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Lévy walk dynamics explain gamma burst patterns
in primate cerebral cortex
Yuxi Liu 1,2,6, Xian Long1,2,6, Paul R. Martin2,3,4, Samuel G. Solomon5 & Pulin Gong 1,2✉

Lévy walks describe patterns of intermittent motion with variable step sizes. In complex

biological systems, Lévy walks (non-Brownian, superdiffusive random walks) are associated

with behaviors such as search patterns of animals foraging for food. Here we show that Lévy

walks also describe patterns of oscillatory activity in primate cerebral cortex. We used a

combination of empirical observation and modeling to investigate high-frequency (gamma

band) local field potential activity in visual motion-processing cortical area MT of marmoset

monkeys. We found that gamma activity is organized as localized burst patterns that pro-

pagate across the cortical surface with Lévy walk dynamics. Lévy walks are fundamentally

different from either global synchronization, or regular propagating waves, because they

include large steps that enable activity patterns to move rapidly over cortical modules. The

presence of Lévy walk dynamics therefore represents a previously undiscovered mode of

brain activity, and implies a novel way for the cortex to compute. We apply a biophysically

realistic circuit model to explain that the Lévy walk dynamics arise from critical-state tran-

sitions between asynchronous and localized propagating wave states, and that these

dynamics yield optimal spatial sampling of the cortical sheet. We hypothesise that Lévy walk

dynamics could help the cortex to efficiently process variable inputs, and to find links in

patterns of activity among sparsely spiking populations of neurons.
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Lévy walks are anomalous diffusive forms of random motion,
which have been widely observed in natural systems
including movements of humans and other animals1–6. In a

Lévy walk, clusters of short-step sizes are occasionally inter-
spersed with longer movements. A Lévy walk therefore represents
a superdiffusive process, and can travel much further from its
starting position than a Brownian walk of the same duration
(Fig. 1). This characteristic enables Lévy walks to efficiently
implement complex tasks such as searching for sparsely dis-
tributed resources4,7. Recent evidence showed that Lévy walk
dynamics can be intrinsically generated by neural circuits in
Drosophila larvae8, but the question whether Lévy walks are a
characteristic of vertebrate brain activity remains open.

Lévy walks dwell near one location for a while and then
intermittently switch to new locations, leading to a “heavy-tail”
probability distribution of movement step lengths (Fig. 1b). This
heavy-tail property naturally generates a bursting characteristic in
time and space (Fig. 1a). In the vertebrate cerebral cortex, tem-
poral bursts of high-frequency (gamma-band) brain oscillations
(30–90 Hz) have been reported, under both awake and anaes-
thetized conditions9–14. Thus the temporal properties of gamma
bursts raise the possibility that they may be characterized by Lévy
walks, but the spatiotemporal organization of gamma bursts
remains unexplored.

Here, we first present an empirical analysis of gamma bursts in
a visual motion-processing area (area MT) of marmoset cerebral
cortex, under anesthesia and in absence of patterned visual sti-
mulus (resting state). Under these conditions we find that gamma
bursts typically appear as localized patterns, which propagate
across the cortical surface. The propagation dynamics can be
explained by Lévy walks. The occasional large displacements
characteristic of Lévy walks yield wave-like propagations, and the
intervening short-step clusters give rise to transient local patches
of gamma synchrony. The Lévy walk dynamics of gamma burst
patterns thus represent a novel mode of neural population
activity.

To explain our experimental findings, we employ a spatially-
extended cortical circuit model of spiking neurons15 to show that
the Lévy walk dynamic of gamma bursts is produced by transi-
tions between asynchronous and regular wave cortical states. We
show that this mechanism allows functional interactions in the
cortex across many spatial scales, without large increases in
spiking rate.

The high metabolic expense of spiking activity in the brain16,17

means that cortical spikes are a sparsely distributed and scarce

resource. We propose that Lévy walk dynamics of gamma bursts
enable efficient functional linking of sparsely distributed spikes
across the cortical surface, and rapid state switching to
process rapid changes in the locations and timing of inputs to
cortical circuits.

Results
Spatiotemporal dynamics of gamma bursts. We recorded local
field potentials (LFPs) from the middle temporal (MT) cortical
area of four sufentanil-anesthetized adult marmosets using mul-
tielectrode arrays (10 × 10 electrodes; see Methods), while the
animal viewed a spatially uniform monitor screen (Fig. 2a). As
expected18, the time-averaged power spectrum of the LFP showed
bias to low temporal frequencies. Inspection of the LFP record-
ings at finer temporal scales, however, showed distinct bursts of
power in the gamma band (30–90 Hz; Fig. 2d). These bursts were
identifiable in the raw LFP traces and in the time-frequency
spectrograms, computed by either bandpass filtering or wavelet
decomposition (Fig. 2b–d). The burst properties are consistent
with those described for spontaneous activity in mouse barrel
cortex and macaque visual cortex13,14,19, insofar that bursts
at individual electrodes exhibited variable duration and peak
frequency (Fig. 2d).

The gamma bursts observed at one electrode were usually
accompanied by similar bursts at nearby electrodes, and we found
that the gamma bursts were organized as spatially localized
patterns. These localized patterns emerged at seemingly random

Fig. 1 Comparison of Gaussian (Brownian) and Lévy walk dynamics. a
Trajectory of Brownian motion (left) and that of Lévy walk (right). The
initial and final positions are respectively indicated by filled red and open
black circles. b Schematic log-log plots of the probability distributions of
step lengths for Brownian motion (Left) and Lévy walk (right).

