified conditional Wasserstein
generative adversarial network [143] to generate a high-dose CT from low-dose
counterparts. However, the approach was only evaluated on simplified settings.
Denker et al. [144] use conditional invertible neural networks which are inferen-
tial machinery based on (conditional) normalising flow [145, 146]. Normalising
flow allows learning expressive conditional densities by maximum likelihood es-
timation. The authors aim to learn a conditional density of images from noisy
low-dose CT measurements based on training data obtained from high-dose re-
constructions. Tonolini et al. [147] and Zhang et al. [148] concurrently use a
conditional variational autoencoder framework [125] for solving Bayesian image
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reconstruction problems. Zhang et al. [148] provide the theoretical under-
pinning for approximate posterior inference and demonstrations on Gaussian
and Poisson image denoising. More recently, Tezcan et al. [149] propose a
hybrid approach for under-sampled MRI reconstruction to overcome the curse-
of-dimensionality. The authors introduce a low-dimensional latent space given
the acquisition data in k-space modelled via a variational autoencoder, and then
apply MCMC for the sampling. In a yet slightly different vein, more recently,
Edupuganti et al. [150] propose an approach for uncertainty quantification via
variational autoencoders, with uncertainty encoded in the low-dimensional la-
tent variable, and consistency enforced by minimising a loss based on the Stein
unbiased risk estimator, and demonstrate the approach on MRI reconstruction.

Finally, an alternative approach to uncertainty quantification is ensembling
(i.e. Bootstrap posteriors), where the variance of the predictions of multiple
networks (i.e. the ensemble) is used to quantify predictive uncertainty [151].
In a number of settings, deep ensembles are becoming the gold standard ap-
proach for obtaining an accurate and well-calibrated posterior predictive distri-
bution [152, 153, 154]. Within the machine learning community, the idea that
deep ensembles should be regarded as an approximate approach to Bayesian
marginalisation, instead of a competing (non-Bayesian) method to Bayesian
inference, is emerging [83]. Pearce et al. [155] argue that deep ensembles per-
form approximate Bayesian inference, and Gustafsson et al. [156] also mention
that deep ensembles can be regarded as samples from an approximate poste-
rior distribution. Ensemble methods are limited by their computational cost as
multiple NNs need to be trained independently (using different network initial-
isations). Furthermore, ensembling NNs requires even more significant memory
and computational overhead at training and test time. To overcome the com-
putational bottleneck, Huang et al. [157] among others [80, 158, 159] propose
faster methods which train ensembles by leveraging different parameter config-
urations obtained in one single stochastic gradient descent trajectory. However,
these methods come at the cost of reduced predictive performance [153]. There
has been growing interest in uncertainty quantification using deterministic NNs
which quantify uncertainty in a single forward pass and therefore have a smaller
memory footprint [160, 161, 162].

All these approaches hold great potential for medical image synthesis.

Useful GitHub Repositories

Training a Bayesian NN efficiently is highly non-trivial. The current practice
in machine learning strongly encourages the sharing of relevant implementa-
tions, mostly via GitHub. Instead of listing all existing links on Bayesian NNs,
we would like to mention a few GitHub repositories that provide PyTorch im-
plementations of the approximate inference methods that we have discussed,
along with useful Google Colaboratory (Colab) notebooks. We believe that it is
preferable to suggest exemplary implementations that are currently available on
GitHub, and that have been carefully vetted by many members of the machine
community. In this regard, we highly recommend the following GitHub reposi-
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tory https://github.com/JavierAntoran/Bayesian-Neural-Networks, which
has been redacted by Javier Antorán, a PhD candidate in the Machine Learning
Group at Cambridge University. We include this repository for its richness, as
well as its excellent readability. The author also provides Colab notebooks,
which can be easily run without any need for expensive hardware, and al-
low interested readers to better familiarise themselves with different models.
We would also like to mention Kumar Shridhar’s repository https://github.

com/kumar-shridhar/PyTorch-BayesianCNN, which includes Bayesian convo-
lutional layers.

4 Open Challenges

So far we have discussed machine learning tools, which are currently available to
the synthesis community to include a new dimension in synthesis applications:
uncertainty quantification. In this final section, instead, we would like to point
out several outstanding technical and clinical challenges. For instance, we are
often forced to opt for restrictive, yet computationally feasible descriptors of
reality over more truthful but computationally infeasible ones. In §4.1 we discuss
the implications of the approximations we employ, and identify several possible
research opportunities. In §4.2 we briefly discuss the additional hurdles we
face when deploying uncertainty quantification technologies within the complex
structure of healthcare, and envision that risk needs to be quantified in the
context in which clinical decisions are formulated.

