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Abstract

This work studies modeling the progression of Alzheimer’s disease using a paramet-

ric method robust to outliers and missing data and a nonparametric method robust to

missing values and training instabilities. The proposed parametric method linearly

maps the individual’s age to a disease progression score (DPS) and jointly fits con-

strained generalized logistic functions to the longitudinal dynamics of biomarkers

as functions of the DPS using M-estimation. The proposed nonparametric method

applies a generalized training rule based on normalizing the input and loss to the

number of available data points to the long short-term memory (LSTM) recurrent

neural networks to handle missing input and target values. Moreover, a robust initial-

ization method is developed to address the training instability in LSTM networks

based on a scaled random initialization of the network weights, aiming at preserving

the variance of the network input and output in the same range.

Both proposed methods are evaluated on data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) for robust modeling of volumetric magnetic resonance

imaging (MRI) and positron emission tomography (PET) biomarkers, cerebrospinal

fluid (CSF) measurements, as well as cognitive tests, and are compared to the state-

of-the-art methods. The obtained results show that the proposed parametric model

outperforms almost all state-of-the-art parametric methods in predicting biomarker

values and classifying clinical status, and it generalizes well when applied to indepen-

dent data from the National Alzheimer’s Coordinating Center (NACC). Additionally,

the proposed generalized training rule for deep neural networks achieves superior

results to standard LSTMs using data imputation before training, especially when

applied to data with lower rates of missing values.
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A comprehensive analysis of the proposed methods in neurodegenerative disease

progression modeling reveals that the proposed nonparametric method performs

better than the proposed parametric method in predicting biomarker values, while

the parametric method works significantly better in clinical status classification.



Impact Statement

Alzheimer’s disease (AD) is the most common type of dementia and leads to pro-

gressive neurodegeneration. Nevertheless, there is no cure or effective treatment

to stop the progression of AD. Hence, early diagnosis of the disease, especially in

the pre-symptomatic stages, can provide time to treat symptoms and plan for the

future. On the other hand, early diagnosis of AD is challenging mainly because

elderly subjects can suffer from different age-related pathologies and normal ag-

ing besides AD. Therefore, methods to stage and identify at-risk individuals and

important biomarkers are critical to dementia research.

Moreover, longitudinal cohorts often contain missing data points and outliers

due to, for instance, dropped-out patients, unsuccessful or erroneous measurements,

or different assessment patterns and modalities used for different subject groups.

These issues hinder the direct application of the state-of-the-art data-driven models

to the AD progression modeling and prediction. Therefore, there is a need for novel

data-driven approaches that can deal with the aforementioned problems in this area.

The methods presented in this work have the potential to be used in clinical en-

vironments for a better understanding of AD for diagnostic, staging, monitorization,

and prognostic purposes. The proposed robust tools can automatically analyze the

complete perspective of the disease using longitudinal data in an end-to-end fash-

ion. This is also a holistic way to implement a system suitable for both (academic)

research and (industrial) clinical applications to better study, detect, and monitor

AD.

The proposed methods developed to deal with heterogeneous patterns, missing

data, and outliers can be applied to longitudinal studies other than AD, e.g., for



Impact Statement 7

modeling the progression of COVID-19. This work has shown an impact on the

scientific community through the dissemination via journals and clinical abstracts,

presentation via workshops and conferences, as well as participation in relevant

challenges in the field such as the Alzheimer’s disease prediction of longitudinal

evolution (TADPOLE) challenge.
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Cardoso, Sébastien Ourselin, and Lauge Sørensen. Robust parametric modeling of

Alzheimer’s disease progression. NeuroImage, 2020.

Peer-reviewed Conference Papers
[C1] Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso,
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Chapter 1

Introduction

Quantitative characterization of disease progression using longitudinal data can

provide long-term predictions for the pathological stages of individuals. Accordingly,

disease progression modeling (DPM) methods use longitudinal studies to develop

data-driven models that can describe the evolution of the disease over time. These

approaches can, therefore, provide a complete perspective of the disease by com-

putationally exploring the available data to help with a better understanding of the

disease for diagnostic, staging, monitorization, and prognostic purposes.

1.1 Alzheimer’s disease
Alzheimer’s disease (AD) is the most common type of dementia and leads to pro-

gressive neurodegeneration, affecting memory and behavior according to regional

damage to the brain cells [5]. As shown in Figure 1.1, changes in the early stage of

the disease may begin 10-20 years before diagnosis and can cause memory issues in

patients [1]. In the mild and moderate AD stages that can last 2-10 years, personality

changes occur and patients can have issues with recognizing objects. Finally, in the

severe AD stage that may last 1-5 years, widespread cell death occurs, and patients

can have the inabilities to communicate, recognize family, and care for themselves.

The hippocampus, which is the center of learning and memory, is often one of

the first regions of the brain to be damaged. It has also been shown that cerebrospinal

fluid (CSF) biomarkers can become abnormal in the presymptomatic phase of the

disease, preceding positron emission tomography (PET) and magnetic resonance
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Dementia

• Diagnosis of dementia and determining its type are challenging.

• A careful medical history, a physical examination, laboratory tests, and characterized day-

to-day changes are required.

• There is no cure or treatment to slow or stop the disease progression.

• Early diagnosis provides time to treat symptoms and to plan for the future.

3

Alzheimer’s association, Alzheimer’s & Dementia, www.alz.org.

Early AD

Learning, thinking, planning

Mild/Moderate AD

Speaking, understanding

Severe AD

Communicating, recognizing

Figure 1.1: Different stages of AD and the symptoms. Adapted from [1].

imaging (MRI) biomarkers followed by clinical markers [2, 6].

Currently, the cause of AD is not clear, and there is no cure or effective treatment

to stop its progression, but early diagnosis of the disease, especially in the pre-

symptomatic stages, can provide time to treat symptoms and plan for the future.

Although genetic factors such as the allele e4 of the Apolipoprotein E gene (APOE

ε4) increase the risk of AD development [7], early diagnosis of AD is challenging

mainly because elderly subjects can suffer from different age-related pathologies

(e.g., cerebrovascular lesions, Lewy pathology, and TDP-43 proteinopathies) and

normal aging besides AD. Therefore, methods to stage and identify at-risk individuals

are critical to dementia research. These methods are applied to AD biomarkers that

provide detailed measures of abnormal changes in the brain.

1.1.1 AD progression

The pathological progression of AD can be studied in three clinical phases [6]:

a presymptomatic phase in which patients are still cognitively normal (CN), a

prodromal phase with mild cognitive impairment (MCI), and a demented phase with

AD when there are impairments in multiple cognitive domains and problems in daily

living activities. Hence, biomarkers of AD can help us to detect early changes in the

brains of patients at risk of AD years before showing symptoms such as memory

loss. These biomarkers are used from different modalities to measure changes in the

size, function, and certain protein levels of the brain.

1.1.1.1 CSF

CSF is the surrounding fluid of the brain and spinal cord that provides insulation

and nutrients for keeping brain cells healthy. It is obtained in an invasive way by
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a lumbar puncture and contains certain proteins such as amyloid-beta (Aβ42) and

tau that are valuable tools for the early detection of neurodegenerative diseases in

presymptomatic phases [8]. Studies [6] have shown that Aβ42 as an indicator of

fibrillary amyloid deposition in plaques leaving the brain to CSF can decrease to

50% in AD patients compared with normal controls of the same age and changes

may begin 20 years before symptoms, whereas tau protein abnormalities (tangles)

in the CSF, can increase up to 300% in AD cases compared with normal elderly

subjects where the changes may start 15 years before symptoms. It should also

be noted that the aforementioned brain proteins can be measured with sensitive

blood tests (proteomics) in a minimally invasive manner. However, the plasma

biomarkers (proteomics, metabolomics, or transcriptomics) are less accurate than

CSF biomarkers for identifying AD.

1.1.1.2 PET

PET scans are obtained by brain imaging after an injection of a radioactive substance

(tracer) into the arm veins. They can reveal abnormalities in the chemical activities

of the brain by measuring, for example, glucose use and protein levels in different

brain regions. They can also capture the immune inflammatory responses (microglial

activations) with an early and late peak in the AD course [9]. Fluorodeoxyglucose

(FDG) is a widely used AD biomarker that estimates cerebral metabolic rates of

glucose [10]. Studies [6] show a decline in the cerebral metabolic rates of glucose in

AD patients even 15 years before symptoms, beginning in the entorhinal cortex and

hippocampus and spreading to the posterior cingulate cortex, temporoparietal areas,

and precuneus and prefrontal cortex. Moreover, abnormal accumulation of amyloid

plaques in the brain regions be detected in the same way using the florbetapir or

Amyvid (AV45) tracer [11].

1.1.1.3 MRI

MRI scans are obtained by brain imaging using magnetic fields and radio waves in a

safe and painless, yet noisy manner. Depending on the type of scan, they can provide

detailed information of the brain regions that can be used to measure regional changes

in the size and shape of the brain functions, flows, or structures including tumors,
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vascular damages, and atrophies that are related to loss of neurons and synapses and

can be evidence for neurodegenerative diseases. As mentioned before, shrinkage

in the medial temporal lobe including the hippocampus and entorhinal cortex is an

early (presymptomatic) sign of AD neuropathology. This is followed by atrophy

in the inferolateral regions of the temporal lobes in mildly or moderately impaired

patients. Moreover, medial parietal lobe atrophy can be seen at all stages, with

frontal lobe atrophy occurring later in the disease [12]. The early-onset AD stage

may also involve changes in the precuneus/posterior cingulate gyrus [6]. Studies

show that the atrophy rates in AD patients are about 3-7% per annum, whereas it

accounts for less than 0.9% in elderly healthy controls.

1.1.1.4 Cognitive

Cognitive assessments through clinical and neuropsychological tests are noninvasive

methods for identifying the early stages of the disease. They can measure cognitive

dysfunction or decline and its severity in the mild and prodromal stages of the

disease in a quantifiable manner [13] by evaluating different skills of a person

such as thinking, learning, memory, and language through some questionnaires or

activities. Cognitive decline is shown to be one of the latest markers becoming

abnormal in the course of AD. Still, auditory verbal learning tests are found as

effective markers in the early detection of AD, predicting neurodegenerative changes

up to 10 years before clinical diagnosis [14, 15, 16].

1.1.2 AD subtypes

Alzheimer’s disease is a heterogeneous disorder with different clinical and pathobio-

logical subtypes that vary in age, sex distribution, cognitive status, disease duration,

APOE ε4 genotype, CSF biomarker levels, and clinical morphology from the early-

onset AD (EOAD) to late-onset AD (LOAD). It has four major subtypes [17] of

typical, limbic predominant (LP), hippocampal sparing (HcSp), and minimal atrophy

(MA), according to amyloid-beta decomposition (A), distribution of tau pathology

(T), and brain atrophy or neurodegeneration (N) assessed by using plasma or CSF,

PET, and MRI [18, 19]. It is also shown that the risk of cognitive deterioration differs
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considerably between the various subtypes (A-N- < A+N- < A+T-N+ < A+T+N+).

Typical AD is the most frequent subtype which is characterized by tau pathol-

ogy, atrophy in both hippocampus and association cortex, and greater white matter

hyperintensity burden. This together with the LP subtype have higher onset and

death ages, progress slowly, more involve vascular co-pathology, and are frequently

seen in female patients and APOE ε4 carriers. Whereas the HcSp form has a lower

age, progresses more quickly with severe neurodegeneration and rapid cognitive

decline, less involve Lewy co-pathology, and is frequently seen in male patients

and noncarriers. In addition, in contrast to MA patients with an intermediate onset

age and slow progression rate, HcSp cases have been found to have higher levels of

education, suggesting that more education may help to protect the hippocampus.

Compared to the LP forms which have higher entorhinal tau load and greater

amyloid-beta PET binding in frontal and parietal cortices, typical AD forms have

higher amyloid-beta plaque counts in occipital regions and greater tau loads in the

temporal lobe. The HcSp subtype patients show greater tau load in the frontoparietal

lobe. Also, tau pathology and neurodegeneration at the molecular level can disrupt

key brain networks in the medial temporal lobe of MA subtype patients, causing

memory impairment comparable to LP and typical AD.

1.2 Disease progression modeling

Two types of approaches can be applied to modeling the progression of the disease,

parametric and nonparametric. Parametric DPM methods describe data with a finite

set of parameters independent of the number of training samples. These methods are

simple, fast, and need fewer data points for training, but require temporal alignment

of subjects’ trajectories. Nonparametric DPM methods are flexible, make fewer

assumptions for modeling, and can result in a high prediction accuracy. However,

they assume that a data distribution cannot be defined in terms of a finite set of

parameters, and they require substantial data for successful training to tune the

parameters and avoid overfitting.
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Figure 1.2: A hypothetical model of dynamic biomarkers of the Alzheimer’s pathological
cascade. Adapted from [2].

1.2.1 Parametric DPM

Parametric disease progression modeling methods can be divided into two categories,

continuous fitting for modeling the dynamics of biomarkers and discrete ordering of

biomarkers for abnormality detection, both relying on unsupervised learning, e.g.,

by using maximum-likelihood estimation. The discrete methods focus on temporally

ordering of biomarkers becoming abnormal during the disease stages by discretizing

the disease progression trajectory using generative, event-based models [20, 21].

Continuous parametric methods for modeling the progression of AD have

been inspired by hypothetical models, as shown in Figure 1.2, assuming a sigmoidal

evolution of AD biomarkers [2, 22]. The goal of these methods is to model biomarker

trajectories as a function of disease progression [3, 23]. Accordingly, a variety

of approaches have been applied to fit a continuous function to the longitudinal

dynamics of each biomarker using statistical models such as differential equations

and mixed-effects models [24, 25, 26, 27, 28], in which one needs to align the

trajectory of individuals based on some time measure, e.g., time-to-conversion.

