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The advent of stage IV weak lensing surveys will open up a new era in precision cosmology. These
experiments will offer more than an order-of-magnitude leap in precision over existing surveys, and we
must ensure that the accuracy of our theory matches this. Accordingly, it is necessary to explicitly evaluate
the impact of the theoretical assumptions made in current analyses on upcoming surveys. One effect
typically neglected in present analyses is the Doppler shift of the measured source comoving distances.
Using Fisher matrices, we calculate the biases on the cosmological parameter values inferred from a Euclid-
like survey, if the correction for this Doppler shift is omitted. We find that this Doppler shift can be safely
neglected for stage IV surveys.
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I. INTRODUCTION

The change in the observed shape of distant galaxies due
to weak gravitational lensing by the large-scale structure of
the Universe (LSS), known as cosmic shear, is a powerful
tool for performing precision cosmology. It is a particularly
strong probe of dark energy [1]. Existing cosmic shear
surveys [2–4] are able to carry out cosmology competitive
with modern cosmic microwave background surveys [5].
The advent of stage IV [1] weak lensing surveys, like
Euclid [6,7], the Nancy Grace Roman Space Telescope
[8,9], and the Rubin Observatory [10,11], will mean more
than an order-of-magnitude increase in precision over the
present generation of surveys.
In order to match this increased precision in the data, we

must ensure that our theoretical analyses are sufficiently
accurate. Accordingly, the impact of neglecting higher-
order systematic effects on stage IV experiments must be
explicitly evaluated. In this work, we use the Fisher matrix
formalism to predict the cosmological parameter biases
from a Euclid-like survey, when one such effect is
neglected: the Doppler shift of measured source redshifts
due to their peculiar velocities and the inhomogeneity of
the Universe. While the second-order correction for this
effect is known [12,13], its impact at the angular power
spectrum level, on intrinsic alignments (IAs), and on
cosmological parameter inference for the specifications
of an Euclid-like survey [14], and under the Limber
approximation, has not been explicitly evaluated.
This work is organized in the following manner: in

Sec. II, we detail our theoretical formalism. Here, the

standard cosmic shear power spectrum calculation is
described. We also review how contributions to the shear
signal from noncosmological IAs and shot noise are
accounted for. Then, the procedure for correcting for the
Doppler shift of source redshifts when observing gravita-
tional lensing is described. Our formalism for predicting
cosmological parameter constraints and any biases in them
in the presence of systematic effects, using Fisher matrices,
is then explained. Following this, in Sec. III, we detail our
method for modeling a stage IV survey and the fiducial
cosmology chosen. Finally, in Sec. IV, the results of our
investigation are shown. We present the magnitude of the
Doppler-shift correction to the angular power spectra
relative to the angular power spectra themselves. Lastly,
we state the cosmological parameter biases resulting from
neglecting this correction, for a Euclid-like survey.

II. THEORY

We begin this section by describing the first-order
cosmic shear power spectrum calculation. Next, we review
the theoretical expressions for the contributions to the
observed shear power spectra resulting from IAs and shot
noise. Then, we outline the second-order correction to the
cosmic shear angular power spectra that results from the
Doppler shift of source redshifts. Finally, we explain our
use of Fisher matrices to predict cosmological parameter
constraints and biases.

A. The first-order cosmic shear power spectrum
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LSS. This change in ellipticity is related to the reduced
shear g, which is given by

gαðθÞ ¼ γαðθÞ
1 − κðθÞ ; ð1Þ

where θ is the position of the source on the sky, γ is the
spin-2 shear with index α ¼ 1, 2, and κ is the convergence.
The shear encodes the part of weak lensing which results in
an anisotropic stretching of the source image that would
make a circular light distribution elliptical. Meanwhile,
convergence is the component of weak lensing that causes
an isotropic increase or decrease in the image’s size. In the
case of weak lensing, jκj ≪ 1, which allows us to make the
reduced shear approximation:

gαðθÞ ≈ γαðθÞ: ð2Þ
While this approximation results in significant cosmologi-
cal parameter biases for stage IV experiments [15], it has
been shown that these can be sufficiently mitigated through
the use of scale-cut techniques such as k-cut cosmic shear
[16]. Accordingly, we proceed under the reduced shear
approximation for the remainder of this work.
For a tomographic redshift bin i, the convergence in its

most general form, in spherical harmonic space, and on the
celestial sphere, takes the form

