
Detecting the Point of Release of Virtual Projectiles in AR/VR
Goksu Yamac*

Trinity College Dublin
Niloy J. Mitra†

University College London
Carol O’Sullivan‡

Trinity College Dublin

ABSTRACT
Our aim is to detect the point of release of a thrown virtual projectile
in VR/AR. We capture the full-body motion of 18 participants throw-
ing virtual projectiles and extract motion features, such as position,
velocity, rotation and rotational velocity for arm joints. Frame-level
binary classifiers that estimate the point of release are trained and
evaluated using a metric that prioritizes detection timing to obtain a
ranking of joints and motion features. We find that wrist joint and
rotation motion feature are most accurate, which can can help when
placing simple motion tracking sensors for real-time throw detection.

Index Terms:[I.3.6] [Computer Graphics]—Interaction Techniques;
[I.3.7] [Computer Graphics]—Virtual Reality

1 INTRODUCTION
Augmented and Virtual Reality (AR/VR) technologies are rapidly
changing Human-Computer Interaction (HCI). The focus is shifting
from static, goal-oriented and mediated interactions towards more
active, natural and immersive experiences, thus requiring a deeper
understanding of human behavior, motion and perception. However,
the problem of simulating natural physical interactions with virtual
entities within a dynamically changing environment (real or virtual)
remains an open challenge [10].

Figure 1: VR scene and capture equipment

We explore the physical interaction of throwing a virtual ball within
a Virtual Environment (VE), without an intermediary device (which
reduces agency [2]). We aim to determine which features should
be tracked using low-cost cameras or wearable sensors, in order
to detect the real-time point of release (PoR) of the ball. Previous
work has mainly focused on offline analysis of real throwing for
performance feedback, whereas our approach aims to detect virtual
throwing events in real-time. We introduce a metric that prioritizes
detection timing to evaluate these models.

We capture the motion of 18 participants throwing a virtual ball
in an immersive VR game, using two different types of tracking:
i) real-time arm and finger tracking to control VR interactions and
determine the PoR; and ii) simultaneous capture of full-body motion
for later offline analysis. Multiple frame-level binary classifiers are
trained to detect the PoR of the ball based on different combina-
tions of the full-body motion features (rotation, position, linear and
rotational velocity) and the arm joints (wrist, elbow and shoulder).
Our results show that the wrist joint and the rotation motion feature
provide the highest accuracy for detecting the PoR.

*yamacg@tcd.ie
†n.mitra@ucl.ac.uk
‡carol.osullivan@tcd.ie

2 RELATED WORK
Human action/activity recognition (HAR) is a very active research
topic in Ubiquitous Computing and HCI, with applications in many
areas such as healthcare monitoring [3], smart environments [1],
security surveillance [8] and offline classification of events in sports
for performance assessment [7]. In comparison to video-based
methods for HAR [5], wearable sensor-based approaches to HAR
are more resilient and flexible and avoid occlusion, lighting and
privacy concerns [4].

In recent years, previous pattern recognition approaches that use
handcrafted features in HAR have been replaced with hierarchical
feature extraction for Deep Learning [11]. This enables the adoption
of diverse network types, e.g., recurrent neural networks, long short-
term memory networks, stacked autoencoders, and the learning of
more advanced features to allow successful recognition of more
complex human activities. Our approach is similar to Vepakomma et
al. [9], where a framework utilizing multiple wearable and ambient
sensors is used to recognize complex daily life activities. Following
a sliding window sampling, they extract various statistical features
and train a supervised neural network.

3 THROW DETECTION
Our dataset consists of motion data and release timecodes of virtual
throws. A frame-level binary classifier is trained, that uses a sliding
window analysis to detect the PoR frame based on the estimated
probabilities inferred from four motion features input: Position (P),
Velocity (V), Rotation (R) and Rotational Velocity (RV). Features are
extracted from the throwing arm’s joints: wrist (W), elbow (E) and
shoulder (S). The classifier is supervised based on PoR timecodes.

