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Abstract
On the Lockean thesis one ought to believe a proposition if and only if one assigns 
it a credence at or above a threshold (Foley in Am Philos Q 29(2):111–124, 1992). 
The Lockean thesis, thus, provides a way of characterizing sets of all-or-nothing 
beliefs. Here we give two independent characterizations of the sets of beliefs satisfy-
ing the Lockean thesis. One is in terms of betting dispositions associated with full 
beliefs and one is in terms of an accuracy scoring system for full beliefs. These char-
acterizations are parallel to, but not merely derivative from, the more familiar Dutch 
Book (de Finetti in Theory of probability, vol 1, Wiley, London, 1974) and accuracy 
(Joyce in Philos Sci 65(4):575–603, 1998) arguments for probabilism.

1  Introduction

The Lockean thesis is a way of connecting all-or-nothing beliefs to graded beliefs 
(Foley 1992). On the Lockean thesis to have an all-or-nothing belief in a proposition 
is just to assign that proposition a credence at or above a certain threshold.1 One of 
the interesting and controversial features of Lockeanism is that it does not require 
that one’s beliefs either be closed under logical implication or even be logically con-
sistent. For a failure of closure note that at any threshold less than one it is possible, 
on the Lockean thesis, to believe two atomic propositions P and Q while not believ-
ing their conjunction P&Q.2 For a failure of consistency note that at a threshold of .6 
it is possible to believe two propositions P and Q, while also believing the negation 
of their conjunction, ¬(P&Q).3

 *	 Daniel Rothschild 
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1  Sometimes the Lockean thesis is framed as one about what one ought to believe, rather than about 
what one does believe. The difference is not essential here.
2  See Leitgeb (2014) for an exploration of constraints, other than having a threshold of 1, on credences 
and thresholds that ensure closure (and consistency).
3  Assume you assign a credence of .6 to P and .6 to Q, then you can assign at most .8 to ¬(P&Q).
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We might want to ask what constraints the Lockean thesis does put on one’s 
beliefs. Some constraints are well-known: for example, if the threshold for belief is 
greater than .5, then, on the Lockean thesis, one cannot hold pairwise inconsistent 
beliefs.4 However, these constraints do not give necessary and sufficient conditions 
for satisfying the Lockean thesis. For, as we will see in Sect.  3, there are sets of 
beliefs that are pairwise consistent but that cannot be believed by a Lockean with a 
threshold greater than one-half. Pairwise consistency is thus a necessary but not suf-
ficient condition for the Lockean thesis with a threshold greater than one-half.

In this paper, I present two types of characterizations of sets of beliefs for Lock-
ean agents. I draw on a pair of related traditions for characterizing graded beliefs. 
The first tradition is that of the Dutch Book argument for probabilism. In this tradi-
tion, graded beliefs can be characterized by how they rationalize bets. Very roughly 
speaking, the Dutch Book argument establishes that a set of numerically graded 
beliefs is probabilistically coherent if and only if there is no collection of bets it 
rationalizes that leads to a sure loss.5 The second tradition is that of the accuracy 
argument for probabilism. In this tradition, numerical credences are given scores 
corresponding to their accuracy.6 The standard genre of result in this area is to estab-
lish that the numerical credences that are probabilistically coherent are equivalent to 
those that are not dominated in all worlds by another set of credences.

In the case of graded beliefs, both Dutch Book arguments and accuracy argu-
ments are used to characterize probabilistically coherent beliefs. What I show here is 
that these arguments can also be used to characterize all-or-nothing beliefs satisfy-
ing the Lockean hypothesis.

It is worth noting that such a characterization is not directly extractable from the 
current literature. For accuracy arguments and Dutch Book arguments character-
ize probabilistically coherent numerical credences, and probabilistically coherent 
beliefs have a many-to-one relationship to Lockean belief sets.

What I give here is a direct characterization of Lockeanism via betting disposi-
tions and accuracy scoring rules. To do this I propose mappings from sets of all-or-
nothing beliefs to betting dispositions and scores and, I show that, relative to these 
mappings, Lockean belief sets can be characterized by properties of betting disposi-
tions and scores.

In the accuracy tradition there is already a small literature that addresses how the 
Lockean thesis fares vis-a-vis accuracy arguments.7 This paper advances that litera-
ture by providing more general results than previously available and by proving, as a 
corollary of these results, the main conjecture of Easwaran (2016). There is, by con-
trast, no literature that I am aware of relating Dutch Book arguments to the Lockean 

5  This argument goes back to Ramsey (1926) and de Finetti (1974). See Pettigrew (2019) for a recent 
book-length review and discussion.
6  See, e.g., Joyce (1998) and Pettigrew (2016a). This work is, in turn, dependent on the tradition of scor-
ing graded predictions for their accuracy going back at least to Brier (1950); see Gneiting and Raftery 
(2007) for a recent discussion.
7  For example, Easwaran and Fitelson (2015), Pettigrew (2016b), Easwaran (2016) and Dorst (2019).