Fig. 2 Gamma bursts recorded from marmoset cerebral cortex. a
Schematic representation of marmoset eye and brain showing approximate
position of cortical area MT and the electrode array. Magnified view of electrode
array at right shows the estimated border of MT (thin gray curve) and electrode
spacing. Four recording sites are indicated. b Broadband (0.1–500Hz) LFP
signals at the four recording sites (case MA027). c 30–80Hz bandpass
LFPs (gamma band) of the corresponding recording sites. Horizontal red
dashed line represents power 2.5 s.d. above mean. d Time-frequency
spectrogram of LFPs at recording site 45. Burst events are marked by gray
vertical dashed lines.
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locations and moved across the recorded area with complex
spatiotemporal dynamics; Fig. 3a shows such patterns starting at
different timepoints. The localized patterns dwelled near one
location for a while and then quickly shifted to another location
in an intermittent way. To characterize these movement
dynamics, we developed a method to track the gamma bursts
(see Methods). At each time moment t, we calculated the center
of mass (CoM) position, Xt ¼ xt ; yt

� �
, of the pattern (see

Methods). The positions of the CoM at sequential timepoints
provide the movement trajectory of a burst pattern (two examples
are shown in Fig. 3a). These movement trajectories show
superdiffusive dynamics and heavy-tailed, power-law distribu-
tions of step lengths, which are two key properties of Lévy walks.

Superdiffusive dynamics of gamma bursts. To determine whe-
ther these trajectories of gamma burst patterns were consistent
with the superdiffusive property of Lévy walks, we calculated the

mean-squared displacement (MSD), r τð Þ ¼ Xtþτ�Xt

�� ��2D E
, as a

function of time increment τ. The MSD was linear on a log-log
scale (Fig. 3b), indicating that that MSD is a power function of
time increment τ, such that r τð Þ / τβ. Brownian motion is
characterized by MSD with β= 1; β > 1 indicates a superdiffusive
process and β < 1 indicates a subdiffusive process20. We estimated
the value of β by minimizing the square error between the
observations and this model using a Levenberg–Marquardt
algorithm (see Methods); 2648 trajectories analyzed in all 4 ani-
mals showed a good fit to the model with the residuals < 0.1. The
typical trajectory shown in Fig. 3b is a superdiffusive process with
β= 1.24. The gamma bursts exhibited variable propagation
dynamics: some patterns were very mobile while others were
more stationary, with the diffusion exponent β ranging from 0.3
to 1.9 for all well-fit trajectories (for example, case MA026 in
Fig. 3c). Most trajectories appeared superdiffusive: the mean
diffusion exponent was �β ¼ 1:42 (s.d= 0.24, n= 773, case
MA026). The diffusion exponents for other animals and the
aggregated data showed similar distributions with the mean dif-
fusion exponents > 1.0 as well (Supplementary Fig. S1). This
superdiffusion suggests that long-range correlations underlie the
seemingly random motion of gamma burst patterns20.

Distributions of movement step lengths. We found that the step
lengths that form the trajectories of gamma bursts were also
consistent with Lévy walk. Step length was defined as the distance
travelled between two points that were preceded and followed by
either a pause or a change in direction3,21,22. We used two
methods to detect a change in movement direction: a one-
dimensional (1D) model22–24 and an angle model3,21. As in Rhee
et al.3, we then characterized the distribution of step length with a
complementary cumulative probability distribution (CCPD),
which is better than a simple probability distribution at revealing
the tails of distributions. In the 1D model, we projected the 2D
trajectories onto 1D and defined a turning point as a reversal of
movement direction22,24. The 1D method is unbiased because it is
not dependent on choice of criterion turning angle, while pre-
serving the distribution properties of the original 2D trajectory24.
We found that the resultant CCPDs of the step lengths of all four
animals showed heavy tails (Fig. 3d–g, and the aggregated data
shown in Supplementary Fig. S2). In the angle model, we

Fig. 3 Spatiotemporal dynamics of gamma burst patterns. a Snapshots of
gamma amplitudes at two timepoints (case MA027; recordings separated
by 1 s). Detected bursts are indicated by black dots. Red lines show the
trajectories of the center of mass positions of the burst pattern over the
previous 100ms (left) and 300ms (right). b Mean square displacement
(MSD) of the trajectory of a typical burst pattern as a function of time
increment. Red line indicates a fitted power function of MSD, MSD τð Þ / τβ,
with diffusion exponent β= 1.24. c Distribution of diffusion exponent β for
gamma bursts of animal MA026 (5min); mean value is 1.42. d
Complementary cumulative probability distribution (CCPD) of the step
lengths (1D model) of MA026 (blue dots). Red line indicates a fitted
truncated power distribution with λ= 1.32. For comparison, a normal
distribution (black dashed line) with mean μ ¼ 0:31 ´ 103 and standard
deviation σ = 0:52´ 103 is shown. e As d, case MA027, λ= 1.33,
μ= 0:26´ 103, σ = 0:43 ´ 103. f As e, case MY144, λ= 1.33, μ= 0:29´ 103,
σ = 0:48 ´ 103 g As f, case MY147, λ= 1.30, μ= 0:32 ´ 103, σ = 0:52´ 103

is shown. h The angle model used to extract step length from traces
(θ ¼ 40

�
). Red dashed lines show the trajectories of the center of mass

positions of a gamma burst pattern. An example change of angle θ is
shown. The step lengths (black lines) are calculated as the distance
between turning points (black dots) where the angle θ is >40

�
. i Pattern-

based surrogate data, μ= 0:78 ´ 103, σ = 0:60´ 103.
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identified turning points as sequential time steps when the change
in movement angle was larger than a criterion turning angle, θ
(Fig. 3h). We varied θ in 20

�
increments from 20

�
to 120

�
and

found that the angle method yielded the similar heavy-tailed
distributions as in the 1D model (Supplementary Fig. S3).