Capturing Throws: The Virtual Environment (VE) is displayed
with the HTC Vive™ headset in Unity. A 5cm diameter ball is
placed on a block and a 50cm diameter target is on the ground (see
Figure 1). All target positions are generated randomly at real-time
for 18 participants (10F, 8M, aged 18-38), recruited from University
students and staff. Each participant performed 63 virtual throws,
giving an overall total of 1134 throws for all participants.

We implemented two tracking types: i) real-time capture using
a HTC Vive controller attached to the throwing forearm for arm
tracking and ManusVR™ gloves for finger tracking (to allow the
virtual ball to be picked up and released in real-time); and ii) full-
body motion capture at 120Hz for offline analysis with a 21-camera
Vicon™ optical motion capture system and 53 body markers (see
Figure 1). A timecode sent from the motion capture system at release
time was used for synchronization. Between the grab and release
events, a velocity estimation algorithm continuously calculated the
average velocity over a window of the nine previous frames, which
was applied to the ball at the frame it was released. For the release
algorithm, we used the rotational rate of change in the index and
middle finger phalanges, which provides a good indication of an
opening hand. The associated timecode is used as the ground truth
PoR for our motion analysis.

Data Preprocessing: To extract throwing motion sequences, we
center a window of 51 frames at the PoR frame of each of the 1134
throws, as 51 frames (425 ms) includes the most relevant phases of
a throwing motion. Global position is converted to relative position
by changing the origin of the coordinate system to be the hip center
of the participant. We also calculate the position of the arm joints
projected onto the direction the thrower is facing.

Figure 2: Illustration of FN and DR methods. Scattered points rep-
resent the estimated probabilities of a frame representing a PoR.

Velocity V is estimated using the finite-difference method on po-
sitions. Similarly, Rotational Velocity RV is estimated using the
finite-difference method on the angle-axis representation of the rota-
tion data. For every frame, the joint motion features of 6 previous
frames, up to and including the current one, are extracted and se-
quenced in an array to form a sliding window of size w. Finally,
for all throws, a binary vector (the target vector) of size W is also
defined, where the element corresponding to the ground truth PoR
frame (i.e., the center frame) is set to True and all others are set to
False. The skewness of the dataset is handled by using a weighted
loss during training.
Model Training: The input to our model is defined by a selection
of motion features per joint. Out of the 4 motion features available
for each of the 3 joints, any combination of these joint-feature
pairs can be selected, e.g., {V,RV} for W and {P} for E. Each
of the motion features contribute to the size of the input by their
dimensions: P is three-dimensional, R is four-dimensional, and
both V and RV are one-dimensional. The size of the model input
is calculated by summing the dimensions of motion features used
per joint, multiplied with the sliding window size w, e.g., in the
selection of {V,RV} for W and {P} for E, w∗ ((1+1)+(3)). We
refer to each selection as a joint-feature configuration. We train 35
models, each with different joint-feature configurations, consisting
of stacked, fully connected feed-forward neural network layers with
a sigmoid layer at the output and binary cross-entropy as the loss
function. Rectified linear unit (ReLU) activation is used, and each
layer is followed by batch normalization. The models are developed
using PyTorch [6].

Detection Methods: We use two methods to estimate the PoR
frame in a throw window from the model’s output probabilities (see
Figure 2). In our first method, First Nonzero (FN), we start classify-
ing each frame in the throw window starting with ft−25 and detect
a release at the first estimated PoR frame. We use a classification
threshold of p = 0.5. Our second method, Delayed Response (DR),
involves applying a moving-average filter and checking the rate of
change of the output probabilities of the model. Similar to FN, we
apply a threshold to avoid the algorithm being prone to noise.