κ̃i;lm ¼ 4πil
Z

χlim

0

dχWiðχÞ
Z

∞

0

d3k
ð2πÞ3 jlðkχÞ

× 2Y
�
lmðk̂Þδ̃ðk; χÞ; ð3Þ

where l ¼ jlj is the amplitude of the spherical harmonic
conjugate of θ, χ is the comoving distance, χlim is the
limiting comoving distance of the survey, jl are spherical
Bessel functions, 2Y

�
lm are spin-weighted spherical har-

monics with spin ¼ 2, δ̃ is the matter density contrast of the
Universe, and k is a spatial momentum vector with
magnitude k ¼ jkj. The convergence is a projection of
the matter density contrast along the line of sight. Under the
Limber approximation [17], in which we consider only
wave modes in the plane of the sky to be contributing to the
lensing signal, this simplifies to

κ̃iðlÞ ¼
Z

χlim

0

dχδ̃ðk; χÞWiðχÞ; ð4Þ

where now the vector l has angular component ϕl, and
magnitude l, and k ¼ ðlþ 1=2Þ=SKðχÞ [17], with SKðχÞ
being a function that encodes the Universe’s curvature K.
This is defined as

SKðχÞ ¼

8>><
>>:

jKj−1=2 sinðjKj−1=2χÞ K > 0 ðclosedÞ;
χ K ¼ 0 ðflatÞ;
jKj−1=2 sinhðjKj−1=2χÞ K < 0 ðopenÞ:

ð5Þ

Additionally, Wi is the lensing window function for tomo-
graphic bin i. This is given by the expression

WiðχÞ ¼
3

2
Ωm

H2
0

c2
SKðχÞ
aðχÞ

Z
χlim

χ
dχ0niðχ0Þ

SKðχ0 − χÞ
SKðχ0Þ

; ð6Þ

where Ωm is the dimensionless matter density of the
Universe at present day, H0 is the Hubble constant, c is
the speed of light in a vacuum, aðχÞ is the scale factor, and
niðχÞ is the galaxy probability distribution for bin i.
Making the flat-sky and “prefactor-unity” approxima-

tions [18], the relationship between shear and convergence
is given by

γ̃αi ðlÞ ¼ TαðlÞκ̃iðlÞ: ð7Þ

Here, TαðlÞ are trigonometric weighting functions:

T1ðlÞ ¼ cosð2ϕlÞ; ð8Þ

T2ðlÞ ¼ sinð2ϕlÞ: ð9Þ

Considering an arbitrary shear field, we note two linear
combinations of the individual shear components—a curl-
free E mode and a divergence-free B mode:

ẼiðlÞ ¼
X
α

Tαγ̃αi ðlÞ; ð10Þ

B̃iðlÞ ¼
X
α

X
β

εαβTαðlÞγ̃βi ðlÞ; ð11Þ

where εαβ is the Levi-Civita symbol in two dimensions.
When there are no systematic effects, the B mode is zero,
leaving the only the E mode. From this, we define
autocorrelation and cross-correlation angular power
spectra Cγγ

l;ij:

hẼiðlÞẼjðl0Þi ¼ ð2πÞ2δ2Dðlþ l0ÞCγγ
l;ij; ð12Þ

where δ2D is the two-dimensional Dirac delta function.
These angular power spectra are defined as

Cγγ
l;ij ¼

Z
χlim

0

dχ
WiðχÞWjðχÞ

S2KðχÞ
Pδδðk; χÞ; ð13Þ

where Pδδðk; χÞ is the power spectrum of the matter density
contrast. For a detailed overview of this calculation,
see [19].