4.1 Can We Trust Uncertainty?

As is with all kind of quantifications, one is naturally interested in assessing
whether we can actually trust the obtained uncertainty estimates; even more so
if several approximations are taken. So, can we trust uncertainty? To answer
the question we first present the sources of “(in)accuracy”, putting a major
focus on BNNs. We then argue that a quantitative evaluation of the uncertainty
estimates would address at least (i) how accurate the estimates are (with respect
to the ground-truth posterior distribution); and (ii) how robust they would be
with respect to data distribution shift.

Sources of (In)accuracy

Computational feasibility often imposes restrictive approximations, leading to
approximate likelihood, prior and posterior distributions, and thereby resulting
in inaccurate estimation of aleatoric or epistemic uncertainty. Likelihood mis-
specification arises when overly simplistic assumptions are adopted for either
the forward map or the noise statistics. Due to the high-dimensionality of the
output, the likelihood is often assumed to be a Gaussian distribution with a
diagonal covariance matrix, which provides only pixel-wise marginal distribu-
tions, and thus is unable to capture multi-modality of the predictive distribu-
tion (i.e. the presence of multiple modes). Further, the diagonality assumes
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that the output pixels are statistically independent given the input. Likewise,
the prior distribution p(θ) is prone to misspecification. This is especially true
for data-driven approaches, where the parameters θ in neural networks (possi-
bly due to severe over-parameterisation) often lack a clear semantic meaning or
physical interpretation. This has largely prohibited domain practitioners from
constructing hand-crafted priors. Instead of the result of the attempt to cap-
ture the modeller’s prior knowledge (which is hard to grasp), priors are usually
chosen (or at least in part) to ease computation, and as a result, in neural
networks, one often contents with simple priors (i.e. the standard Gaussian
distribution). Inevitably, this alters an orthodox interpretation of the prior in
Bayesian statistics.

Even if the likelihood and the prior were both faithfully constructed to cap-
ture the real-world physics, the posterior distribution p(θ|D) is often approxi-
mated by Gaussian distributions with diagonal covariance (sometimes with low-
rank or diagonal assumption), to facilitate or enable the requisite computation.
Undoubtedly, this is a restrictive assumption. Foong et al. [163, 164] study
the quality of common approximate inference methods VI and MCDO in ap-
proximating the Bayesian predictive distribution. They shed interesting insight
into the pathologies of these approximation schemes, which up to now remain
poorly understood. The issue of calibrating uncertainty estimates remains a
big open question for both approximate inference techniques and deep learning
based approaches, and it is currently an active area of research within the deep
learning community [165, 166].

Practical Shortcomings of Bayesian Neural Networks

Bayesian methods have the potential to fix the shortcomings of deep learning
(e.g. over-fitting, robustness, detection of out-of-distribution samples). Yet cur-
rently BNNs are often impractical and rarely match the performance of standard
methods [167]. The impracticability of such deep inferential machineries can be
attributed to several factors including (i) implementation complexity: BNNs are
fairly sensitive to hyperparameter selection and initialisation strategies, and the
training process can be substantially more challenging [168]; (ii) computational
cost: BNNs can take orders of magnitude longer to converge than standard (de-
terministic) NNs, or alternatively, deep ensemble models require simultaneous
training of multiple networks; (iii) weak performance: BNNs rely on crude ap-
proximations to achieve scalability, which often result in limited or unreliable
uncertainty estimates [164]. In fact, the approximating family (e.g. QFFG) may
not contain good approximations to the posterior distribution, and even if it
does, the method (e.g. stochastic VI) may not be able to find a good approx-
imate posterior within the chosen family. Not surprisingly, BNNs are rarely
employed by the medical imaging community due to their complex deployment,
which tends to overshadow their theoretical advantages.

The machine learning community proposed several solutions that partially
address some of the pitfalls: recent works have largely focused on scalable in-
ference [119, 167, 169, 170, 171, 103, 81]. However, these have not yet been
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picked up by the medical imaging community, arguably due to the lack of com-
munication between the two. Undoubtedly, the primary goal of this review is
to bridge two different communities to inform the imaging community of the
recent exciting developments in the machine learning community.