These methods are simple and require less data, but parametric assumptions on the

biomarker trajectories limit the flexibility of the fits.

The parametric algorithm proposed in [3, 4] incorporates information from mul-
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Figure 1.3: An illustration of the AD progression modeling method proposed in [3, 4]. Left:
A Sigmoid function is fitted to the biomarker measurements of each subject.
Middle: The biomarker trajectories are aligned by linearly transforming subject
age to DPS. Right: The aligned biomarker fit is obtained for all subjects.

tiple biomarkers for modeling progression of AD over a common disease timescale.

As shown in Figure 1.3, the method linearly transforms the age of the individual

to a disease progression score (DPS) for the time-wise alignment of within-cohort

measurements, assuming that the visit intervals in the data are short relative to the

disease duration. Alternating least squares is applied to fit a sigmoid function to the

longitudinal dynamics of each biomarker. In this method, biomarker trajectories are

fitted independently and the biomarker dependencies are only considered when the

algorithm alternates to estimate the subject-specific (age) parameters, which in turn

can cause difficulties for the convergence of the alternating algorithm. Furthermore,

the proposed model is not robust to outliers that can be found in more contaminated

data. The first problem has been tackled in [29], but the problem with outliers

remains.

1.2.1.1 Robust regression

Regression analysis is a form of statistical predictive modeling for estimating the

relationships between target (dependent) variables yyy and predictor (independent)

variables xxx by fitting a simple function like f to the data points as

yyy = f (xxx;θ)+ εεε .

where εεε is an additive error term representing random effects and θ denotes the

model parameters that can be obtained by minimizing the difference between the

target and predictor variables. For example, ordinary least squares are the most
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common methods for estimating the parameters of the fit by minimizing the sum of

squared errors as

θ̂ = argmin
θ

∑
i
(yyyi − f (xxxi;θ))2 ,

An outlier is a data point different from other observations in value and pat-

tern they follow, which can cause serious problems, especially when learning data

patterns in regression analysis by receiving more weights. To cope with outliers in

data, M-estimation is introduced as a robust regression method [30] by minimizing a

loss function designed to de-emphasize outliers (see Table 2.2). M-estimators are

generalized types of least squares and maximum likelihood estimators for parametric

models that are calculated through the minimization of an objective function with

some data-dependent parameters. Assume that P is a likelihood function parameter-

ized by θ . If the observations are independent and identically distributed, maximum

likelihood estimation (MLE) can be obtained as

θ̂ = argmax
θ

log
(
∏

i
P(xxxi;θ)

)
= argmin

θ
∑

i
− log(P(xxxi;θ)) ,

where xxxi’s are the observations. M-estimation employs a more generic function to

estimate the parameters as

θ̂ = argmin
θ

∑
i

ρ(xxxi;θ) ,

where the function ρ can be chosen in such a way to reduce the effects of outliers

and to provide the estimator desirable properties in terms of bias and asymptotic

efficiency [31] with respect to an assumed distribution in reaching the Cramér-Rao

bound on the variance of the unbiased estimators.

The model fit can further be improved by utilizing a more flexible function

(see Table 2.1) and/or constraining the objective function. However, increasing the

number of parameters needs to be penalized as it can increase the model complexity

and result in overfitting. Figure 1.4 illustrates 1) how the use of a flexible function
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Figure 1.4: An illustration of how the proposed method (red curves) tackles the existing
biomarker curve-fitting problems using simulated data generated based on logis-
tic functions and additive white Gaussian noise. Left: A flexible function is used
to fit the asymmetric shape of the simulated data points. Middle: A constrained
function is utilized to estimate the exact dynamic range of the biomarker. Right:
A robust estimator is applied to fit a curve to the simulated data contaminated
with outliers.

improves the curve fit, 2) how the use of a constrained function moves lower and

upper asymptotes to fit the exact dynamic range of the biomarker, and 3) how the

use of M-estimation reduces the influence of outliers.

1.2.2 Nonparametric DPM

Nonparametric disease progression modeling methods have been introduced to model

biomarkers jointly while taking temporal dependencies among measurements into

account using Gaussian processes [32] or deep learning [33]. In contrast to the

parametric methods, these methods do not require alignment of the trajectories

of the individuals. However, a multivariate gaussian process with monotonicity

constraints is computationally expensive to fit due to large covariance matrices, and

deep learning methods are less interpretable and are hard to train in cases when

the data is sparse or irregular. Moreover, these methods cannot easily be applied

for prediction when the unseen data has fewer biomarkers than what was used for

training.

1.2.2.1 Deep learning

Deep neural networks are hierarchical computing units inspired by neurobiological

systems [34] that involve multiple cascaded layers with linear or nonlinear trans-

formations, each of which learns to extract abstract features and represent specific
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characteristics of the input data using several connected input-output nodes called

artificial neurons [35]. The connections, which simulate the biological synapses, use

learnable weights to transmit signals with different strengths between the neurons. In

a fully-connected network, each layer’s output node can be obtained by thresholding

a weighted aggregation of the layer’s input nodes using an activation function as

yyyi = σ(∑
j

wi jxxx j +bbbi) ,

where xxx, yyy, and bbb are the input, output, and bias vectors, respectively. Also, wi j is

the connecting weight between the i-th input node and the j-th output node, and σ

is an activation (thresholding) function such as the logistic sigmoid or hyperbolic

tangent. The number of network layers and input and output nodes per layer can

be assigned based on the number of available features and depending on the task,

e.g., for regression, classification, and dimensionality reduction. It should be noted

that although fully connected networks can be trained on multivariate data, they are

not able to learn temporal dependencies among longitudinal data due to the lack of

sequential nodes which limits their application to time-series prediction.

Network training is typically performed in two steps of feedforward and back-

propagation. In the forward pass, the training data enters the network and is transmit-

ted to its output to obtain the prediction error in the last layer. The estimated error

is then propagated through the network in the backward pass until all neurons have

associated error values needed to calculate the gradients and optimize the weights to

achieve better performance on the training data. The gradient descent algorithm is

commonly used to find the local minimum of the loss function by iteratively taking

steps in the opposite direction of the gradients to reduce the overall cost as

W new =W old −α∇W f (W old) ,

where W is the network weight array, ∇W f (·) is the gradient of the loss function

f with respect to W , and α is a tuning parameter for faster convergence called the

learning rate used to change the step size when moving toward the minimum of the
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(nonconvex) problem. Depending on the problem and amount of data, the algorithm

can be applied per iteration to a randomly selected data sample (stochastic), a subset

of training data (mini-batch), or whole training data (batch). Also, improved variants

of the gradient descent method can be used for learning such as the momentum

method [36], adaptive gradient algorithm [37], and adaptive moment estimation [38].

Overfitting is an important issue in training neural networks that occurs when

a trained (complex) model describes training data much better than test data. That

is to say, the model tries to memorize the training data instead of learning for a

reliable generalization. Several strategies have been proposed in the literature to

avoid overfitting and improve generalizability to unseen test data [39]. For example,

one can tackle the problem by penalizing the network loss using the regularization

method, data augmentation by applying plausible modifications to the training

samples, using dropout layers, using simpler network models, and applying the

early-stopping method.

1.2.2.2 Recurrent neural networks

Recurrent neural networks (RNNs) are the state-of-the-art, deep learning-based

methods for sequence learning that map an input sequence to an output sequence by

predicting the next time steps [40]. RNN training using the backpropagation through

time algorithm is challenging due to vanishing and exploding gradients where the

norm of the backpropagated error gradient can increase or decrease exponentially,

hindering the network in capturing long-term dependencies [41].

Three main solutions have been proposed in the literature to improve RNN

training; modifications of the training algorithm, modifications of the network archi-

tecture, or different weight initialization schemes. In the first approach, advanced

optimization techniques such as the Hessian-Free method [42] or regularized loss

functions [43] are applied to improve the backpropagation through time algorithm

for learning long sequences. The second approach is to employ nonlinear reset units

in the RNN architecture to store information for a long time, for instance, using long

short-term memory (LSTM) networks [44] or gated recurrent units (GRUs) [45].

The third approach is to properly initialize the RNN weight matrices, for example, to
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be identity [46] or orthogonal [47], to find a solution to the long-term dependency

problem.

1.2.2.3 LSTM networks and missing values

LSTM networks, the most common type of RNNs, use a gated architecture to

replace the hidden unit with a memory cell to efficiently capture long-term temporal

dependencies by storing and retrieving sequence information over time. The memory

cell or the so-called constant error carousels (CECs) is used as feedback along with

three nonlinear (multiplicative) reset units to keep the backpropagated error signal

constant [48, 49]. The input and output gates of the cell learn their weights to

incorporate the stored information or to control the output values. There is also a

forget gate that learns to remember or forget the memory information over time by

scaling the cell content.

The vanilla LSTM is the most commonly used LSTM architecture that utilizes

three reset gates with full gate recurrence and can include cell-to-gates (peephole)

connections [50]. Still, since longitudinal cohorts often contain missing data points

due to, for instance, dropped-out patients, unsuccessful measurements, or different

assessment patterns used for different subject groups – as for example seen in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [51], standard RNNs including

vanilla LSTMs cannot be directly applied.

Preprocessing methods such as data imputation and interpolation are the most

common approaches to handling missing data in RNNs. These two-step procedures

decouple missing data handling and network training, resulting in a sub-optimal

performance that is heavily influenced by the choice of data preprocessing method

[52]. Although RNNs themselves have been used for estimating missing data

[53, 54], the lack of methods to inherently handle incomplete data in RNNs is

evident [55]. Other approaches update the architecture to learn or encode the missing

data patterns [55, 52]. These methods are typically biased towards specific cohort or

demographic circumstances correlated with the learned missing data patterns and

introduce additional parameters in the network which increases the complexity of

the network.
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1.2.2.4 Deep neural network initialization

Since deep neural network training is achieved by solving a nonconvex optimiza-

tion problem, mostly in a stochastic way, a random weight initialization scheme is

important for faster convergence and stability. Otherwise, the magnitudes of the

input signal and error gradients at different layers can exponentially decrease or

increase, leading to an ill-conditioned problem. Moreover, studies on the initializa-

tion, for instance, using unsupervised pre-training [56], showed its importance as a

regularizer for the optimization procedure to robustly reach a local minimum and to

improve generalization. Therefore, standard initialization of weights with zero-mean

uniform/Gaussian distributions and heuristic variances ranging from 0.001 to 0.01

or an input layer size (N) dependent variance of 1/(3N) have been widely used in

previous studies [57].

Training difficulties have been investigated based on the variance of the re-

sponses in each layer, when the singular values of the Jacobian are not unit, and a

normalized initialization of uniform weights with a variance of 1/N is suggested

assuming that the activation functions are identity and/or hyperbolic tangent [57].

Likewise, a scaled initialization method has been developed to train deep rectified

models from scratch using zero-mean Gaussian weights whose variances are 2/N

[58].

To resolve the long-term temporal dependencies problem in RNNs, which

can be seen as deep networks when unfolded through time, the (scaled) identity

matrix has been applied to initialize the hidden (recurrent) weights matrix to output

the previous hidden state in the absence of the current inputs in RNNs composed

of rectified linear units (ReLU) [46]. Alternatively, (nearly) orthogonal matrices

[47] and scaled positive-definite weight matrices [59] have been used to address

vanishing and exploding gradients in RNNs by preserving the gradient norm during

backpropagation.

As can be seen, different initialization methods have been proposed to deal

with the training convergence problem in deep neural networks including RNNs,

assuming that LSTMs by design can handle the issue. Hence, the abovementioned
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initialization methods, e.g., orthogonal recurrent weight matrices and input weight

matrices, both drawn i.i.d. from zero-mean Gaussian distributions with variances

of 1/N, have also been applied to LSTMs. However, even though LSTM units by

design allow gradients to flow unchanged, they can still suffer from instabilities

(exploding gradient problem) when trained on long sequences [60] with improper

initialization due to the stochastic nature of the optimization and using multiplicative

gates and feedback signals.

1.3 Objectives

This work aims at developing machine learning and deep learning-based methods

to model the progression of Alzheimer’s disease using imaging biomarkers and

clinical data. To achieve this goal, first, a robust extension of [3, 4] is proposed

that jointly fits a constrained logistic function to the longitudinal dynamics of each

biomarker using M-estimation to address the potential curve-fitting problems, e.g.,

outliers, in the biomarker modeling (see Figure 1.4). The estimated parameters are

quantified using bootstrapping via Monte Carlo resampling, and the inflection points

are used to temporally order the biomarkers in the disease course. Kernel density

estimation with normal bases is applied to the estimated DPSs for clinical status

classification using a Bayesian classifier. Different loss and logistic functions are

considered, including a modified version of the Stannard function [61] which tends

to better describe the biomarker trajectories, and they are applied to AD progression

modeling of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [51] and the

National Alzheimer’s Coordinating Center (NACC) [62] data using volumetric MRI

biomarkers, CSF and PET measurements, and cognitive tests. The obtained results

indicate that the modified Stannard function fitted using the logistic loss achieves the

best modeling performance over different bootstraps, and it consistently outperforms

the basic algorithm of [4] and state-of-the-art results of [29] and [63] in almost all

experiments.

Next, we propose a generalized method for training LSTM networks that can

handle missing values in both input and target. This is achieved by applying the
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batch gradient descent algorithm in combination with the loss function normalized

by the number of missing values in input and target. Our goal is different than

the approaches that encode the missing values’ patterns [55, 52]; we want to train

RNNs robust to missing values to more faithfully capture the true underlying signal

and to make the learned model generalizable across cohorts. The proposed LSTM

algorithm is applied to AD progression modeling in the ADNI cohort, and the

estimated biomarker values are used to classify the clinical status of subjects.