B. Intrinsic alignments and shot noise

In practice, the shear signal measured from surveys of
galaxies contains not only the desired signal from cosmic
shear, but other contributions as well. One of these
noncosmological contributions comes from the IA of
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galaxies [20], as galaxies can have preferred, intrinsically
correlated, alignments due to having formed in the same
tidal environments. Taking into account this IA, to the first
order, the observed ellipticity of a galaxy, ϵ, is expressed as

ϵ ¼ γ þ γI þ ϵs; ð14Þ

where γ is the cosmic shear due to the LSS, γI is the
distortion from IAs, and ϵs is the ellipticity that the galaxy
would have if no IA or cosmic shear was present. When we
then construct a two-point statistic (e.g. the angular power
spectrum) from this ellipticity, we find it has contributions
from four types of terms: hγγi; hγIγi, hγIγIi, and a shape
(shot) noise component resulting from ϵs.
Therefore, the observed angular power spectra Cϵϵ

l;ij is
the sum of each of these:

Cϵϵ
l;ij ¼ Cγγ

l;ij þ CIγ
l;ij þ CγI

l;ij þ CII
l;ij þ Nϵ

l;ij; ð15Þ

where CIγ
l;ij are the correlation spectra between the back-

ground shear and the foreground IA, CγI
l;ij describe the

correlation of the foreground shear with background IA
which are zero except when photometric redshift estimates
result in the observed redshifts being scattered between
bins, CII

l;ij are the IA autocorrelation spectra, and Nϵ
l;ij

encodes the shot noise.
We use the nonlinear alignment (NLA) model [21] in

order to describe the nonzero IA spectra:

CIγ
l;ij ¼

Z
χlim

0

dχ
S2KðχÞ

½WiðχÞnjðχÞ þ niðχÞWjðχÞ�PδIðk; χÞ;

ð16Þ

CII
l;ij ¼

Z
χlim

0

dχ
S2KðχÞ

niðχÞnjðχÞPIIðk; χÞ; ð17Þ

where, analogously to the shear angular power spectra, the
IA angular power spectra are projections of the IA power
spectra PδIðk; χÞ and PIIðk; χÞ. In the NLA model, these are
proportional to the matter power spectrum:

PδIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�
Pδδðk; χÞ; ð18Þ

PIIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�
2

Pδδðk; χÞ; ð19Þ

with AIA and CIA being free model parameters which are
obtained through fitting to simulations or data and DðχÞ
describing the evolution of the growth factor of density
perturbations with comoving distance.
The final term in Eq. (15), which represents the shape

(shot) noise, takes the form

Nϵ
l;ij ¼

σ2ϵ
n̄g=Nbin

δKij; ð20Þ

under the assumption that the tomographic bins in the
survey being studied are equipopulated. Here, σ2ϵ denotes
the variance of the observed ellipticities in the sample of
galaxies, n̄g is the surface density of galaxies, and Nbin is
the survey’s number of tomographic bins. The Kronecker
delta δKij encodes the fact that galaxies’ ellipticities at
different redshifts should not be correlated, meaning that,
for cross-correlation spectra, the shot noise will vanish.

C. Doppler-shifted cosmic shear

When measuring the effect of weak lensing on a given
source, we observe its redshift. However, the inhomoge-
neity of the Universe and the presence of the LSS means
that the source will have a peculiar velocity toward its local
overdensity. Consequently, the measured redshift will be
perturbed by Doppler shift. At the second order, this will
result in a correction to the observed reduced shear due to
the coupling between this redshift perturbation and the
lenses. Under the reduced shear approximation, this is
given by [12]

gαðθ; χÞ ¼ γαðθ; χÞ þ δgzðθ; χÞ; ð21Þ

where δgz accounts for the perturbation of the observed
redshift according to

δgzðθ; χÞ ¼ −
dγα

dχ
dχ
dz

δz: ð22Þ

Now, δz is the perturbation of the source redshift due to
Doppler shift. Expanding this expression explicitly and
neglecting the subdominant Sachs-Wolfe and integrated
Sachs-Wolfe effects results in