4  See, e.g., Hawthorne and Bovens (1999) for this and related observations.
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account of belief. This paper fills that lacuna by giving two Dutch Book results for 
the Lockean account of belief.

The significance of these results varies depending on your starting assumptions. 
For example, these results show that if a set of full beliefs satisfy certain decision-
theoretic properties relative to a range of scoring systems then they are compatible 
with the Lockean thesis. If you think of full belief as basic and use Lockeanism as a 
way to derive ranges of graded beliefs from them (as in Easwaran 2016), then these 
results gives you the conditions on which this is possible. Likewise, if, as in classi-
cal works in decision theory, you take certain kinds of betting dispositions as basic, 
these results give necessary conditions for the dispositions to be associated with sets 
of full beliefs. More generally, these results make connections between three ways 
of thinking about epistemic commitments: graded beliefs, full beliefs, and betting 
dispositions.

Here is the plan: In the next Sect.  2, I outline the basic formal framework for 
modeling full beliefs. In Sect. 3, I define three different ways in which sets of full 
beliefs can be said to satisfy the Lockean thesis. In Sect. 4, I discuss ways of deriv-
ing betting dispositions from full beliefs and what it takes for those dispositions to 
be subject to a Dutch Book. In Sect. 5, I give an accuracy scoring system for full 
beliefs and state some standard decision-theoretic properties of full belief sets rela-
tive to the system. In the main section, Sect. 6, I give results linking these differ-
ent ways of thinking about full beliefs. I discuss the significance of these results in 
Sect. 7 and outline a few directions for future work in Sect. 8.

2 � Framework

Let W be a finite set of worlds, which we will enumerate w1 …wm , let P denote the 
set of proposition 2W,8 enumerated p1 … pn , with n = 2m . Let B ⊆ P be a subset of 
o beliefs, o ≤ n , enumerated b1 … bo . Let t be a real number, 0 < t ≤ 1 , which we’ll 
call the threshold. We think of B as representing the set of propositions an agent 
believes (and hence P∖B is the set of propositions the agent doesn’t believe). In the 
next three sections we define various properties that B can have, always in terms of 
the threshold t. These properties fall into three categories: Lockean properties, bet-
ting properties, and accuracy properties.

3 � Lockean Belief Sets

On the Lockean thesis one should believe a proposition p if and only if you assign 
it a credence greater than or equal to some threshold t. In this section we will define 
three different versions of the Lockean thesis.

8  Notation: 2X is the powerset of X.
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Let us begin by defining credences. A credence function is a function c from P 
to [0, 1] such that c(W) = 1 , c(�) = 0 and for any X ⊆ W , c(X) =

∑
w∈W c({w}).9

Since we use linear algebra to prove most of our main results it will be useful to 
rephrase some of the notions in terms of vectors. We correspond to each proposition 
p an m-dimensional vector � = ⟨p1,… , pm⟩ such that

We correspond to the credence function c the vector � = ⟨c1 … cm⟩ such that 
ci = c({wi}) . In this case it is easy to see that c(p) = � ⋅ �.10

We begin with the weakest sense in which B can satisfy the Lockean thesis rela-
tive to the threshold t. The set of beliefs B is Lockean Compatible relative to the 
threshold t iff there is a credence function c such that: c(b) ≥ t (or � ⋅ � ≥ t ) for all 
b ∈ B.

To say that B is Lockean Compatible is not equivalent to saying that B can be a 
Lockean’s total set of beliefs. For if a Lockean’s belief set B contains two proposi-
tions x and y it also ought to contain x ∪ y , but Lockean Compatibility does not guar-
antee this.

For this reason, we will define two stronger notions as well. The set of beliefs B is 
Lockean Complete at threshold t iff there is a credence function c such that c(p) ≥ t 
iff p ∈ B for all p ∈ P . We will also use a weakening of Lockean Completeness to 
allow cases where belief is optional at the threshold t. We say B is Almost Lockean 
Complete relative to a threshold t iff there is a credence function c such that for all 
p ∈ P if c(p) > t then p ∈ B and if c(p) < t then p ∉ B . As we shall see, this last 
notion connects more naturally with the decision-theoretic notions we define in rela-
tion to accuracy scoring.

We can now prove the claim in the introduction that there are sets of beliefs that 
are pairwise compatible but are not holdable by the Lockean with t > .5 . A belief set 
B is pairwise compatible iff for all b, b� ∈ B , b ∩ b� ≠ � . It is well known that this is a 
necessary condition for Lockean Compatibility, Completeness, or Almost Complete-
ness for t > .5.11 However it is not a sufficient condition for any of these properties 
as the following result shows:

Observation 1  For any t > 0 , there is a set of beliefs B that is pairwise compatible 
but not Lockean Compatible at t.

Proof  Let W be the set

pi =

{
1 if wi ∈ p

0 otherwise
.

