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Abstract 50 

The recent advent of new CRISPR-based and other molecular tools now enables the 51 

reconstruction of cell lineages based on DNA mutations induced by CRISPR and promises to 52 

solve the lineage of complex model organisms at single-cell resolution. To date, however, no 53 

lineage reconstruction algorithms have been rigorously examined for their performance and 54 

robustness across datasets, diverse molecular tools, and most importantly the number of cells in 55 

the lineage tree. In order to benchmark methods of cell lineage reconstruction we decided to 56 

organize the Allen institute lineage reconstruction DREAM challenge where we rigorously 57 

examined multiple methods using experimental and in silico data. On one hand, we took 58 

advantage of intMEMOIR recordings, a recently developed synthetic image-readable lineage 59 

tracing technology, and asked participants to reconstruct the lineages for 30 in vitro-grown 60 

mouse embryonic stem cell colonies. We also provided in silico datasets for a C. elegans lineage 61 

tree of about 1000 cells and a simulation of one year of Mus musculus development down-62 

sampled to 10,000 cells upon which we simulated CRISPR-based GESTALT-like recordings. 63 

For these three lineage reconstruction tasks we provided training data with the ground true trees, 64 

as one of the goals of this challenge was to encourage machine-learning approaches different 65 

from the ones used for phylogenetics. The challenge was successful in its main goal of attracting 66 

a variety of successful approaches and teams: twenty-two full submissions were received and 67 

scored using two different metrics. The availability of a training set allowed not only the 68 

development of a successful machine-learning decision-tree based approach, but also the 69 

optimization of accurate distance-based algorithms and maximum parsimony approaches. This 70 

DREAM challenge was a first attempt to rigorously examine the performance and robustness of 71 

various reconstruction algorithms under varying conditions and underlies the importance of 72 

using several metrics when evaluating reconstruction accuracy. For the experimental dataset, we 73 

found that while some trees were reconstructed perfectly, the overall scores were far from the 74 

theoretical maximum, mainly due to the structural features of the trees and not the high 75 

degeneracy in recorded states across cells. On the other hand, the in silico results showed that 76 

using smaller subtrees as training sets is a good approach for tuning the algorithms to reconstruct 77 

larger trees. Together, these results and the availability of tools for generating and solving 78 

lineage trees delineate a potential way forward for solving larger cell lineage trees such as for 79 

mouse and human. 80 
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 81 

Introduction 82 

 83 

Lineage inference for understanding Development 84 

A fundamental challenge in biology is the reconstruction of the developmental histories 85 

of cells as they divide and progress through differentiation into different cell types. Indeed, 86 

multicellular organisms can be composed of billions or trillions of cells that derive from a single 87 

cell through repeated rounds of cell division. Knowing the lineage relationships between the cells 88 

of a fully developed organism -its cell lineage- would provide a framework to understand when, 89 

where and how cell fate decisions are made. Further, it can also be useful to understand the 90 

progression of disease such as in tumor subclonal reconstruction (Salcedo et al., 2020) or the 91 

development of an organ such as the brain (Evrony et al., 2015; Lodato et al., 2015). Historically, 92 

lineages of individual cells have only been fully reconstructed by their direct observation through 93 

microscopy as for the nematode Caenorhabditis elegans (Sulston and Horvitz, 1977). This direct 94 

observation approach is however not possible for most animals as the cells are not visible (Livet 95 

et al., 2007). In the 1980’s new methods allowed marking all the descendants of a single cell by 96 

the injection of a dye or the expression of a marker gene. Since then, many new methods have 97 

been devised to improve cell lineage tracking, including inducible recombinases (Kretzschmar 98 

and Watt, 2012), fluorescent or genetic reporters (Kebschull and Zador, 2018; Weissman and 99 

Pan, 2015), or a combination of both (Garcia-Marques et al., 2020). However, these approaches 100 

come at the cost of resolution, meaning that lineage relationships of individual cells are not fully 101 

recovered.  102 

Recent advances in sequencing technologies have enabled a variety of RNA-based 103 

methods to infer differentiation trajectories in multiple organisms and cell types by ordering the 104 

changes in single-cell gene expression along a pseudo-time axis representing the progression 105 

through differentiation (Wagner and Klein, 2020). However, these methods focus on the 106 

expression profiles of cells but do not have access to their genealogical relationships. In this 107 

regard, somatic mutations accumulated during normal development have been used to 108 

reconstruct genetic lineages (Behjati et al., 2014; Frumkin et al., 2005) and for example trace 109 

mosaicism in the brain (Evrony et al., 2015; Lodato et al., 2015). Deep sequencing of cDNA 110 
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from T cell receptors has also been used to establish clonal development of T cells (Becattini et 111 

al., 2015). Cell lineage inference has also been done using copy-number variations, structural 112 

markers such as SNVs, indels, retrotransposon elements, microsatellite repeats, as well as 113 

epigenetic markers such as DNA methylation (Kester and Oudenaarden, 2018).   114 

New lineage recording technologies 115 

Recently, the advent of CRISPR-based molecular tools have produced a new generation 116 