δgzðθ; χÞ ¼
c

χ2HðχÞaðχÞ n · v
Z

χ

0

dχ∂2Φðθ; χÞ; ð23Þ

where HðχÞ is the value of the Hubble function at source
comoving distance χ, n is the unit direction vector pointing
from the source to the observer, v is the peculiar velocity of
the source, and Φ is the gravitational potential. In fact, δgz
is a two-point term, as n · v also depends on the matter
density contrast (see e.g. Appendix B of [22]). Accordingly,
we write Eq. (23) as a combination of κlike and γlike

terms:

δgzðθ; χÞ ¼ κlikeðθ; χÞγlikeðθ; χÞ; ð24Þ

with

κlikeðθ; χÞ ¼ c
χ2HðχÞaðχÞ n · v; ð25Þ
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γlikeðθ; χÞ ¼
Z

χ

0

dχ∂2Φðθ; χÞ: ð26Þ

The Doppler correction is now expressed as a product
between a shearlike term γlike and a convergencelike term
κlike, analogously to the way in which other two-point
correction terms (e.g. the reduced shear and magnification
bias corrections [15]) are typically formulated.
When expanded fully, in spherical harmonic space, and for

a given tomographic redshift bin i, these terms take the form

κ̃likei;lm ¼ 4πilc
Z

χlim

0

dχ
χ2HðχÞaðχÞ niðχÞZ

∞

0

d3k
ð2πÞ3

j0lðkχÞ
k 2Y

�
lmðk̂Þδ̃ðk; χÞ; ð27Þ

γ̃likei;lm ¼ 4πil
3ΩmH2

0

2c2

Z
χlim

0

dχniðχÞ
Z

∞

0

d3k
ð2πÞ3 jlðkχÞ2Y

�
lmðk̂Þδ̃ðk; χÞ: ð28Þ

InEq. (27), j0l is thederivativeof the spherical-Bessel function
jl with respect to kχ.
Constructing an expression for the angular power spec-

trum which takes into account the additional Doppler
correction term, under the flat-sky, flat-Universe, and
Limber approximations (see the Appendix for a detailed
derivation) recovers Eq. (13), plus an additional term:

δCDoppler
l;ij ¼

Z
∞

0

d2l0

ð2πÞ2 cosð2ϕl0 − 2ϕlÞ

× BDoppler
ij ðl;l0;−l − l0Þ; ð29Þ

where

BDoppler
ij ðl;l0;−l−l0Þ ¼

Z
χlim

0

dχ
χ4

½Wκν
i ðχ;l0ÞWγν

i ðχÞWjðχÞ

þWκν
j ðχ;l0ÞWγν

j ðχÞWiðχÞ�
×Bδδδðk;k0;−k− k0;χÞ: ð30Þ

Here, Bδδδ is the bispectrum of the matter density contrast,
and Wκν

i and Wγν
i are weight functions, analogous to the

lensing kernel of Eq. (6), corresponding to κ̃likei;lm and γ̃likei;lm,
respectively. We define these weight functions as

Wκν
i ðχ;lÞ ¼

�
l

ðlþ 1=2Þ2 −
1

ðlþ 3=2Þ
�

×
c

χHðχÞaðχÞ niðχÞ; ð31Þ

Wγν
i ðχÞ ¼

3ΩmH2
0

2c2
niðχÞ: ð32Þ

If we now also consider contributions from IAs, there will
be another correction term to the angular power spectrum
resulting from the correlation between the Doppler-shift
and IA terms. This new term takes the form