11  This is because if two propositions are disjoint then both their probabilities cannot be greater than .5.

9  This is equivalent to saying ⟨W,P, c⟩ is a probability space. Note that, unlike in standard Dutch Book 
arguments, we are here stipulating that credences satisfy the axioms of probability theory.
10  For two n-dimensional vectors, � = ⟨x1 … xn⟩ and � = ⟨y1 … yn⟩ , their inner product, � ⋅ � , is 
x1y1 +⋯ + xnyn.
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Consider the set B enumerated b1 … bn such that bk = {w ∈ W ∶ k ∈ w} . Note that 
for any i ≠ j , {i, j} is a member of both bi and bj and no other element of B. So, B is 
pairwise compatible and each element of W is a member of exactly two elements of 
B. It follows that for any credence function c:

It follows that for some j between 1 and n that c(bj) ≤
2

n
 . So if we choose n large 

enough we can find a member of B with an arbitrarily low credence.12 	�  ◻

Note that since Lockean Compatibility is the weakest of our three notions, we 
also cannot use pairwise compatibility to give sufficient conditions for being Lock-
ean Complete or Almost Lockean Complete.13

4 � Betting on Beliefs

Dutch Book arguments traditionally assume that an agent’s rational betting behav-
ior is determined by their credences. Dutch Book arguments are used to argue for 
the thesis that a rational agent’s credences are probabilistic (something we assumed 
above in the definition of credences). The leading assumption behind the Dutch 
Book argument is that credences determine a rational agent’s betting preferences. 
The arguments typically assume some divisible good in which an agent’s utility is 
linear (conventionally assumed to be dollars). Expected utility theory provides a 
standard way of linking rational betting dispositions to credences: a rational agent 
acts in order to maximize her utility relative to here credences. Thus, if offered a bet, 
an agent ought to be willing to take it only if she expects to gain by it or at least not 
lose by it. Indeed the very idea of credences or subjective probability is often consid-
ered to be determined by or to determine betting behavior.14 On this framework it is 
typically assumed that if an agent has a credence y in a proposition p then she ought 
to be willing to buy or sell a bet that pays out $1 if p is true and $0 otherwise (we’ll 
call this bet a bet for p) for the price $y . This is because the agent’s expected return 
from the bet is $y . (In the decision theoretic framework, the agent is also rationally 
obliged to buy the bet for any lower value and sell it for any higher value.) A Dutch 
Book is a way of exploiting these dispositions, by presenting an agent with a collec-
tion of bets she is willing to take which will result in a sure loss for the agent, and, 

{{i, j} ∶ i, j are positive integers less than or equal to n s.t. i ≠ j}.

n∑
i=1

c(bi) = 2
∑
w∈W

c({w}) = 2.

12  Thanks to Kenny Easwaran for noting and fixing a mistake here.
13  Note that the combination of single premise closure (for every b ∈ B if p ⊇ b then p ∈ B ) and pair-
wise compatibility also does not yield necessary and sufficient conditions for a Lockean complete sets of 
beliefs.
14  As in Ramsey (1926).
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hence, a sure gain for the bookie (i.e. the person offering the bets). Traditional Dutch 
Book arguments show that, roughly, an agent will not be subject to a Dutch Book if 
and and only if her credences are probabilistically coherent.15

It is less straightforward to link all-or-nothing beliefs to betting behavior. The 
Lockean thesis, however, by providing a link between belief and credence suggests 
some ways of linking beliefs to betting behavior. On the Lockean thesis an agent 
ought to believe p if and only if she assigns p a credence greater than or equal to t. 
The agent, then, for each belief b ought to be willing to buy a bet for b for $t (or a 
lower price), since her expected return of the bet is greater than or equal to zero. So 
we start with the assumption that there are some bets that a Lockean agent ought to 
be willing to buy (in any quantities). If there is a collection of such bets for an agent 
that guarantee her a loss at each world then the agent’s beliefs B is subject to a one-
way Dutch Book with respect to t.

To state the notion of a one-way Dutch Book formally we will again use vector 
notation. For an agent’s beliefs b1,… , bo we can use a non-negative o-dimensional 
vector � , the stake vector, to represent the number of bets the agent buys for each 
proposition b1,… , bo (i.e. the agent buys xi bets for bi).16 We assume here that all 
bets are priced at $t since that is the highest price that the Lockean view guarantees 
the agent will be willing to pay. At a world w these bets lead to the payoff,

By associating each world w with an o-dimensional vector � , such that

the payoff at w can be concisely stated as � ⋅ � . A collection of beliefs b1,… , bo is 
subject to a one-way Dutch Book just in case there is some vector of non-negative 
stakes � such that for all worlds w, � ⋅ � < 0.

A one-way Dutch Book only takes advantage of the beliefs B = b1,… , bo the 
agent has, it does not exploit those propositions she does not belief, i.e. P∖B . On the 
Lockean view, the agent must have less than t credence in the propositions not in B. 
She, thus, ought to be willing to sell $1 bets on each proposition in P∖B for $t each. 
A two-way Dutch Book is a collection of bets in B that the agent is willing to buy at 
$t and a collection of bets in P∖B she is willing to sell at $t that together guarantee 
her a loss.