When it comes to uncertainty quantification, medical image synthesis practi-
tioners often have blindly resorted to simple (as less expressive) Bayesian meth-
ods (e.g. MCDO) without a second thought. The machine learning community
has recently proposed several solutions, which may have the potential to scale
up to truly high-dimensional data regimes, as commonly occurring in practical
medical imaging applications. Clearly, we still face a scalability issue. One thus
may argue that if many of the available methods (if not all!) are not yet ap-
plicable to high-dimensional medical imaging problems, it is then acceptable to
resort to MCDO. On the contrary, we believe that it is still worth informing
the medical image community of the existence of more “sophisticated” methods,
even if those are not yet applicable to medical imaging problems. Addressing
the lack of scalability would open a myriad of research opportunities, which the
synthesis community should seize. For example, Tezcan et al. [149] propose a
novel method, which reveals a mature understanding of the limitations of the
current approaches in Bayesian deep learning. Overcoming those led to a novel
reconstruction algorithm.

Benchmarking Uncertainty Estimates

The lack of realistic ground truths has greatly hindered the quantitative eval-
uation of the accuracy of uncertainty estimates. In practice, it is often highly
desirable to validate the accuracy of the approximation via golden standard
MCMC, which however is infeasible for many real-world synthesis applications,
since the distribution of interest p(y|x) (i.e. the underlying data distribution)
is almost always unknown or the resulting posterior is simply too costly even
for the most advanced MCMC sampling algorithm. Nonetheless, it may be
still possible to validate the aleatoric uncertainty by handcrafting a test dataset
where the “ground truth” intrinsic noise is known (e.g. passing a set of medi-
cal images through a known stochastic transformation). The validation of the
parametric uncertainty is by no means less challenging as the target distribu-
tion of interest p(θ|D) (i.e. the posterior distribution over the parameters) is
not accessible. However, controllable and realistic means to edit input images
(e.g. adding pathological structures or structural perturbations) would enable
systematically studying what kinds of “out-of-distribution” structures can be
detected through the analysis of parametric uncertainty for different Bayesian
approximation schemes to NNs. There have been various attempts to use dis-
tributional shift while bench-marking parametric uncertainty [151, 152].

The robustness under data shifts of the uncertainty estimate is as well under
scrutiny [152]. Robustness is strictly related to how well-calibrated uncertainty
estimates are under domain shifts — in various settings, the test data distribu-
tion tends to deviate from the training environment due to sample bias9 and

9Sample bias is of epistemic nature and reflects the fact that the data we observed is only
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non-stationarity, which detracts from performance. This unfortunately occurs
to uncertainty estimates as well (i.e. non-calibrated as the distribution changes).
Robustness under distributional shift (e.g. the presence of out-of-distribution
inputs) is necessary for the safe deployment in clinical practice in which dis-
tributional shift is widely prevalent. Therefore, predictive uncertainty must be
well-calibrated to allow us to quantitatively assess the risk of a possible degra-
dation of the synthesis task while sounding out unknown ground. This is critical
since we would like to use uncertainty as a defensive mechanism against failures.

Future work should investigate the benefits of using more complex likeli-
hood models (e.g. the correlations between neighbouring pixels may further
improve the reconstruction quality) such as mixture models [45], diversity losses
[172, 173, 174] and more powerful density estimators [175, 176, 177] as well as
more structured and expressive posterior approximations [178, 179]. Moreover,
finding answers to the queries above would shed insight on the clinical validation
of predictive uncertainty as a measure of practical utility.

4.2 How to Communicate Uncertainty to Clinicians?

Last we discuss the challenges with communicating uncertainty to clinicians, and
risk-aware uncertainty quantification, where the risk is related to the degree to
which the synthesis has to be faithful. These challenges motivate revisiting the
development of uncertainty analysis and quantification technologies.

Ideally, the translation of uncertainty quantification technologies from the
machine learning community into clinical practice should cause as little disrup-
tion as possible to existing clinical workflows. There are several possible ways to
convey uncertainty to clinicians. The uncertainty can be either directly handed
over to clinicians as visuals by means of pixel-wise reliability scores (e.g. er-
ror bars or voxel-wise predictive variance) or summarising image-wise reliability
scores (e.g. overall probability). Conveying uncertainty through visuals via
voxel-wise variance appears more disruptive to clinical practice than a single
reliability score. Having a one-off score is very tempting, but how will we actu-
ally go about deriving a single score from voxel-wise reliability maps or directly
estimating a single score while foregoing the full Bayesian framework? It should
be nothing less than a score that expresses whether the synthetic image is usable
or not for the given task. For example, in the context of CT reconstruction, we
may wish the score to inform us of the probability that a certain pathology (e.g.
tumour or lesion) is present in the synthesised image. This issue can potentially
be systematically addressed within the framework of hypothesis testing. Alter-
natively, uncertainty could play only behind closed doors, either embedded as
a background defensive mechanism, or propagated through a pipeline (e.g. a
cascade of inferential tasks for downstream decision-making).