of lineage reconstruction approaches inspired by principles of phylogenetic inference using 117 

naturally occurring DNA mutations. The DNA-editing technologies have been applied to 118 

introduce mutations in the genetic material of cells such that a registry of their genetic 119 

relationships is recorded and available for readout by sequencing (Alemany et al., 2018; Chan et 120 

al., 2019; McKenna et al., 2016a; Perli et al., 2016; Spanjaard et al., 2018). Indeed, the inserted 121 

synthetic construct can accumulate stochastic mutations upon induction of CRISPR-Cas9 activity 122 

as cells differentiate during development with the goal of resolving cellular lineages of complex 123 

model organisms (McKenna et al., 2016b; Wagner and Klein, 2020). Different versions of 124 

CRISPR-based methods such as scGESTALT, LINNAEUS and ScarTrace techniques have been 125 

successfully used to investigate cellular lineages in various animal models (Alemany et al., 2018; 126 

McKenna and Gagnon, 2019; Raj et al., 2018; Spanjaard et al., 2017). At the same time, other 127 

types of lineage recording techniques have been applied to allow readout by in situ imaging 128 

which enables lineage analysis through the maintenance of the spatial information (Chow et al., 129 

2021; McKenna and Gagnon, 2019).  Some of these approaches have applied phylogenetic 130 

reconstruction algorithms to infer the cell lineage, whilst others developed ad-hoc cell lineage 131 

reconstruction algorithms, but this explosion of lineage tracing technologies has increased the 132 

urgency for new reconstruction methods (Salvador-Martínez et al., 2019).  133 

In principle, as in phylogenetic tree reconstruction (Frieda et al., 2017; McKenna et al., 134 

2016a), the recorded mutations should encode enough information enabling inference of the 135 

likely tree structures that could represent the actual lineage relationships. However, there are 136 

significant challenges for tree-inference when applying standard phylogenetic methods to lineage 137 

recordings. The main limitations include noise from the experimental readout, restrictions in the 138 

total available ‘DNA memory’ for recording, and the random convergence of identical edit 139 

patterns in non-related cells, or homoplasy (Salvador-Martínez et al., 2019). It also remains 140 
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unclear whether machine-learning algorithms that go beyond classical phylogenetic methods, 141 

such as Neighbor-Joining or Maximum Parsimony, could consistently reconstruct cell lineages 142 

with higher accuracy. While phylogenetic methods typically analyze a relatively small number of 143 

species and many more DNA sites, genes or even whole genomes (McKenna and Gagnon, 144 

2019), CRISPR-based lineage recording aims to capture hundreds to thousands of cells with the 145 

compromise of limited numbers of editable sites. Additional limitations include variability in 146 

mutation rates for each site, large nucleotide deletions resulting in sequence dropouts, and single 147 

deletions that can erase previous mutations or ablate multiple targets. Although maximum 148 

parsimony-based methods have shown initial success when applied to lineage tracing (McKenna 149 

and Gagnon, 2019; McKenna et al., 2016a; Price et al., 2010), the key differences discussed 150 

above make it challenging to directly apply phylogenetic methods to lineage tracing data.    151 

After having performed lineage tree inference one would ideally like to evaluate the 152 

reconstruction accuracy, however for most of these technologies the ground truth is inaccessible, 153 

meaning that we do not know the actual lineage relationships. Indeed, with rare exceptions 154 

(Sugino et al., 2019), to date no lineage reconstruction approach has been rigorously examined 155 

for its performance/robustness across diverse molecular tools, DNA-based recording methods, 156 

datasets, number of cells, topology of lineage trees and diverse metrics used for evaluation. 157 

Given the lack of benchmarking, there is still no agreement regarding the best practices for 158 

inferring cellular lineages from the recording datasets generated with these recently developped 159 

molecular tools. 160 

The DREAM initiative 161 

To catalyze the development of new methods to perform lineage reconstruction, we 162 

organized the Allen institute lineage reconstruction DREAM challenge, which ran from October 163 

2019 through February 2020. DREAM challenges are a platform for crowdsourcing collaborative 164 

competitions where a rigorous evaluation of each submitted solution allows for objective 165 

comparison and assessment of their performance (Saez-Rodriguez et al., 2016). The value of 166 

DREAM resides not only in the acceleration of research through the participation of many teams 167 

while solving a common problem, but just as importantly, in the diversity of approaches used 168 

and the quality and reproducibility of each provided solution to problems in emerging areas of 169 

biology. The aggregation of the individual solutions, i.e., the different approaches and insights to 170 
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a common problem, namely the ‘wisdom of the crowds’, leads to a generally superior 171 

performance than any individual solution, from where collective insights can be garnered.  172 