Finally, a simple, yet robust initialization method is proposed to tackle the train-

ing instabilities in LSTM networks. The idea is based on scaled random initialization

of the network weights with the property that the input and output signals have the

same variance. The proposed method is applied to the proposed LSTM training

algorithm when learning from the ADNI data for multivariate disease progression

modeling data.

1.4 Contributions
The main contributions based on the parametric DPM study can be listed as follows:

• A novel generalized logistic function, called modified Stannard, is proposed

which better fits the AD biomarker trajectories compared to using other logistic

functions.

• The utilized logistic functions are constrained to estimate the exact dynamic

range of biomarkers while decreasing the number of to-be-optimized parame-

ters.

• M-estimation is used to suppress the effect of outliers on the model fit.

• The across-cohort generalizability of the proposed model is evaluated by

applying the model trained using ADNI data to the test data from the NACC

cohort with fewer biomarkers.

• An end-to-end approach is introduced that performs biomarker trajectory

modeling (unsupervised learning), biomarker inflection point detection (event
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ordering), and clinical status classification (supervised learning). This is a

holistic way to implement a system suitable for both research and clinical

applications to better study, detect, and monitor AD.

The main contributions based on the nonparametric DPM study can be summa-

rized as follows:

• A generalized formulation of the backpropagation through time algorithm

for training LSTM networks is proposed to handle incomplete data, and it is

shown that such built-in handling of missing values provides better modeling

and prediction performance compared to using data imputation with standard

LSTM networks.

• Temporal dependencies among measurements in the ADNI data are modeled

using the proposed LSTM training algorithm via sequence-to-sequence learn-

ing. To the best of our knowledge, this is the first time such multidimensional

sequence learning methods are applied to neurodegenerative DPM.

• An end-to-end approach, without the need for trajectory alignment, is proposed

for modeling the longitudinal dynamics of biomarkers and for clinical status

classification.

• A robust initialization method is proposed to address the training instabilities

in LSTM networks. To the best of our knowledge, this is the first time a

network initialization method is specifically introduced for training LSTM

networks.

1.5 Thesis outline
The rest of this thesis is organized as follows. Chapter 2 presents the details of the

parametric method proposed in [64] and provides information on how the utilized

approaches address potential curve-fitting problems, e.g., outliers, in the biomarker

modeling. Chapter 3 presents the deep learning-based methods proposed in [65, 33]

and describes the applied techniques to LSTM network training to handle missing
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values in both input and target signals and tackle the network training instabilities.

Chapter 4 compares the two proposed methods for disease progression modeling

from different aspects including the prediction of decline of cognitive test scores

[66, 67]. Finally, Chapter 5 summarizes the thesis and provides a general discussion

of the thesis content.



Chapter 2

The Proposed Parametric Method for

DPM

This chapter is based on the work presented in [64] where a robust extension of

[3, 4] is proposed that jointly fits a constrained logistic function to the longitudinal

dynamics of each biomarker using M-estimation to address potential curve-fitting

problems, e.g., outliers, in the biomarker modeling (see Figure 1.4). The proposed

method makes the estimates stable and robust to outliers by minimizing the error

of parametric disease progression modeling using a proposed logistic function and

M-estimation.

2.1 Modeling dynamics of biomarkers robust to out-

liers

Two sets of parameters are estimated in the model: observed biomarker-specific

parameters, which are assigned for fitting the biomarker curves, and hidden subject-

specific (age-related) disease progression parameters that are defined for aligning

the trajectory of subjects. Assume that yi, j,k is the k-th biomarker’s value at the j-th

visit of the i-th subject and f (s;θθθ) is an S-shaped logistic function of DPS s with

parameters θθθ . Each biomarker measurement is defined as

yi, j,k = f (si, j;θθθ k)+σkεi, j,k ,
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where σk is the standard deviation of the k-th biomarker with θθθ k parameters, εi, j,k is

additive white Gaussian noise (random effect) with i.i.d. assumption, and si, j is the

DPS for the j-th visit of the i-th subject and is obtained as

si, j = αiti, j +βi ,

where ti, j is the age of subject i in visit j, and αi ∈ R>0 and βi ∈ R are the rate and

onset of disease progression of subject i, respectively. Finally, the multiobjective

optimization for robust nonlinear regression is defined as

{α̂αα, β̂ββ , θ̂}= min
i, j,k

∑
i, j,k

wiρ

(
yi, j,k − f (αiti, j +βi;θθθ k)

σk

)
,

where ρ(·) is a maximum likelihood-type function and wi = 1/Ni is a weighting

factor for normalizing the objective function with the number of available points per

subject (Ni).

2.2 The constrained logistic functions
For fitting the longitudinal trajectories of biomarkers, four logistic functions are

considered (Table 2.1). All functions have the same range (0,1) and can produce

the same inflection points at c ∈ R, to be later used for biomarker ordering. We

candidate utilization of a modified flexible logistic function based on the Stannard

function [61], where the 1/γ factor is multiplied by the exponential term to create

an asymmetric growth curve with an inflection point at c like other functions. This

function tends to better describe asymmetrical sigmoid patterns of the biomarker

trajectories with modeling both slow and rapid growths at the beginning or the end of

the disease period. In the defined functions, b ∈ R>0 and γ ∈ R>0 denote the growth

rate and symmetry parameter of the curves, respectively. The reason for restricting b

to the positive real numbers is to make parameters of the estimation identifiable.

It can also be deduced from Table 2.1 that the sigmoid function first introduced

by Verhulst [68] is a special (symmetric) case of both Richards’ function [69] and the

proposed function when γ = 1. Moreover, Gompertz’s function [70] is a simplified
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Table 2.1: Details of the utilized logistic functions for AD progression modeling. Note that
the range of each function can be controlled by two additional parameters.

Logistic function g(s;θθθ) θθθ (min,max)∀b > 0 g′(s;θθθ) g′′(c;θθθ)

Verhulst
[
1+ e−b(s−c)

]−1 {b,c} (0,1) at (−∞,+∞) be−b(s−c)
[
1+ e−b(s−c)

]−2
0

Gompertz e−e−b(s−c) {b,c} (0,1) at (−∞,+∞) be−b(s−c)e−e−b(s−c)
0

Richards
[
1+ γe−b(s−c)

]−1/γ {b,c,γ} (0,1) at (−∞,+∞) be−b(s−c)
[
1+ γe−b(s−c)

]−1−1/γ
0

Modified Stannard
[
1+ 1

γ
e−

b
γ
(s−c)

]−γ

{b,c,γ} (0,1) at (−∞,+∞) b
γ
e−

b
γ
(s−c)

[
1+ 1

γ
e−

b
γ
(s−c)

]−1−γ

0

form of Richards’ function when γ approaches zero, i.e., limγ→0(1+ γu)−1/γ = e−u.

Finally, the upper and lower asymptotes of the curves can be adjusted by two

additional parameters [71] as

f (s;θθθ) = (a−d)g(s;θθθ)+d .

The range parameters, a and d, can be set to fixed values when the exact range

of biomarkers is given, which is the case with cognitive tests. This, in turn, not only

reduces the number of optimization parameters but also increases the stability of the

estimation. For other biomarkers, if there are, for example, sign constraints which

are the cases with nonnegative CSF and PET measurements, both parameters can be

constrained to lower and/or upper bounds, but otherwise remain unconstrained.

2.3 The efficient optimization algorithm for model

fitting
Alternating approach, as an efficient optimization technique, is applied to solve the

problem where the algorithm iteratively estimates θ using fixed values of ααα and

βββ and vice versa until the parameters converge. The proposed algorithm can be

summarized as follows

Initialization: initialize {ααα(0),βββ (0),θ(0)} using measurements.

Optimization: iterate l until convergence.

Biomarker fitting: estimate the biomarker-specific parameters using values
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of all subjects and visits.

θ̂(l) = min
i, j,k

∑
i, j,k

wiρ

(
yi, j,k − f (α̂(l−1)

i ti, j + β̂
(l−1)
i ;θθθ k)

σk

)
, (2.1)

Age mapping: estimate the subject-specific parameters using values of all

biomarkers and visits.

{α̂
(l)
i , β̂

(l)
i }= min

( j,k)∈Ni
∑
j,k

wiρ

yi, j,k − f (αiti, j +βi; θ̂θθ
(l)
k )

σk

 , (2.2)

where Ni corresponds to the number of measurements among all biomarkers and

visits available for the i-th subject. This way, in contrast to [3, 4], biomarkers are

fitted jointly. The degrees of freedom of the fit is equal to ∑k(Nk −|θθθ k|)−2I, where

Nk is the number of measurements among all subjects and visits available for the k-th

biomarker, |θθθ k| denotes the number of biomarker-specific parameters for the k-th

biomarker, and I is the number of subjects. Therefore, the algorithm can be applied

in case the data contains more than ∑k |θθθ k|+2I points, and if any subject has at least

two distinct points considering all biomarkers and visits.

The utilized maximum likelihood-type functions for robust regression [72, 31]

are described in Table 2.2. These estimators attempt to diminish the influence of the

outliers while fitting curves. In general, M-estimators use a tuning parameter called

τ to scale the functions as τ2ρ(r/τ) in order to yield 95% asymptotic efficiency with

respect to the standard normal distribution. The corresponding tuning constants for

the utilized functions are also reported in Table 2.2.

Finally, the obtained DPSs are standardized with respect to the scores of the

available cognitively normal visits of subjects in order to calibrate all biomarker

trajectories in different experiments. This process removes the mean of the normal

visits’ distribution of DPSs and scales the range to give a better intuition of timing

of disease progression in the course of AD. In this case, it would be necessary to
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Table 2.2: The utilized ρ-type M-estimators and their corresponding scale factors τ for
robust regression.

Loss function ρ(r) τ

L2 r2 1

L1-L2 2
(√

1+ r2 −1
)

1

Logistic ln(cosh(r)) 1.205

Modified Huber

{
1− cos(|r|), |r| ≤ π/2
|r|+(1−π/2), |r|> π/2

1.2107

Cauchy-Lorentz ln(1+ r2) 2.3849

properly update the parameters as

si, j =
(
si, j −µcn

)
/σcn ,

αi = αi/σcn ,

βi = (βi −µcn)/σcn ,

bk = σcnbk ,

ck = (ck −µcn)/σcn ,

where µcn and σcn are the mean and standard deviation of the DPSs in the available

cognitively normal visits of subjects, respectively.

2.4 Biomarker value prediction

Biomarker values can be predicted using the fitted model parameters. Age mapping

part of the proposed algorithm is applied to estimate the subject-specific parameters

using Equation (2.2) based on the values of those biomarkers of the test subject that

have available estimated biomarker-specific parameters in the fitted model. Next,

biomarker values are predicted as f (si, j;θθθ k) using the estimated test DPSs where

f (·) is the logistic function applied to model fitting.
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2.5 Clinical status classification
In order to predict the clinical status of test subjects per visit, kernel density esti-

mation (KDE) [73] is used to fit the likelihoods of cognitively normal, cognitively

impaired, and AD groups in a nonparametric way. Assume that (s1,s2, . . . ,sN) is a

set of N i.i.d. DPSs sampled from an unknown distribution with density function

p(s|ci), where ci denotes the i-th class label. KDE is expressed as

p̂(s|ci) =
1

Nw

N

∑
n=1

K

(
s− sn

w

)
,

where K(···) is a smooth (kernel) function with a smoothing bandwidth w > 0. Here,

the Gaussian kernel is used as the smoothing function.

The clinical status is classified based on the DPSs with a Bayesian classifier

that uses the KDE-based fitted likelihoods as

p(ci|s) =
p(ci)p(s|ci)

∑
i

p(ci)p(s|ci)
,

where p(ci) is the data-driven prior probability for the i-th class, p(ci|s) is the

posterior probability for predicting the test DPS that belongs to the class ci, and

the term in the denominator specifies the evidence and can be dropped because the

maximum a posteriori estimation is used for classification.

2.6 Experimental setup

2.6.1 Data

The data used in this work is obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) [51] and the National Alzheimer’s Coordinating Center (NACC)

[62] databases.

2.6.1.1 ADNI

The ADNI was launched in 2003 as a public-private partnership, led by principal

investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, PET, other biological markers, and clinical and neuropsycho-
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logical assessment can be combined to measure the progression of mild cognitive

impairment and early Alzheimer’s disease. We use The Alzheimer’s Disease Pre-

diction Of Longitudinal Evolution (TADPOLE) challenge dataset [74] that includes

the three ADNI phases ADNI 1, ADNI GO, and ADNI 2. This dataset contains

measurements from brain MRI, PET, CSF, cognitive tests, and demographics, and

genetic information.

The labels cognitively normal (CN), significant memory concern (SMC), and

normal (NL) are merged under CN; mild cognitive impairment (MCI), early MCI

(EMCI), and late MCI (LMCI) under MCI; and AD and dementia under AD. In

addition, subjects converting from one clinical status to another, e.g., MCI-to-AD,

are assigned the latter label (AD in this example). The utilized ADNI data includes

T1-weighted brain MRI volumes of ventricles, hippocampus, whole brain, fusiform,

and entorhinal cortex precomputed by ADNI using FreeSurfer tools [75], PET scan

measures of florbetapir (AV45-PET) and fludeoxyglucose (FDG-PET) averaged

across multiple areas of the cerebrum including temporal and parietal lobes and

cingulate regions [76], CSF measures of Amyloid beta, total tau, and phosphorylated

tau, as well as the cognitive tests of clinical dementia rating sum of boxes (CDR-

SB), Alzheimer’s disease assessment scale 13 items (ADAS-13), mini-mental state

examination (MMSE), functional activities questionnaire (FAQ), Montreal cognitive

assessment (MOCA), and Rey auditory verbal learning test of immediate recall

(RAVLT-IR). Detailed information about the utilized biomarkers can be found in

Table 2.7.