We will formally state the notion of two-way Dutch Book in vector notation. Let a 
non-negative n-dimensional vector � represent the stakes an agent takes in bets cost-
ing $t on the propositions p1,… , pn as follows: if pi is one of the agent’s beliefs then 

∑
1≤i≤o,w∈bi

xi(1 − t) +
∑

1≤i≤o,w∉bi

−xit.

(1)wi =

{
(1 − t) if w ∈ bi
−t otherwise

,

15  See Pettigrew (2019) for a recent review of these arguments.
16  We are using an o-dimensional vector to represent a function from B to non-negative stakes.
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she buys xi bets, if pi is not one of the agent’s beliefs then she sells xi bets.17 That � 
is required to be nonnegative captures the fact that the choice of buying or selling a 
bet in a proposition is determined by whether or not the proposition is believed by 
the agent.

The payout an agent gets for stakes � with the set of beliefs B at a world w is:

We can represent this as � ⋅ � , where the n-dimensional vector � is defined as 
follows:

An agent is subject to a two-way Dutch Book if there is a non-negative n-dimen-
sional stake vector � such that for each world w, � ⋅ � < 0 . In other words, there is a 
set of bets the agent’s beliefs rationalize that leads to a loss at each world.

5 � Scoring Beliefs for Accuracy

Another perspective associates sets of beliefs with scores, depending on the accu-
racy of the beliefs in the set. The picture here is that an agents’ beliefs B are scored 
for their accuracy. Scoring all-or-nothing beliefs is simpler conceptually than scor-
ing graded beliefs: while saying whether a real-valued confidence in a proposition 
is right or wrong at a world is a tricky business, saying whether a belief is right or 
wrong is straightforward.18 For this reason, we’ll jump right into how to score sets 
of all-or-nothing beliefs without comparison to the scoring of graded beliefs.

We’ll consider a scoring system for beliefs following Easwaran and Fitelson 
(2015), Easwaran (2016) and Dorst (2019). The crucial assumption made in this lit-
erature is that we assign scores to an agent for their total beliefs at a world by assign-
ing numerical scores to individual propositions believed and summing those 
scores.19 We will further assume that at a world w if a belief in a proposition pi turns 
out to be correct (i.e. w ∈ pi ) then the agent gets a certain non-negative score ri ≥ 0 , 
and if it is incorrect (i.e. w ∉ pi ) the agent gets a non-positive score, si ≤ 0 . Note 
that if an agent fails to believe a proposition there is no score associated with that 
proposition. We will further assume that the ratio between the reward for true belief 

∑
pi∈B,pi∈w

xi(1 − t) +
∑

pi∈B,pi∉w

−xit +
∑

pi∉B,pi∈w

−xi(1 − t) +
∑

pi∉B,pi∉w

xit.

(2)wi =

⎧
⎪⎨⎪⎩

1 − t if pi ∈ B, pi ∈ w

−t if pi ∈ B, pi ∉ w

−(1 − t) if pi ∉ B, pi ∈ w

t if pi ∉ B, pi ∉ w

.

17  Note that we reuse � and � for both o-dimensional and n-dimensional vectors. This abuse of notation 
is justified because of the similar construction and role these vectors play across different arguments and 
definitions. It will always be clear, I hope, which one we are discussing.
18  See Gneiting and Raftery (2007) for a review of scoring rules for graded beliefs.
19  The additivity assumption, that the total score for one’s beliefs is just the sum of the individual scores, 
is defended by Dorst (2019).
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and penalty for false belief is constant across propositions so that for any two propo-
sitions pi and pj , 

ri

si
=

rj

sj
 , if all of ri > 0 , si > 0 , rj > 0 and sj are non-zero.20 We also 

assume that for any pi , ri = 0 iff si = 0 . On this system of scoring beliefs, at a world 
w a set of beliefs B gets the score

We now rephrase this scoring system in a way that makes more transparent its 
connection to Lockeanism. Using the threshold t, for reasons that will become 
apparent, let t = −si

ri−si
 , for some i such that ri > 0 . Note that t does not depend on the 

choice of i and 0 ≤ t ≤ 1 . Let xi = ri − si . Note that −txi = si and (1 − t)xi = ri . We 
will refer to xi as the weight on the score for proposition pi , as the higher an xi is the 
more extreme a score the proposition pi has, relative to a fixed t. Note that xi is 
always non-negative. Let � be the m-dimensional vector whose ith entry is xi . Given 
this mapping, it is clear that any scoring system, as defined in the previous para-
graph, can be fully specified by giving a t ∶ 0 < t ≤ 1 and a non-negative n-dimen-
sional vector � . In what follows, we will specify scoring systems in terms of t and � 
without loss of generality.

Let � , again, be the o-dimensional vector defined in (1) on p. 8. Let � , the weight 
vector, be a non-negative o-dimensional vector giving the weights on a scoring sys-
tem for the propositions b1,… , bn.21 The agent’s total score at w, S(w,  B) can be 
concisely stated in vector notation as � ⋅ �.