The DREAM challenge for lineage reconstruction  173 

The lineage reconstruction DREAM challenge aimed to provide a new perspective on 174 

lineage inference by enabling participants from diverse fields to submit their reconstruction of 175 

trees for which the ground truth, i.e. the actual lineage, existed but was not provided. It consisted 176 

of three challenges with lineages of increasing numbers of cells. The first challenge leveraged a 177 

then unpublished experimental dataset of 106 trees recorded with intMEMOIR in mouse 178 

embryonic stem cell colonies of less than 100 cells (Chow et al., 2021). This technique was 179 

chosen as it has the key advantage of readout by imaging which can be coupled with a time-lapse 180 

movie of the cells as they divide to provide a ground truth lineage tree (Fig 1A). In the second 181 

challenge participants had to reconstruct an in silico tree of 1,000 cells, whose topology was 182 

derived from the Caenorhabditis elegans developmental cell lineage tree by removing a few 183 

clades in order to mask its identity to the participants. A general framework for simulation of 184 

CRISPR-based lineage recording (Fig 1B) (Salvador-Martínez et al., 2019) was used to simulate 185 

mutations in a recording array on top of the resulting topology (see Fig 1C). In the third 186 

challenge, participants had to infer the lineage of cells in a simulated tree of ~10,000 cells (Fig 187 

1D) representing 11 different cell types after one year of M. musculus development (Fig 1E). 188 

Simulating such a large tree was made possible by applying the Environment-dependent 189 

Stochastic tree Grammars (eSTGt), a programming and simulation environment for population 190 

dynamics (Spiro and Shapiro, 2016) adapted to simulate cell lineages (see STAR methods). 191 

While the size of the actual simulated tree is estimated to be about 1012 or a trillion cells, the final 192 

sub-sampled lineage stored information for only 10,000 cells (see Fig S1).   193 

 194 

Experimental in vitro dataset 195 

  intMEMOIR is a synthetic image-readable lineage recording system that has been 196 

recently developed and tested in mouse embryonic stem cells and the brain of Drosophila 197 

melanogaster (Chow et al., 2021). This technology builds upon a previously developed recording 198 

system named MEMOIR (Memory by Engineered Mutagenesis with Optical In situ Readout) 199 

(Frieda et al., 2017). In its current implementation, intMEMOIR consists of a multi-state 200 



 8 

memory DNA array that can be edited irreversibly by serine integrases and integrated at defined 201 

genomic sites. While MEMOIR’s design enabled 2 different states for each recording unit in the 202 

memory array, intMEMOIR enables 3 different states. Upon induction by doxycycline, the serine 203 

integrase Bxb1 can bind to the editable character array elements or barcodes, and by DNA-204 

recombination mutate the recording element ground state (represented as ‘1’) into either two 205 

possible states, a deletion (represented as ‘0’) or an inversion (represented as ‘2’) of the DNA 206 

sequence. The recording process is fully stochastic and happens irreversibly at a constant rate, as 207 

any element in the array can be edited at any moment. On mouse embryonic stem cells, Chow et. 208 

al showed that lineage information can be recorded irreversibly and stored in the intMEMOIR 209 

array, while also read-out using microscopy. From the recorded data, the lineage history can then 210 

be inferred (Fig 1A). 211 

 In the experiment, the growth of 106 cell colonies was traced, each one started from an 212 

individual cell carrying an unedited 10-character array. Recording was induced for the first 36 213 

hours of growth (approximately 3 cell divisions) and cells were then allowed to grow with no 214 

further recording for an additional 24 hrs. At this point the arrays for each cell in the colony were 215 

read-out using single molecule fluorescent in situ hybridization (smFISH). For each colony, the 216 

ground truth lineage was obtained from time-lapse movies. As cells grow at different speeds and 217 

some of them die, the resulting colonies had a distribution of sizes, from 4 to 39 cells (see Table 218 

1).  219 

Simulated in silico datasets 220 

To complement the challenge datasets, data from simulated recording arrays, with 221 

respectively 200 Cas9 targets in each cell for C. elegans and 1000 targets for M. musculus, were 222 

generated. Inspired by the GESTALT technique (McKenna et al., 2016a), in the simulations, 223 

every cell is represented as a vector of 200 (or 1000) characters, each character representing one 224 

Cas9 target. The simulations started with one cell, the fertilized egg, and all its targets in an 225 

unmutated ground state represented with "0" (see Fig 1C) had the possibility to change to either 226 

of 30 different mutational outcomes stochastically as cells divide (see Box 1). The initial cell 227 

then undergoes a series of cell divisions growing into a population of ~1,000 cells for C. elegans 228 

and about a trillion cells from which ~10,000 cells are preserved for M. musculus (see STAR 229 

Methods). The recording array accumulates independent and irreversible CRISPR-induced 230 
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mutations with a constant probability per time unit, inherited in subsequent cell divisions (see 231 