2.6.1.2 NACC

The NACC, established by the National Institute on Aging of the National Institutes

of Health in 1999, has been developing a large database of standardized clinical and

neuropathological data from both exploratory and explanatory Alzheimer’s disease

research [62]. The data has been collected from different Alzheimer’s disease centers

across the United States and among others contains measurements from different

modalities such as MRI, PET, and cognitive tests.

Labels with numerical cognitive status of one (normal cognition) and two
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(impaired-not-MCI) are merged under CN, and cognitive status of three (MCI) and

four (Dementia) are set to MCI and AD, respectively. It should be noted that we only

keep subjects with primary etiologic diagnosis of normal, AD, or missing. This is

to exclude subjects diagnosed with other types of dementia, non-neurodegenerative

disease, or a non-neurological condition. The used NACC data includes T1-weighted

brain MRI volumes of hippocampus and whole brain precomputed by NACC using

IDeA Lab’s software [77], and the cognitive tests of MMSE, MOCA, FAQ (sum of

the 10-item scores), and CDR-SB using the CDR® Dementia Staging Instrument.

2.6.1.3 Data filtering

For our analysis, in each of the ADNI and NACC datasets, measurements outside

known biomarker ranges, e.g., RAVLT-IR < 0, are rejected and assumed as missing

values. The volumetric MRI outliers observed in the ADNI dataset are removed by

assuming intracranial volume (ICV) estimates that are proportionally smaller than

estimated corresponding MRI measurements, i.e., MRI / ICV > 1, as missing values.

Clinical follow-up visits with reverting clinical diagnoses are removed per

subject considering the neighboring visits. In the ADNI dataset, clinical follow-up

visits with wrongly ordered dates are discarded per subject. Also, MRI, PET, and

CSF measurements that are already matched to the cognitive visits with any extreme

time gaps are excluded. The acceptable time gap is obtained based on the data

statistics and is set to three months. In the NACC dataset, we perform the matching

of MRI and clinical visits. However, due to the relatively smaller sample size in

NACC compared with ADNI, matches more than three months apart are kept and

treated as two distinct visits. In this analysis, we assign a missing clinical status for

any MRI visits that do not fall within the 3-month window.

In order to be able to apply the proposed method, measurements and clinical

diagnoses with missing date information per visit are set to missing values, and

subjects with less than two distinct visits are omitted. This results in 219 ADNI

subjects and 151 NACC subjects being excluded.
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Table 2.3: Demographics of the obtained datasets after filtering across visits.

clinical status age, year education, year MMSE

(mean±SD) (mean±SD) (mean±SD)

CN 76.93±6.03 15.76±2.92 29.05±1.20

MCI 75.07±7.67 15.80±2.90 27.43±2.26

AD 76.47±7.51 15.80±2.90 21.61±4.61A
D

N
I

Missing 74.44±7.87 16.10±2.64 27.34±3.07

CN 79.06±7.34 13.76±4.00 28.46±1.71

MCI 80.83±8.57 13.79±4.03 25.32±3.03

AD 81.09±8.14 13.73±4.08 19.60±5.11N
A

C
C

Missing 78.88±11.69 13.56±4.69 28.29±2.36

Note that missing clinical status after filtering is indicated as ‘Missing’.

Table 2.4: Statistics of the visits per dataset after filtering.

# visits per clinical status # visits per subject visit interval, year # measurements per subject

CN MCI AD Missing (mean±SD) (mean±SD) (mean±SD)

ADNI 2,285 3,850 2,064 899 5.99±2.37 0.74±0.43 58.60±23.38

NACC 1,140 205 318 9 7.00±2.91 1.15±0.37 21.61±9.03

2.6.1.4 The obtained study population

After filtering the data, the utilized 16 ADNI biomarkers are acquired from 1,518

subjects (854 males and 664 females) in 9,098 visits between August 2005 and May

2017, and the six NACC biomarkers are acquired from 239 subjects (75 males and

164 females) in 1,672 visits between October 2005 and July 2018. All subjects

in both datasets have at least one cognitive test. In the NACC data, 203 subjects

underwent MRI imaging while in the ADNI data, 1,515 and 1,220 subjects underwent

MRI and PET imaging, respectively, and 1,088 subjects have CSF measures. Table

2.3 and Table 2.4 summarize statistics of the demographics and measurements in the

two datasets after data filtering. Note that both datasets include missing values and

missing clinical status, the latter indicated as ‘Missing’.
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2.6.1.5 Data preprocessing

In the ADNI dataset, the volumetric measurements were obtained using two dif-

ferent versions of the FreeSurfer software, and in the NACC dataset, they were

calculated using IDeA Lab’s software following ADNI protocols. Therefore, the

MRI measurements need to be corrected for software version [78], software package,

and hence for different cohorts (ADNI-NACC). In addition, biological difference in

brain size hinders direct utilization of MRI measurements for disease progression

estimation. Total intracranial volume (TIV) or ICV is a commonly used measure for

normalization to correct for head size. To overcome both aforementioned problems

of difference in cohort/software (version) and head size, we employ the residual

approach [79] based on the analysis of covariance, which takes data from control

groups and linearly regresses MRI volumes on their corresponding ICV as a covariate

of interest. The corrected measurements can thus be calculated as the estimated

residuals R̂ of the volumes using the regression parameters obtained from the control

data as

R̂i, j,k,v = ROIi, j,k,v −
[
β̂

cn
k,v + α̂

cn
k,vICVi, j,k,v

]
,

where ROIi, j,k,v is the k-th MRI volume for subject i at visit j calculated (observed)

using software or software version v, ICV is the corresponding intracranial volume,

and β̂ cn and α̂cn are the intercept and slope of the regression estimated from the CN

group. Finally, the estimated residuals are standardized per cohort/software (version)

so that all variables have zero mean and unit variance.

2.6.1.6 Data partitioning and bootstrapping

To evaluate the algorithms, each of the ADNI and NACC datasets is partitioned into

two non-overlapping sets for training and testing. To be more specific, based on the

first and last available diagnoses of subjects, i.e., CN-CN, CN-MCI, ..., AD-AD, we

divide each of these types of pairs into two groups including few and many visits

using the median number of visits as threshold and randomly select 20% of the

subjects from each group for testing.
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Additionally, bootstrapping is used in the experiments for quantification of

the estimation, and in each bootstrap, a subset of the training subjects is randomly

sampled with replacement based on the first and last available pair of diagnoses and

the number of available visits per subject, to make sure each bootstrap sampling

contains data from any diagnostic status and sequence lengths. The unused subjects

are assigned for validation and account for 1/e ≈ 0.37 of the subjects where e is the

base of the natural logarithm. This also means that the estimated variance using the

bootstrapped model will account for approximately 63% of the total variance.

To facilitate future research in AD progression modeling and comparison with

the current study, all the data splits, including each bootstrap split, are available

online (https://arxiv.org/src/1908.05338v3/anc) as supplementary

material [64].

2.6.2 Evaluation metrics

Robust Bayesian information criterion (BIC) is used as a criterion for model selection

among the robust models [80]. The criterion is penalized with the number of

parameters to avoid overfitting, where the model with the lowest BIC is preferred,

and it is defined as

BIC = 2E(Lopt)
train +Q ln(N) ,

where E(Lopt)
train is the training loss at the optimum iteration number Lopt obtained

through biomarker fitting using Equations (2.1) and (2.2), N is the total number of

measurements, and Q is the total number of parameters which is equal to ∑k |θθθ k|+2I.

The mean absolute error (MAE) is used to assess the modeling performance

as a measure less sensitive to outliers [81]. It is calculated based on the absolute

differences between actual and estimated values as follows

MAE =
1

Nk
∑

(i, j)∈Nk

∣∣yi, j,k − f (si, j;θθθ k)
∣∣ ,

where Nk is the number of measurements among all subjects and visits available

https://arxiv.org/src/1908.05338v3/anc
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for the k-th biomarker, and yi, j,k and f (si, j;θθθ k) are the ground-truth and estimated

values of the k-th biomarker for the i-th subject at the j-th visit. Absolute errors of

different biomarkers can be normalized with the corresponding standard deviation of

the biomarkers and averaged across all normalized biomarkers to obtain a single per-

formance measure called normalized MAE (NMAE). The modeling performance of

two different methods is statistically compared using the paired, two-sided Wilcoxon

signed-rank test [82] applied to the NMAEs obtained from different bootstraps.

Additionally, multiclass area under the receiver operating characteristic (ROC)

curve (AUC) [83] is used to measure the diagnostic performance in a multiclass test

set and is calculated using the posterior probabilities as

AUC =
1

(nc(nc −1))

nc−1

∑
i=1

nc

∑
k=i+1

1
nink

[
SRi −

ni(ni +1)
2

+SRk −
nk(nk +1)

2

]
,

where nc is the number of distinct classes, ni denotes the number of available

observations belonging to the i-th class, and SRi is the sum of the ranks of posteriors

p(ci|sssi) after sorting all concatenated posteriors {p(ci|sssi), p(ci|sssk)} in an ascending

order, where sssi and sssk are vectors of DPSs belonging to the true classes ci and ck,

respectively. Likewise, SRk is the sum of the ranks of posteriors p(ck|sssk) after sorting

all concatenated posteriors {p(ck|sssk), p(ck|sssi)} in an ascending order.

2.6.3 Initialization of the optimization algorithm

Since the fitting algorithm is iteratively performed using an alternating approach

starting from values optimized in the previous step, initialization is an important

step for efficiently reaching the optimum. We initially set ααα(0) and βββ
(0) to 111 and 000,

respectively. Moreover, we initialize the slope of the trajectories (λλλ ) to either −1

or 1 depending on the diagnoses. A positive slope is considered when the average

of the k-th biomarker’s values for cognitively normal visits is less than that for AD

visits and vice versa.

Next, the parameters of the logistic functions are initially estimated as γk = 1,

ck = 0, and bk = 4λk/(ak −dk), where dk and ak are the minimum and maximum

of the k-th biomarker’s values, respectively, provided that the slope λk is positive,
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and vice versa if the slope is negative. Finally, we repeat the alternating procedure

using the logistic functions and the trust-region algorithm [84] considering robust

estimators for at most 50 iterations.

2.6.4 Stopping criteria

To avoid overfitting, the optimal parameter values are selected according to the

optimum generalization loss obtained using the following criteria [85]

{α̂αα, β̂ββ , θ̂}= min
Lmin≤l≤Lmax

E(l)
valid ,

where E(l)
valid is the validation loss at the l-th iteration obtained through biomarker

fitting using Equations (2.1) and (2.2). The minimum number of iterations, Lmin, is

set to 10 to allow for enough training progress. The maximum number of iterations,

Lmax, is set to 50. This avoids unnecessary computations since it was empirically

observed that Evalid attained a minimum well within this iteration range in all cases.

2.7 Results and discussion

2.7.1 Biomarker modeling

First, the proposed method is applied to model the dynamics of the ADNI biomarkers.

Table 2.5 illustrates the modeling performance (BIC) for ADNI training subsets

obtained from 100 bootstraps using different logistic and loss functions. The com-

bination of the modified Stannard function for biomarker fitting and the logistic

loss achieve the best modeling performance with both the lowest average BIC and

the smallest standard deviation and a validation NMAE of 0.985± 0.029. This

configuration will be used in all the remaining experiments.

To further investigate the stability and robustness of the model with the chosen

configuration of logistic and loss functions, we visualize the fitted trajectories for each

of the 100-bootstrap runs together with their average per biomarker in Figures 2.1 and

2.2. As it can be seen, the bootstrap curves follow almost the same logistic growth

pattern per biomarker. Moreover, although the confidence intervals are relatively

narrow in CSF biomarkers, RAVLT-IR, AV45-PET, and Entorhinal measurements,
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Table 2.5: Modeling performance as BIC (mean±SD) ×104 for the 100-times bootstrapped
ADNI training subsets using different logistic and loss functions.

PPPPPPPPPPPP

Logistic
function

Loss function
L2 L1-L2 Logistic Modified Huber Cauchy-Lorentz

Verhulst 2.090±0.039 1.901±0.028 1.830±0.027 1.836±0.027 1.925±0.029

Gompertz 2.101±0.042 1.902±0.028 1.831±0.027 1.836±0.027 1.927±0.029

Richards 2.077±0.038 1.899±0.028 1.829±0.027 1.835±0.027 1.924±0.029

Modified Stannard 2.077±0.038 1.898±0.028 1.828±0.026 1.834±0.027 1.924±0.028

The best result is shown in boldface and its corresponding configuration is selected for the remaining experiments.

we can simply separate bootstrap curves of the other biomarkers into different

clusters, including CDR-SB, ADAS-13, MMSE, MOCA, FDG-PET, Ventricles,

Whole Brain, and Fusiform measurements. Since we have applied robust regression

to reduce the effects of possible outliers on the bootstrapped data curve fits, there

should be other explanations for the seen differences. We hypothesize that some of

the observed outliers and differently distributed bootstrapped data curve fits may

represent AD subtypes discussed in Section 1.1.2. In other words, the proposed

method has attempted to robustly fit a logistic function to the trajectory of each

biomarker considering ages of bootstrapped subjects but disregarding some other

subject-specific factors such as gender, cognitive status, APOE ε4 genotype, CSF

changes, and brain atrophy which may affect the regression performance. In addition,

some of the biomarkers and AD subtypes do not necessarily follow an S-shaped

trajectory pattern [9] and may progress with different rates in the disease course.