δCDoppler-IA
l;ij ¼

Z
∞

0

d2l0

ð2πÞ2 cosð2ϕl0 − 2ϕlÞ

× BνI
ijðl;l0;−l − l0Þ; ð33Þ

where now we define

BνI
ijðl;l0;−l − l0Þ ¼

Z
χlim

0

dχ
χ4

½Wκν
i ðχ;l0ÞWγν

i ðχÞnjðχÞ

þWκν
j ðχ;l0ÞWγν

j ðχÞniðχÞ�
× BδδIðk; k0;−k − k0; χÞ: ð34Þ

In Eq. (34), BδδI is the matter-IA bispectrum. In order to
calculate this, we apply the ansatz which extends the NLA
model to the bispectrum case [15], giving the expression

BδδIðk1; k2; k3; χÞ ¼ 2Feff
2 ðk1; k2ÞPIδðk1; χÞPδδðk2; χÞ

þ 2Feff
2 ðk2; k3ÞPδδðk2; χÞPδIðk3; χÞ

þ 2Feff
2 ðk1; k3ÞPδIðk1; χÞPδδðk3; χÞ;

ð35Þ

where Feff
2 is a fitting function obtained from N-body

simulations, given in [23].

D. Fisher matrix formalism

To predict the cosmological parameter constraints for a
Euclid-like survey, we make use of Fisher matrices [24],
which are the expectation of the Hessian of the likelihood.
The Fisher matrix depends exclusively on the mean of the
data vector and on the covariance of the data when the
assumption of a Gaussian likelihood is made. For weak
lensing, it has been shown that this assumption is safe
[25,26]. Additionally, the shear field has a mean value of
zero. Accordingly, and making the additional assumption
of a Gaussian covariance, the particular Fisher matrix we
use is given by

Fτζ¼fsky
Xlmax

l¼lmin

Δl
�
lþ1

2

�
tr

�∂Cl

∂θτ Cl
−1∂Cl

∂θζ Cl
−1
�
; ð36Þ

where fsky is the fraction of sky observed, Δl is the
bandwidth of l modes sampled, these blocks in l are
summed over, and τ and ζ denote the current parameters of
interest, θτ and θζ, respectively. A more detailed calculation
of this expression can be found in [14]. For a given
parameter, we are then able to predict the uncertainty
using the expression
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στ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Fττ

−1
q

: ð37Þ

If we want to predict how biased cosmological parameter
values will be when neglecting a systematic effect within
the data, this can be achieved by extending the Fisher
matrix calculation [27], such that

bðθτÞ¼
X
ζ

F−1
τζ fsky

X
l

Δl
�
lþ1

2

�
tr

�
δClCl

−1∂Cl

∂θζ Cl
−1
�
;

ð38Þ

where the matrix δCl contains the value of the systematic
effect correction for the spectra of each tomographic bin
auto and cross-correlation at a given l. Here, the Doppler-
shift and Doppler-IA corrections of Eqs. (29) and (33) form
this matrix.

III. METHODOLOGY

We study the effect of neglecting Doppler shift on
upcoming weak lensing surveys by utilizing the forecasting
specifications of a Euclid-like survey [14] to represent stage
IV cosmic shear experiments. Accordingly, we consider the
case where l modes up to lmax ¼ 5000 are included in the
survey, as this is a requirement for such an experiment to
achieve its precision goals with weak lensing.
A Euclid-like survey will observe an area such that

fsky ¼ 0.36 and have a galaxy surface density of
n̄g ¼ 30 arcmin−2. We take the intrinsic variance of
unlensed galaxy ellipticities to consist of two components.
These individual components are considered to both have a
value of 0.21, leading to a root-mean-square intrinsic
ellipticity of σϵ ¼

ffiffiffi
2

p
× 0.21 ≈ 0.3. We consider the survey

to observe data in ten equipopulated redshift bins, with the
following redshift bounds: f0.001; 0.418; 0.560; 0.678;
0.789; 0.900; 1.019; 1.155; 1.324; 1.576; 2.50g.
Taking into account photometric redshift uncertainties,

the galaxy distributions for these tomographic bins are
represented by the following expression:

N iðzÞ ¼
R zþi
z−i

dzpnðzÞpphðzpjzÞR
zmax
zmin

dz
R zþi
z−i

dzpnðzÞpphðzpjzÞ
; ð39Þ

where zp is the photometric redshift measured, z−i and zþi
are bounds of the ith redshift bin, zmin and zmax are the
minimum and maximum redshifts, respectively, observed
by the survey, and nðzÞ is the underlying, true distribution
of galaxies with redshift z, which we model using [7]

nðzÞ ∝
�
z
z0

�
2

exp

�
−
�
z
z0

�
3=2

�
; ð40Þ

with z0 ¼ zm=
ffiffiffi
2

p
, where zm ¼ 0.9 is the survey’s median

redshift and the function pphðzpjzÞ encodes the probability

that a galaxy with true redshift z is measured instead to be at
zp. Explicitly, this takes the form

pphðzpjzÞ ¼
1 − foutffiffiffiffiffiffi
2π

p
σbð1þ zÞ exp

�
−
1

2

�
z − cbzp − zb
σbð1þ zÞ

�
2
�

þ foutffiffiffiffiffiffi
2π

p
σoð1þ zÞ exp

�
−
1

2

�
z − cozp − zo
σoð1þ zÞ

�
2
�
;

ð41Þ

where the first term on the right-hand side accounts for
multiplicative and additive bias in the determination of
redshifts for the fraction of sources with a well-measured
redshift, whereas the second term describes the effect of a
fraction of catastrophic outliers, fout. Table I contains our
choice of values for the parameters of this model. As a
function of comoving distance, the galaxy distribution is
then niðχÞ ¼ N iðzÞdz=dχ.
For the purposes of this investigation, we adopt a flat

w0waCDM cosmology. This choice of fiducial cosmology
includes a time-varying dark energy equation of state. In
addition, it is constituted of the following cosmological
parameters: the present-day matter density parameter Ωm,
the present-day density of baryonic matter Ωb, the amplitude
of density fluctuations on 8 h−1 Mpc scales σ8, the spectral
index ns, the Hubble parameter h ¼ H0=100 km s−1Mpc−1,

TABLE I. Photometric redshift probability distribution param-
eters used in this work, together with their values. The functional
form of the distribution is stated in Eq. (41). These are chosen to
be consistent with [14].

Parameter Value

cb 1.0
zb 0.0
σb 0.05
co 1.0
zo 0.1
σo 0.05
fout 0.1

TABLE II. Choice of fiducial w0waCDM cosmological param-
eter values used for this investigation. These values were chosen
for consistency with [14].

Cosmological
parameter

Fiducial
value

Ωm 0.32
Ωb 0.05
h 0.67
ns 0.96
σ8 0.816P

mν (eV) 0.06
w0 −1
wa 0
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the present-day dark energy equation of state value w0, and
the high-redshift value of the dark energy equation of state
wa. Additionally, we include massive neutrinos such that the
sum of their masses

P
mν ≠ 0. Our choice of fiducial values

for these parameters is given in Table II. We obtain the power
spectrum of the matter density contrast using the publicly
available CAMB [28] code [29]. The nonlinear part of the
matter power spectrum is obtained using HALOFIT [30] and
by including the additional corrections of [31]. In order to
calculate comoving distances, we additionally make use of
ASTROPY [32–34]. The matter bispectrum required by
Eq. (30) is computed via the BIHALOFIT model [35] and
package [36]. In order to calculate the IA contributions at
both the two-point and three-point levels, we use the
following values for the NLAmodel:AIA ¼ 1.72 and CIA ¼
0.0134 [14]. The Fisher matrix constructed in our analysis
includes Ωm, Ωb, h, ns, σ8, w0, wa, and AIA.

