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In this paper, we study the spontaneous scalarization of an extended, self-gravitating system which is
static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a real massive
scalar field condenses on this Melvin magnetic universe solution when introducing a nonminimal coupling
between the scalar field and (a) the magnetic field and (b) the curvature of the space-time, respectively.
We find that in both cases, the solutions exist on a finite interval of the coupling constant and that solutions
with a number of nodes k in the scalar field are present. For case (a) we observe that the intervals of
existence are mutually exclusive for different k.
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I. INTRODUCTION

Multimessenger observations of compact objects allow
one to test general relativity (GR) and its extensions to high
precision now and in the future. As such, renewed interest
in testing no-hair and/or uniqueness theorems for black
holes has appeared. While work in the 1990s was mainly
devoted to the construction of “hairy” black holes in the
context of general relativity supplemented with nonlinear
matter fields appearing in particle physics models, recent
activity has focused on the extension of the gravity part
of the model, e.g., by adding a nonminimal interaction
between higher order curvature terms and extra gravita-
tional fields; see e.g., [1,2] for reviews.
In a number of these extended gravity models new black

hole solutions with nontrivial fields on the horizon that
vanish asymptotically have been shown to exist. In fact,
these new black hole solutions appear for specific intervals
of the nonminimal coupling. Outside of this interval, the
black hole solutions are equivalent to the standard black
hole solutions that fulfill the no-hair theorems, i.e., are
equivalent to either the Schwarschild, Reissner-Nordström
or Kerr(-Newman) solution. In these extended models
black holes are hence said to “scalarize spontaneously”
[3–5] in the case of nonminimal coupling to a scalar field or
“vectorize spontaneously” [6–9] in the case of nonminimal
couplings to Abelian gauge fields.
However, the idea of spontaneous scalarization is not

specific to black holes, but has been shown to appear also
for other compact objects such as boson stars [10–12]
and neutron stars [13]. It can also appear in extended

systems, such as low density stars [14] and even the whole
universe itself [15].
In this paper, we want to show that spontaneous

scalarization exists also for the Melvin solution, an
extended self-gravitating system that describes an electro-
magnetic field kept together by its own gravity [16] and that
was shown to be stable in the context of general relativity
[17]. Charged black holes embedded in such a magnetic
universe have been studied recently [18] and it has been
shown that they can carry minimally coupled, complex and
ungauged scalar hair.
The electromagnetic field of the “pure” Melvin solution

points in the direction of the symmetry axis and the solution
is essentially characterized by the absolute value of this
field on the symmetry axis. As such it is a cylindrically
symmetric gravitating system (for a review see e.g., [19]).
The most studied cylindrically symmetric extended self-
gravitating system is surely the cosmic string, a topological
defect that might have formed in the primordial universe
[20]. However, magnetic fields in elongated regions were
observed astrophysically in so-called radio relics. Radio
relics are diffuse radio sources in galaxy clusters. These
sources are not associated to any cluster galaxy [21] and
have been categorized into three groups: radio gischt, radio
phoenix and active galactic nucleus relics [22]. The radio
gischt are mostly found in the outskirts of galaxies and are
elongated arclike radio sources with sizes of up to 2 Mpc.
Observations give support to the hypothesis that they
trace shock fronts in which particles are accelerated via
the diffuse shock acceleration mechanism and possess
ordered magnetic fields with a few micro-Gauss strength
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(see e.g., [23]). As such they present probably the largest
magnetic structures in the universe. One interesting case of
gischtlike sources are so-called “double-relics.” In this case
two relics are diametrically located on both sides of the
cluster center, see e.g., [24] and references therein. Due to
the improvement in instrument sensitivity the number of
detections of radio relics has grown dramatically in the last
decade. Large cosmological simulations that include radio
emissions from shocks suggest that these structures should
form frequently, see e.g., [24,25] and references therein.
Certainly, the Melvin magnetic universe can only be an
idealized model for extended but finite magnetic field
structures, but we believe that it can give qualitative ideas
about the phenomenon which is easily trackable because of
the fact that both the space-time as well as the magnetic
field are given analytically. A full simulation of radio relics
(including the gravitational field) is certainly a formidable
task and beyond the aim of this paper.
Motivated by the existence of elongated and ordered