The measured trajectories of the gamma burst patterns are
naturally bounded by the recording area, which restricts the
distribution of movement step-lengths, such that only truncated
Lévy walks are experimentally plausible. We therefore tested the
CCPD of movement step lengths against a truncated Lévy
distribution (that is, a truncated power-law model). We first used
Maximum Likelihood Estimation (MLE) to fit five models to the
data, including a truncated power-law, exponential, normal, log-
normal (a heavy-tailed distribution) and gamma functions (these
functions are detailed in Table 1). We then used Akaike
Information Criteria weights (AIC) for model comparison and
selection3,25 (see Methods). We examined distributions of step
lengths for individual animals and calculated the AIC weights;
Table S1 shows the AIC weights in the 1D model and the angle
model with different parameters. In all cases, the truncated
power-law distribution had the largest AIC weight among the
tested distributions, indicating that it provided the best
characterization of the step-length distributions. The exponents
of the truncated power-law distribution were all in the Lévy range
1<λ≤ 3, with λ= 1.32, 1.33, 1.33 and 1.30 for MA026, MA027,
MY144 and MY147, respectively (�λ= 1.32, s.d.= 0.01, n= 4; 1D
model. Exponents based on the angle model can be found in
Supplementary Table S1). The explanatory power of the
truncated Lévy distribution was not sensitive to the threshold
used for gamma burst pattern detection (1.5 s.d. to 2.5 s.d.)
(Supplementary Fig. S4), the minimal step length, or the spatial
filtering (Supplementary Note, Fig. S5). These results therefore
indicate that the movements of gamma burst patterns were
consistent with Lévy walks. We also calculated the movement
speeds of the gamma patterns and found that they were very
variable with a broad distribution. The average speed was 0.376
m/s (s.d.= 0.309, n= 2.4 × 106 movements), consistent with the
propagation speed of gamma patterns found in the visual cortex
of rabbit26.

We performed parallel analyses on surrogate datasets. One set
was generated by randomizing the phases of the entire LFP
recordings in the Fourier domain—the Fourier amplitudes were
retained to ensure the same autocorrelation as the original data27.
The same analysis from the raw data to the gamma burst patterns
was applied. The numbers of bursts at each electrode were similar
in the experimental data (mean: 1317 over all electrodes and all
animals, s.d.: 177, n= 4 animals) and the surrogate data (mean:
612, s.d.: 19, n= 4 animals). However, propagating burst patterns
were rarely observed in the surrogate data (np < 10 in all
recordings), where np is the number of patterns, whereas
propagating bursts were common in the original data (mean:
1785, s.d.: 190, n= 4 animals, p < 10�3). This result rules out the
possibility that the propagating gamma burst patterns are random
events. The second surrogate analysis was done after the gamma

patterns were detected. We shuffled the CoM position within
each detected trajectory (mean duration: 79.13 ms, s.d.: 107.31
ms, n= 7027 for four animals) and then applied the procedure
described above to study the step length distribution; the
distribution of step length of the surrogate data follows a normal
distribution (Fig. 3i). These results indicate that the Lévy walk
dynamics is an inherent property of gamma burst patterns.

Gamma burst patterns in model circuits. To understand what
circuit mechanisms could underlie the Lévy walk dynamics of
gamma burst patterns, we implemented a biophysically plausible,
spiking circuit model with excitatory and inhibitory neurons that
capture the known anatomy and physiological of cortical
circuits15. It incorporates distance-dependent synaptic con-
nectivity and balanced excitation and inhibition15 (Methods). The
model exhibits a rich repertoire of dynamic activity, ranging from
asynchronous to propagating wave states (Fig. 4). If the
inhibition-to-excitation (I-E) ratio ξ is small (ξ < ξc; ξc = 3.4),
localized propagating waves emerge and propagate across the
neural circuit with relatively smooth and regular moving trajec-
tories (Fig. 4b). On the other hand, if the I-E ratio is large (ξ > ξc),
the circuit exhibits an asynchronous state without any structured
patterns in spiking activity (Fig. 4d). When the circuit is close to
the transition region between the asynchronous state and the
wave state (ξ � ξc), localized spiking activity patterns emerge
intermittently and exhibit complex spatiotemporal dynamics
(Fig. 4c) consistent with the Lévy walk dynamics of gamma bursts
found in our experimental data.

Table 1 Tested probability density functions.

Model name Probability density function

Truncated power law ð�λþ 1Þðb�λþ1 � a�λþ1Þ�1x�λ ða � x � bÞ81
Exponential 1

λ e
�x
λ

Normal 1
λ
ffiffiffiffi
2π

p e
�ðx�μÞ2

2λ2

Log-normal 1
xλ

ffiffiffiffi
2π

p e
�ðlnðxÞ�μÞ2

2λ2 (x > 0)

Gamma 1
baΓðaÞ x

a�1e
�x
b where ΓðaÞ is the Gamma function

Fig. 4 Emergent network activity in a neural circuit model. a Mean firing
rate of the population of excitatory neurons in the model shows a phase
transition around an I-E ratio of 3.4. The red and blue lines are two power
functions fitted to the data points marked by red squares and blue circles,
respectively. The black dot denotes the crossing point of the two power-law
functions. The green line shows the change of the searching efficiency with
different I-E ratios. Error bars show SEM. Three distinct states emerging
from the circuit are marked by different colors; State III corresponds to the
asynchronous state, State I exhibits localized propagating wave patterns
and State II is the transition region. b–d Snapshots of neural spiking
patterns emerging from the circuit model with different I-E ratio values.
Blue dots denote spikes emitted by excitatory neurons during a 5ms period.
Black circles in (b) and (c) show one standard deviation of the 2D normal
fitted firing rate. Red curves show trajectory of the pattern in the previous
100ms. For State I in (b), the spiking patterns propagate smoothly. For
State II in (c), the pattern appears intermittently and exhibits variable
propagation trajectories. For State III (the asynchronous state) in (d), no
patterns are formed.
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We derived LFP signals from our spiking neural circuit model
(see Methods). The model LFP trace exhibits transient epochs of
gamma oscillations with varying duration (top panel, Fig. 5a);
such gamma bursts are also present in the model spectrogram
(bottom panel, Fig. 5a). Individual neurons in the model fire
variably with mean coefficient of variation of interspike intervals
~0.96; these variable spikes are phase locked to gamma bursts
(Fig. 5b), consistent with empirical observations9,14. Further, the
amplitudes of both excitatory and inhibitory postsynaptic
currents onto individual neurons exhibit large cycle-to-cycle
fluctuations (Fig. 5c, left). Despite these fluctuations, excitation
and inhibition in the circuit model are tightly balanced (Fig. 5c,
left), as measured in experimental studies28. The I-E ratio is ~3.4;
it is interesting to note that this value and the presence of large
fluctuations are quantitatively consistent with experimental
studies of gamma oscillations29. The fluctuations form a skewed
distribution with a heavy-tail (Fig. 5c, right). We used the MLE
method to fit the Lévy stable, normal and exponential functions
to the distribution. The probability density function of Lévy stable
distribution is P xð Þ � αγcα 1þ αs