2.7.2 Temporal ordering of biomarkers

To indicate the timing and the dynamics of the different biomarkers relative to each

other, Figure 2.3 shows the average curves scaled to [0,1] using the estimated upper

and lower asymptotes per biomarker and superimposed in the same figure. The dis-

tribution of the inflection points of the biomarkers, quantified through bootstrapping,

can be used to see how biomarkers proceed in the course of AD with respect to

each other. The inflection point is considered a turning point at which the direction

of biomarker curvature changes. Figure 2.4 displays the temporal ordering of the

ADNI biomarkers based on the estimated inflection points. As can be seen, CSF
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Figure 2.1: Estimated curves per bootstrap (in gray) for the ADNI biomarkers using the
modified Stannard function and the logistic loss. The average of the bootstrapped
curves per biomarker is shown as the black curve.
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Figure 2.2: Estimated curves per bootstrap (in gray) for the ADNI biomarkers using the
modified Stannard function and the logistic loss. The average of the bootstrapped
curves per biomarker is shown as the black curve.
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(a) The entire trajectory of all biomarkers.
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(b) A zoom on the DPS axis showing the most
dynamic area.

Figure 2.3: The average of the normalized curves of the ADNI biomarkers across 100
bootstraps.

and PET biomarkers, as well as RAVLT-IR, precede all other biomarkers followed

by MRI biomarkers and cognitive tests. These findings are in line with the results

of [3, 4, 86, 29]. More interestingly, RAVLT-IR starts becoming abnormal early in

the disease course which is consistent with several clinical studies concluding that

some cognitive tests including RAVLT are significant predictors that can predict

neurodegenerative changes up to 10 years before clinical diagnosis [14, 15, 16].

However, some of the MRI biomarkers such as the ventricles and whole-brain are

noisy measurements for modeling the progression of AD in this dataset, as also seen

in Figure 2.4. It is important to note that the inflection points are utilized to order the

biomarkers in the disease course. These points do not measure when the biomarkers

start becoming abnormal and hence, cannot be used for early abnormality detection.

2.7.3 DPS distribution versus biomarker timing

Figure 2.5 shows the variance of the estimated inflection points per biomarker along-

side the estimated class-conditional likelihoods of the obtained DPSs from 100

bootstraps. As can be seen, there are moderate overlaps between the DPS distribu-

tions of CN-MCI and MCI-AD while the CN and AD groups can be discriminated

easily. Moreover, the estimated inflection points per biomarker are almost in line

with those of the hypothetical model by [2] that illustrates when biomarkers are

dynamic versus disease stages. Especially, inflection points of the MRI biomarkers
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Figure 2.4: Temporal ordering of the ADNI biomarkers in the disease course obtained using
inflection points and quantified through 100 bootstraps. The values in the matrix
represent the frequency of occurrences (probabilities) and the units in the x-axis
indicate the relative ordering of the biomarkers.

(brain structure) are mainly located in the MCI stage while those of the cognitive

tests (memory), except for RAVLT-IR, lie on the AD stage.

2.7.4 Predicting biomarker values

The biomarker-specific parameters estimated using the bootstrapped training set

are applied to map the ages of test individuals to DPSs using Equation (2.2). The

obtained DPSs are then fed to the estimated biomarker functions in each bootstrap.

Table 2.6 shows the test NMAEs of the 100-times bootstrapped ADNI dataset for

the proposed model and the analogous model by [4] that independently fits the basic

sigmoid function using an unconstrained, L2-norm loss function. The proposed

model significantly (p < 0.001) outperforms the analogous model with an average

NMAE of 0.991 vs. 1.552 and an average BIC of 1.828×104 vs. 3.303×104. Table

2.7 shows the average test MAE per biomarker across 100 bootstraps.
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Figure 2.5: Estimated class-conditional likelihoods using the DPSs obtained from 100
ADNI-trained bootstraps. The box plots indicate the 25th to 75th percentiles of
the estimated inflection points per biomarker, centrally marked with the median,
and they are extended to the most extreme non-outlier inflection points using
dashed lines.

2.7.5 Classifying clinical status

To evaluate the diagnostic predictive performance, the obtained training DPSs are

used to estimate class-conditional likelihood functions per bootstrap using KDE and

fed to a three-class Bayesian classifier with prior probabilities proportional to the

number of training observations in each class. The classifiers, one for each bootstrap,

are applied to the test DPSs estimated as described in Section 2.7.4 to compute the

posterior probabilities of the clinical labels. The proposed model achieves an AUC

Table 2.6: Test modeling performance of different methods as NMAE (mean±SD) for ADNI
and NACC biomarkers. Note that ADNI has 16 biomarkers while NACC has
only 6 biomarkers in common between the two datasets. All the NMAEs are
significantly different (p < 0.001).

Within cohort Across cohort

Method ADNI NACC ADNI to NACC

Regression-L2 [4] 1.552±0.069 1.040±0.210 2.665±0.311

Regression-proposed [64] 0.991±0.023 0.833±0.061 1.182±0.087
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Table 2.7: Detailed information about the utilized ADNI biomarkers.

Biomarker Interpretation Unit Range Inflection point Test MAE

(median) (mean)

CDR-SB The sum of scores of six sets
of questions. Lower values in-
dicate less cognitive dysfunc-
tion.

Cognitive
score

[0, 18] 3.003 0.562

ADAS-13 The sum of scores of 13 item-
ized tasks. Lower values in-
dicate less cognitive dysfunc-
tion.

Cognitive
score

[0, 85] 3.596 4.236

MMSE The sum of scores of a set of
questions. Lower values indi-
cate more cognitive dysfunc-
tion.

Cognitive
score

[0, 30] 3.552 1.506

FAQ The sum of scores of 10 sets
of questions. Lower values in-
dicate less cognitive dysfunc-
tion.

Cognitive
score

[0, 30] 2.264 1.415

MOCA The sum of scores of 30 ques-
tions. Lower values indicate
more cognitive dysfunction.

Cognitive
score

[0, 30] 3.363 2.154

RAVLT-IR The sum of scores from five
trials in remembering a list
of 15 words immediately af-
ter each trial. Lower values
indicate more cognitive dys-
function.

Cognitive
score

[0, 75] 1.600 5.983

CSF amyloid-beta The concentration level of
brain beta-amyloid protein.
Lower values indicate more
concentration.

Picograms per
milliliter

(0, ∞) 1.591 374.4

CSF total tau and
phosphorylated
tau

The concentration level of
neurofibrillary tangles of brain
tau protein. Lower values in-
dicate less concentration.

Picograms per
milliliter

(0, ∞) 1.811
1.600

95.19
10.10

FDG-PET The regional cerebral
metabolic rate of glucose.
Lower values indicate less
activity.

Standardized
uptake value
ratio

(0, ∞) 2.995 0.104

AV45-PET The cerebral amyloid deposi-
tion. Lower values indicate
less deposition.

Standardized
uptake value
ratio

(0, ∞) 1.591 0.151

Adjusted T1-
weighted brain
MRI volumes of
ventricles, hip-
pocampus, whole
brain, fusiform,
and entorhinal
cortex

The regional brain atrophies.
Except in the case of ven-
tricles, lower values indicate
more atrophy.

Standardized
volume resid-
ual

(−∞, ∞) 2.385
1.600
2.328
1.973
2.461

0.899
0.791
0.716
0.883
0.789
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of 0.931±0.004 in classifying the clinical status of the test ADNI subjects per visit,

which reveals the effect of modeling on classification performance.

The obtained posterior probabilities from the different classifiers can be com-

bined using ensemble learning techniques to potentially improve prediction perfor-

mance and robustness [87]. For example, by fusing the posteriors based on taking

the average of the within-class posteriors over an ensemble of models from different

bootstraps (bagging), the AUC of the proposed method increases to 0.934.

2.7.6 Comparison with state-of-the-art results

In order to fairly compare our results with those of state-of-the-art methods, we apply

the proposed method to the TADPOLE training and test subsets of D1 and D2 using

the same 16 ADNI biomarkers. The proposed model achieves an average AUC of

0.937 which is on a par with the best performance of TADPOLE with an average

AUC of 0.931 [63]. Besides, our obtained average MAE of 3.93 for ADAS-13

outperforms the best reported result with an average MAE of 4.70. However, the

proposed model does not perform well on the normalized ventricles compared to the

best reported result with an average MAE of 0.0086 vs.0.0041.

Next, we employ the same ADNI data splits and biomarkers as used by [29]

and make a head-to-head comparison with the results reported in the aforementioned

study. This also enables a head-to-head comparison with both [28] and [32] based on

their results reported by [29]. To do so, biomarker trajectories need to be described

as a function of time-from-AD-conversion. Hence, inspired by [29], we select

any subjects converting to AD and calculate the time from AD conversion using

the difference between the visiting age and the age at which the first AD status

is diagnosed. The corresponding DPSs are then mapped to the obtained times

from the AD conversion of the selected subjects using a linear regression model.

These estimates can later be used to calculate the time-from-AD-conversion for any

subject’s visits using the estimated DPSs. Since the time-from-AD-conversion is

a linear function of DPS, i.e., m̂0 + m̂1si, j, we can adjust the biomarker parameters

as bk = bk/m̂1 and ck = m̂0 + m̂1ck to obtain biomarker trajectories as a function of

time-from-AD-conversion. The obtained results indicate that the proposed model
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outperforms [29] with a root-mean-square-error of 0.68 vs. 1.48; yet it has a larger

maximum absolute error (4.20 vs. 3.79).

2.7.7 Generalizability across cohorts

As the final set of experiments, the generalizability of the proposed model to an

independent cohort is assessed using the NACC data. First, the same configuration

of logistic function and M-estimator, i.e., the modified Stannard and logistic loss is

applied to model the progression of AD within NACC. Figure 2.6 depicts the modeled

NACC biomarkers for 100 bootstraps. Second, the optimal model previously trained

on ADNI is utilized to predict the NACC test measurements using the estimates

of the common ADNI-NACC biomarkers, i.e., CDR-SB, MMSE, FAQ, MOCA,

hippocampus, and whole brain. Table 2.6 compares the modeling performance of

the ADNI-trained and NACC-trained models applied to the NACC test set. As it

can be noticed from the obtained results, the previously selected configuration for

training ADNI data is also a good choice when applied to NACC data. Moreover, the

proposed model significantly (p < 0.001) outperforms the analogous model of [4]

in all cases. Additionally, modeling performance of the proposed method degrades

less than that of the analogous model of [4] when applying the ADNI-trained model

to the NACC test set, which indicates the generalizability of the proposed method

across cohorts. It should also be noted that the utilized NACC subset have fewer

biomarkers and measurements than the used ADNI subset, which likely is the reason

why it results in a smaller within-cohort modeling error.

We also apply the ADNI and NACC trained classifiers to the estimated test

NACC DPSs to classify the clinical status per subject per visit. The proposed method

achieves AUCs of 0.929±0.012 and 0.928±0.016, respectively. This reveals that

diagnostic performance improves when applying the ADNI-trained model to the

NACC test set.

2.8 Conclusions
In this chapter, a robust parametric model of Alzheimer’s disease progression was pro-

posed based on alternating M-estimation using the logistic loss to address potential
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Figure 2.6: Estimated curves per bootstrap (in gray) for the NACC biomarkers using the
modified Stannard function and the logistic loss. The average of the bootstrapped
curves per biomarker is shown as the black curve. The last subfigure shows the
average of the normalized curves of the NACC biomarkers across 100 bootstraps.
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curve-fitting problems such as outliers. The proposed method linearly transformed

individuals’ ages to disease progression scores and jointly fitted modified Stannard

functions to the longitudinal dynamics of biomarkers. The estimated parameters

were then used to temporally order the biomarkers in the disease course and to

predict biomarker values as well as to classify the clinical status per subject visit in

an independent test set. The obtained results showed the superiority of the proposed

method over the state-of-the-art results in terms of prediction performance, and this

method generalized well across cohorts.

The proposed approach can be applied to different time-series data including

missing data points and labels, or to biomarkers with other characteristics than the

monotonic behavior that one typically encounters in, for example, neurodegenera-

tive disease progression modeling using MRI/PET biomarkers, as long as suitable

functions are used for biomarker modeling. Moreover, as an alternative to using

M-estimators, resistant estimators such as the least trimmed sum of squares and least

median of squares [88] with higher breakdown points can be used to fit biomarker

trajectories. Though, this will result in an additional parameter to be optimized for

the coverage (range) needed for trimming the residuals.



Chapter 3

The Proposed Nonparametric Method

for DPM

This chapter is based on the work presented in [65, 33], where a generalized method

for training LSTM networks is proposed that can handle missing values in both

input and target signals, and the work presented in [89], where a robust initialization

method is proposed to tackle the training instabilities in LSTM networks. The

proposed training method uses the batch gradient descent algorithm in combination

with the weighted input and loss function to regularize the network according to the

number of available data points. Moreover, a normalized random initialization of the

network weights is applied to preserve the variance of the network input and output

in the same range.

3.1 The basic LSTM architecture
Figure 3.1 shows a typical schematic of a vanilla LSTM architecture. As can be seen,

the topology includes a memory cell, an input modulation gate, and three nonlinear

reset gates, namely input gate, forget gate, and output gate, each of which accepting

current and recurrent inputs. The memory cell learns to maintain its state over time

while the multiplicative gates learn to open and close access to the constant error,

to prevent exploding or vanishing gradients. The input gate protects the memory

contents from perturbation by irrelevant inputs, and the output gate protects other

units from perturbation by currently irrelevant memory contents. The forget gate
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Figure 3.1: An illustration of a vanilla LSTM unit with peephole connections in red. The
solid and dashed lines show weighted and unweighted connections, respectively.

deals with continual or very long input sequences, and finally, cell-to-gate (peephole)

connections allow the gates to inspect the current cell state even if the output gate is

closed, and consequently help to improve the performance, especially when the task

involves a precise duration of intervals [90].

