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Abstract—In this paper, we investigate a deep learning archi-
tecture for lightweight online implementation of a reconfigurable
intelligent surface (RIS)-aided multi-user mobile edge computing
(MEC) system, where the optimized performance can be achieved
based on user equipment’s (UEs’) location-only information.
Assuming that each UE is endowed with a limited energy budget,
we aim at maximizing the total completed task-input bits (TCTB)
of all UEs within a given time slot, through jointly optimizing the
RIS reflecting coefficients, the receive beamforming vectors, and
UEs’ energy partition strategies for local computing and com-
putation offloading. Due to the coupled optimization variables, a
three-step block coordinate descending (BCD) algorithm is first
proposed to effectively solve the formulated TCTB maximization
problem iteratively with guaranteed convergence. The location-
only deep learning architecture is then constructed to emulate the
proposed BCD optimization algorithm, through which the pilot
channel estimation and feedback can be removed for online im-
plementation with low complexity. The simulation results reveal
a close match between the performance of the BCD optimization
algorithm and the location-only data-driven architecture, all with
superior performance to existing benchmarks.

Index Terms—Mobile edge computing, reconfigurable intelli-
gent surface, location-only, deep learning.

I. INTRODUCTION

Massive connectivity is one of the major performance goals
of 5G and beyond technologies, fuelled by the proliferation
of IoT devices. Driven by extensive emerging computation-
intensive applications, the computing demands for mas-
sive user equipment (UEs) are witnessing an unprecedented
growth. In order to liberate the resource-limited UEs from
heavy computation workloads and provide them with high-
performance low-latency computing services, mobile edge
computing (MEC) promotes the use of cloud computing
capabilities at the edge of mobile networks through integrating
MEC servers at the wireless access points (APs) [1].

The performance enhancement of MEC in various wireless
networks has been confirmed in existing works [2—6]. In order
to further enhance the uplink offloading performance, the
technology of unmanned aerial vehicle (UAV) communications
was introduced into the MEC systems [7-9]. However, the
traditional battery-based UAVs are also energy-limited with
considerable propulsion energy cost. Recently, great atten-
tions have been drawn to the technology of reconfigurable
intelligent surface (RIS), due to its advantages of low cost,
easy deployment, and fine-grained passive beamforming [10-
12]. Several pioneer RIS-aided MEC works have explored the
benefits of utilizing RISs in MEC systems [13-15], and it
was verified that significant performance improvement can be
attained compared with the case without RIS.

For RIS-aided MEC works, iterative algorithms are usually
necessary for jointly optimizing the resource allocation and the
RIS coefficients. Although iterative algorithms may be capable

of providing near-optimal solutions, the high computational
complexity and signalling overheads may hider their use in
practical networks. To tackle this issue, deep learning architec-
tures provide a promising way to achieve offline training and
online implementation [16]. Note that deep learning methods
have been investigated in several MEC systems to simplify the
optimization algorithm [17-19]. Recently, deep reinforcement
learning was also used in several RIS-aided systems [20, 21].

However, the potential of deep learning methods in simpli-
fying the optimization algorithms of complex RIS-aided MEC
systems have not been explored in the existing literature. In
this paper, a multi-user RIS-aided MEC architecture is consid-
ered, where the RIS is installed to constructively control the
interference and enhance the overall performance of UEs. We
first propose an iterative optimization algorithm to efficiently
solve the formulated problem with guaranteed convergence.
As a step further, we construct a deep learning architecture
employs, not the channel state information, but the location
information of the UEs, readily available through GPS, to
facilitate online implementations of the proposed algorithm
with low complexity. The complicated pilot channel estimation
and feedback can be removed when utilizing this location-only
data-driven approach for online implementation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided MEC system, which consists of
one M-antenna AP, one RIS with K reflecting elements, and
N single-antenna ground UEs. Through choosing a desirable
location of the RIS, line-of-sight (LoS) connections between
the RIS and the AP, UEs can be achieved within a certain
serving area. Each UE n € A" ={1,2,---, N} has extensive
computation task-input bits, but with a limited energy budget
dedicated for completing these task bits, denoted as FE,, in
Joules (J). C), is number of CPU cycles required for complet-
ing 1-bit of UE n’s input data. We adopt the partial offloading
mode to handle UEs’ computation tasks with parallel local
computing and computation offloading [1]. The grid-powered
AP is co-located with a powerful MEC server for helping UEs
compute their offloaded tasks and download UEs’ computation
results, both in negligible time. Our aim is to maximize the
total completed task-input bits (TCTB) of UEs during a given
time slot 7', which is equivalent to maximize the energy
efficiency of UEs considering the fixed energy budgets [22].