� �
x� αþ1ð Þ, where γ is the scale

parameter, cα = sin(πα/2)Γ(α)/π, Γ is the Gamma function, αs is
the skewness parameter and α is the stability parameter with the
range 0 < α < 230. The AIC weights showed that the Lévy stable
distribution provided the best characterization. The stability
parameter α of the fitted Lévy stable distribution is 1.216
(confidence interval α 2 [1.214, 1.218]). Such large fluctuations
only occur in the transition regime of the circuit. In the
asynchronous state, the synaptic inputs stabilize and have
Gaussian-like statistics. In the propagating wave state, the inputs
become semi-periodic and regular. The synaptic fluctuations of
our model resemble the large fluctuations typically observed in
complex physical systems near phase transitions of different
states31.

Consistent with empirical observations29, fluctuations in
amplitudes of both excitatory and inhibitory currents in our
model are correlated with the amplitudes of LFP gamma

oscillation on a cycle-by-cycle basis (excitatory: r= 0.43 ± 0.27,
p < 10−3; inhibitory: r= 0.55 ± 0.15, p < 10−3). The amplitude of
each gamma oscillation cycle is strongly correlated with the
latency to the subsequent cycle (r= 0.76 ± 0.01, p < 10−3) with
higher amplitude leading to longer latency of the next cycle;
this is a characteristic feature of gamma oscillations in rat
hippocampus29 and awake macaque area V132. The duration of
each gamma cycle is also inversely correlated with the average
spike rate (r=−0.54 ± 0.01, p < 10−3), as found by Spyropoulos
et al.32.

We next tracked and analyzed the trajectories of the localized
activity patterns produced by the model, using the same methods
we used to analyze the experimental data (Fig. 6a). Figure 6b
shows the MSD of a typical burst pattern, which is a power
function of time increment τ, d τð Þ / τβ, with β= 1.56. The
distribution of diffusion exponents in the model is likewise
comparable to that found in our experimental data (Fig. 6c),
with the diffusion exponent β ranging from 0.48 to 1.98 (mean
�β= 1.25). We detected the turning points of movement
trajectories as described above and used these points to define
the distributions of step lengths, again characterizing the CCPDs
using MLE to derive AIC weights and determine the best
model (see Supplementary Table S2). We found that the CCPDs
for both the 1D and angle methods were best characterized by a
truncated power law distribution with exponents in the Lévy
range 1<λ≤ 3 (Fig. 6d and Fig. 6e), as in the experimental data.

Shifting the model network away from the dynamic regime and
further into the asynchronous regime led to a loss of localized
activity patterns (Fig. 4d). By contrast, shifting the network
further into the wave regime resulted in a regular propagation of
activity patterns (the red curve in Fig. 4b indicates a smooth
trajectory) lacking the spatiotemporal dynamics characteristic of
the transition regime. It is also interesting to note that in the
critical transition regime, the pattern propagation speed was
highly variable (Supplementary Fig. S6) as found in our data.
However, the mean of the propagation speeds was 11.2 μm/ms,

Fig. 5 Properties of gamma bursts in a neural circuit model. a Raw (red) and gamma-band filtered (30–80 Hz, blue) LFP time series. Lower panel shows
the corresponding Morlet wavelet spectrogram of the gamma-band LFP time series. Black dashed lines denote gamma bursts. b Distribution of spikes of
model excitatory neurons at different phases of gamma bursts, indicating phase-locking to gamma bursts. c Left: time series of excitatory and inhibitory
inputs received by one model neuron over a period of 1 s. Note correlated and proportional fluctuations in excitation and inhibition. Right: probability
distribution of excitatory currents received by a single model neuron (blue). Magenta dashed line denotes a fitted Lévy stable function (α= 1.216) of the
distribution. Normal distribution (black dashed line) and exponential function (green dashed line) are shown to be inadequate to describe the distribution.
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which was much smaller than that found in our data. This
discrepancy is likely because the total number of neurons of our
network is much smaller than real neural circuits. In the
excitation-dominated state of our model, the localized wave
patterns propagated more slowly (~6.82 μm/ms) than the patterns
in the critical transition regime and did not exhibit significant
variability.

Metabolic efficiency of activity patterns sampling cortical
space. To test for a functional advantage of the activity pattern
with Lévy walks in the transition regime, we used the neural
circuit model to calculate a spike energy budget while the pattern
moves over the cortical surface. To quantify the sampling capacity
of the spiking pattern, we uniformly divided the 2-dimensional
network into Nt ¼ 100 small areas (i.e., squares) and calculated
the number of different squares (Ns) visited by the CoM within 3
s. The sampling rate is Sr ¼ Ns

Nt
.

To calculate neural energy expenditure we used the method of
Lévy and Baxter33: in each time window 4τ ¼ 50 ms, each
neuron costs r energy units due to leak currents and each spike
costs one extra unit of energy, so the energy expenditure is:

E ¼ mþ nr ð1Þ

where m is the number of spikes during the time interval, n is the
total number of neurons in the network. Based on Eq. (1), we
then obtained the total energy expenditures Etotal . The sampling

efficiency of the activity pattern is defined as the sampling rate Sr
divided by the total energy expenditure, η ¼ Sr

Etotal
. The searching

efficiency indicates that the larger the value η, the more
metabolically efficient it is for the pattern to sample the 2D
cortical space. In our calculation we used r= 0.01;4t ¼ 50 ms
and Nt ¼ 100 to calculate the sampling efficiency; other choices
near these values yielded similar results.