Box 1).  232 

When a Cas9-induced mutation occurs, the double strand of DNA is broken, which is 233 

eventually repaired by the cell. However, in cases where two or more relatively close double 234 

strands break before the cell repair machinery can act, the DNA between these breaks can be lost 235 

and such events are called an "inter-target deletions". To make these simulations more realistic, 236 

we included inter-target deletions affecting 5-10% of the mutation events (see STAR Methods 237 

and Box 1). We also introduced different probabilities for the different mutational outcomes, in 238 

agreement with experimental evidence (McKenna and Gagnon, 2019). Additionally, for the M. 239 

musculus simulations we implemented a 20% data acquisition dropout to reflect the fact that the 240 

data acquisition from single cells is rarely perfect (Qiu, 2020) (see Box 1). In summary, we 241 

introduced experimental parameters where possible in the simulation in order to approximate 242 

realistic recording assays. 243 

Training data 244 

As the goal of these challenges was not only to benchmark cell lineage reconstruction 245 

algorithms, but also to mobilize a larger community for evaluating new optimal tree-building 246 

methods, we provided training data for each challenge. In the in vitro challenge, participants 247 

were asked to reconstruct the test dataset consisting of 30 cell colonies using only the 248 

intMEMOIR array readout, as the ground truth for these lineages was not accessible to the 249 

participants. As training set, participants were given array readout data from 76 colonies along 250 

with the corresponding ground truth lineages (Box 1).  251 

For the in silico challenges, the training data included the ground truth simulations of 100 252 

lineage trees and their mutated array states. These trees comprised 100 cells for C. elegans and 253 

1000 cells for M. musculus generated with the same simulation scheme as for the whole C. 254 

elegans and M. musculus trees. The rationale was to test whether training sets composed of 255 

smaller trees could still be helpful to fine-tune algorithms then used to reconstruct larger 256 

lineages. The C. elegans training set tree topology was generated by 100 iterations of pruning 257 

and regrafting sub-trees of 100 cells from the whole animal lineage tree (Box 1), to preserve 258 

some of the initial topology without giving away the origin of the tree. We indeed verified that 259 

the aggregation of the 100 trees given for training showed no direct similarity to the 1000 cells 260 
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C. elegans tree. The M. musculus training set was obtained using the same eSTG algorithm used 261 

for the test dataset but ran for a shorter time in order to obtain smaller trees of 1000 cells. 262 

Importantly, the M. musculus challenge also had an intermediate step where participants could 263 

submit solutions to a ~6000 cell tree and obtain their scoring results on a leaderboard in real 264 

time. The leaderboard encouraged participation through competition and provided a way of 265 

testing the scalability of the approaches. For scoring, the submitted lineage tree inferences for the 266 

test dataset were then compared to their corresponding ground truth using two different metrics 267 

(see Box 2).  268 

 269 

Results 270 

Best performing methods  271 

Overall, the challenge was successful in its main goal to attract a variety of approaches 272 

and teams, as twenty-two submissions were received in total for the three challenges. Figure 2A-273 

C shows the score rankings by both the RF and triplet distances. For the in vitro challenge, 274 

where nine teams participated, it is clear that the diverse set of approaches reached a plateau in 275 

performance for both metrics which suggests that participants successfully extracted and used all 276 

available information in the data (Fig 2A, Fig S2 and Fig S3A & B fitted blue line to the 277 

medians). We found that the top three teams performed equally well even when calculating the 278 

Bayes Factor and an additional quartet metric (Fig S2). Interestingly, the two distance-metrics 279 

generated different rankings, showing that while correlated the two metrics are not identical. We 280 

noted that in general teams performed better on the RF distance compared to the triplet metric 281 

(Fig 2A and Fig S3C). This indicates that for trees less than 100 cells, the triplet metric is more 282 

stringent than the whole-tree partitions measured by RF.  283 

Five teams submitted solutions for the C. elegans and three teams for the M. musculus 284 

challenge. In both challenges, the distance-based DCLEAR method outperformed all other 285 

participants. In general, DCLEAR’s performance in both challenges and under both metrics was 286 

excellent (Fig 2B and 2C) and although the M. musculus tree was ten times larger, DCLEAR 287 

scored higher compared to the C. elegans tree.  288 

Summary statistics for the in vitro challenge 289 
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Given that the in vitro challenge predictions consisted of 30 trees of different sizes, we 290 

were able to further analyze the results. When considering only perfectly reconstructed trees, 291 

defined by a distance value of 0, AMbeRland* performed better as we see a larger number of 292 

perfect trees when considering triplets (28 trees across teams Fig. 2D top) than when using RF 293 

(21 trees Fig. 2D bottom). This discrepancy indicates that even when all triplets from a tree are 294 

correctly inferred, there might still be incorrect clades in the tree as measured by RF. We then 295 

asked whether the different teams performed better depending on the size of the tree, a main 296 

constraint for inference accuracy. Larger trees were defined as having more than 8 leaves/cells 297 

and small trees as having less or equal to 8 leaves/cells. Irrespective of the tree size, 298 