Since we have a scoring system for beliefs, we can apply some standard notions 
from decision theory to the choice of belief sets. A choice of a set of beliefs B is a 
sure loss if for every world w, S(w,B) < 0 . A belief set B is rational for an agent 
given a credence function c if and only if there is no other set B′ such the expected 
score of B on c, E(S(w,B�)) , is greater than the expected score of B′ on c, E(S(w,B�))

.22 The choice of one set of beliefs B strictly dominates another choice of beliefs, B′ 
if for all worlds w, S(w,B) > S(w,B�) . A set of beliefs B weakly dominates another 
set of beliefs, B′ , if for all worlds w, S(w,B) ≥ S(w,B�) and there is some world w′ 
such that S(w,B) > S(w,B�) . Note that all of these notions are only defined relative 
to the scoring system, and hence the weight vector � (for all propositions) as well as 
the threshold t.

S(w,B) =
∑

w∈pi,pi∈B

ri +
∑

w∉pi,pi∈B

si.

20  We can remove this assumption, but then we need to relate this scoring system to a slightly different 
definition of Lockeanism in which there is a different threshold for belief in each proposition, see Eas-
waran (2016, Appendix F), Dorst (2019), for details.
21  These are the only weights necessary for determining the score for the set of beliefs B, which is why 
we do not use our original n-dimensional weight vector also called � . Again the reuse of the � and � for 
both o-dimensional and n-dimensional vectors is to emphasize their parallel roles.
22  Where E(S(w,B)) =

∑
w∈W c({w})S(w,B).
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6 � Connecting the Three Perspectives

First, we will draw some connections between properties of Dutch Books and prop-
erties of scoring systems on our framework.

Observation 2  For any set of worlds W = w1,… ,wm , set of beliefs B = b1,… , bo , 
and positive real number t ≤ 1 , the following two statements are equivalent. 

(a)	 The agent holding B is subject to a one-way Dutch Book at threshold t.
(b)	 At some weight vector � the agent holding B will realize a sure loss (i.e. a loss 

at all worlds) at threshold t.

Proof  Corresponding to each world w there is an o-dimensional vector � as defined 
in (1) on p. 8. Note that � ⋅ � is both the payoff at w frzzaom holding bets on B with 
stake vector � with threshold t and the score one gets at w for having beliefs B with 
weight vector � and threshold t. So, both (a) and (b) are equivalent to the statement 
that there is some non-negative o-dimensional vector � such that for every world w, 
� ⋅ � < 0 . 	�  ◻

Another, less obvious, connection between scoring and betting can be made as 
follows:

Observation 3  For any set of worlds W = w1,… ,wm , set of beliefs B = b1,… , bo , 
and positive real number t ≤ 1 the following two statements are equivalent. 

(a)	 The agent holding B is subject to a two-way Dutch Book at threshold t.
(b)	 The set of beliefs B is strictly dominated by another set of beliefs B′ on the scor-

ing system with threshold t and some weight vector �.

Proof  We will start by showing (a) implies (b): Let � be a non-negative n-dimen-
sional vector as defined in (2) on p. 9. Since B is subject to a two-way Dutch Book 
we know that there is some weight vector � such that for every world w, � ⋅ � < 0 . 
In scoring terms � ⋅ � represents the score at world w for holding B minus the score 
for holding P∖B . So P∖B strictly dominates B on weights �.

Now we will show that (b) implies (a). If B is strictly dominated we know that 
there is some other set of bets B′ and some set of non-negative weights � such that 
for every world w the score for holding B with t and � is strictly less then the score 
for holding B′ . Now define �′ such that,

It is straightforward to see that on �′ , B′ strictly dominates B: since B strictly domi-
nates B′ on � , and �′ is like � except for not weighting propositions held in common 
by � and �′ . We can also see that P∖B strictly dominates B on �′ since the scores 
for P∖B and B′ on �′ are equal at every world. Since �′ ⋅ � is the score for holding B 

x�
i
=

{
xi if bi ∈ B�B� ∪ B��B

0 otherwise
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minus the score for holding P∖B , it must be negative for every w. Therefore �′ are 
the stakes for a two-way Dutch Book. 	�  ◻

We have just seen the close relationship between the betting dominance and accu-
racy dominance of a set of beliefs B. Now we can make connections between these 
and Lockeanism.

We begin by reviewing a connection between the scoring system and Lockeanism 
that has been established in the literature. The central result in the literature is the 
following.23

Observation 4  Given a scoring system with threshold t, a set of beliefs is rational 
relative to some credences c if it is Almost Lockean Complete with respect to t.