In our circuit model, we found that as the I-E ratio (ξ)
decreases, the sampling rate Sr increases (Supplementary Fig. S7)
and that the propagating wave regime (State I) provides higher
overall Sr than other regimes. The energy expenditure Etotal also
increases as ξ decreases (Supplementary Fig. S7). However, as
shown in Fig. 4a (green line) the sampling efficiency η (η ¼ Sr

Etotal
),

which is the trade-off between the sampling rate and the energy
expenditure, is maximal when the network is in the critical
transition region (State II, where the I-E ratio is ~3.4). The
sampling efficiency in State II is significantly larger than the
values of η in either State I or State III (p < 10�3,
Kolmogorov–Smirnov test). This result thus indicates that the
activity pattern with Lévy walk dynamics are an energy-efficient
way to dynamically sample the cortical space.

Discussion
We find that the spatiotemporal organization of gamma bursts in
primate cortex can be characterized as Lévy walks. Our circuit
model explains how the Lévy walk dynamics can arise from
intrinsic, near-critical transitions between cortical states. Thus,
gamma bursts exhibit more complex spatiotemporal dynamics
than expected by conventional views of stable steady states34–37

or filtered Gaussian noise38,39. In the following we first relate the
Lévy walk dynamics revealed here to previous studies of gamma
bursts, then consider the origin of these dynamics in synaptic
activity as illustrated by our circuit model. Finally, we consider
implications for cortical function.

Spatial and temporal properties of gamma bursts. The Lévy
walk property means that localized gamma burst patterns hover
around one location for a while and then move or jump to
another location in an intermittent manner. These spatiotemporal
dynamics can reconcile and extend some previous findings on
gamma oscillations. For instance, spatially localized gamma
oscillations were reported by Freeman and Barrie26 and Sirota
et al.40 but their spatiotemporal evolution was not studied. The
Lévy walk characteristic of gamma bursts means they occasionally
exhibit long propagation trajectories; this property would yield a
wave-like propagation as previously described41–43. At the same
time, the intermittent dwelling of gamma bursts gives rise to
gamma synchrony (correlation) of neurons in the local cortical
area34,35; we show here that such gamma synchrony is localized
in space but is transient in time.

Other work has shown that the magnitude of gamma
oscillation is modulated by slower oscillations such as theta
oscillation44,45. Our findings imply that such cross-frequency
coupling would also exhibit complex spatiotemporal dynamics. If
propagating patterns at different frequencies are coupled across
multiple spatial and temporal scales, the resulting cascades of
pattern interactions could be comparable to cascaded interactions
in coherent structures such as vortices in turbulent fluids46.

Overall, our results show that the simple concept of temporal
correlation, which has guided our understanding of gamma
oscillations during the past two decades34,47, can usefully be
expanded to take spatial variables into account; such expansion
can provide a new perspective for understanding gamma
oscillations.

Fig. 6 Spatiotemporal dynamics of gamma patterns in the circuit model. a
Snapshots of gamma-band LFP amplitudes at two timepoints. Black dots
show the positions of gamma bursts in the model circuit. Amplitude
patterns are overlaid with representative trajectories (red lines) of the
center of mass of the burst patterns over the previous 30ms (left) and 270
ms (right), respectively. b Mean square displacement (MSD) of a typical
spiking pattern as a function of time increment. Red line shows a fitted
power function of MSD,MSD τð Þ / τβ, with the diffusion exponent β= 1.56.
c Distribution of diffusion exponent β for spiking pattern in simulation data
(1000s); mean value is 1.25. d CCPD of the step lengths (1D model) of the
activity pattern in the transition state (State II) (blue circles). Red line
indicates a fitted truncated power distribution with λ= 1.32. For
comparison, a normal distribution (black dashed line) with mean
μ= 0:59 ´ 102 and standard deviation σ = 0:69 ´ 102 is shown. e as
d for angle model: (θ ¼ 40

�
), λ= 1.13, μ = 0:10 ´ 103, σ = 0:95 ´ 102.
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Modeling Lévy walk dynamics of gamma bursts. Our modeling
indicates that Lévy walk dynamics of gamma burst patterns
depends on critical transitions between asynchronous states and
propagating wave states. Lévy walks arising from criticality have
been mainly found in models of low-dimensional dynamical
systems. For example, one recent study48 showed Lévy walks can
by generated by coupled chaotic oscillators near the transition
between synchronous and asynchronous states. In ref. 49, bursty
time-series of coupled Lotka–Volterra (L–V) models and spike
potentials recorded from rat hippocampus were used to generate
superdiffusive Lévy processes. Complex neural dynamics
have been characterized as critical avalanches50, but it is unclear
whether these avalanches could be organized as localized activity
patterns with Lévy movements in space. In contrast, our model is
neural circuit-based and incorporates properties such as distance-
dependent synaptic coupling15, synchronized excitatory and
inhibitory synaptic fluctuations (as measured empirically by
Atallah and Scanziani29), and localized propagating patterns.

In classical neural circuit models, in contrast to our model,
neurons fire in regular fashion, so these classical models are
unable to capture variable spike rates and non-stationary
bursts36,37,51. Population gamma oscillation and variable spike
rates can be reconciled in the sparse synchrony regime of
randomly coupled circuits47,52. But synaptic inputs in sparse
synchrony models are characterized as Gaussian noise53, which is
incompatible with the heavy-tailed distributions that we observe
experimentally and in our circuit model. Heavy-tailed, non-
Gaussian properties often emerge from complex non-equilibrium
systems, suggesting that methods for analyzing such complex
systems (for example, fractional Fokker–Plank formalisms54)
could be a promising direction to pursue for formal analysis of
the Lévy walk dynamics.

Gamma bursts have been widely observed in many brain
regions9–14,26,55. The spatiotemporal dynamics of gamma bursts
that we here have analyzed in the cerebral cortex may therefore be
applicable to other brain areas. High-frequency oscillations at
other frequencies bands such as beta (13–30 Hz)56 and sharp
wave ripples (140–220 Hz)57 also exhibit transient bursts, and the
presence of jump-like behavior of sharp wave ripple patterns has
been reported in hippocampus58. Our preliminary analysis of
delta– and theta-band activity indicates activity in these
frequency bands does not show clear Lévy walk dynamics but a
full exploration of this question is beyond the scope of the
present study.