We first introduce a partition parameter a,, € [0, 1] for UE
n € N, then a,F, and (1 — a,)E, J of energy will be used
for computation offloading and local computing, respectively.
In this case, the offloading power of UE n is given as p, =
% £ a,E, with E, = E,/T. Let s, denote the task-
input data-bearing signal transmitted by UE n for computation
offloading with |s,,| = 1. Note that all the UEs with offloading



requirements transmit their signals simultaneously within the
given time slot, and thus we can express the corresponding
received signal y € CM>*1 at the AP as

N
y = Z HAP(I)hr.,n\/ PnSn + 1, (D

n=1

where h, ,, € CHx1 s the relay channel between UE n and the
RIS and Hpp € CM*K represents the channel between RIS
and the AP.! & = diag{¢} indicates the reflection-coefficient
matrix of the RIS, where ¢ = [¢1,--- ,¢x]" and ¢, = €%
being the phase shift of the k-th reflecting element with 6}, €
[0,27] for k € K = {1,2,---, K}. Also, n ~ CN(0,0%I,)
is the the additive white Gaussian noise (AWGN) at the AP.
The linear receive beamforming vector w,, € CM*1 is then
used at the AP to decode the transmit signal of UE n, thus
the estimated signal for UE n can be given as

N
Sn=why=wl Z Hap®h, \/Prsn +win,Vne N.  (2)
n=1

Then we can obtain the uplink signal-to-interference-plus-
noise ratio (SINR) for offloading UE n’s tasks as follows

’Y’n(av Wn: ¢) = (3)
anEn|WEHAP‘I’hr,n|2

~ , VneN,
>, aEiwHap®h, ;[ + o?||w|[?
i=1,i#n
where we denote an energy partition vector a = [a1, -+ ,an].

Then, the CTB of UE n through computation offloading is
Ry (a, Wy, §) = BT logy (1 +n(a, wn, @), Yn € N, (4)

where B is the given bandwidth shared with all UEs.

As for the case of local computing, the dynamic voltage
and frequency scaling (DVFS) technique is adopted at all
UEs for increasing the computation energy efficiency through
adaptively controlling the CPU frequency used for computing.
Thus, the energy consumption of UE n € A/ can be expressed
as Tk, fg, where k,, is the effective capacitance coefficient
of UE n, and f,, is the CPU frequency of its processing
server. Also, we have (1 — a,)E, = Tk, f3, then we can

calculate f,, = \3/%. Hence, the CTB of UE n for

local computing can be given as

Rfc(a") = ST

T afl=a)Bn oy (s

c, C, Kn

The corresponding TCTB maximization problem is formu-
lated as problem (P0) given below

N
(PO) : max, n; (B (8, W, @) + B%(an))  (62)
st. an €10,1], Yn €N, (6b)
[énl =1, Vn € N, (60)

where the objective TCTB is maximized through jointly opti-
mizing the reflection coefficients in ¢, the receive beamform-
ing vectors in W = [wq,---,wy], and the energy partition
parameters in a. This is a non-convex optimization problem

It is assumed that the direct links between the UEs and the AP are
negligible due to severely degradation caused by blockage.

since the parameters ¢, W, and a are strongly coupled. Next,
we will leverage the BCD optimizatiton algorithm to solve
the original problem (PO) in three steps by solving three sub-
problems iteratively, as shown in the following section.