Proof  We give a sketch, referring the reader to Dorst (2019) and Easwaran (2016) 
for more detail. Given the additivity of our scoring system and of expectations, an 
agent maximizes expected score for the total set of beliefs, by making the ‘best’ 
choice for each proposition p whether to belief it or not. If the scoring system 
assigns a positive weight to p this requires believing p only if c(p) ≥ t and whenever 
c(p) > t , hence being Almost Lockean Complete. Note that since weights are not 
required to be positive the converse fails. 	�  ◻

Relating rationality, which is expressed in terms of credences, to Lockeanism 
is straightforward as the previous result showed. The notion of a sure loss and the 
dominance relations are not stated in terms of credences and so their relationship to 
Lockeanism less transparent. We begin with a negative observation, due to Easwaran 
(2016). Suppose a belief set B is not weakly dominated on the scoring system with 
weights � and threshold t. This does not entail that B is (Almost) Lockean Complete. 
A simple example suffices, where there are two worlds w1 , w2 and threshold .6 and 
all propositions have weight 1 except {w1} which has weight 100. In this case the 
belief set {{w1}, {w2}, {w1,w2, }} is not weakly dominated. It yields score 40 at w1 
and − 59.2 at w2 . Dropping {w1} would reduce the score at w1 while dropping {w2} 
would reduce the score at w2 , while dropping both would reduce the score at w1 . 
However, given the threshold of .6, an Almost Lockean Complete set of beliefs can-
not include two pairwise incompatible propositions such as a {w1} and {w2}.

We now turn to our main results: characterizations of Lockean Compatibility and 
Almost Lockean Completeness in betting and scoring terms.

Here is our first result:

Theorem 1  The following three statements are equivalent. 

(a)	 The agent holding B  is not subject to a one-way Dutch Book at threshold  t.

23  See Easwaran (2016) and Dorst (2019). Both generalize to cases where t is proposition dependent.
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(b)	 There is no weight vector � such that the agent holding B will realize a sure loss 
at threshold t.

(c)	 B is Lockean Compatible with threshold  t.

Proof  As we have already showed that (a) and (b) are equivalent in Observation 2, 
we will only need to show that (c) is equivalent to those two. To do so we will need 
to represent the entire situation in terms of matrix-vector multiplication.

Consider the m × o matrix � , constructed so that each row i consists of the row 
vector �i corresponding to the world wi as defined in (1) on p. 8.

Or equivalently we can directly define � as follows:

where

Note that if we multiply � by an o-dimensional column vector � we get the 
following:

We can see, then, that iff there is no non-negative � such that �� < 0 then (a) and 
(b) hold.24 So, to put it more compactly, (a) and (b) are equivalent to the following 
holding:

Consider an m-dimensional vector corresponding to some credence function � , as 
in Sect. 3. Now consider multiplying such a vector in row format by � as follows:

� =

⎡
⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦

� =

⎡
⎢⎢⎣

a11 … a1o
… … …

am1 … amn

⎤
⎥⎥⎦
,

aij =

{
1 − t if wi is in bj
−t otherwise

.

�� =

⎡⎢⎢⎣

�1 ⋅ �

⋮

�� ⋅ �

⎤⎥⎥⎦
.

(3)∄� ≥ 0 ∶ �� < 0

24  Note that, as is standard, � < 0 means each coordinate of � , v1 … vk , is less than zero.
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We can see that the ith coordinate of �T� is greater than or equal to 0 iff c(bi) ≥ t . 
Another way of seeing this is to note that the ith column of � is the vector �i minus 
the vector � which has value t everywhere.25 Thus, the ith entry of �T� is � ⋅ (� − �) 
= � ⋅ � − t . If this is greater than or equal to 0, then c(p) ≥ t.

We can now compactly state what it is for a set of beliefs to satisfy (c) as follows:

Note that we do not require � to sum to 1 in (4). However, it is easy to see that (4) is 
equivalent to

since multiplying � by a positive scalar does not affect any of the inequalities.
So all we need to show is that (3) and (4) are equivalent statements about the 

matrix � , which is the content of the following theorem from linear algebra, whose 
proof, using Farkas’s Lemma, is in the appendix. 	�  ◻

Theorem 2  Let � be any m × n matrix, then:

The next theorem relates the notion of strict dominance to the scoring and betting 
frameworks.

Theorem 3  The following three statements are equivalent: 

(a)	 There is no two-way Dutch Book on B.
(b)	 There is no weight vector � on which B is strictly dominated.
(c)	 B is Almost Lockean Complete.

Proof  We have already established that (a) and (b) are equivalent in Observation 3.
Consider the following m × n matrix �.

�T� =
�
c1,… , cm

� ⎡⎢⎢⎣

a11 … a1o
… … …

am1 … …

⎤
⎥⎥⎦

=
�∑

i∶wi∈b1
ci(1 − t) −

∑
i∶wi∉b1

cit,… ,
∑

i∶wi∈bo
ci(1 − t) −

∑
i∶wi∉bo

ci(t)
�

=
�
c(b1)(1 − t) − (1 − c(b1))(t),… , c(bo)(1 − t) − (1 − c(bo))(t)

�

(4)∃� ≥ � ∶ � ≠ �, and �� ≥ 0.