3.2 The proposed training algorithm for handling

missing values

The proposed algorithm sets input missing values to zero, passes the input data

normalized with the number of available input data points, and backpropagates

zero errors corresponding to the target missing data points, where the residuals

are weighted according to the number of available target data points. Figure 3.2

illustrates how the normalization factors are related to the input and output of an

unfolded RNN. Note that the use of batch gradient descend ensures the availability

of at least one data point per biomarker node that can proportionally contribute to

the weight update rule.
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Figure 3.2: Illustration of how the normalization factors are related to the input and output
of an unfolded RNN. Assume an RNN with three consecutive time points
{t − 1, t, t + 1}, three input nodes, four hidden nodes, and two output nodes.
Missing data for an instance subject j is illustrated as black nodes. We wish to
weight the input vector and loss function according to the number of available
data points in the input and output nodes. In this example, the subject j has only
one input measurement at time t and one data point in the m-th output node.
Hence, the input signal and loss function are weighted by 1/3 and 1, respectively.

3.3 Feedforward

Assume xxxt
j ∈ RN×1 is the j-th subject’s sample of an N-dimensional input vector at

current time t. Feedforward calculations of a peephole LSTM can be summarized as

fff t
j =Wf [α

t
jxxx

t
j]+U f hhht−1

j +VVV f ⊙ ccct−1
j +bbb f ,

f̃ff t
j = σg( fff t

j) ,

iiitj =Wi[α
t
jxxx

t
j]+Uihhht−1

j +VVV i ⊙ ccct−1
j +bbbi ,

ĩiitj = σg(iiitj) ,

zzzt
j =Wc[α

t
jxxx

t
j]+Uchhht−1

j +bbbc ,

z̃zzt
j = σc(zzzt

j) ,

ccct
j = f̃ff t

j ⊙ ccct−1
j + ĩiitj ⊙ z̃zzt

j ,

c̃cct
j = σh(ccct

j) ,

ooot
j =Wo[α

t
jxxx

t
j]+Uohhht−1

j +VVV ooo ⊙ ccct
j +bbbo ,

õoot
j = σg(ooot

j) ,

hhht
j = õoot

j ⊙ c̃cct
j ,
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where { fff t
j, iii

t
j,zzz

t
j,ccc

t
j,ooo

t
j,hhh

t
j} ∈ RM×1 and { f̃ff t

j, ĩii
t
j, z̃zz

t
j, c̃cc

t
j, õoo

t
j} ∈ RM×1 are the j-th sam-

ple of forget gate, input gate, modulation gate, cell state, output gate, and hidden

output at time t before and after activation, respectively, and M is the number of

output nodes of the LSTM unit, which is equal to N in this regression problem.

The normalization factor α t
j = |xxxt

j|/N is responsible for the input missing values,

where |xxxt
j| denotes the number of available data points (nodes) of the j-th subject

at time t. Moreover, {Wf ,Wi,Wo,Wc} ∈ RM×N and {U f ,Ui,Uo,Uc} ∈ RM×M are

sets of connecting weights from current and recurrent inputs to the gates and cell,

respectively, {VVV f ,VVV i,VVV o} ∈ RM×1 is the set of peephole connections from the cell

to the gates, {bbb f ,bbbi,bbbo,bbbc} ∈ RM×1 represents corresponding biases of the nodes,

and ⊙ is the Hadamard product. Finally, σg, σc, and σh are nonlinear activation

functions assigned for the gates, input modulation, and hidden output, respectively.

3.4 Backpropagation through time

Let L ∈ R be the loss function defined based on the actual target sss and network

output yyy. Here, we assume an L2-norm loss function and one layer of LSTM units

for sequence learning which means that the network output is the hidden output. The

main idea is to calculate the partial derivatives of the normalized loss function (δ )

with respect to the weights using the chain rule.

L =
1

2JM ∑
j,t,m

1
β m

j

[
yyyt

j(m)− ssst
j(m)

]2
,

δyyyt
j(m) =

1
JMβ m

j

[
yyyt

j(m)− ssst
j(m)

]
,

where β m
j = |yyy j(m)| is the normalization factor to handle the target missing values of

the j-th subject with batch size J, and |yyy j(m)| denotes the number of available data

points of the m-th target node of the j-th subject. The backpropagation calculations

through time using full gradients can be obtained as

δhhht
j =UT

f δ fff t+1
j +UT

i δ iiit+1
j +UT

c δ zzzt+1
j +UT

o δooot+1
j +δyyyt

j ,
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δxxxt
j =W T

f δ fff t
j +W T

i δ iiitj +W T
c δ zzzt

j +W T
o δooot

j ,

where T is the transpose operator, and σ ′(·) is the derivative of the activation function

σ(·). Finally, if θ ∈ { f , i,z,o} and φ ∈ { f , i}, the gradients of the loss function with

respect to the weights are calculated as

δWθ = ∑
j,t

δθθθ
t
j[α

t
jxxx

t
j]

T ,

δUθ = ∑
j,t

δθθθ
t+1
j [hhht

j]
T ,

δVVV φ = ∑
j,t

δφφφ
t+1
j ⊙ ccct

j ,

δVVV o = ∑
j,t

δooot
j ⊙ ccct

j ,

δbbbθ = ∑
j,t

δθθθ
t
j ,

3.5 Momentum batch gradient descent

As an efficient iterative algorithm, momentum batch gradient descent is applied to

find the local minimum of the loss function calculated over a batch while speeding
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up the convergence. The update rule using L2 regularization can be written as

ϑ
new = µϑ

old −α(δω + γω
old) ,

ω
new = ω

old +ϑ
new ,

where ϑ is the weight update initialized to zero, ω is the to-be-updated weight

array, δω is the gradient of the loss function with respect to ω , and α , γ , and µ

are the learning rate, weight decay or regularization factor, and momentum weight,

respectively.

3.6 The proposed initialization for efficient training

of LSTMs
To address training instability and slow convergence in LSTMs, we propose a scaled

random weights initialization method that aims to keep the variance of the network

input and output in the same range. Here we consider a regression problem, where

M = N and hhht−1
j is an estimation of xxxt

j. The regression assumptions can still be

applied to sequence-to-sequence or sequence-to-label learning problems by adding a

fully-connected layer with N input nodes and the desired number of output units.

Assume that the study data is complete and all of the weight matrices are inde-

pendently initialized with zero-mean i.i.d. random values obtained from symmetric

distributions. The goal is to derive the condition(s) on the initialization of the weights

to achieve Var(hhht
j) = Var(xxxt

j). Since the weights are independent from the input,

assuming an exact estimation for the recurrent value, i.e., hhht−1
j = xxxt

j, and mutually

independent zero-mean input features – sharing the same distribution, the variance

of the forget gate can be calculated as

Var( f̃ff t
j) = Var(σg(Wf xxxt

j +U f hhht−1
j +VVV f ⊙ ccct−1

j +bbb f )) ,

= Var(Wf xxxt
j +U f hhht−1

j +VVV f ⊙ ccct−1
j +bbb f ) ,

= Var(
(
Wf +U f

)
xxxt

j)+Var(VVV f ⊙ ccct−1
j ) ,

= N
(
Var(w f )+Var(u f )

)
Var(xxxt

j)+Var(v f )Var(ccct−1
j ) ,

(3.1)
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where w f , u f , and v f are the elements of Wf , U f , and VVV f , respectively. The bias in

the variance calculation is canceled out as it is an independent constant initialized to

zero. Moreover, the second equality holds under the assumption that σg is an identity

function. We will discuss other commonly used functions in LSTM units in Section

3.6.1.

Variance calculations for the input, modulation, and output gates can be per-

formed in a similar way to the forget gate. That is to say,

Var(ĩiitj) = N (Var(wi)+Var(ui))Var(xxxt
j)+Var(vi)Var(ccct−1

j ) , (3.2)

Var(z̃zzt
j) = N (Var(wc)+Var(uc))Var(xxxt

j) , (3.3)

Var(õoot
j) = N (Var(wo)+Var(uo))Var(xxxt

j)+Var(vo)Var(ccct
j) , (3.4)

where wi, ui, wc, uc, wo, uo, vi, and vo are the elements of Wi, Ui, Wc, Uc, Wo, Uo, VVV i,

and VVV o, respectively.

The cell state formula is of a form of the stochastic recurrence equation [91],

also known as growing perpetuity, in which the moments of the cell state are time-

varying. Therefore, one tractable way to stabilize the network training is to set

Var(ccct
j) = Var(ccct−1

j ). Accordingly,

Var(ccct
j) = Var( f̃ff t

j ⊙ ccct−1
j + ĩiitj ⊙ z̃zzt

j) ,

= Var( f̃ff t
j)Var(ccct−1

j )+Var(ĩiitj)Var(z̃zzt
j) ,

= Var(ĩiitj)Var(z̃zzt
j)/(1−Var( f̃ff t

j)) ,

(3.5)

where the above equation is obtained based on the zero-mean assumption and

independence assumption between all of the gates and the cell state to avoid terms

containing covariance matrices in the last expression. Note that 0 < Var( f̃ff t
j)< 1.

Finally, the variance of the network output is computed as

Var(hhht
j) = Var(õoot

j ⊙σh(ccct
j)) ,

= Var(õoot
j)Var(ccct

j) ,
(3.6)
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where the last equality is obtained assuming an identity activation function and

independence between the output gate and the cell state. Merging Equations (3.4)

and (3.6) under the assumption that Var(hhht
j) = Var(xxxt

j) = 1 results in a quadratic

equation that can be expressed as

β01 +β11Var(ccct
j)+β21Var2(ccct

j) = 0 , (3.7)

where β01 = −1, β11 = N (Var(wo)+Var(uo)), and β21 = Var(vo). Since the dis-

criminant ∆1 = β 2
11 − 4β21β01 is always positive considering nonzero variances,

there are two possible solutions for Equation (3.7): Var(ccct
j) = (−β11±

√
∆1)/(2β21).

However, since β21 > 0 and β01 < 0, with a positive discriminant and based on the

sign of the product of the roots (β01/β21), one of the real solutions would be negative,

which cannot be accepted as Var(ccct
j)> 0. Therefore, the desired solution to Equation

(3.7) will be obtained as

Var(ccct
j) = (−β11 +

√
∆1)/(2β21) . (3.8)

Likewise, combining Equations (3.1) to (3.3) and (3.5) using the same assump-

tions leads to another quadratic equation that can be written as

β02 +β12Var(ccct
j)+β22Var2(ccct

j) = 0 , (3.9)

where β02 = N2 (Var(wi)+Var(ui))(Var(wc)+Var(uc)), β22 = Var(v f ), and β12 =

NVar(vi)(Var(wc)+Var(uc))+N
(
Var(w f )+Var(u f )

)
−1. The two possible solu-

tions for Equation (3.9) will be obtained as Var(ccct
j) = (−β12 ±

√
∆2)/(2β22), where

∆2 = β 2
12 − 4β22β02 is the discriminant of the equation. Here, since β02,β22 > 0,

assuming a nonnegative discriminant and based on the sign of the sum and product of

the roots (−β12/β22 and β02/β22), both real solutions could be positive and accept-

able provided that β12 < 0. However, to achieve a simple solution for initialization,

one can set ∆2 = 0 and β12 < 0 which produces repeated real positive roots for the



3.6. The proposed initialization for efficient training of LSTMs 68

problem. Therefore, the real solution to Equation (3.9) can be obtained as

Var(ccct
j) = (−β12)/(2β22) . (3.10)

Finally, conditions for the existence of a common solution to Equations (3.7)

and (3.9) can be obtained using Equations (3.8) and (3.10) as follows

0 < Var(vi)(Var(wc)+Var(uc))+
(
Var(w f )+Var(u f )

)
< 1/N ,

Var(vo)

Var(v f )

√
4N2Var(v f )(Var(wi)+Var(ui))(Var(wc)+Var(uc)) =√

N2 (Var(wo)+Var(uo))
2 +4Var(vo)−N (Var(wo)+Var(uo)) .

(3.11)

Similar to the forward pass, some initialization conditions can be derived to

ensure that the variance of the backpropagated gradient remains unchanged, i.e.,

Var(δhhht
j) = Var(δxxxt

j). However, as shown in [57] and [58], initialization with

properly scaling the forward signal is equivalent to initialization with properly

scaling the backward signal, and since the number of units in the input and output of

the LSTM network are the same, similar conditions for weight initialization using

backpropagation will be obtained.