AMbeRland* also performed better (see Fig 2E). To visualize that indeed tree size has an overall 299 

effect on reconstruction accuracy, we plotted the accuracy of individual trees in both metrics 300 

colored by the number of cells per tree (Fig 2F). Across all trees and submissions, the two 301 

metrics correlation is overall high r=0.77, but it becomes clear that larger trees generally have a 302 

larger triplet distance compared to RF. A total of six trees were reconstructed perfectly by at 303 

least one of the teams (Fig S4) and we noted that these perfect trees consisted of small trees of 304 

less than 9 cells. For these small trees, edit patterns can be slightly redundant without affecting 305 

accuracy (e.g. Tree 1 in Fig S4) indicating that the size of the tree is a dominant factor in 306 

reconstruction accuracy. The largest perfect tree (Tree 20, Fig S4) comprises 9 cells with 307 

redundant mutations in two array states across cells, despite this, the tree can still be perfectly 308 

resolved. More generally, higher redundancy in array states effectively decreases the information 309 

that can be used for lineage reconstruction and we indeed observed high levels of redundancy in 310 

several trees with an average of 65% ± 20% of cell arrays being unique (Table S1). However, 311 

tree reconstruction was not affected by this (Fig S3D & E). Considering non-perfect trees, the 312 

largest tree with the highest score was reconstructed by AMberRland (29 leaves/cells, 55% 313 

unique arrays RF distance = 0.44 and triplet distance = 0.40, Fig S5). The second largest tree 314 

with high score was reconstructed by Cassiopeia (23 leaves/cells, 71% unique arrays, RF = 0.48, 315 

Triplets = 0.70, Fig S5). In tree 29 we noted that some cells with identical array states were 316 

placed correctly in the reconstruction, this is due to the fact that AMberLand* and Jasper06 317 

decided to leverage the biological restriction that lineage trees must be binary. Therefore, they 318 

imposed a binary structure even when cells had identical array states, reaching slightly higher 319 

accuracy (Fig. S5).  320 
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Methods summary 321 

The best performing methods across challenges can be roughly divided into three groups: 322 

(1) distance-based methods such as the best performers Liu’s method, Guan’s method and 323 

DCLEAR (2) a machine learning based method to predict probabilities of sister cells using a 324 

Gradient Boosting Machine AMbeRland, and (3) a maximum parsimony-based method 325 

Cassiopeia-ILP and Cassiopeia-Greedy. The distance-based methods reconstruct the lineage 326 

trees by first defining a distance to build a matrix between all pairs of cells as the distance 327 

between mutated characters in two cells’arrays should be proportional to the time since they split 328 

from a common ancestor. Therefore, distance matrices are commonly used in phylogenetic 329 

inference and clustering (Jones et al., 2020) or by hierarchical algorithms that represent the 330 

distance matrix as a tree such as in Neighbor-Joining (NJ)(1987). Conversely, the machine 331 

learning approach learns from the training set the importance of features/mutations to predict 332 

whether two cells are sisters. Cassiopeia's maximum parsimony method reconstructed trees by 333 

minimizing the total number of steps required to explain a given configuration of the leaves. 334 

 Distance-based methods combined with hierarchical clustering overall performed well 335 

with the additional advantage of being scalable. Hamming distance is a metric used for 336 

phylogenetic analysis where the distance between sequences from two taxa (or cells in this case) 337 

is calculated as the number of different sites between the two sequences. While in the traditional 338 

Hamming distance, every mutation is assigned the same weight, in lineage recording 339 

technologies the editing rates of each array character are generally not uniform (Fig 3A and 340 

Box1), and so, mutations that occur with higher frequency are likely to arise independently in 341 

non-related cells, confounding the analysis. Conversely, some edit patterns are unlikely to 342 

happen independently and could be informative of a true inheritance event. Therefore, the 343 

uneven frequency of array edits suggests that each array element could potentially bring different 344 

information about the underlying lineage relations. To calculate the weighted Hamming 345 

distances between cells, several teams transformed the initial edited array sites of all cells in the 346 

lineage to their observed mutation frequencies and calculated the absolute difference between the 347 

arrays of two cells (Fig 3B). Tables S2 and S3 include a concise summary of all methods. For the 348 

in vitro challenge we included the type of parameters or features that different teams estimated 349 

from the data, how was the tree built from their estimations and how did they use the training 350 

dataset to estimate or learn the different features and parameters (Table S3).  For the in silico 351 
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challenges, given the larger scale of the trees, we also show the CPU running time as well as the 352 

code accessibility (Table S3).  353 

 354 

Liu: Inference of internal states.  355 

In all three challenges Team Liu’s method reconstructed internal nodes to represent the 356 

ancestral nodes that likely gave rise to the leave cells. For the in vitro challenge, the state of 357 

every internal node is inferred using the states of its children by applying the following rule for 358 

each site: the parent node gets the state of the children nodes if both children states are the same, 359 

alternatively it gets the unedited state if its two children states are different. Next, for each array 360 

element, the transition rate from state ‘1’ to state ‘0’ or ‘2’ is calculated as the probability of 361 

parent node having state 1 and child node having the mutated state (Fig 3C top). Finally, the 362 