∃� ≥ �, � ≠ �, �� ≥ 0, and

m∑
i=1

yi = 1,

(∄� ≥ � ∶ �� < �) ↔ (∃� ≥ � ∶ � ≠ 0 and �� ≥ �)

25  Vectors for propositions were defined in Sect. 3 and simply are m-dimensional vectors that are 1 at 
index i when proposition is true at wi and 0 otherwise.
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where,

Note that the ith row of � corresponds to the vector �i associated with the world 
wi as defined in (2) on p. 9. Given an n-dimensional non-negative weighting vector 
� , � ⋅ �i < 0 iff taking stakes � on the bets associated with the belief set B leads to a 
loss at wi . Since

the statement,

is equivalent to saying that there is no two-way Dutch Book on B (at the threshold t), 
i.e. that (a) and (b) are true.

Considered column-wise, the jth column of � is �� − � if pj ∈ B and −(�� − �) if 
pj ∉ B , where �� is the m-dimensional proposition vector as defined in Sect. 3 and � 
is the m-dimensional vector with value t at all coordinates. There being a credence 
function that is Almost Lockean Complete, (c) above, is thus equivalent to there 
being a credence vector � such that �TD ≥ 0 . This is equivalent to this simplified 
condition:

To complete our proof we note that Theorem 2 establishes that (5) and (6) are equiv-
alent statements about � . It follows that (a), (b), and (c) are equivalent.

	�  ◻

The following conjecture from Easwaran (2016) follows directly from 
Theorem 3.

Lemma 1  (Easwaran’s conjecture) If for all positive weight vectors � , B  is not 
weakly dominated by some B′, then B is Almost Lockean Complete.

Proof  Given Theorem 3 what we can show is that if B is not weakly dominated on 
any positive weighting function, then there is no non-negative weighting function on 
which B is strictly dominated. We will prove the contrapositive. Suppose B is strictly 

� =

⎡
⎢⎢⎣

d11 … d1n
… … …

dm1 … dmn

⎤
⎥⎥⎦
,

dij =

⎧
⎪⎨⎪⎩

1 − t if wi ∈ pj and pj ∈ B

−(1 − t) if wi ∈ pj and pj ∉ B

−t if wi ∉ pj and pj ∈ B

t if wi ∉ pj and pj ∉ B

.

�� =

⎡
⎢⎢⎣

�1 ⋅ �

⋮

�� ⋅ �

⎤
⎥⎥⎦
,

(5)∄� ∶ � ≥ 0 and �� < 0,

(6)∃� ∶ � ≥ �, � ≠ �, and �� ≥ 0.
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dominated by B′ on some non-negative weight vector � . Let �′ be a strictly positive 
weight vector such that

Let B′′ be the following belief set:

We can see that since B′ strictly dominates B on � , B′′ will strictly dominate B on �′ . 
So B is weakly dominated on the positive weight vector �′ . 	�  ◻

Note that the converse of Lemma 1 fails. B can be Almost Lockean Complete but 
still weakly dominated on some strictly positive weighting function. This is because 
if the credence function c assigns 0 to the proposition {w1} and t to {w2} then B 
might include {w2} and not include {w1,w2} and still be Almost Lockean Complete. 
It will be weakly dominated (on a positive weighting vector) by a variation B′ that is 
like B except it includes {w1,w2} but not {w2}.

7 � Discussion

Theorems 1 and 3 provide characterizations of Lockean belief sets (both Lockean 
Compatible and Almost Lockean Complete) in terms of the betting and accuracy 
frameworks.

As motivations for the Lockean thesis the significance of the results depends (a) 
on how natural the scoring and betting frameworks used are and (b) how compel-
ling the conditions put on collections of beliefs relative to these frameworks are. 
With respect to the betting framework: the natural question to ask is whether we 
are rationally obliged to bet on our beliefs, or against our non-beliefs, in the ways 
specified in Sect. 4. While it is natural to think that one is rationally obliged to bet 
on one’s full beliefs, it is perhaps less obvious that one has to bet against one’s non-
beliefs. Certainly though, if such betting dispositions are normatively linked to 
beliefs, the requirement that we not be subject to Dutch Books is a plausible condi-
tion to put on rational beliefs.26 With respect to the scoring framework: if the idea of 
scoring beliefs for accuracy is attractive in general, then the framework used is quite 
natural.27 However, we might ask why rational agents ought to choose belief sets 
that are not either (a) subject to a sure loss on some weighting vector, or (b) strictly 
dominated on some weighting vector. It is clear that if we know what the actual 
weighting vector is we should avoid a sure loss/strict domination on that vector. But 
why should we avoid it on all weighting vectors? Two thoughts are possible here: 

x�
i
=

{
xi if xi > 0

1 otherwise
.

B�� = {pi ∶ pi ∈ B� and xi ≠ 0} ∪ {pi ∶ pi ∈ B and xi = 0}.