magnetic fields in the universe, we study the Einstein-
Maxwell model and add a massive, real scalar that is
nonminimally coupled to the system. In order to understand
the effects of the nonminimal coupling we study two
different scenarios separately: (a) the nonminimal coupling
to the electromagnetic field and (b) the nonminimal
coupling to the Gauss-Bonnet curvature term. These two
coupling options have been used extensively in the recent
construction of black holes with scalar hair.
Our paper is organized as follows: In Sec. II, we give the

model and Ansatz and also discuss the small scalar field
limit. In Sec. III we present our results for the case of scalar-
magnetic field coupling, while Sec. IV is concerned with
the scalar-gravity case. We conclude in Sec. V.

II. THE MODEL AND ANSATZ

In this paper, we study a scalar-tensor gravity model with
the following action [we use metric signature ðþ − −−Þ]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ ϕ2ðαFμνFμν þ γGÞ

þ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

1

4
FμνFμν

�
; ð2:1Þ

where R is the Ricci scalar, G the Gauss-Bonnet term,
Fμν ¼ ∂μAν − ∂νAμ the field strength tensor of a U(1)
gauge field Aμ and ϕ a real-valued scalar field with mass m
that is coupled to the Maxwell invariant FμνFμν as well as
the Gauss-Bonnet term G given by

G ¼ ðRμνρσRμνρσ − 4RμνRμν þR2Þ ð2:2Þ

via the couplings α and γ, respectively. The equations of
motion then read

□ϕþ ð2αFμνFμν þ 2γG −m2Þϕ ¼ 0; ð2:3Þ

and

∂μð
ffiffiffiffiffiffi
−g

p ð1 − 4αϕ2ÞFμνÞ ¼ 0;

Gμν ¼ −8πGðTðAÞ
μν þ TðϕÞ

μν Þ; ð2:4Þ

where the energy-momentum tensor components of the
gauge field and scalar field read, respectively,

TðAÞ
μν ¼

�
1

4
− αϕ2

��
FμσFσ

ν −
1

4
gμνFαβFαβ

�
; ð2:5Þ

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂σϕ∂σϕþm2

2
ϕ2

�

− γðgμσgνλ þ gνσgμλÞησαγδηιλκρRγδκρDαDιðϕ2Þ:
ð2:6Þ

In this paper, we would like to discuss the scalarization
of self-gravitating solutions of the Einstein-Maxwell equa-
tions. We assume staticity and cylindrical symmetry and
hence choose the following Ansatz for the metric, gauge
and scalar field:

ds2 ¼ N2dt2 −H2dρ2 − L2dφ2 − K2dz2;

Aμdxμ ¼ AðρÞdφ; ϕ ¼ ϕðρÞ ð2:7Þ

where the metric functions N, H, J, K depend only on ρ.
In the following, we will now fix the gauge by imposing
HðρÞ ¼ 1, which implies KðρÞ≡ NðρÞ. Inserting the
Ansatz into the equations of motion (2.3), (2.4) we note
that the Maxwell equation can be integrated separately,
leading to

A0 ¼ B0

L
ð1 − 4αϕ2ÞN2

; ð2:8Þ

where B0 is an integration constant. The magnetic field of
the solution, which points in the direction of the z axis, is
then given by

B ¼ −
A0

L
¼ −

B0

ð1 − 4αϕ2ÞN2
: ð2:9Þ

The remaining equations read

N00

N
þ ðN0Þ2

2N2
¼ κ

4
ð−ϵs þ ϵv −UÞ þ 4κγF 1; ð2:10Þ

L00

L
þ L0N0

LN
−
ðN0Þ2
2N2

¼ κ

4
ð−ϵs − 3ϵv −UÞ − 4κγF 2;

ð2:11Þ
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ϕ00 þ
�
L0

L
þ2N0

N

�
ϕ0

¼ϕ

�
m2−4α

ðA0Þ2
L2

−16γ
L00N02þ2L0N0N00

LN2

�
; ð2:12Þ

where we have used the following abbreviations:

κ ¼ 16πG; ϵs ¼
ðϕ0Þ2
2

;