IV. RESULTS AND DISCUSSION

Within this section, we present the effect of neglecting
Doppler shift on the cosmology that will be carried out with
a Euclid-like survey. Firstly, we show the magnitude of the
Doppler and Doppler-IA corrections relative to the pre-
dicted cosmic shear power spectra for such a survey.
We then report the resulting biases on the inferred cosmo-
logical parameters that would result from ignoring these
corrections.
In Fig. 1, we show the magnitude of the Doppler and

Doppler-IA correction terms, relative to the cosmic shear
angular power spectra, for the autocorrelation spectra of all
tomographic bins for a Euclid-like survey. Here, the two
corrections are shown both separately and when combined.
Additionally, the sample variance, given by [37]

ΔCl=Cl ¼ ffiffiffi
2

p ½fskyð2lþ 1Þ�−1=2, is also shown for refer-
ence. From this graph, we see that the impact of Doppler
shift decreases as the redshift range of the tomographic bin
probed increases. This is a consequence of the accelerating
expansion of the Universe [5], as accordingly we expect the
relative Doppler shift to be greater at lower redshifts.
However, across the entire redshift and l range of the
survey, we observe that both correction terms remain
several orders of magnitude below sample variance, con-
sistent with the findings of [13]. This suggests that these
corrections may be able to be safely neglected for upcom-
ing surveys.

FIG. 1. Relative magnitude of Doppler-shift corrections as a proportion of shear angular power spectra, for the autocorrelations of ten
equipopulated tomographic redshift bins for a Euclid-like survey. The bin edges are f0.001; 0.418; 0.560; 0.678; 0.789; 0.900;
1.019; 1.155; 1.324; 1.576; 2.50g. The leftmost panel shows the Doppler-shear correction, while the central panel shows the Doppler-IA
term, and the rightmost panel displays the combined corrections. The sample variance is also shown, for comparison. As would be
expected, the effect of Doppler shift is greatest at low redshift and decreases as redshift increases. In all cases, both corrections are
several orders of magnitude below sample variance, suggesting these terms are unlikely to be significant for stage IV surveys.

TABLE III. Predicted 1σ cosmological parameter constraints
obtained from cosmic shear power spectra for a Euclid-like
survey, together with the biases in the inferred parameter values
resulting from neglecting the Doppler-shift correction. Con-
straints and biases are obtained using the Fisher matrix formal-
ism, and the choice of fiducial cosmology is stated in Table II.
Biases are only considered significant if they exceed 0.25 × 1σ,
as at this point the 2σ parameter constraints would overlap by less
than 90%. All biases reported here are well below that threshold,
suggesting these corrections can be safely neglected for stage IV
experiments.

Cosmological
parameter

Uncertainty (1σ) Doppler
bias/1σ

Doppler-IA
bias/1σ

Ωm 0.0089 1.4 × 10−3 3.4 × 10−6

Ωb 0.020 −1.8 × 10−4 −4.0 × 10−7

h 0.12 −2.8 × 10−4 −1.2 × 10−6

ns 0.028 −1.3 × 10−4 5.2 × 10−7

σ8 0.0094 −1.1 × 10−3 −2.6 × 10−6

w0 0.11 1.2 × 10−3 2.9 × 10−6

wa 0.32 −5.6 × 10−4 −1.9 × 10−6
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To provide more in-depth insight into whether these
terms can be neglected for stage IV surveys, Table III shows
the biases that would result in the inferred cosmological
parameter values, if the Doppler-shift effects were to be
neglected. Also shown here are the predicted parameter
constraints for a Euclid-like survey. Both the predicted
constraints and biases were calculated using the Fisher
formalism described in Sec. II D. From this table, we see
that all of the resulting biases are at subpercent level. Given
that a bias must exceed 0.25σ, in order to typically be
considered significant—as at this point the biased and
unbiased parameter constraints would overlap by less than
90%—we can safely conclude that the effect of Doppler
shift on the cosmic shear angular power spectrum can be
neglected for stage IV experiments.