III. OPTIMIZATION DESIGN BASED ON CSI

A. RIS Reflecting Coefficients Design

In the x-th (y = 1,2, ) iteration of the BCD algorithm,
we first design the RIS reflecting coefficients, i,e, ¢, with
given W = W, _; and a = a,_;. Then the RIS’s reflecting
coefficients design problem (P1) can be described as

N

(P1) : max D log,(1+7a(9)) (7a)
n=1

st |ox| =1, Vk e K, (7b)

which is still non-convex and difficult to deal with directly.
According to the expression of 7, (¢) in (3) for n € N, we
can re-express |WEHAP<I>hm-|2 as

(W, Hap®h, ;|* = |w, Hypdiag(h, ;) ¢|* ®)
=hf5 ¢ = ¢" (W) ThS 6,

=Tr (Q,;¥®), Vn,i € N,

where Q,;, = (hf‘}LSZ)HhB;SZ with h%fl = WEHAP
diag(h,;) € C*¥ and ¥ = ¢ € CK*K is a positive
semidefinite matrix (PSD) related to the RIS coefficients.

Note that each added item in the objective function, i.e.,
log, (1 + v (¢p)), can be re-written as

N
log, (1 + vn(e)) =log, (Zpﬂr (Qn.i¥) + a2|w5|2> ©)

j=1
N
—log, < Z piTr (Qn,: ) +O’2|WS||2>
i=1,i#n
é1‘7'17n(‘1’) — Fg’n(\I’), Vn € N,

where F} ,,(¥) and F,,(¥) are two concave functions w.r.t.
W. Hence, problem (P1) can be equivalently transformed into

N
(P1) : max ;FL”(\II) — Fy(®) (10a)
st. U =1,Vk=1,2--- K, (10b)
rank(¥) = 1. (10c)

Next, we will leverage the DC programming [23] to effectively
address the issues of the non-convex objective function in
(10a) and the rank-one constraint (10b).

As for the objective function, in the ({4 1)-th (I =0,1,---)
iteration of the DC programming, the second concave item,
ie., Fy,(®) for n € N, can be approximated by its liner
upper bound at the point ¥() (the solution obtained from the
previous [-th iteration), which is given as

Fop(®) < Fo (0, 80) = B, (00)+

N
Z Di <(‘I’ - ‘I’(Z))a V\I/Tr(Qn,i\I’)‘\I':\IlU)>

i=1,i%#n

N 9
1n2( 5 piTr<Qn,»P<l>>+02||w52)
i=1,i#n

(1D




where VgTr(Q,,;¥)|g_gw denotes the Jacobian matrix of
Tr(Q,.;¥) wrt ¥ at the point ¥, and it is easy to note
that the equality holds when ¥ = W) 2

As for the rank-one constraint, it can be equivalentlly
transformed into the following form

Tr(¥) — |[¥[s =0, (12)

where || ¥ || denotes the spectral norm of the PSD matrix W. It
is noticeable that Tr(¥) = > K o (¥) and || ¥||s = p1 (L),
where pi () indicates the k-th largest singular value of W.
Hence, the equality of Tr(¥) = ||¥||s holds when the rank-
one constraint is satisfied with p1 (¥) > 0 and px(¥) = 0 for
k=2,---, K, vice versa. Similarly, in the ([ + 1)-th iteration
of the DC programming, a linear lower-bound of the convex
item || ||, at the point ¥ can be expressed as

1@l > D], + (@ = D), 0|y ) (3)
£ T(T;00),

where g ||¥||s|g_g o is a subgradient of the spectral norm
||[®||s w.rt. ¥ at the point ¥, and the equality holds when
¥ = ¥, Note that one subgradient of ||®|, at point ¥
can be efficiently computed as x;x.!, where x; is the vector
corresponding to the largest singular value of ¥() [24].
With the obtained linear lower bound of ||¥||s in (13), we
can generate an approximate rank-one constraint of (12) as

Tr(W) — T (T; ¥) < ey, (14)

where ey is a positive threshold. The approximated rank-one
constraint can guarantee that 0 < Tr(P) — || ||y < Tr(P) —
YT (¥; () < ey, and the rank-one constraint can be infinitely
approaching by setting ey infinitely close to zero. _
Hence, we can obtain an approximation problem of (P1) at

the (I 4 1)-th iteration as
N

. - )
(P1.1) : max ;FM(‘W Fyn(®;90)  (159)
st. Wpp=1,Vk=1,2-- K, (15b)
Tr(®) — T(T;80) < ey, (15¢)

which is a convex optimization problem and can be readily
solved by CVX [25], and the optimal solution can be obtained
as WD Through choosing ¥ = ¥, _; = ¢, ¢l |,
the feasibility of problem (P1.1) in each iteration [ can always
be guaranteed since W('~1) is always a feasible solution.