3.6.1 The nonlinear activation functions in LSTM training

All the abovementioned equations are obtained based on the assumption that the

activation functions are identity functions. In general, symmetric functions with

zero intercepts such as the identity and hyperbolic tangent are suggested for σh and

σc, respectively, and logistic sigmoid is suggested for σg [90]. Both the hyperbolic

tangent and logistic sigmoid are nonlinear symmetric functions that can be linearly

approximated using a Taylor series expansion. The former has a zero intercept

and its expansion about zero leads to an identity function (σc(x) ≈ x). The latter,

however, has a nonzero intercept and its Taylor series about zero is approximated

as σg(x) ≈ 0.5+ 0.25x. Therefore, the sigmoid function approximately increases

the input signal mean by 1/2 and scales its variance by 1/16. Note that the nonzero

mean value of the sigmoid can induce important singular values in the Hessian
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matrix, resulting in saturation of the top layers and prohibition of gradients to flow

backward to learn useful features in the lower layers [57]. Using the suggested

activation functions in the gates, the variance calculations for the peephole LSTM

network are updated as follows based on the aforementioned Taylor series expansion

Var( f̃ff t
j) = N

(
Var(w f )+Var(u f )

)
Var(xxxt

j)/16+Var(v f )Var(ccct−1
j )/16 ,

Var(ĩiitj) = N (Var(wi)+Var(ui))Var(xxxt
j)/16+Var(vi)Var(ccct−1

j )/16 ,

Var(z̃zzt
j) = N (Var(wc)+Var(uc))Var(xxxt

j) ,

Var(õoot
j) = N (Var(wo)+Var(uo))Var(xxxt

j)/16+Var(vo)Var(ccct
j)/16 ,

Var(ccct
j) = Var(ccct−1

j ) = (Var(ĩiitj)+0.25)Var(z̃zzt
j)/(0.75−Var( f̃ff t

j)) ,

where the last equation is obtained bearing in mind that Var(xy) = Var(x)Var(y)+

E2(x)Var(y)+E2(y)Var(x) for two independent random variables x and y, and con-

sidering E(z̃zzt
j) = 0, E( f̃ff t

j) = E(ĩiitj) = 0.5, and, hence, E(ccct
j) = E(ccct−1

j ) = 0. Here

also using Equation (3.6), two quadratic equations can be obtained similar to Equa-

tions (3.7) and (3.9), where β01 =−16, β11 = N (Var(wo)+Var(uo)), β21 = Var(vo),

β02 = N (Var(wc)+Var(uc))(N (Var(wi)+Var(ui))+4), β22 = Var(v f ), and β12 =

NVar(vi)(Var(wc)+Var(uc))+N
(
Var(w f )+Var(u f )

)
−12. Likewise, conditions

for the existence of a common solution to Equations (3.7) and (3.9) can be obtained

using Equations (3.8) and (3.10) as follows

0 < Var(vi)(Var(wc)+Var(uc))+
(
Var(w f )+Var(u f )

)
< 12/N ,

Var(vo)

Var(v f )

√
4NVar(v f )(Var(wc)+Var(uc))(N (Var(wi)+Var(ui))+4) =√

N2 (Var(wo)+Var(uo))
2 +64Var(vo)−N (Var(wo)+Var(uo)) .

(3.12)

3.7 Experiments and results

3.7.1 Data

The data used in this study is obtained from the ADNI-based datasets of the TAD-

POLE challenge after performing the same data filtering and preprocessing steps
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mentioned in Section 2.6.1. The third visiting month is excluded from the obtained

data to confine the matched time points to half-yearly regular follow-ups including

baseline. Finally, subjects with less than two consecutive visits are removed to ensure

the possibility of sequence learning through the feedforward and backpropagation

steps. This results in 16 ADNI biomarkers acquired from 1,400 subjects (789 males

and 611 females) in 8,133 visits, where 82% of the actual data is missing.

3.7.2 Experimental setup

For evaluation purposes, since a large amount of data is missing (82%), we initially

confine the matched time points to yearly regular visits by excluding the sixth and

18th visiting months and use a subgroup of subjects that have at least one available

measurement per biomarker during all visits. This results in 16 ADNI biomarkers

acquired from 582 subjects (322 males and 260 females) in 3,031 visits, where

68% of the actual data is missing. The entire dataset is partitioned into three non-

overlapping subsets for training, validation, and testing. More specifically, based on

the first and last available diagnoses of subjects, i.e., CN-CN, CN-MCI, ..., AD-AD,

we divide each of these types of pairs into two groups including few and many visits

using the median number of visits as threshold and randomly select 20% of the

subjects from each group for testing and the same amount for validation.

A one-layer peephole LSTM is used with an identity function, hyperbolic

tangent, and logistic sigmoid as activation functions for σh, σc, and σg, respectively.

The hidden output is used as the network output with the same number of input

nodes for the regression of 16 biomarker values over time. The network biases

are initialized to zero, and values of the weight matrices are drawn from the zero-

mean i.i.d. Gaussian distributions using Equation (3.12) with the following variances

suggested in [89]: Var(v f )=Var(vi)=Var(vo)= 1, Var(w f )=Var(wc)=Var(uc)=

1/(4N), Var(u f ) = 3/(4N), Var(wi) = 1/N, Var(ui) = 3/N, Var(wo) = 2/N, and

Var(uo) = 4/N.

The input data is standardized to have a zero mean and unit variance per feature

dimension, and the first to penultimate time points are utilized to estimate the second

to last visits using the following methods:
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• LSTM-Proposed: an LSTM network trained based on the proposed training

algorithm [33] by setting input missing values to zero and backpropagating

zero errors corresponding to the target missing points while training.

• LSTM-Mean: an LSTM network trained using the standard backpropaga-

tion through time algorithm with missing values imputed based on the mean

imputation method before training [92].

• LSTM-Forward: an LSTM network trained using the standard backpropaga-

tion through time algorithm with missing values imputed based on the forward

imputation method before training [52].

The batch size is set to the number of available training subjects and the vali-

dation set is used to tune all the networks’ optimization parameters, each time by

adjusting one of the parameters while keeping the rest at fixed values to achieve the

lowest validation set error. Based on these strategies, the optimal parameters are

obtained as α = 0.5, µ = 0.9, and γ = 0.001 with 500 epochs.

3.8 Results and discussion

3.8.1 Modeling biomarkers

Table 3.1 compares the test modeling performance (MAE) using the utilized methods.

Even though the performance is reported per biomarker, the models are jointly fitted

to all biomarkers. As can be deduced from Table 3.1, LSTM-Proposed and LSTM-

Forward significantly outperform LSTM-Mean in all cases with p < 0.01 using

the paired, two-sided Wilcoxon signed-rank test. In general, the proposed method

performs better than the LSTM-Forward approach in modeling MRI biomarkers

and cognitive tests while the LSTM-Forward is superior in predicting CSF and PET

measurements.

3.8.2 Classifying clinical status

To assess the ability of the estimated measurements in classifying the clinical status,

we train a linear discriminant analysis (LDA) classifier using the estimated train-

ing measurements and apply it to the estimated test data to compute the posterior
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Table 3.1: Test modeling performance of different methods as MAE for yearly predictions
of the utilized ADNI biomarkers. All the MAEs are significantly different
(p < 0.01).

LSTM-Proposed [33] LSTM-Forward [52] LSTM-Mean [92]

CDR-SB 0.920 0.843 1.086
ADAS-13 4.098 3.734 4.971
MMSE 1.412 1.441 1.728
FAQ 2.265 2.385 3.028
MOCA 1.900 2.008 2.648
RAVLT-IR 5.379 5.505 6.924
Amyloid-beta 270.8 217.5 525.6
Total tau 53.82 38.64 95.10
Phosphorylated tau 5.860 3.866 10.05
FDG-PET 0.075 0.069 0.125
AV45-PET 0.097 0.082 0.185
Ventricles 0.338 0.353 0.708
Hippocampus 0.465 0.414 0.689
Whole brain 0.372 0.411 0.671
Fusiform 0.461 0.474 0.782
Entorhinal cortex 0.551 0.573 0.885

Table 3.2: Test diagnostic performance of different methods as AUC using an LDA classifier
applied to the yearly estimated biomarker values.

LSTM-Proposed [33] LSTM-Forward [52] LSTM-Mean [92]

AUC 0.723 0.734 0.725

probabilities. The obtained scores are then used to calculate diagnostic AUCs. The

diagnostic performances on the utilized test set are shown in Table 3.2. As can be

seen, although the obtained results are almost in the same range, LSTM-Forward

outperforms all other methods in classifying the clinical status of the subjects per

visit with a multiclass AUC of 0.734. One could of course use other classifiers

or train the LSTM network directly for classification based on sequence-to-label

learning to potentially improve the diagnostic AUCs. However, the focus of this work

is on DPM based on sequence-to-sequence learning. Besides, sequence-to-label

learning would only be able to utilize the part of the training data which has available

clinical status.
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Figure 3.3: Test modeling performance of different methods for various amounts of data.

3.8.3 Robustness to missing values

To evaluate the modeling robustness of the proposed method compared to the alter-

natives with different amounts of missing data and number of visits, we construct

subsamples of the training dataset by respectively removing later follow-ups of the

subjects which include more missing values and train the methods on the smaller

datasets. Figures 3.3 and 3.4 illustrates the modeling and diagnostic performances of

the utilized methods on various amounts of missing measurements, and accordingly,

the number of visits. As can be seen, both modeling and diagnostic performances

of the proposed method are superior to those of the benchmarks in lower rates of

missing data (up to 40%), and LSTM-Forward performs slightly better in higher

missing rates.

For higher rates of missing data, we utilize the larger subset obtained from

1,400 subjects, where 82% of the actual data is missing, for half-yearly predictions.

Tables 3.3 and 3.4 compare the modeling performance and diagnostic performance

of the utilized methods on the test ADNI subsets, respectively. As can be seen,
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Figure 3.4: Test diagnostic performance of different methods for various amounts of data.

the standard LSTM with the forward imputation outperforms the other methods in

all cases with p < 0.01 except for the FAQ, MOCA, and entorhinal cortex where

the LSTM-Proposed works better. One reason why LSTM-Forward is robust to

the higher rates of missing data could be due to providing more information for

training by filling the missing months (30, 42, 54, 66, 78, 90, 102, and 114) using

the forward imputation while replacing the missing values placed at the beginning of

the biomarker sequences with the median of the available data.

3.9 Conclusions
In this chapter, a training algorithm was proposed for LSTM networks aiming to im-

prove robustness against missing data. Moreover, a robust initialization method was

proposed for LSTM networks to address training instability and slow convergence.

The trained LSTM network was applied to AD progression modeling using longi-

tudinal measurements of 16 ADNI biomarkers. This was the first time RNNs have

been studied and applied to DPM within a neurodegenerative disease. Besides, since

RNNs are nonparametric learning methods, the proposed approach can be applied
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Table 3.3: Test modeling performance of different methods as MAE for half-yearly predic-
tions of the utilized ADNI biomarkers. All the MAEs are significantly different
(p < 0.01).

LSTM-Proposed [33] LSTM-Forward [52] LSTM-Mean [92]

CDR-SB 1.039 0.970 1.645
ADAS-13 4.311 3.946 6.847
MMSE 1.647 1.614 2.458
FAQ 2.692 2.709 5.039
MOCA 2.153 2.239 3.252
RAVLT-IR 5.481 5.421 8.610
Amyloid-beta 275.4 170.9 503.9
Total tau 47.55 24.27 84.69
Phosphorylated tau 5.235 2.871 9.556
FDG-PET 0.081 0.061 0.117
AV45-PET 0.110 0.073 0.195
Ventricles 0.335 0.310 0.707
Hippocampus 0.463 0.407 0.937
Whole brain 0.367 0.360 0.714
Fusiform 0.474 0.469 0.892
Entorhinal cortex 0.614 0.617 1.024

Table 3.4: Test diagnostic performance of different methods as AUC using an LDA classifier
applied to the half-yearly estimated biomarker values.

LSTM-Proposed [33] LSTM-Forward [52] LSTM-Mean [92]

AUC 0.722 0.741 0.737

to different time-series data and characteristics than the monotonic behavior that

one typically encounters in neurodegenerative disease progression modeling. The

proposed training method demonstrated better performance than using imputation

prior to standard LSTM network training in terms of biomarker value prediction,

especially when trained on data with lower rates of missing values. The proposed

methods are applicable for other types of RNNs such as gated recurrent units (GRUs)

[45]. This study highlights the potential of RNNs for modeling the progression of

AD using longitudinal measurements, provided that proper care is taken to handle

missing values and time intervals.



Chapter 4

Comparison of the Two Proposed

Methods for DPM

This chapter is based on the work presented in [66, 67], where the decline prediction

of cognitive test scores in stable and converting MCI subjects is investigated using

both nonparametric [33] and parametric [64] AD progression modeling methods.

Moreover, a comprehensive study is done to compare the two proposed methods for

disease progression modeling from different aspects in terms of biomarker value

prediction and clinical status classification.

4.1 Biomarker value prediction
The same data subset obtained in Section 3.7.1 is used to evaluate the ability of

the two proposed methods in predicting half-yearly matched 16 ADNI biomarker

values. Table 4.1 compares the modeling performance of the two proposed methods

on the test ADNI subsets. As can be seen, the nonparametric method outperforms

the parametric method in all cases with p < 0.01 except for the CDR-SB and FAQ

where the proposed parametric method results in lower prediction errors.

4.2 Clinical status classification
To assess the ability of the estimated measurements in classifying the clinical status,

we train an LDA classifier using the estimated training measurements and apply it to

the estimated test data to compute the posterior probabilities. The obtained scores
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Table 4.1: Test modeling performance of the two proposed methods as MAE for half-yearly
predictions of the utilized ADNI biomarkers. All the MAEs are significantly
different (p < 0.01).

LSTM-Proposed [33] Regression-Proposed [64]

CDR-SB 1.039 0.570
ADAS-13 4.311 4.432
MMSE 1.647 1.657
FAQ 2.692 1.506
MOCA 2.153 2.229
RAVLT-IR 5.481 6.428
Amyloid-beta 275.4 419.5
Total tau 47.55 85.09
Phosphorylated tau 5.235 9.285
FDG-PET 0.081 0.092
AV45-PET 0.110 0.156
Ventricles 0.335 0.813
Hippocampus 0.463 0.865
Whole brain 0.367 0.795
Fusiform 0.474 0.870
Entorhinal cortex 0.614 0.926

Table 4.2: Test diagnostic performance of the two proposed methods as AUC using an LDA
classifier applied to the half-yearly estimated biomarker values. All the AUCs are
significantly different (p < 0.05).