V. CONCLUSIONS

Within this paper, we have explored the impact of
Doppler shift on the cosmic shear angular power spectra
that will obtained from stage IV surveys. Adopting model-
ing specifics for a Euclid-like survey, we calculated the
three-point corrections to the shear angular power spectra
that result from the perturbation to the observed shear from
Doppler shift. Additionally, we demonstrated how this
perturbation interacts with IA terms and calculated the
resulting Doppler-IA correction for the shear angular power
spectrum. Both of these additional corrections were shown
to be several orders of magnitude smaller than sample
variance, suggesting these corrections could be safely
neglected.
In order to explicitly check whether these corrections

resulted in any significant biases at the cosmological
parameter level, we propagated these through a Fisher
matrix calculation. We found that all resulting biases were
of the subpercent level, confirming that, in isolation,
Doppler shift does not need to be taken into account for
cosmic shear analyses in stage IV weak lensing surveys.
However, we note that it is possible that, when combined

with multiple other neglected approximations, the total
magnitude of the corrections may result in significant
biases. A comprehensive investigation of all weak lensing
approximations is necessary to test this. Additionally, while
this effect does not significantly affect the cosmic shear
power spectrum, it can be detected in other forms in stage
IV surveys. If the convergence is directly probed, a
significant contribution to the observed convergence signal
from this Doppler shift can be detected [22]. Furthermore,
this Doppler shift of source redshifts could also result in
detectable contributions in cross-correlations with other
probes that depend on the peculiar velocity of overden-
sities, for example the Kinematic Sunyaev-Zeldovich effect
(see e.g. [38,39]).

The code used in this investigation is made publicly
available [40].
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APPENDIX: EXTENDED LIMBER
APPROXIMATION FOR DOPPLER

CORRECTION

While the extended Limber approximation [17] can
be readily applied to the γ̃likei;lm Doppler term of Eq. (28),
the κ̃likei;lm term from Eq. (27) presents complications. This is
due to the additional factor of k and the presence of the
derivative of a spherical Bessel function.
In order to apply the Limber approximation for this case,

we can begin by recognizing that

j0lðkχÞ ¼
l
kχ

jlðkχÞ − jlþ1ðkχÞ: ðA1Þ

Now, we can see how we obtain the weight described in
Eq. (31) by following the derivation of LoVerde andAfshordi
[17] (referred to as LA from here on) for an angular power
spectrumwhere one of the fields probed is κ̃likei;lm. Herewe only
detail the two-point case for simplicityandbrevity;however, it
is straightforward to generalize this to the three-point case,
particularly given that a bispectrumcan typically beexpressed
as a linear combination of power spectra [23,35,41,42].
Equation (5) of LA, in our case, would read

CAκlike ¼
Z

dkPAδ

Z
dχ1

FAffiffiffiffiffi
χ1

p Jlþ1=2ðkχ1Þ
Z

dχ2
Fκlikeffiffiffiffiffi
χ2

p

×

�
l
kχ

Jlþ1=2ðkχ2Þ − Jlþ3=2ðkχ2Þ
�
; ðA2Þ

where Jl is the Bessel function of the lth order, FA is the
projection kernel for field A, and

FκlikeðχÞ ¼
c

χ2HðχÞaðχÞ nðχÞ: ðA3Þ

Now, following theprocedureofLAthroughtoEq. (13)of that
work and retaining only terms to the first order, we obtain

CAκlike ¼
Z

dχ
χ2

χ

ðlþ 1=2Þ
�

l
ðlþ 1=2Þ −

ðlþ 1=2Þ
ðlþ 3=2Þ

�

× FκlikeðχÞFAðχÞPAδ

�ðlþ 1=2Þ
χ

�

¼
Z

dχ
χ2

Wκν
i ðχ;lÞFAðχÞPAδ

�ðlþ 1=2Þ
χ

�
: ðA4Þ

Whenperformed at the three-point level, this calculationgives
the Limber approximated bispectra of Eqs. (30) and (34).
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