Lemma 1. The objective function of problem (P1) in (10a)
monotonically increases with the iteration index | as

Fin(@") - By, (w0HY) (16)
(@ .

> Fip (@) — By (00D, w0y

® .

ZFLH(‘I’U)) _ Fg’n(‘I’(D; \Il(l))

=F (V) = B (®Y), Vne N,

where (a) comes from the inequality (11) and (b) holds
since W is a feasible solution while WU+ is the optimal
solution of problem (P1.1) in (15). Also, the objective function
of problem (P1) is upper-bounded by UEs’ limited energy

2(X1,X2) £ R{tr(XIX3)}, where R{-} is the real-value operator.

budgets. Hence, Problem (ﬁ]) in (10) as well as its equivalent
form (P1) in (7) can be solved through the DC programming
method with guaranteed convergence [23]. The final solution
of W at the convergence of the (1 + 1)-th iteration of the DC
programming is the solution of the BCD algorithm at the x-th
iteration, i.e., ¥, = P+l

With the obtained ¥, , we can retrieve the ¢, by decompos-
ing ¥, = ¢>X¢>§ and accordingly ®, = diag{¢, }. In order
to facilitate the following analysis, we define the effective UE-
AP channels with given ® (or ¢) as

hn(q)) = HAP(Iﬂ’l,r,n7 Yn e N. (17)

B. Receive Beamforming Design
With given a = ay_; (p, = anEn, n € Ny and & = o,
the sub-problem for optimizing the AP’s receive beamforming
vextors for each UE, i,e, w,, for n € N, can be expressed as

the following problem (P2)
(P2) : max Z R (w,),

n=1

(18)

which can be equivalently solved by addressing N parallel
sub-problems for each n € A as follows
WE@nwn

19
e w19

(P2.1) : max 7, (w,) =
where ©,, = p,h,,(h,)? and ©®_,, = Zfil#n pih;(hy)? +
0?1y, with the effective channel {h,, },c given in (17).

Lemma 2. [t is easy to note that problem (P2.1) in (19) is
a generalized eigenvector problem, and its optimal solution

*

w, should be the eigenvector corresponds to the largest

eigenvalue of the matrix (G,n)_1 ©®,,. Hence, the optimal
w of problem (P2.1) for n € N can be given as

w, = eigvec {max {eig{((a_nf1 ('-)n}}} .

We then denote the receive beamforming matrix obtained
at the x-th iteration of the BCD algorithm as W, =
[wi,---,wj], which is used in the following subsection.

(20)

C. Energy Partition Optimization

Here, the sub-problem (P3) for optimizing the energy par-
tition parameters in a with given ® = ®, and W = W, is
considered, which is given below

N
(P3) : max > (R (a) + R (an))

s.t. a, €10,1], Yn e N.

(21a)

(21b)

Note that problem (P3) is non-convex because of the non-
concave items {R%%(a)},cn in the objective function (21a).
Actually, R%f(a) for n € N can be re-expressed as the
difference of two concave functions as follows

Ry (a) £ R (a) — Ry (an) =

N
BT log, (Z a; Ejlw,hy[* + 02|W5||2> -
j=1

(22)

N
> ailiwih + 02|W§|I2>,



where a_,, = [a1, -+ ,4n—1,0n41, - ,aN].

Then the problem (P3) can also be solved with the DC
programming method, where the second concave function
in (22), ie., Rff’fz(a,n), can be substituted by its linear
upper bound, so as to obtain a concave approximation of
Rof(a). Assuming a("™ is the solution obtained at the m-
th (m = 0,1,---) iteration of the DC programming, a linear
upper bound of R‘,’g(a,n) at the point a(”™ can be given as

R (a_,) < ROY (a_n; “”’) (23)

Z R (@) x (a; — al™),

i=1,i#n

— RO Q(a(m)

(m))

where RO, i(a is the first-order derivative of Ro%)(a_,)

w.I.t a; at the point a&n). Note that the equality holds when

a_, =a". At the (m+ 1)-th iteration of DC programming,
we aim at maximizing the following approximation problem