How to optimally propagate uncertainty quantification in downstream anal-
ysis remains an open question, and is expected to be highly application de-

in part representative of the ground truth data distribution. If we train our model in presence
of sampling bias, it is highly likely that it would poorly generalise towards under-represented
features.
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pendent: different downstream tasks would require uncertainty information of
different quality. Indeed, we argue that the uncertainty quantification proce-
dures should take the specifics of the downstream application into account, and
we advocate for “granular” risk management as the risk depends on the down-
stream application.

We take radiation treatment planning as an example to show granularity of
the risk-aware decision in image synthesis. For instance, if we had to synthesise
a CT, which is often used to guide how to position radiation beams to target a
tumour while avoiding healthy areas, we would not mind if there were defects
(or high unreliability) in regions outside of the reach of the photon beams.
Furthermore, larger or smaller margins could be drawn around the target —
which we may want to treat or avoid — based on the reliability of the image.
Consider a scenario in which a diagnostic decision is made based on a synthesised
image. In order to make such a diagnostic decision, we need to quantify how
reliable the image is. Taking Cohen’s caricature example [34] (see Figure 2),
which shows how a deep learning based algorithm can “hallucinate” cancer. If
the clinician is somehow not investigating the cancer itself, this image might
still be useful. Meanwhile, if the downstream task were radiotherapy treatment
planning for the cancer, it would be a clear red flag not to use the image. The
ideal scenario would be to quantify risk based on the details of the application.
However, risk-sensitive uncertainty quantification raises several technical and
conceptual challenges about how to apply a threshold to uncertainty (or to
define an admissible set) for risk management.

It remains unclear how to use predictive uncertainty appropriately so that
we can quantify the risks in the space in which the clinical decisions are made.
This remains a completely open question, yet we recognise the enormous im-
portance of future works in this direction, while realising the full potential of
uncertainty quantification technologies in clinical practice. These discussions
also have significant implications for technology development (e.g. developing
technologies that directly deliver uncertainty estimates for the clinical practice
of interest) to optimise the computational expense.

5 Concluding remarks

In this chapter we have provided an up-to-date overview of uncertainty quan-
tification for medical image synthesis, including image reconstruction. In recent
years, uncertainty quantification has been hailed as a very promising strategy to
address the outstanding challenge, i.e. the lack of robustness of many deep learn-
ing based techniques, and thus has received much attention. We have described
basic concepts in uncertainty analysis (e.g. predictive, aleatoric and epistemic
uncertainty) and the potential benefits of providing uncertainty information in
image synthesis along with the usual point estimators.

Conceptually, uncertainty reasoning can be carried out elegantly within a
Bayesian framework, where all relevant information is represented by probabil-
ity distributions and different sources of information can be integrated by Bayes’
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formula. Nonetheless, this poses enormous computational challenges, especially
with the complex models, which have arisen in deep learning. We have discussed
representative computational techniques, including classical approximate infer-
ence strategies (e.g. MCMC, Laplace approximation and variational inference)
along with the more recent Bayesian neural networks and Monte Carlo dropout.
We have also pointed out relevant links to open source implementations available
on GitHub repositories and discussed how to quantify the sources of uncertainty.

Lastly, we discussed the technical and clinical challenges associated with
uncertainty quantification. The technical ones are largely concerned with cali-
bration of the obtained uncertainty estimates. The clinical ones instead involve
how to communicate the uncertainty information without disrupting existing
medical pipelines.

In sum, uncertainty quantification holds enormous potential for medical im-
age synthesis. However, there remain many outstanding technical and clinical
challenges that have to be overcome before these technologies can be routinely
deployed in clinical practice. This calls for further research from both theoretical
and applied perspectives. Big practical challenges include developing scalable
inference techniques, which are as non-intrusive as possible to the current imag-
ing pipelines and providing clinically interpretable metrics for conveying use-
ful uncertainty information. Theoretically, it is important to establish relevant
mathematical-statistical guarantees for existing and forthcoming computational
techniques.
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