Model Evaluation: Commonly used binary classification metrics
do not provide enough insights into the capabilities of a time series
classification model. We therefore introduce a metric, within, which
uses the size of the time mismatch between the actual and estimated
PoR frames to calculate accuracy, i.e., within(d) measures the ratio
of how many of the detections fall within a distance of d frames:

within(d) =
1

100

100

∑
i=1

1(|arg(Ŷi = 1)−arg(Yi = 1)| ≤ d) (1)

where Yi represents the target vector for one throw, Ŷi represents
the predicted target vector, 1(.) is the indicator function and 100 is
the size of the test set; d is the distance in frames from the ground
truth. This metric thus assesses a model’s ability to cluster the
estimated PoR frames around the real PoR frame, whether they are
correctly classified or not.

Figure 3: Selection of joint-feature combinations and within-5 results
of the FN and DR methods, ranked by DR accuracy

4 RESULTS AND DISCUSSION
The trained models were tested by randomly subsampling the full
set of throws into 10 subsets of size 100 each. For both methods, FN
and DR, we performed a semi-exhaustive analysis over a group of
joint-feature configurations to rank motion features and joints, based
on their performance for frame-level throw classification. Of the 35
configurations we have evaluated overall, Figure 3 shows a selection
of 20, color-coded and ranked based on their within(5) accuracy for
the DR method. Their original rank, and the number of neurons on
layers 1 (L1) and 2 (L2) of the trained model are also shown.

Accuracy over 70% for a single motion feature was only achieved
for R (rank 2). Configurations using only one motion feature for
a single joint show that R provides higher detection accuracy in
general, e.g., ranks 16,21,25, but not 24. Configurations that use a
single motion feature on a single joint also indicate that the wrist
joint provides higher accuracy (e.g., ranks 26,30,35 for P; 31,33,34
for V). This is intuitive since the wrist is positioned close to the ball
and it follows a very close motion pattern as the ball. We conclude
that: i) Rotation provides the highest accuracy as a single motion
feature; and ii) Wrist joint provides the highest accuracy if used
alone. In future work we will run a user-study to explore how throws
with inaccurate release timings (i.e., too early or late) are perceived,
which will facilitate the interpretation and utility of our results.
ACKNOWLEDGMENTS
This research was supported by Science Foundation Ireland, Grant
Agreement 13/RC/2106, at the SFI ADAPT Research Centre, TCD.

REFERENCES

[1] K. Avgerinakis, A. Briassouli, and I. Kompatsiaris. Recognition of
activities of daily living for smart home environments. In Intelligent
Environments, pp. 173–180, 2013.

[2] D. Coyle, J. Moore, et al. I did that! Measuring users’ experience of
agency in their own actions. In ACM CHI, pp. 2025–2034, 2012.

[3] J. Hoey, T. Plötz, et al. Rapid specification and automated generation
of prompting systems to assist people with dementia. Pervasive and
Mobile Computing, 7(3):299–318, 2011.

[4] M. Janidarmian, A. Roshan-Fekr, et al. A comprehensive analysis on
wearable acceleration sensors in human activity recognition. Sensors,
17(3):529, 2017.

[5] S. Ke, H. Thuc, et al. A review on video-based human activity recogni-
tion. Computers, 2(2):88–131, 2013.

[6] A. Paszke et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems 32, pp. 8024–8035. 2019.

[7] D. Schuldhaus, C. Zwick, et al. Inertial sensor-based approach for
shot/pass classification during a soccer match. In KDD Workshop on
Large-Scale Sports Analytics, pp. 1–4, 2015.

[8] D. Singh and C. K. Mohan. Graph formulation of video activities for
abnormal activity recognition. Pattern Recognition, 65:265–272, 2017.

[9] P. Vepakomma, D. De, et al. A-wristocracy: Deep learning on wrist-
worn sensing for recognition of user complex activities. In IEEE
Wearable and implantable body sensor networks (BSN), pp. 1–6, 2015.

[10] A. Villegas, P. Perez, et al. Realistic training in vr using physical
manipulation. In IEEE VR Workshop (VRW), pp. 109–118, 2020.

[11] J. Wang, Y. Chen, et al. Deep learning for sensor-based activity recog-
nition: A survey. Pattern Recognition Letters, 119:3–11, 2019.

	Introduction
	Related Work
	Throw Detection
	Results and Discussion