N
(P3.1) : max Y (Rgffl(a) o (an; <m))+PJ°°(an))
! (24a)

st. an, €[0,1], Vn e N, (24b)

which is a convex optimization problem and can be easily
solved by CVX [25]. Through solving problem (P3.1) with
CVX, the optimal solution, i.e., a(m*t)  can be finally ob-
tained, then we have the following lemma.
Lemma 3. The objective function of problem (P3) in (21a)
is monotonic increasing w.r.t the iteration index m as
R @) 4+ R (alm ) (25)
(@)

> Rofi () — R @0 al)) 4 Ry (alm )
(b) ~
>R (a) = B (@) aln)) + R (a)

=R (@) + R (a™),

where (a) comes from the inequality (23) and (b) holds since
a™) is a feasible solution while a'™+V) is the optimal solution
of problem (P3.1) in (24). Besides, the objective (21a) is upper-
bounded due to limited energy supply of UEs. In summary,
the convergence of the proposed DC programming method for
solving problem (P3) in (21) can be guaranteed [23]. We can
obtain the final solution of a at the x-th iteration of the BCD
algorithm when the DC programming converges at the (m+1)-
th iteration, which is denoted as a, = [aY"“), - ,ax,nﬂ)].

IV. LOCATION-ONLY DEEP LEARNING ARCHITECTURE

The proposed BCD optimization algorithm provides an
optimization solution for the TCTB maximization problem
(PO) in an iterative way with guaranteed convergence. How-
ever, its high computational complexity may hinder it from
being applied in real-time applications. One way to overcome
this drawback is leveraging the deep learning methods [16].
Through training the DNNs offline with data samples obtained
from the optimization algorithms, the DNNs are capable of
learning the inherent mappings of the algorithms and predict
the required solutions online by mimicking the corresponding
algorithms. To this end, we resort to the deep learning method
in this section to obtain the solution of problem (PO0).

As we mentioned before, LoS links between RIS and UEs
as well as AP can be achieved by desirably deploying the
RIS. In this case, the channel coefficients and the solutions
of {¢,a, W} are highly related to the locations of UEs, i.e.,
{(%n, yn) }nenr- This observation facilitates the construction of
a location-only deep learning architecture as shown in Fig. 1,
where only UEs’ locations are used as the input feature of
DNN s to obtain solutions of {¢,a, W}. Note that the pilot
channel estimation and feedback can be removed when utiliz-
ing this location-only architecture for online implementation.

DNN-Locl

Input { 3
et . % Channel Mapping (y,) e
H UEs’ ": - ~. |Lemma2) W
f X H ; DNN-Loc2 )
: Locations z | 1 .. H
(X & A, Obtaining ¢and a (y»)

Fig. 1. Architecture for obtaining the solutions of {¢,
location-only DNN-Loc1 and DNN-Loc2.

a, W} with the

Here, two DNNs are constructed. DNN-Locl aims at cal-
culating the channel mapping between UEs’ locations and
the channel coefficients, with 2 N-dimensional input future z
representing the UEs’ locations and I = 2(KN + MK)-
dimension output feature y; representing the real and the
imaginary parts of the channel coefficients {h, ,} and Hap.
In contrast, DNN-Loc2 focuses on obtaining {¢, a} with input
future z and (K + N)-dimensional output feature denoted as
y2 = [01, - .0k, a1, - ,an], where {0}, = 0/2n}exc are
the normalized angles of the RIS reflecting coefficients ¢.
Then the optimal receive beamforming matrix, i.e., W, can
be easily calculated based on Lemma 2 in section III-B.

TABLE I
THE LAYOUT PARAMETERS OF DNN-LoOC1 AND DNN-LoC2
Parameter DNN-Locl DNN-Loc2
Hidden dense layers | 5 5

Neuron number
Dropout factor
Hidden activation
Output activation

(512,512,256,128,256)
(0.1,0.1,0.1,0.1,0.05)
ELU

Sigmoid

(512,256,128,64,32)
(0.1,0.1,0.1,0.1,0.05)
ELU

Sigmoid

The layouts of the feedforward DNN-Locl and DNN-Loc2
are given in Table I. It should be noted that we add the Batch-
Normalization layer and Dropout layer between two normal
dense layers to accelerate the training speed and prevent
overfitting of the DNNs. Here, we adopt the function of
exponential linear units (ELU) as the activation functions of
the hidden layers with

ELU -
@ = atexpio) -1
which has many attractive advantages such as high learning
speed, high robustness with zero-centered outputs, etc.> Here,
the sigmoid activation function, i.e., Sigmoid(z) = is
leveraged at the output layers of both DNNs.