ϵv ¼
ðA0Þ2
2L2

ð1 − 4αϕ2Þ; U ¼ m2

2
ϕ2; ð2:13Þ

as well as

F 1 ¼
N02

N2
ðϕϕ00 þ ϕ02Þ þ 2N0N00

N2
ϕϕ0;

F 2 ¼ ðϕϕ00 þ ϕ02Þ
�
N02

N2
− 2

L0N0

LN

�

þ ϕϕ0
�
2N0N00

N2
− 2

L0N00

LN
− 2

L00N0

LN

�
ð2:14Þ

and the prime denotes derivative with respect to ρ.
Moreover, we have a constraint, which reads

N02

2N2
þ N0L0

NL
¼ κ

4
ðϵs þ ϵv − UÞ þ κγF 3;

F 3 ¼ 12γκϕϕ0
�
L0N02

LN2

�
: ð2:15Þ

The system has to be solved for ρ ∈ ½0;∞½ with the
following boundary conditions which guarantee the regu-
larity at origin and the localization of the solution:

Nð0Þ ¼ 1; N0ð0Þ ¼ 0; Lð0Þ ¼ 0;

L0ð0Þ ¼ 1; ϕ0ð0Þ ¼ 0; ϕðρ → ∞Þ ¼ 0: ð2:16Þ

Note that κ and m can be set to unity by appropriate
rescalings of the fields and of the radial variable, respec-
tively. The equations have to be solved numerically, see
Appendix B for a short summary of the numerical pro-
cedure, and we have found it convenient to add an addi-
tional boundary condition on the scalar field, namely
setting ϕð0Þ equal to a nonvanishing value. As the
equations and boundary conditions make clear, this over-
determines the problem and in turn fixes one of the
coupling constants in the model uniquely. We will com-
ment more on this in the following discussion.
In the vacuum case, i.e., for ϕ≡ 0, B0 ¼ 0, the equations

of motion have well-known solutions first given in [26]. For
the boost-symmetric case, these are as follows:

(i) N ∼ 1, L ∼ βρ: this is a locally flat space-time which
globally possesses a deficit angle Δ ¼ 2πð1 − βÞ.
The metric describes e.g., the (asymptotic)

space-time of a cosmic string (see e.g., [20] and
references therein).

(ii) N ∼ ρ2=3, L ∼ ρ−1=3: this space-time obviously does
not fulfill the regularity conditions [see (2.16)] on
the axis, however, it is important in the following in
the description of the space-time away from the
sources of the gravitational field.

A. Small and vanishing scalar field

In the case of vanishing scalar field, i.e., for the case
ϕ≡ 0, a combination of the equations (2.10), (2.11) and
(2.15) shows that the metric functions have to fulfill
N0 ∝ L. This clearly excludes the string-type solution far
away from the magnetic field, while the vacuum solution
with L ∼ ρ−1=3, N ∼ ρ2=3 fulfills this requirement. In fact,
the solution can be given in closed form and is often
referred to as the magnetic Melvin universe [16]. In order to
discuss the scalar field in this background, it is convenient
to adopt Weyl-type coordinates with dρ ¼ Ndr. The
solution then reads

ds2 ¼ N2ðdt2 − dr2 − dφ2Þ − r2

N2
dφ2; Frφ ¼ B0r

N2
;

N ¼
�
1þ 1

4
B2
0r

2

�
: ð2:17Þ

The relation between ρ and r is

ρ ¼ rþ 1

12
B2
0r

3;

resp:; r ¼
�
6ρ

B2
0

ð1þ
ffiffiffi
Σ

p
Þ
�

1=3
þ
�
6ρ

B2
0

ð1 −
ffiffiffi
Σ

p
Þ
�

1=3
;

Σ ¼ 1þ 1

27B2
0ρ

2
: ð2:18Þ

In the following, we will use the coordinate r to study the
scalar field equation in the background of this solution. The
scalar field equation [see (2.3)] then reads

1

r
∂rðr∂rϕÞ þ ð2αFμνFμν þ 2γG −m2ÞN2ϕ ¼ 0;

G ¼ ð3B4
0r

4 − 24B2
0r

2 þ 16ÞB4
0

4N8
; FμνFμν ¼ 2B2

0

N4
:

ð2:19Þ

The general solution to this equation can only be found
numerically, but we can understand the behavior of the
solutions when looking at the asymptotic behavior of the
scalar field. We will discuss the two cases γ ¼ 0 and α ¼ 0
separately now.
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1. γ = 0

For r ≪ 1, we can approximate N�2 ≈ 1� B2
0r

2=2 and
Eq. (2.19) becomes

1

r
∂rðr∂rϕÞ −A0ϕ −A2r2ϕ ¼ 0; A0 ¼ m2 − 4αB2

0;

A2 ¼
m2B2

0

2
þ 2αB4

0: ð2:20Þ

Introducing z ¼ ffiffiffiffiffiffi
A2

p
r2 and defining ϕ ¼ expð−z=2Þχ,

we obtain

zχ̈ þ ð1 − zÞ_χ þAχ ¼ 0; A ¼ −
�

A0

4
ffiffiffiffiffiffi
A2

p þ 1

2

�
;

ð2:21Þ

where the dot denotes the derivative with respect to z. This
is the confluent hypergeometric equation that has as
suitable solutions the Laguerre polynomials χðzÞ ∼ LA.
Hence for small r Eq. (2.20) has the solution

ϕðr ≪ 1Þ ¼ ϕ0 exp

�
−

ffiffiffiffiffiffi
A2

p
2

r2
�
LAð

ffiffiffiffiffiffi
A2

p
r2Þ: ð2:22Þ

For A ∈ N the LA possess a number of nodes. This
suggests that we should also be able to construct scalar
field solutions that possess a number k of nodes, a
conclusion that we have confirmed by an explicit numerical
construction, see below. In fact, using these arguments, we
can give a rough approximation of the critical value of α to
obtain solutions. From the requirement that A ¼ k,
k ¼ 0; 1; 2;…, we find that

α≳ m2

4B2
0

for k ¼ 0; 1; 2; 3;…: ð2:23Þ

For r ≫ 1 we introduce y ¼ r3 and Eq. (2.19) becomes a
modified Bessel equation of the form

y2
d2ϕ
dy2

þ y
dϕ
dy

−
m2B4

0

144
y2ϕ ¼ 0 ð2:24Þ

such that the asymptotic decay of the solution is

ϕðr ≫ 1Þ ∼ K0

�
mB2

0

12
r3
�
∼ r−3=2 expð−r3Þ: ð2:25Þ

This analysis also clearly demonstrates why it is necessary
to have a mass term for the scalar field. For m ¼ 0, as is
well known, the scalar field would behave like ϕðrÞ ∼ lnðrÞ
asymptotically and would hence not be localized.

2. α= 0

In this case Eq. (2.19) becomes

1

r
∂rðr∂rϕÞ − C0ϕ − C2r2ϕ ¼ 0;

C0 ¼ m2 − 8γB4
0; C2 ¼

m2B2
0

2
þ 24γB6

0: ð2:26Þ

With similar substitutions as above, we find

ϕðr ≪ 1Þ ¼ ϕ0 exp

�
−

ffiffiffiffiffi
C2

p
2

r2
�
LCð

ffiffiffiffiffi
C2

p
r2Þ;

C ¼ −
�

C0
4

ffiffiffiffiffi
C2

p þ 1

2

�
: ð2:27Þ

Again, the analysis suggests that radially excited solutions
should be present and we can give a rough approximation
of the critical value of γ to obtain solutions. From the
requirement that C ¼ k, k ¼ 0; 1; 2;…, we find that

γ ≳ m2

8B4
0

for k ¼ 0; 1; 2; 3;…: ð2:28Þ

For r ≫ 1 the behavior is exactly as in the γ ¼ 0 because
it is the mass term that determines the asymptotic regime
in both cases.