pairwise distance between two cells is considered to be the probability of two cell states arising 363 

from independent events, that is, the product of the transition rate of shared states between the 364 

two cells. In a similar way for the in silico challenges, team Liu estimated the character array of 365 

the internal nodes based on the fact that a target can only mutate once (Fig 3C middle). Deletions 366 

or dropouts were replaced by the initial character “0”. After inferring all the internal nodes, Liu’s 367 

method derived the empirical transition probability from the ground state to the 30 possible 368 

mutated states, ‘A-Z’ and ‘a-c’ or deletion ‘-’. This empirical distribution was then used to 369 

calculate the probability of two cells arising from two independent events, assuming that each 370 

target was independent of the other. The log likelihood of the transition probability for shared 371 

states was considered as the cell-to-cell distance. Finally, the distance matrix was clustered using 372 

Unweighted Pair Group Method with Arithmetic Mean Algorithm (UPGMA) (Fig 3C 373 

bottom).  For the M. musculus challenge Liu’s method added an extra step for clustering taking 374 

into consideration the 11 different types of cells.  375 

Guan: weighted Hamming distance.  376 

For the in vitro challenge Guan Lab’s method first designed a rule-based hierarchical 377 

clustering method using weighted Hamming distances between cells (Fig. S6A for frequency and 378 

weight values). Guan Lab transformed the initial edited array sites of all cells in the lineage to 379 

their observed mutation frequencies while retaining the mutation directions by mathematical 380 
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signs (+/− see Fig S6A) and calculated the weighted distance as the absolute difference 381 

between the arrays of two cells. Finally, the lineage was reconstructed using a rule-based 382 

hierarchical clustering method (Fig S6B). For the C. elegans challenge they first replaced all gap 383 

mutations with the mutation types at both ends, since gaps even at the same sites could be the 384 

result of simultaneous mutation incidents (Fig 3D). The mutation weights were defined for each 385 

of the 200 characters in the C. elegans array as 1-log10(P), where P is the observed probability of 386 

the mutation at that site. An iterative bifurcate clustering process was performed to combine the 387 

nearest cells based on matrix calibration, until there was only one pair of cells left and their 388 

parent cell was defined as the root of the tree (see Fig 3D).  389 

Cassiopeia: Combinatorial optimization.  390 

Yosef Lab was the only team that did not opt for hierarchical clustering but instead, they 391 

used combinatorial optimization. For the C. elegans challenge, the team adapted the previously 392 

published Cassiopeia-ILP (Jones et al., 2020) an integer linear programming (ILP) which takes 393 

as input a “character matrix,” summarizing the mutations seen at heritable target sites across 394 

cells (Fig 3E Top). It then infers a Steiner Tree, finding the tree of minimum weight connecting 395 

all observed cell states across all possible ancestral states’ histories and maximizes the 396 

parsimony over all possible trajectories that could have generated the observed barcode states 397 

which consistently finds a near-optimal solution.  Importantly, the edges connecting cell states 398 

can be weighted by the number of mutations along that edge or the log-likelihood of these 399 

mutations. A derived method Cassiopeia-Greedy was implemented for the M. musculus 400 

challenge also adapted a different maximum parsimony-based strategy to infer the phylogeny 401 

from a set of observed character-states across all cells summarized in a cell’s x cut-site 402 

"character-matrix" (Jones et al., 2020). To do so, the algorithm recursively applied a heuristic to 403 

split cells into two groups based on the frequency of a given state at a character and the 404 

likelihood of that state arising, taking into account mutations that occurred earlier in the tree (Fig 405 

3E Bottom). This procedure was applied until a full lineage tree was resolved.  406 

 407 
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Usage of the Ground Truth 408 

For the in vitro challenge, several teams computed the calculated transition rates across 409 

the 76 trees in the training data and found striking variability across the array element identities 410 

and positions (Fig 3A). It is possible to assess in several ways how much information regarding 411 

the correct lineage of a cell is contained in the transition rate of a particular mutation. For 412 

example, given a tree in the training set it is possible to assess whether cells having the same 413 

mutation in an array element are in the same subtree branch (see diagram Fig 3F). To obtain the 414 

percentage of correct branch positioning associated to this mutation, this process can be repeated 415 

for all trees. It can then be expanded to all ten elements in the arrays, and for the two types of 416 

mutations (1 to 0 or 1 to 2). This information was used to quantify how for a given mutation and 417 

array position there is a negative correlation between the state transition rate and how well it can 418 

establish the correct relationships between four cells in a subtree (R2=0.58, see plot Fig 3F). This 419 

observation is in line with teams assigning the observed mutation frequencies to the Hamming 420 

distance weights of different array elements, but also shows that weight values can be further 421 

refined when training data is available.  422 

Participant teams used this type of information differently as Cassiopeia-ILP (Yosef Lab) 423 

used the average across sites of the transition probabilities for each type of mutation to weight 424 

the edges of their Steiner-Tree search (Fig 3E top). Additionally, for this team the training data 425 