The training (including validation) and testing of the afore-
mentioned DNNs are implemented based on the platforms of
Tensorflow and Keras. Also, the adaptive moment estimation
(Adam) optimizer is utilized to train the DNNs with adaptive
learning rates. We adopt the mean square error (MSE) as the
loss function of DNN-Loc1 for achieving the location-channel
mapping, while the mean absolute error (MAE) is leveraged
as the loss function of DNN-Loc2 for obtaining ¢ and a.

if z>0,

otherwie, z <0.

(26)

1
14+e—=

3We use the default form of ELU function in the Keras platform with a=1.



V. SIMULATION RESULTS

In this section, simulation results are given to verify the
effectiveness and the performance improvement of the pro-
posed optimization algorithm and the the location-only deep
learning architecture. In addition, the comparison results of
the proposed optimization and deep learning methods in terms
of the average running time for one realization are given
to further validate the potentials of the data-driven learning
approach for achieving lightweight online implementations.

A three-dimensional (3D) Euclidean coordinate system is
adopted to describe the locations of the AP as (0, yap, Ho), the
RIS as (zgr,0, Hg) and UE n € N as (2, Yn, 0), all measured
in meters (m). The aided RIS is with a uniform rectangular
array (URA) of K = K K reflecting elements, while the M-
antenna AP is with a uniform linear array (ULA). We assume
that the N ground UEs are randomly distributed in a square
serving area of DxD m2, with four vertices at horizontal
locations of (0,ys), (0,ys + D), (D,ys), and (D,ys + D).
A half-wavelength spacing is assumed among adjacent an-
tennas/elements at the RIS and AP, then the achievable LoS
channels modeled in angular domain are given as [26]

hr,n =V Lr,ne;n(ﬁi,n:’){,n)a vna (27)
Hap = /Larehp(Bip)(ek(Bh 7)™, (28)
where e}, (B;,.91,) € CK*U = e, (B}, 7,) @

~—

e;,n,z( ;,n77£,n) with elrr,n,y( ;,nfylrr,n) = { Xp(-]ﬂ-(kﬂ -1
singlsinyt)besy € CKUand el (8L 7,) =
{exp(jm (ks —1)cosfE ,sinyt ) VK=, € CF-X1, et (Bhp) =
{exp(jm(m — 1)sinfyp) }M_, € CM*! are the receive array
steering vectors with the effective angles of arrival (AOAs).
Also, ef (Bk,7k) € CF' = ep  (Bk.7k) © ek . (Br. k)
is the transmit array steering vector with the effective angle
of departure (AOD), where ey, , (B, 7k) = {exp(jm(k, — 1)
sinﬁ'ﬁsin’y%{)}iyzl e CKv*! and e} .(Bk,Vk) = {exp(jm
(k. — 1)c086}{sin7§{)}kK;:1 € CK=*1 Here, 3 and v respec-
tively represent the elevation and azimuth of AOA or AOD.

Ly, Lap in (27), (28) model the distance-dependent path
loss of the corresponding channels. Supposing that each ele-
ment of the RIS has a 3 dBi gain due to the fact that only the
front half-space reflects signals [27], then we have L, , =
100~3L0(dr7n/d0)*0¢r and Lap = 100'3L0(dAp/d0)7aAp
where d; , and dap are the corresponding Euclidean distances
between the transceivers, Ly is the average constant path loss
for all the channels at the reference distance of dj, and o,
aap are the channel attenuation coefficients. The other basic
simulation parameters are listed in Table II.

A. Performance Improvement

Numerical results for the proposed optimization solution
(‘Optimization Solution’) and the location-only deep learning
solution (‘DL Location-Only’) are presented in comparison
with three benchmarks, including the ‘Random RIS Setting’
scheme with randomly set RIS coefficients, the ‘ZF Receive
Beamforming’ scheme with ZF beamforming for detection,
and the ‘Equal Energy Allocation’ scheme with equally allo-
cated energy budgets for UEs.