Relevance to brain function. What could be the relevance of our
results for understanding information processing in the brain?
First, it is natural to ask whether the results we found here under
anesthesia would apply to the waking state. In the waking state,
gamma oscillations are associated with functions including sen-
sory processing59, cognition, memory35,44,60 and attention61,62. In
the anesthetized state, and at rest in absence of patterned sensory
stimulus (resting state: Fox and Raichle63) the amplitude and
coherence of gamma oscillations is decreased but their dynamic
properties are otherwise preserved9,64. Likewise the main change
in subcortical visual evoked spike activity under sufentanil
anesthesia is reduced response amplitude without other changes
in receptive field properties65. Finally, resting-state fluctuations
(in terms of up and down changes over time) in blood-oxygen-
level-dependent fMRI signals are preserved at anesthetic levels
that produce profound loss of consciousness (0.8–1.5%
isoflurane)66. These examples of preserved elementary brain
functions under anesthesia predict that basic properties of Lévy
walk dynamics in gamma bursts will be preserved in the waking
state. Such experiments are beyond the scope of the present study,

but it would be straightforward to apply our circuit model to
recordings from waking brains.

Lévy walk movements have been observed of Drosophila larva
neural circuits8 and in other biological systems and complex
physical systems1,6,20. For instance, Lévy walks are essential for
optimally transporting energy in turbulent fluids67, for animals to
optimally search for spatially distributed food7, and for
lymphocytus T-cells to efficiently find target pathogens in brain
explants4. In the context of normal brain function we propose
here two hypotheses, which are not mutually exclusive, as follows.

Our first hypothesis relates to the fact that gamma bursts have
been widely observed in attentional and cognitive tasks. The Lévy
walk dynamics of gamma bursts may help an attentional
“spotlight” to focus on one location for a while and then
switch/jump to another location in an intermittent manner.
Relatedly, the scale-free property of Lévy walks could provide an
efficient mechanism for sampling natural environments, which
are inherently scale-free68,69. It has been found that saccadic
shifts when viewing natural scenes follow Lévy motion70.
Attention and saccadic eye movement are closely related, as
visual spatial attention determines the end point of saccades71.
Taken together, these observations suggest the Lévy motion
property of gamma bursts may improve the efficiency of attention
sampling. This hypothesis could be tested by neural population
decoding72, and comparing the statistical properties of spatial
attention to predictions of Gaussian and Lévy walk dynamics.
Based on our results (Fig. 3, Fig. 6) these predictions would
diverge for temporal scales above 100 ms and spatial scales
represented by 100–1000 µm on the surface of area MT, at least in
marmoset monkeys. The question whether the same scale factors
hold in larger brains or unanaesthetized brains remains to be
tested.

Our second hypothesis relates to the metabolic expense of
spiking activity in the cerebral cortex16,17 and the associated
evidence for sparse spiking as a basis for information processing
in the brain73–75. Our modeling (Fig. 4) showed that activity
patterns with Lévy walks dynamics are a metabolically efficient
way to visit spatially distributed locations on the cortical sheet;
that is, the ratio of the locations visited to the energy consumed is
maximal in the transition regime where Lévy walks dynamics
emerge. In this context, the superdiffusion dynamics of gamma
bursts would enable widely separated regions of cortex to be
activated within short time steps. By analogy, cortical activity
patterns could be seen as efficient “foraging” for spikes which are
separated in space but close together in time. This hypothesis
could be tested by comparing Gaussian to Lévy walk statistics of
gamma burst activity, at the millisecond timescales relevant to
spike-dependent plasticity76 and related phenomena.

Materials and methods
Multielectrode array (10 × 10 electrodes, 1.5 mm length, electrode spacing 400 µm,
Blackrock Microsystems) recordings were made from the MT cortical area of four
adult male marmosets (Callithrix jacchus). Procedures conformed to the Australian
National Health and Medical Research Council Code of Practice for the use and
care of animals, and were approved by institutional committee at the University of
Sydney. Details of the preparation are given elsewhere77. Anesthesia and analgesia
were maintained by intravenous sufentanil infusion (6–30 μg � kg�1h�1) and
inspired 70:30 mix of N2O and carbogen. The eyes were held open with micro-
retractors and protected with oxygen-permeable contact lenses. Refraction was
optimized (with optometric trial lenses) by maximizing the response of the first
recorded units to high spatial frequency drifting gratings. Stimuli were viewed
through natural pupil, which typically had diameter close to 2 mm. The animal
viewed a uniform gray field presented on a cathode-ray-tube monitor (Sony G500,
refreshed at 100 Hz, viewing distance 45 cm, mean luminance 45–55 cd m−2).
Recording surface insertion depth was targeted to 1 mm. The LFP sampling fre-
quency was 1024 Hz. Recording duration ranged from 5 to 25 min in total: the first
5 min of recording were analyzed for each animal (n= 4). The identification
numbers of the four animals are MA026, MA027, MY144 and MY147. The four
corner electrodes were excluded for all the animals. For animal MY144, electrodes
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[3, 8] and [5, 4] were excluded due to bad signal quality. The missing channels were
interpolated by a Gaussian filter with filter width of 3 electrodes and standard
deviation of 0.6.

Detection of gamma burst patterns. Electric line noise at 50 Hz was removed by
applying a second-order Butterworth band-stop filter to the raw LFP signals. Zero-
phase forward and reverse filters were used to preserve features in the filtered
waveform. Following Lundqvist et al.12, bandpass filtering and/or wavelet analysis
were applied to calculate gamma-band signal amplitude; the methods yielded
similar results and comparable burst extraction outcomes (Fig. 2d). For bandpass
filtering analysis, a 4th order Butterworth bandpass filter was applied to the LFP
signals, the first and final 1 s of the record were discarded to reduce boundary
effects, and amplitude was extracted using the Hilbert transform. For wavelet
analysis, the Morse wavelet transform was applied to the LFPs with symmetry
parameter 3 and the time-bandwidth product12.