III. SCALAR-MAGNETIC FIELD COUPLING

Here, we would like to discuss the case γ ¼ 0, i.e., we
consider only the nonminimal coupling between the gauge
field and the scalar field. As stated above, we can choose
appropriate scalings to set κ ¼ m≡ 1 without losing
generality. The parameters to be varied in the following
are then the nonminimal coupling constant α and the
absolute value of the magnetic field strength B0. As
discussed above for small scalar fields, we expect solutions
with scalar field nodes to be present in our system.
We, indeed, have confirmed this numerically. In Fig. 1,
we compare the analytical expression (2.22) (denoted ϕ̄ and
given in solid) with the numerical solutions of the full set of
equations for B0 ¼ 1 and ϕð0Þ ¼ 0.01 (dashed) for the
solution with no nodes (k ¼ 0) and that with one node
(k ¼ 1). As expected, the approximation is not perfect, but
gives a good idea of the qualitative behavior of the
functions. We also find that the approximation gives a
good order of magnitude approximation of the location of
the zeros of the scalar field function. We give some values
for the location of the nodes of the k ¼ 2 solution, i.e., the
solution with two nodes, in comparison to the location of
the zeros of the second Laguerre polynomial L2 in Table I.
As such the k ¼ 0 and k ¼ 1 in Fig. 2, respectively,

refers to the solution that has no nodes in the scalar field
(k ¼ 0) and that which has one node (k ¼ 1). Moreover,
(2.12) suggests that a tachyonic instability appears in the
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system only for α > 0. From (2.23), we know that α ≳ m2

4B0
.

The curve α ¼ m2

4B0
¼ 1

4B0
(remember m≡ 1) is given in

Fig. 2 (blue, dotted-dashed) together with the numerically
determined values of α0 (solid) and αcr (dashed) which
determine the interval in α for which nontrivial scalar field
solutions exist for a given value of B0. Here, the value of αcr
is given by the observation that there exists a value of
α ¼ 1=ð4ϕð0Þ2Þ for which the magnetic field on the axis of
symmetry [see (2.9)] diverges. Solutions exist for α > αcr.
That this is closely related to the fact that α needs to be
sufficiently large to generate a tachyonic instability can be
seen by noting that the curve α ¼ 1=ð4ϕð0Þ2Þ is a good
approximation to the αcr curve for k ¼ 0 and small α.
Increasing α too strongly, the scalar field can no longer

be nontrivial in the space-time and becomes identically
zero due to the backreaction of the space-time. This value

of α is denoted by α0. Note that had we only studied the
scalar field in the background of the Melvin universe, the
two limiting values would be equal α0 ¼ αcr. However,
here, the backreaction of the scalar field on the space-time
leads to the observation that nontrivial scalar field solutions
exist in a given interval of α (for a given B0) rather than for
a sole value of α. We observe that the interval in α increases
with increasing magnetic field strength B0. For B0 → 0, our
numerical results indicate that the interval shrinks to zero
and both αcr as well as α0 tend to infinity. This makes sense
since the vanishing B0 limit corresponds to Minkowski
space-time (in cylindrical coordinates) and this space-time
cannot be scalarized.
Comparing the scalar field solutions with a different

number of nodes k, we observe that for a given B0, we have
to choose α larger to find k ¼ 1 solutions than k ¼ 0
solutions. Interestingly, the ranges of α for which k ¼ 0 and
k ¼ 1 solutions exist, respectively, do not overlap in the
range of values of B0 that we have studied here. To state it
differently, fixing B0 and α within the range of values given
in Fig. 2 we will either obtain a scalar field solution with no
nodes or one with one node, but not both at the same time.
Hence, the solutions with nodes cannot really be interpreted
as the radially excited solution of the fundamental ones, as
is often done in other nonlinear, self-gravitating systems.
Naturally, the question arises whether we are simply not

able to find the fundamental k ¼ 0 solutions for the range
of parameters for which the k ¼ 1 solutions exist. Due to
the numerical procedure that we have employed, we are
certain that this is not the case. We have fixed the value
of the scalar field at the origin, ϕð0Þ, which is not an
independent boundary condition. The choice of this value
hence fixes the value of one of the couplings in the model
uniquely and we have chosen the value of α to be computed
by our numerical procedure. As such, we have followed the
evolution of the branch of solutions with no nodes and that
with one node and determined the values of α at given B0

for which these solutions exist.