also proved useful in choosing a model as they were able to compare the performance of 426 

different algorithms and select the one that performed the best (Fig 3G). Team Guan Lab was 427 

able to use the ground truth for comparing several types of distance-based tree construction 428 

methods, including Neighbor-Joining (NJ) and UPGMA. This analysis showed that UPMGA 429 

performed similar to their rule-based hierarchical clustering whereas NJ was significantly 430 

outperformed (Fig S6C). Finally, DCLEAR(WHD) used the training set to weight the mutations 431 

for the C.elegans tree and AMbeRland used a Gradient Boosting Machine (GBM) to learn the 432 

relative importance of several features derived from the array states data and for determining the 433 

clustering thresholds for the tree reconstruction (see details below).  434 

DCLEAR estimates k-mer replacement distances by simulation 435 

DCLEAR (Distance based Cell LinEAge Reconstruction) implemented two best performing 436 
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strategies to compute the cell distances. A weighted Hamming distance strategy (WHD) that 437 

requires a training set for optimizing each mutation weight for the C. elegans tree, and a k-mer 438 

replacement distance (KRD), that does not require training data, for the M. musculus 439 

tree. DCLEAR (KRD) first looks at mutations in the character arrays to estimate the parameters 440 

of the generative process associated with the tree to be reconstructed. With these parameters, 441 

they repetitively simulated trees with a size and mutation distribution similar to the M. musculus 442 

target tree (Fig 4A). The k-mer replacement distances were estimated from the simulated lineage 443 

trees and used to compute the distances between input sequences in the character arrays of 444 

internal nodes and tips. As a toy example, two cells in a simulated tree have respectively the 445 

character arrays A00A and E00C, their 1-mer nodal distance will be the distance between A and 446 

C, their 2-mer nodal distance will be the distance between 0A and 0C while the whole sequence 447 

nodal distance will be between A00A and E00C (see red cells in Fig 4B).  Specifically, by 448 

examining the simulated lineage trees, DCLEAR (KRD) estimated the expected 1-mer 449 

replacement distance between characters in the array (including ground state ‘0’ and deletion 450 

state ‘-’) in the lineage trees (Fig 4C) and the probability for a given nodal distance of replacing 451 

a character in a cell array (Fig 4D and 4E). To extend the 1-mer replacement distance to the k-452 

mer replacement distance, the posterior probability distributions of k-mer replacement distance 453 

were estimated by using a conditional model considering a dependance for the concurrence of 454 

mutations (Fig 4F and 4G). They found that by considering the neighboring characters, the 455 

conditional model can more accurately estimate the nodal distance than an independent 1-mer 456 

model. The cell distance can then be readily computed as the mean expected k-mer replacement 457 

distance (see STAR Methods). Similar to WHD, the lineage trees were reconstructed using the 458 

Minimum Evolution (FastME) or Neighbor-Joining (NJ) algorithms (Gascuel and Steel, 2006; 459 

Lefort et al., 2015). For both DCLEAR WHD and KRD, the deletions and dropouts were treated 460 

differently. In WHD, the weight for deletion, dropout, regular state and ground state are 0.9, 0.4, 461 

3 and 1, respectively. In KRD, deletion and dropout are treated as two different characters. 462 

Amberland, a decision tree-based method  463 

AMbeRland’s approach relied on machine-learning to build a distance matrix between 464 

cells through the calculation of the relative importance of features derived from the states of the 465 

character arrays (Fig 5). In their approach for the in vitro challenge, they first defined four 466 
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features for every pair of cells consisting of whether two cells are both unedited at a given array 467 

site (feature F1), a site has the same edits (feature F2), only one site is edited (feature F3) or if 468 

both sites have different edits (feature F4) (Fig 5A left). Then, the prevalence of these four 469 

features was extracted for a group of ~500 pairs of sister cells (label 1) and ~3000 non-sister 470 

cells (label 0) using the 76 ground truth trees available in the training set. Finally, Gradient 471 

Boosting (Friedman, 2001) was applied to learn from this data the relative weights of each 472 

feature to predict whether two cells are actually sisters (see Fig S7). For the C. elegans challenge 473 

AMbeRland applied a similar approach using the training set of 100 trees with 100 cells. They 474 

similarly determined weights for features selected by counting pairwise positions in two cell’s 475 

arrays that were (1) not mutated, (2) had a single mutation, (3) both had different mutations, (4) 476 

both had a missing record, (5) one had a missing record and the other not mutated, etc. (Fig 5A 477 

right).   478 

In both challenges, AMberland applied a custom hierarchical clustering method for 479 

building the cell lineage tree from the predicted probabilities. During the tree construction, the 480 

ground truth was used to evaluate a set of decreasing thresholds corresponding to how any two 481 

individual clusters of cells were related at different levels of the lineage tree (see Fig 5B left). 482 