To characterize gamma burst patterns, a smoothing Gaussian filter (s.d. 0.6) was
applied to the resized (factor 4, bi-cubic interpolation) electrode matrix of gamma
amplitudes. Other smoothing and resizing parameters yielded comparable results.
Neural data are then represented as z(x, y, t); z is the recorded signal at the position
(x, y) at time moment t. Following Lundqvist et al.12, a burst event at (x, y) is
defined where the gamma amplitude exceeds (by 2.5 s.d.) the trial mean value;
other threshold values yielded similar results. We defined burst structures as a
spatial connected set of burst points, with connectedness defined in terms of the six
orthogonal neighbours in the Cartesian mesh of the recorded sites (“bwconncomp”
routine in MATLAB 2016b; MathWorks, Natick, MA). If the burst structures were
connected in the consecutive time framework, these structures were identified as
gamma burst patterns. Burst patterns with duration >60 ms and spatial extent
(maximum in x or y direction >1.2 mm) were analyzed. 7027 patterns were
detected for the four animals (1866, 1595, 1615, and 195l patterns for the animal
MA026, MA027, MY144 and MY147, respectively).

Analysis of step lengths. To study the trajectory of the gamma burst patterns, the
centre of mass Xt ¼ xt ; yt

� �
of the detected patterns at each time-step was cal-

culated as the instantaneous location of the patterns,

Xt ¼
∑
Nt

i
Xi
t xt ; yt
� �
Nt

ð2Þ

where Xi
t xt ; yt
� �

is the location of the i-th burst within a detected gamma burst
pattern at time t and Nt is the total number of bursts within the pattern. To
demonstrate the robustness of our results, we also tested our results by defining the

amplitude weighted centre of mass (Xw
t ¼

∑
Nt

i
Zi x;y;tð ÞXi

t xt ;ytð Þ
∑
Nt

i
Zi x;y;tð Þ

). Both definitions yiel-

ded similar results.
Next, the time series of locations was converted into a series of movement steps.

Here, two methods were used to define movement steps. The first method used is
the 1D model. In this model, the 2D pattern trajectories were projected to the x
direction. Turns were identified as a reversal in direction in the 1D movement. Step
length was then defined as the distance between the turns. The second is the 2D
turning angle model. Given two points at X tð Þ and X t þ 1ð Þ, we calculated the
distance between these two points and considered this distance a step if the angle
formed by X tð Þ, X t þ 1ð Þ and the next point X t þ 2ð Þ is greater than the
characteristic angle (θ as shown in Fig. 3h). If the condition was not met, we
calculated the distance between X tð Þ and X t þ 2ð Þ and determined whether these
points met our criteria. This process was continued until a step length was found
that met the criteria described above. In addition, the distance between the location
where one pattern disappears and a new pattern emerges was also considered as a
step. Different turning angles were used to interrogate the 2D turning angle models
(Supplementary Fig. S3).

Maximum likelihood estimation (MLE) and model selection. We used the MLE
method78 to fit truncated power law, exponential, normal, log-normal and gamma
distributions. Briefly, MLE finds estimated parameter that maximizes the likelihood
function in all the models. The probability density functions for all the models are
shown in Table 1. The step lengths smaller than 20 µm were firstly discarded as
they are below the minimal resolution. The remaining step lengths were used to
find the best fit for all the models using MLE respectively. When fitting the
truncated power law, an iterative process was used to derive a best fit value for the
parameter a and b (the lower bound and the upper bound of the truncated power
law distribution).

After the best fit for all the distributions were found, the log-likelihoods (LLH)
for all the distributions were calculated78. Then, AIC weights were employed for
model selection3,25,

AIC ¼ �2log L θ̂jdata
� �� �

þ 2K ð3Þ

where L �ð Þ is the likelihood function and K is the number of estimable parameters
(the value of θ) in the approximating model (probability distribution).

As AIC values contain arbitrary constants and are greatly affected by the sample
size, they do not represent an absolute metric and cannot be used directly. The
following transformation makes the result an interpretable metric3:

4j ¼ AICj � AICmin ð4Þ
where AICj is the AIC value of the jth model and AICmin is the minimum of
different AIC values. The Akaike weights wj are useful as the weight of evidence

3,

wj ¼
exp �4j

2

� �
∑R

r¼1exp �4r
2

� � ð5Þ

where R is the size of a set of the approximating models (distribution). In addition
to wAIC, a Vuong test of the truncated power law was used to check if the
competing distribution should be rejected.

Neural circuit model of excitory and inhibitory neurons. Our circuit model was
described in Gu et al.15. Briefly, NE excitatory and NI inhibitory model neurons are
uniformly located in a 2D square plane and connected by chemical synapses with
probability pαβ (α is the post-synaptic neuron population, and β is the pre-synaptic
population); pαβ is an exponential distance-dependent connection probability
function between connected neurons. The subthreshold membrane potential Vα

i of
neuron i in population α follows

C
dVα

i tð Þ
dt

¼ �gL Vα
i tð Þ � VL

� 	þ Iαi;K tð Þ þ Iα
i;rec

tð Þ þ Iαi;ext tð Þ ð6Þ

where the membrane capacitance C= 0.25 nS, the leak conductance gL = 16.7 nS,
and VL =−70 mV is the reversal potential for the leak current. Iαi;K tð Þ is the
potassium current, Iαi;rec tð Þ is the recurrent synaptic current received by the neuron
and Iαi;ext tð Þ is the external current. When the membrane potential reaches the
threshold Vth ¼ �50 mV, a spike is emitted and the membrane potential is reset to
the potential Vrt ¼ �60 mV for an absolute refractory period τf ¼ 4 ms. The

potassium current is given by Iαi;K tð Þ ¼ �gαi;K tð Þ Vα
i tð Þ � VK

� �
, where gαi;K tð Þ is the

active potassium conductance and VK =−85 mV. The dynamics of the potassium
conductance are described by

dgαi;K tð Þ
dt

¼ � gαi;K tð Þ
τK

þ4gK ∑
k
δ t � tαj;k

� �
ð7Þ

where tαj;k is the time of the kth spike emitted by neuron i from population α,

4gK = 10 nS and τK = 80 ms. Because spike frequency adaptation has been
primarily observed in cortical pyramidal neurons, we only include such adaptation
for excitatory neurons in our model.