26  See Pettigrew (2019) for a recent review and discussions of some of the philosophical questions about 
whether rational agents are obliged to make bets on their graded beliefs.
27  See in particular Easwaran (2016) and Dorst (2019) for robust presentation and defences of it.
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one is that we have uncertainty over what the right weights are and we are treat-
ing that uncertainty conservatively by ensuring we are okay (i.e. our choice is not 
dominated) no matter what the weighting vector is, the other is that there is unquan-
tifiable uncertainty about what the weights are (since perhaps we don’t have graded 
beliefs at all) and avoiding sure loss or weakly dominated beliefs on any weights is 
the best policy.28

8 � Further Directions

8.1 � Connections to Wald’s Complete Class Theorem

I would conjecture that an alternative characterization of Almost Lockean Complete-
ness can be found using Wald’s Complete Class Theorem.29 Wald’s Complete Class 
Theorem establishes that in a certain class of decision problems any strategy that is 
not weakly dominated is a rational strategy (i.e. one maximizing expected reward 
subject to her credences). Wald’s Complete Class theorem does not directly apply 
to the choice problem here: for, as I noted in Sect. 6, there are some belief sets that 
are not weakly dominated at some weighting function but that are also not Almost 
Lockean Complete. The reason Wald’s Complete Class theorem does not apply is 
that it requires the class of strategies to be convex: i.e. if two strategies are available 
to an agent then any probabilistic mix of them also is. If we had allowed mixed strat-
egies in our decision problem, then the Complete Class Theorem would apply and 
any strategy that was not weakly dominated by any mixed strategy would be Almost 
Lockean Complete. However, the main point of modeling outright belief is to have 
a notion of belief that contrasts with graded belief. If we allowed mixed strategies 
involving outright belief, it is not so clear that we have not introduced an analogue 
of graded beliefs. Nonetheless, I conjecture that by applying Wald’s Complete Class 
Theorem we can show that outright beliefs that are Almost Lockean Complete will 
be just those that are not weakly dominated by any mixture of other outright beliefs. 
Future work might also investigate how we ought to think about mixed strategies in 
a system of outright belief and how such mixed strategies relate to graded beliefs.

8.2 � Extensions to Other Scoring Systems

Note that we assumed here that at the threshold t, the betting odds, and the scor-
ing system ratios of cost to rewards, were the same for every proposition. A sim-
ple extension of these results could handle cases in which the odds are allowed to 
vary for each proposition.30 In addition to this last extension, future work might also 

30  See Easwaran (2016) and Dorst (2019) for the formal description of such a scoring system. The basic 
idea is that a n-dimensional vector � would specify the threshold for each proposition. The results here, I 
believe, could easily be extended to these systems.

28  I am grateful to Kevin Dorst for this last point.
29  I am grateful to Gary Chamberlain here for pointing out the relevance of Wald’s Complete Class The-
orem. See, e.g., Ferguson (1967) for details.
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explore other scoring systems and see whether they also give rise to Lockean pat-
terns of beliefs. Most interesting, I think, would be to see what can be found when 
the additivity assumption is weakened.

8.3 � Connection to Another Characterization

In this paper I characterized the Lockean belief sets by way of their relationship to 
bets and accuracy scoring systems. Fernando (1998, Theorem 4, p. 230) gives a dif-
ferent characterization of Lockeanism that is based on qualitative properties of sets 
of beliefs.31 It would be interesting to explore the connections between this result 
and those presented here.

Appendix: Proof of Theorem 2

Theorem 2  Let � be any m × n matrix, then:

Proof  We start with this widely used variant of Farkas’s Lemma:32

We can get the following by taking a universal instantiation of the both sides of the 
biconditional. (i.e. going from ‘ p iff q’ → ‘(for all x p) iff (for all x q)’).

This can be simplified to:

We can then switch signs on the right-hand side to get:

Theorem 2 follows immediately (by substitution of � with −�):

	�  ◻

(∄� ≥ � ∶ �� < �) ↔ (∃� ≥ � ∶ � ≠ 0 and �� ≥ �).

(∄� ≥ � ∶ �� ≥ �) ↔ (∃� ≤ 0: �� ≥ � and �� < 0).

(∀� > 0,∄� ≥ � ∶ �� ≥ �) ↔ (∀� > �,∃� ≤ 0 ∶ �� ≥ 0 and �� < 0).

(∄� ≥ � ∶ �� > �) ↔ (∃� ≤ � ∶ � ≠ � and �� ≥ �).

(∄� ≥ � ∶ �� > �) ↔ (∃� ≥ � ∶ � ≠ 0 and �� ≤ �).

(∄� ≥ � ∶ �� < �) ↔ (∃� ≥ � ∶ � ≠ 0 and �� ≥ �).

31  Wes Holliday pointed out to me that Fernando’s result can also be derived as a direct consequence of 
a result in Adams (1965, Theorem 1.4, p. 213).
32  For statements and proof see Strang (2006, pp. 441–442), Matoušek, J. & Gärtner (2007, pp. 89–92), 
and the wikipedia entry on Farkas’s lemma (Wikipedia contributors 2019).
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