IV. SCALAR-CURVATURE COUPLING

Here, we will set α ¼ 0, i.e., we consider only the
nonminimal coupling between the Gauss-Bonnet term
and the scalar field. In this case, the equations of motion
(2.3)–(2.12) have to be diagonalized with respect to the
second derivatives, see Appendix A for details.
We observe that nontrivial scalar field solutions exist

only for sufficiently large values of the nonminimal
coupling γ, i.e., for γ > γ0. The dependence of this value
on B0 is shown in Fig. 2 (solid lines) for scalar field
solutions with no nodes (k ¼ 0, black) and one node
(k ¼ 0, black), respectively. Again, we observe that one
has to choose the nonminimal coupling large in order to
obtain solutions with k ¼ 1 as compared to the k ¼ 0 case.
Interestingly, in this case, the analytical expression for γ0
given by 1=ð8B4

0Þ is not as good as in the scalar-magnetic

FIG. 1. We compare the profiles of the analytical approxima-
tion ϕ̄ [see (2.22)] (solid) for the scalar field with the full
numerical solution ϕ (dashed) for k ¼ 0 (black) and k ¼ 1 (red)
nodes for B0 ¼ 1.0 and ϕð0Þ ¼ 0.01. These choices correspond
to α ¼ 0.55 for k ¼ 0 and α ¼ 1.40 in the case k ¼ 1, respec-
tively. Note that we have used ρ ≈ r for this plot, which is a good
approximation for small values of the radial coordinate.

TABLE I. We give the location of the zeros of the scalar field
solution with k ¼ 2 notes, ρð1Þ0 and ρð2Þ0 , for some values of B0 and
α and compare them with the zeros of the corresponding Laguerre

polynomial L2, ρ̄
ð1Þ
0 and ρ̄ð2Þ0 , respectively.

B0 α ρð1Þ0 ρð2Þ0 ρ̄ð1Þ0 ρ̄ð2Þ0

0.05 124.2 4.1 11.5 2.6 15.5
0.07 69.5 3.8 9.6 2.1 13.2
0.2 13.7 2.3 5.5 1.2 7.5
0.4 5.8 1.5 3.8 0.8 5.5
0.5 4.6 1.3 3.3 0.6 4.8
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field coupling case. This is likely related to the fact that
the space-time background approximation is not a good
approximation in this case as the scalar field is non-
minimally coupled to the curvature. When increasing the
coupling γ, the scalar field increases in absolute value,
which leads to increased backreaction of the scalar field on
the space-time. In fact, we observe that there exists a
maximal value of ϕð0Þ, or equivalently a maximal value of
γ ¼ γcr beyond which no scalarized solutions exist any-
more. This is true for both the k ¼ 0 and the k ¼ 1 case.
The values of γcr in dependence on B0 are shown in Fig. 2
(dashed lines). Note that for the scalar-curvature case the
critical value of the coupling is always larger than the value
where the scalar field vanishes identically, while for the

scalar-magnetic field coupling, this is exactly opposite.
This is related to the fact that the scalar field directly
sources these fields and hence leads to an increased
repulsive effect for the magnetic fields and an increased
attractive effect in the case of the curvature fields. This also
demonstrates that the two couplings are qualitatively
different in nature. Another difference to the scalar-
magnetic field coupling is that the domain of existence
of scalarized solutions for γ ∈ ½γ0∶γcr� is now not mutually
exclusive for different node solutions. The range of γ for
k ¼ 0 overlaps partially with the range of γ for k ¼ 1, as
Fig. 2 clearly demonstrates, and in this overlapping region
the k ¼ 1 solutions can be interpreted as the radially excited
version of the k ¼ 0 solution.

FIG. 3. Profiles of the scalar field function ϕ=ϕ0 and the metric functions N and L for a value of γ close γcr for B0 ¼ 1 and k ¼ 0 (left)
and k ¼ 1 (right), respectively.

FIG. 2. Left: values of α0 (solid) and αcr (dashed) between which the scalarized solutions with k ¼ 0 (black) and k ¼ 1 (red) nodes,
respectively, exist in dependence on the magnetic field parameter B0 for γ ¼ 0. We also give 1=ð4B2

0Þ (dotted-dashed, blue) which is a
rough approximation of the critical value of α (see text for details). Right: values of γ0 (solid) and γcr (dashed) between which the
scalarized solutions with k ¼ 0 (black) and k ¼ 1 (red) nodes, respectively, exist in dependence on the magnetic field parameter B0 for
α ¼ 0. We also give 1=ð8B4