In Fig. 2, we first show the TCTB of all the considered
schemes w.r.t. the UEs’ uniform energy budget, i.e., £ = E,,
for n € N. From this figure, we can observe that the TCTB

TABLE IT
SIMULATION PARAMETERS

Parameter Symbol Value
Square area parameters Ys, D 20m, 40m
The location of the AP (0,yap, Ho)| (0,20,5) m
The location of the RIS (zgr, 0, HR) | (40,0,20) m
The length of the time slot T 5 seconds
Number of UEs N 8

Number of AP’s antenna M 8

Number of RIS’s reflecting elements| K = Ky K. | 24=8 x 3
Energy budget of UEs E, (neN)10]
Required CPU cycles per bit Cy (n € N)[ 200 cycles/bit
The effective switched capacitance | kn(n € N) | 1028

The total system bandwidth B 40 MHz
The noise power o? —60dBm
The unit channel power gain Lo (do=1 m)| —10dB
The channel attenuation coefficients | ay, aap 25,2

—— Optimization Solution
DL Location-Only
~—4— Ramdom RIS Setting
—@— ZF Receive Beamforming
—#— Equal Time Allocation

Total completed task-input bits (TCTB) of UEs

o
Y

4 6 8 10 12 14 16
E (Joule)

Fig. 2. The TCTB of UEs versus UEs’ uniform energy budget E¥ = E), for
neN.

curves of all the schemes increase with E, which coincides
with the intuition that more computation task-input bits can
be completed if the UEs are endowed with more energy. It is
clear to see that significant performance improvement can be
achieved by the proposed Optimized Solution, verifying the
great benefits of jointly optimizing the RIS coefficients, the
receive beamforming and the UEs’ energy allocation. More
importantly, the DL Location-Only solution can achieve a
performance very close to the proposed optimization solution,
which clearly demonstrates that the proposed location-only
deep learning architecture can effectively emulate the proposed
BCD optimization algorithm, with a much reduced online
implementation complexity.
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Fig. 3. The TCTB of UEs versus the number of UEs V.
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We depict the results of the TCTB in Fig. 3 to study
the effects of the number of UEs, i.e., N, on the system
performance. Here, we further verify the effectiveness of the



DL Location-Only solution in the scenarios with different
number of users, which also further demonstrates the robust-
ness and the generalizability of the proposed location-only
deep learning architecture. Similar results can be observed
as from Fig. 2 that our proposed optimized solution as well
as the location-only deep learning solution outperform the
other benchmarks. Also, the performance gaps enlarge as N
increases, indicating that better performance can be attained
by the proposed methods in the cases with more UEs.

B. Implementation and Comparison

The other parameters related to training and testing the con-
structed location-only DNN-Locl and DNN-Loc2 are given
in the following Table III. We present the training time and
testing time of the constructed DNNs with 200000 training
samples and 10000 testing samples for the case of M = 8§,
N = 8, and K = 24.* Here, the average running time of
the BCD optimization algorithm for one realization is also
given for comparison, i.e., 22.36 s, further validating the
effectiveness of the location-only deep learning architecture
for providing lightweight online inference solution which only
require 18.36 us for one realization.

TABLE III

PARAMETERS RELATED TO TRAINING AND TESTING
Parameter DNN-Locl | DNN-Loc2
Training samples (z,y1) (z,y2)
Number of training samples | 200000 200000
Number of testing samples 10000 10000
Batch size 128 128
Number of epoches 1000 1000
Initial learning rate 0.001 0.001
validation split 0.2 0.2
Training time 2.6214 h 1.2238 h
Testing time 0.1836 s 0.0942 s
Average inference time 18.36 us 9.42 us
Average BCD Running Time 22.36 s

VI. CONCLUSION

In this paper, a multi-user RIS-aided MEC architecture
has been investigated, where the TCTB of all the UEs with
limited energy supply is maximized by jointly optimizing the
system parameters. A three-step BCD optimization algorithm
is formulated and compared to a location-only deep learning
architecture with a considerable complexity reduction. The
simulation results have confirmed a close match between
the performance of the BCD optimization algorithm and the
location-only deep learning method, all with superior perfor-
mance to the benchmarks.
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