LSTM-Proposed [33] Regression-Proposed [64]

AUC 0.722 0.926

are then used to calculate diagnostic AUCs. The diagnostic performances on the

test set are shown in Table 4.2. As can be seen, the proposed parametric method

significantly outperforms the nonparametric method in classifying the clinical status

of the subjects per visit with p < 0.05. Note that the proposed methods are compared

with each other using McNemar’s test [93] applied to the hard classification results

(clinical status) obtained from the LDA classifier. One reason why the regression-

based method is performing significantly better in the classification task could be

because of using age information while modeling the biomarker trajectories and

estimating DPSs. Moreover, the biomarker modeling results shown in both Figure
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2.1 and Table 4.1 reveal that the parametric method is performing well in fitting and

estimating the cognitive scores, which are very important features for clinical status

classification, compared to other biomarkers.

4.3 The effects of different modalities on the perfor-

mance
To see how utilizing different modalities can affect the prediction and classification

performances, we repeat the previously conducted experiments each time using

a subset of biomarkers from MRI volumetric measures (ventricles, hippocampus,

whole brain, fusiform, and entorhinal cortex), PET scan measures (FDG-PET and

AV45-PET), CSF measures (Amyloid beta, total tau, and phosphorylated tau), and

cognitive tests (CDR-SB, ADAS-13, MMSE, FAQ, MOCA, and RAVLT-IR). Tables

4.3 and 4.4 illustrate the modeling and diagnostic performances of the two methods

on the test set using different biomarkers.

As can be seen in Table 4.3, the proposed nonparametric method significantly

outperforms the parametric method in predicting the biomarker values in all cases

with p < 0.01 except for the cognitive tests where the parametric method achieves

the best result. Also, compared to the parametric method, the nonparametric method

is more successful in modeling and prediction of MRI biomarkers. The ability of the

proposed nonparametric method in modeling six volumetric MRI biomarkers was

already seen in [33]. It can also be deduced from Table 4.4 that a combination of

Table 4.3: Test modeling performance of the two proposed methods as NMAE for half-yearly
predictions of the utilized ADNI biomarkers. All the NMAEs are significantly
different (p < 0.01).

LSTM-Proposed [33] Regression-Proposed [64]

Cognitive 0.352 0.335
MRI 0.348 0.464
Cognitive & MRI 0.361 0.462
Cognitive & CSF 0.367 0.371
Cognitive & PET 0.377 0.385
Cognitive & MRI & CSF & PET 0.379 0.487
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Table 4.4: Test diagnostic performance of the two proposed methods as AUC using an LDA
classifier applied to the half-yearly estimated biomarker values. All the AUCs are
significantly different (p < 0.05).

LSTM-Proposed [33] Regression-Proposed [64]

Cognitive 0.735 0.940
MRI 0.603 0.659
Cognitive & MRI 0.737 0.944
Cognitive & CSF 0.734 0.932
Cognitive & PET 0.727 0.934
Cognitive & MRI & CSF & PET 0.722 0.926

cognitive tests and MRI biomarkers results in the best diagnostic performance in

both modeling methods. The proposed parametric method significantly outperforms

the nonparametric method in all cases with p < 0.05. Other modalities, i.e., PET and

CSF, have fewer biomarkers and available measurements, which could be a reason

for declining the overall performance.

4.4 Robustness to missing values
To evaluate the modeling robustness of the two proposed methods compared to each

other with different amounts of missing data, we utilize the same smaller data subsets

used in Section 3.8.3 and repeat the same experiments with the parametric method.

Figures 4.1 and 4.2 display the modeling and diagnostic performances of the utilized

methods on various amounts of missing measurements, and accordingly, the number

of visits.

The obtained results indicate that both methods are robust to the various amounts

of missing data and the number of visits. However, the nonparametric method

performs significantly better in predicting the biomarker values while the parametric

method achieves remarkably better diagnostic performance.

4.5 Cognitive decline prediction using few visits
The objective is to investigate the decline prediction of cognitive test scores in stable

MCI (sMCI) and converting MCI (cMCI) subjects using both nonparametric and

parametric Alzheimer’s disease progression modeling methods trained on data from
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Figure 4.1: Test modeling performance of different methods for various amounts of data.
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Figure 4.2: Test diagnostic performance of different methods for various amounts of data.
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multiple modalities. To do so, the proposed methods were trained on the same

previously utilized data and subsequently applied to predict month 18 to 60 cognitive

scores of the test subjects using at most their baseline, month 6, and month 12 data.

Figures 4.3 and 4.4 display the cognitive test prediction results for the test subjects

per visit using the proposed nonparametric and parametric methods.

Moreover, the corresponding test prediction NMAEs per visit are reported in

Tables 4.5 and 4.6. As can be seen, in almost all cases, the nonparametric method

outperforms the parametric model in predicting the cognitive scores. Moreover,

predictions from both nonparametric and parametric methods can significantly dis-

criminate between sMCI and cMCI groups using a two-sample t-test with p < 0.01

and p < 0.001, respectively. Though, the discrimination capability of the nonpara-

metric method is superior in the long-term prediction of cognitive decline.

4.6 Conclusions
In this chapter, a comprehensive study was performed to compare the two proposed

methods for AD progression modeling on the ADNI dataset. It was shown that the

nonparametric method outperformed the parametric method in predicting biomarker

values and cognitive decline, even when using a few time points of the test subjects.

On the other hand, the parametric method performed significantly better in classifying

clinical status.
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Figure 4.3: Cognitive test prediction results for the test subjects per visit using the nonpara-
metric (left) and parametric (right) methods. The error bars are calculated based
on a 95% confidence interval for population standard deviation per visit.
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Figure 4.4: Cognitive test prediction results for the test subjects per visit using the nonpara-
metric (left) and parametric (right) methods. The error bars are calculated based
on a 95% confidence interval for population standard deviation per visit.
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Table 4.5: Test prediction NMAEs (mean±SD) per visit using the proposed nonparametric
method.

Month 18 24 36 48 60

CDR-SB 0.988±0.893 1.354±1.080 1.928±1.575 3.694±2.414 3.359±2.867

ADAS-13 4.447±3.967 4.919±3.987 9.670±6.551 16.62±11.65 12.35±10.29

MMSE 1.842±1.656 2.509±1.999 3.323±2.874 5.991±4.089 4.504±3.749

FAQ 3.510±2.775 5.166±3.167 5.850±4.698 8.467±5.798 5.784±6.065cM
C

I

MOCA 2.310±1.897 3.097±2.131 6.320±3.869 5.172±2.775

RAVLT-IR 5.360±4.289 6.826±4.615 8.196±5.795 12.99±9.418 9.935±7.721

CDR-SB 0.662±0.481 0.938±0.664 1.800±1.219 2.710±1.368 3.057±1.704

ADAS-13 3.876±3.422 5.909±3.511 10.39±6.295 12.04±7.137 13.73±8.552

MMSE 1.729±0.952 2.046±1.343 3.124±1.852 3.957±2.333 4.402±3.002

FAQ 2.891±1.723 3.685±1.957 6.049±3.232 8.484±4.042 8.871±4.398sM
C

I

MOCA 2.846±1.807 3.601±2.183 4.432±2.996 5.483±2.976

RAVLT-IR 5.079±3.646 7.097±5.504 12.03±7.873 10.97±9.039 13.53±7.414

The blanks indicate that the subjects have no data points in the visits.

Table 4.6: Test prediction NMAEs (mean±SD) per visit using the proposed parametric
method.

Month 18 24 36 48 60

CDR-SB 0.956±1.043 1.272±1.068 2.376±1.779 3.173±2.759 3.589±2.914

ADAS-13 6.424±4.746 6.255±4.231 8.245±6.293 10.37±8.321 9.372±7.852

MMSE 2.156±2.104 2.820±2.364 3.418±3.016 4.881±3.825 3.831±2.969

FAQ 3.085±3.507 4.037±3.557 6.018±5.209 7.076±6.365 7.852±5.756cM
C

I

MOCA 2.427±1.337 3.587±2.977 4.876±4.206 4.347±3.306

RAVLT-IR 7.266±4.596 8.126±5.331 8.835±5.972 11.55±7.156 8.669±4.698

CDR-SB 0.600±1.097 0.860±1.017 1.614±2.200 2.627±3.438 2.450±2.548

ADAS-13 5.251±4.024 5.741±5.266 8.586±9.112 10.01±11.87 9.151±7.956

MMSE 1.814±1.317 1.854±1.647 2.725±3.083 3.546±4.117 2.771±3.057

FAQ 1.894±2.435 3.057±4.245 5.247±6.461 7.991±9.520 7.362±9.190sM
C

I

MOCA 2.591±2.130 3.721±3.194 4.446±4.402 4.222±3.161

RAVLT-IR 5.592±4.494 6.903±5.180 9.377±9.032 10.64±10.54 12.17±9.006

The blanks indicate that the subjects have no data points in the visits.



Chapter 5

Conclusion

In this work, two different methods were proposed for modeling the progression of

Alzheimer’s disease using longitudinal measurements of ADNI and NACC biomark-

ers based on a parametric method robust to outliers and missing data and a nonpara-

metric method robust to missing values and training instabilities.

5.1 Summary
The proposed parametric method linearly mapped the individual’s age to a disease

progression score (DPS) and jointly fitted constrained modified Stannard functions to

the longitudinal dynamics of biomarkers as functions of the DPS based on alternating

M-estimation using the logistic loss. The estimated parameters were then used to

temporally order the biomarkers in the disease course and to predict biomarker

values as well as to classify the clinical status per subject visit in an independent test

set. The obtained results showed the superiority of the proposed method over the

state-of-the-art methods in terms of prediction and classification performances, and

this method generalized well across cohorts.

The proposed nonparametric method applied a generalized training rule based

on normalization of the input and loss to the number of available data points to

LSTMs to handle missing input and target values. Moreover, a robust initialization

method was developed to address the training instability and slow convergence in

LSTM networks based on a scaled random initialization of the network weights,

aiming at preserving the variance of the network input and output in the same



5.2. Discussion 86

range. This was the first time LSTMs were studied and applied to DPM within a

neurodegenerative disease. The results showed that the proposed deep learning-based

training algorithm achieves superior results to standard LSTMs with data imputation

before training, especially when applied to data with lower rates of missing values.

A thorough comparison of the two proposed methods for neurodegenerative AD

progression modeling on the ADNI dataset revealed that the deep learning methods

outperformed the parametric method in predicting biomarker values and cognitive

decline, even when using a few time points of the training and/or test subjects. On

the other hand, the parametric method performed significantly better in classifying

clinical status.

5.2 Discussion

In general, the nonparametric method was good in modeling MRI biomarkers, while

the parametric method performed well in modeling cognitive tests. In both cases,

MRI measurements helped to improve cognitive-based diagnostic performance. Also,

the parametric method in contrast to the nonparametric method can be applied to the

prediction of test data with fewer biomarkers than what was used for training.

Both methods can be applied to different time-series data including missing

data points and labels, or to biomarkers with other characteristics than the monotonic

behavior that one typically encounters in, for example, neurodegenerative disease

progression modeling using MRI/PET biomarkers. However, suitable functions need

to be used in the parametric method for biomarker modeling, and proper care needs

to be taken to handle missing labels and time intervals in LSTMs.

The proposed training and initialization methods are applicable for other types

of RNNs such as GRUs and various activation functions. In addition, the same robust

loss functions used for the parametric method can be applied to the LSTM to make

the nonparametric predictions robust to outliers. LSTM networks can be directly

applied to classification based on sequence-to-label learning to potentially improve

diagnostic performance. However, the focus of this work was on DPM based on

sequence-to-sequence learning. Besides, sequence-to-label learning would only be
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able to utilize the part of the training data which has available clinical status.

The methods presented in this work have the potential to be used in clinical en-

vironments for a better understanding of AD for diagnostic, staging, monitorization,

and prognostic purposes. The proposed robust tools can automatically analyze the

complete perspective of the disease using longitudinal data in an end-to-end fash-

ion. This is also a holistic way to implement a system suitable for both (academic)

research and (industrial) clinical applications to better study, detect, and monitor

AD. Finally, the proposed methods developed to deal with heterogeneous patterns,

missing data, and outliers can be applied to longitudinal studies other than AD.

5.3 Future work

The proposed deep learning method performed better than the regression-based

approach in almost all tasks except for classification. As discussed before, two

possible reasons for this problem could be the absence of age information and

fair performance in modeling the cognitive biomarkers. Therefore, as a potential

direction for future work, we can investigate the effects of adding age information and

clinical status to the model, e.g., as extra input feature dimensions, on classification

performance.

Moreover, the proposed parametric method is not very flexible in modeling non-

monotonic biomarkers, such as activation markers with several peaks, and different

AD subtypes with different progression rates. However, we would like to benefit

from some useful features of the parametric model such as the robust regression

scheme in the proposed nonparametric method. The required modification can be

applied to the output layer of the LSTM unit by calculating the network loss using

M-estimation.

Although the availability of large datasets provides the opportunity for deep

learning, learning temporal patterns from longitudinal healthcare data is challenging

due to the irregularity and asynchronicity of the data points. Hence, we plan to

extend our work based on using a combination of RNNs and continuous-time models

for modeling multiple temporal features in sporadic data.
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Last but not least, we expect to develop the proposed deep learning tool for

clustering longitudinal data into homogeneous subgroups sharing similar trajectories

or future outcomes for efficient phenotyping of patients and designing treatment

plans for AD. This will pave the way for understanding or interpreting the latent

space representations concerning different subtypes of AD.
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