0Þ (dotted-dashed, blue) which is a rough approximation of the critical value of α (see text for details).
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Finally, we would like to discuss why the solutions cease
to exist at γ ¼ γcr. A solution close to the limiting solution
is shown in Fig. 3 for k ¼ 0 and k ¼ 1, respectively.
Clearly, the scalar field becomes zero outside of a sharply
defined radius ρcr such that at ρ ¼ ρcr the scalar field
function is nondifferentiable. For ρ > ρcr the solution
corresponds to the Melvin magnetic universe, while it
possesses a nontrivial, scalarized interior.
We observe that the Ricci scalarR increases strongly on

the symmetry axis of the solution when approaching γcr.
This is demonstrated for the k ¼ 0 solution with B0 ¼ 1 in
Fig. 4, where we give R for γ ¼ 10 (close to γ0), an
intermediate γ ¼ 100 as well as for γ ¼ 510 (close to γcr).
The subfigure of Fig. 4 shows the strong increase of R at
ρ ¼ 0. The figure further demonstrates that the Ricci scalar
becomes discontinuous at ρ ¼ ρcr indicating that the limit-
ing space-times possess singularities.

V. CONCLUSIONS

In this paper, we have demonstrated that the process
of spontaneous scalarization is not specific to compact
objects such as black holes, neutron stars or boson stars, but
also exists for extended self-gravitating solutions. We have
used the Melvin magnetic universe solution that describes
magnetic fields orientated into the direction of the sym-
metry axis and possesses a cylindrically symmetric, static
space-time. In the small scalar field limit, we find that the
linear Klein-Gordon equation of a massive, real scalar field
leads to solutions described by the Laguerre polynomials
close to the axis of symmetry and by Bessel functions
asymptotically, respectively. These results suggest that
a discrete family of scalar field solutions exists in the
model. We have demonstrated this by explicit numerical

construction of the solutions including backreaction of the
space-time and the magnetic field, respectively. The solu-
tions are characterized by two parameters: the magnetic field
parameter B0 and the value of the scalar field on the
symmetry axis, which is linked to the value of the non-
minimal coupling. The scalarized solutions, which are
nontrivial deformations of the underlying Melvin magnetic
universe solution, exist only in specific intervals of the
nonminimal couplings. Since these intervals for different
node numbers are in some cases mutually exclusive, the
question arises whether the higher node solutions can be
interpreted as radial excitations of the fundamental solutions
with no nodes, as is often done in self-gravitating systems.
It would be interesting to understand whether such

scalarization processes of extended magnetic fields could
be observed in the universe and if not, if observations could
provide limits on the coupling parameters or even exclude
extended gravity models with nonminimal coupling terms.
An interesting future investigation could be another very
specific cylindrically symmetric system that possesses
magnetic fields: the cosmic string. While the outside of
a cosmic string is characterized by a massive gauge field
and a massive scalar field (spontaneously broken phase),
the inside of the string core remains in the symmetric, i.e.,
false vacuum of the model in which the gauge symmetry is
unbroken. It is surely of interest to understand whether
cosmic strings that are hypothetical relics of the primordial
universe could be scalarized spontaneously and, if so, how
this would change the properties of these objects.
In order to get an estimate of the fields and the strength

of the couplings that we have used here, note that in
dimensionful notation the Lagrangian density (without
scalar field) should read L ¼ c4

16πGR − 1
4μ0

FμνFμν, where
μ0 denotes the vacuum permeability and c is the speed of
light in vacuum. Using meter-kilogram-second units, this
tells us that the “natural unit” in which the magnetic field
strength is measured is roughly 10−18 Tesla, i.e., 10−14

Gauss. In our paper, we have extensively studied values of
B0 that are on the order of unity, but we have also checked
that the phenomenon of spontaneous scalarization persists
when increasing the order of magnitude of B0. Since we
believe that the Melvin solution can only act as a toy model
for radio relics, our study has been qualitative rather than
quantitative, but we are quite certain that spontaneous
scalarization of extended magnetic fields with magnetic
field strength much higher and on the order of that
appearing in radio relics (a few micro-Gauss) is feasible.
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FIG. 4. Ricci scalar R of the scalarized Melvin solution for
k ¼ 0, B0 ¼ 1 and for different values of γ including γ ¼ 510
close to γcr.
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APPENDIX A: DIAGONALIZED EQUATIONS
OF MOTION