The recurrent synaptic current Iαi;rec tð Þ in Eq. (6) is:

Iαi;rec tð Þ ¼ �∑
β
gαβi tð Þ Vα

i tð Þ � Vβ
rev

� �
ð8Þ

where gαβi tð Þ is the conductance of the recurrent current from the pre-synaptic
population β. The excitatory and inhibitory reversal potential are VE

rev ¼ 0 mV and

VI
rev ¼ �80 mV, respectively. The conductance gαβi tð Þ is given by

gαβi tð Þ ¼ ∑
Nβ

j¼1
aαβij J

αβ
ij s

αβ
ij tð Þ ð9Þ

where connection topology aαβij and strength Jαβij capture the numbers of
connections and coupling weights respectively, as detailed in Gu et al.15. The non-

dimensional gating sαβij tð Þ describes the synaptic dynamics,

dsαβij tð Þ
dt

¼ � sαβij tð Þ
τβd

þ∑
k
hβðt � tβj;k � dαβij Þð1� sαβij ðtÞÞ ð10Þ

hβ tð Þ ¼ 1=τβr ; if 0≤ t ≤ τβr
0; otherwise

(
ð11Þ

where τβd and τβr are decay and rise time constants respectively, tβj;k is the time

point of the kth spike of neuron j from population β, and dαβij is the conduction
delay drawn from a uniform distribution between 0 and 4 ms. We implemented a
vital neurophysiological feature of mammal primary cortex in our model15, that
is, there is an identical ratio between the excitatory post-synaptic currents and
inhibitory post-synaptic currents with respect to the whole excitatory
population. To model this in our circuit, we consider the I-E ratio

ξi ¼ ∑
KEI

i;in

k JEIik =∑jJ
EE
ij , where KEI

i;in denotes the number of connections (in-degree)
received by neuron i from the inhibitory population. To equalize the I-E ratio ξi
across the neurons to a desired network-wide ratio, that is, <ξi> ¼ ξ, the JEIik
values for neuron i are sampled from a Gaussian distribution with a mean equal
to ξ∑jJ

EE
ij =K

EI
i;in and a standard deviation that is 25% of the mean. The I-E ratio ξ

is varied as a system parameter to explore the spatiotemporal dynamics of our
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cortical circuit model. Model parameters are the same as in Gu et al.15, except for
τId ¼ 5 ms. NE ¼ 63 ´ 63 ¼ 3969 excitatory neurons and NI ¼ 1000 inhibitory
neurons are modeled. Each neuron is described by a 1-dimensional differential
equation (i.e., the leaky integrate-and-fire model). The circuit model is
composed of a large number of leaky integrate-and-fire neurons (i.e., 4969); it is
thus a high-dimensional dynamical system.

Neighboring excitatory neurons (one grid unit) are separated by 7.4 μm. Simulations
used the forward Euler method with a time-step of 0.1ms. Initial membrane potentials
were uniformly distributed between Vrt =−60mV and Vth =−50mV. A typical trial
covered 100 s, with first 500ms excluded. Variance (SEM) was calculated from 100
trials unless otherwise stated. All these parameters were calibrated based on the
biophysics properties of neurons. Near-criticality dynamics in the transition region
between the asynchronous state and the propagating wave state was characterized by
the branching parameter of spikes and the susceptibility15, two typical quantities
indexing critical transitions. In the present study, we only changed one parameter, the I-
E ratio, to study the spatiotemporal nature (i.e., Lévy walk characteristic) of the
emergent activity patterns.

To calculate local field potential signals in our model, we adapted the LFP proxy
as used by Mazzoni et al.79, in which LFP was approximated as the sum of the
absolute values of excitatory and inhibitory currents. This proxy was able to
accurately reproduce the observed LFP power spectra. Because LFP signals can be
well captured by a weighted spatial sum within a two-dimensional Gaussian
window centered on the recording electrode80, we applied a spatial Gaussian
window to the sum of absolute values of currents:

L re; t
� � ¼ ∑

NE

i
IEEi
�� ��þ IEIi

�� ��� �
e
� ri�reð Þ2

2σ2
L ð12Þ

where re is the coordinate vector of the simulated LFP recording electrode, ri is the

coordinate vector of neuron i and Iαβi

��� ��� is the total current received by neuron i in

population α from population β. A spatial scale σL = 8 (56–80 μm) was used,
consistent with the upper estimated limit ~100 µm 80. Our results are not sensitive
to the spatial scale. The simulated LFP signal was bandpass filtered between 1 and
1000 Hz with a 4th order Butterworth filter to model the experimentally measured
broadband LFP. Synaptic currents were estimated as:

EPSC ¼ IAMPA þ Iext
� � VI � VE

V tð Þ � VE
ð13Þ

IPSC ¼ IGABA
VE � VI

V tð Þ � VI
ð14Þ

where IAMPA and IGABA are interior excitatory and inhibitory synaptic currents, Iext
is external excitatory current, VI and VE are the inhibitory and excitatory synaptic
reversal potentials, and V tð Þ is the time-varying membrane potential.

Statistics and reproducibility. The results were expressed as mean ± standard
deviation (s.d.). The experimental data were analyzed and compared against sur-
rogate data using Wilcoxon rank sum test. Fifty surrogate datasets were generated
and compared. The models were selected based on a Vuong test. The p values <
0.05 were considered to be significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
All analysis scripts that reproduce the results of the present study are readily accessible to
and open for reuse by the reader: https://github.com/BrainDynamicsUSYD/
NeuroFdpToolbox (https://doi.org/10.5281/zenodo.4732266)
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