The diagonalized equations of motion (2.3)–(2.21) read

N00 ¼ F1

H
; L00 ¼ F2

H
; ϕ00 ¼ F3

H
ðA1Þ

with

H ¼ 8κN3½64ððLN0 − 4L0NÞN0 − κLN2ϕ02Þγ2κN02ϕ2 þ 1536γ3κ2L0N04ϕ3ϕ0 þ 16γκLN3N0ϕϕ0 − LN4�

F1 ¼ ½128½ðð2Nϕ0 − N0ϕÞm2ϕ2 þ ð2Nϕ0 − 5N0ϕÞϕ02ÞLþ ðm2ϕ2 − ϕ02ÞL0Nϕ�γ2κ2N03ϕ

þ ððm2ϕ2 þ ϕ02ÞκN2 þ 4N02ÞLN2 − 8ð4½ððNϕ0 − N0ϕÞϕ0 þm2Nϕ2ÞL − L0Nϕϕ0�N0

þ ðm2ϕ2 þ ϕ02ÞκLN2ϕϕ0ÞγκNN0�κN4 þ ½ð8γκN0ϕϕ0 − NÞLN3 − 128ðLN0 þ L0NÞγ2κN03ϕ2�B2
0;

F2 ¼ ð8ð4ðððNϕ0 − 2N0ϕÞϕ0 þm2Nϕ2ÞL2N0 þ 2L02N2ϕϕ0 − 2ððNϕ0 − N0ϕÞϕ0 þm2Nϕ2ÞL0NÞN0

− ð2LN0 − L0NÞðm2ϕ2 þ ϕ02ÞκLN2ϕϕ0Þγκ þ 256ðððNϕ0 þ N0ϕÞm2ϕ2 þ ðNϕ0 − N0ϕÞϕ02ÞL
− ðm2ϕ2 þ 2ϕ02ÞL0NϕÞγ2κ2L0N02ϕ − ð4ðLN0 − 2L0NÞN0 − ðm2ϕ2 þ ϕ02ÞκLN2ÞLNÞκN4

þ ð256ðLN0 þ L0NÞγ2κL0N02ϕ2 þ 3L2N3 − 8ð2LN0 þ L0NÞγκLN2ϕϕ0ÞB2
0;

F3 ¼ −8½ð16ðð2ðð2Nϕ0 − N0ϕÞm2ϕ − 5N0ϕ02ÞL − ðm2ϕ2 þ 5ϕ02ÞL0NÞκNϕ

− 4ðð4Nϕ0 þ 3N0ϕÞL0 − LN0ϕ0ÞN0Þγ2κN02ϕϕ0 þ ððm2Nϕ − 2N0ϕ0ÞL − L0Nϕ0ÞN3 þ 1536γ3κ2L0N04ϕ2ϕ03

− 2ðððð8Nϕ0 − N0ϕÞm2ϕ − 17N0ϕ02ÞL − 2ðm2ϕ2 þ 5ϕ02ÞL0NÞκN2 þ 4ðLN0 − 4L0NÞN02ÞγN0ϕÞκN3

þ 2ðð3LN0 − 2L0NÞN − 8ð2LN0 − L0NÞγκN0ϕϕ0ÞB2
0γN

0ϕ�:

APPENDIX B: NUMERICAL PROCEDURE

We have used the collocation solver COLSYS [27]
for our numerical calculations. The key numerical pro-
cedure used is that of the Newton method that relies on
the linearization of the problem at given points on the
interval r ∈ ½0∶rmax� with rmax sufficiently large to cap-
ture the asymptotic behavior of the solutions correctly.
Boundary conditions that relate to the requirements of
the physical problem are employed at r ¼ 0 and r ¼ rmax

and the subsequent solution is interpolated using a
spline collocation at Gaussian points. COLSYS possesses
a mesh adaptation, i.e., the linearized problem is solved
on a sequence of meshes with N points such that
0 ¼ r1 < r2… < rNþ1 ¼ rmax until a given accuracy is
reached. We typically specify the error tolerance to be
between 10−2 and 10−4 with the final solutions, however,
having much better absolute error on the order of 10−6

to 10−8.
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