The clustering starts at the lowest tree level, where all cell pairs are ordered according to the 483 

predicted probability that they are sister cells, from here, cells with a probability higher than the 484 

first threshold are assigned as pairs, while the rest are kept as a branch with a single cell. At each 485 

consecutive level, pairwise comparison are performed between each lower level cluster by 486 

calculating the maximum probability between any two elements of the two clusters. Pairs of 487 

clusters were ordered again according to this probability and were assumed to have the same 488 

parent node if their value was above the estimated threshold for this level. This process was 489 

repeated until one or two clusters were left. The values for the thresholds at each level were 490 

determined by performing a grid search minimizing the RF and triplet distance metrics (see 491 

results for tree 29 Figure 5B right). This procedure clearly helped obtaining better scores, 492 

particularly regarding the triplet metric (see Fig S8 for all trees in the in vitro challenge and Fig 493 

S9 for C. elegans). 494 
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Consensus trees  495 

One advantage of having a set of different and diverse approaches trying to solve a 496 

common problem is that it is possible to aggregate the solutions and gather collective insight. 497 

Hence, we decided to test how a consensus tree of all teams would perform compared to 498 

individual methods (Fig 6A&D). For the in vitro challenge, we constructed the consensus tree 499 

using the submissions from all teams (excluding Bengal Tiger because of their unusual number 500 

of low-accuracy outliers, Fig 2A) by applying the majority-rule algorithm (Felsenstein, 1985).  501 

Interestingly, we see that the consensus tree performs better than any individual team when 502 

considering the RF distance, but this is not the case according to the triplet distance (Fig 6B). To 503 

further understand this, we evaluated the agreement (or support) of each clade in a given tree 504 

across teams using the Felsenstein’s Bootstrap Proportion (FBP), which has been traditionally 505 

used to assess the support of phylogenetic trees (Felsenstein, 1985). For FBP agreement, a 506 

branch must match a reference branch exactly to be accounted for in the score, so we define FBP 507 

as a strict agreement (Fig 6A). Alternatively, the Transfer Bootstrap Expectation (TBE) provides 508 

higher resolution estimates of branch support and can be used to assess phylogenetic similarity 509 

even when there is no strict majority consensus (Lemoine et al., 2018). The distribution of FBP 510 

and TBE support scores at different normalized depths across all 30 trees in the test dataset 511 

shows that the inference of earlier clades varies significantly across methods, whereas late splits 512 

are resolved correctly by the majority (Fig 6A and Fig S10). The divergence for earlier clades 513 

might explain the lower performance of the consensus tree under the triplet metric, given that for 514 

these small trees more triplets are prone to include early divisions with wrong clade relationships 515 

(see Fig S3A&B). 516 

For the in silico challenges we also added for comparison the performance of the 517 

algorithm FastTree2, a fast and reliable approximately-maximum-likelihood method (Price et al., 518 

2010) that performed better than neighbor joining or TripleMaxCut (Sevillya et al., 2016).  519 

Interestingly, we observed that in the C. elegans challenge, DCLEAR outperforms Fastree2 by 520 

both metrics, which is not the case for the M. musculus challenge as FastTree2 outperforms all 521 

methods, with DCLEAR as a close second (Fig 6C). We also see that for the C. elegans 522 

challenge, the consensus tree performs better than any individual team when considering the RF 523 

distance, but under the triplet distance the consensus is nevertheless equivalent to a random 524 
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submission (Fig 6C). In the M. musculus challenge there were probably not enough submissions 525 

to see a “wisdom of the crowds” effect as the consensus tree does not outperform DCLEAR. To 526 

understand the difference between the RF and triplet distances, we evaluated the agreement of 527 

each clade in the C. elegans tree across teams. Overall, as in the in vitro challenge we observed a 528 

depth-dependent effect in the support between teams, as measured by TBE (Fig 6D) and the 529 

divergence for earlier clades might explain the lower triplet metric performance in the consensus 530 

tree solution but in this case probably due to the C. elegans tree topology having many internal 531 

nodes.  532 

Discussion 533 

The main goal of this DREAM challenge was to mobilize a larger community to generate 534 

new methods for cell lineage reconstruction. This goal was catalyzed through the generation of 535 

new in silico datasets and by the recent availability of in vitro datasets with an associated ground 536 

truth. This study represents the first attempt to rigorously examine the performance of various 537 

algorithms across diverse molecular tools and lineage trees. For the in vitro challenge a total of 538 

nine approaches were submitted for which the maximum performance plateaued (see Fig 2A and 539 

Table S2). While some trees were reconstructed perfectly, the scores were far from the 540 

theoretical maximum. We thought this could be mainly due to the high degeneracy in cell arrays 541 

where two or more cells show identical edit patterns, but further analysis showed that barcode 542 

degeneration did not affect the performance of the teams (Fig S3E). This problem could be in 543 

principle overcome by increasing the memory of the intMEMOIR system, as discussed by the 544 

authors (Chow et al., 2021). On the other hand, the degeneracy problem was non-existent for the 545 

C. elegans tree as all cells ended up with a different mutational character array and was minimal 546 

for M. musculus with only ~2.7% of sister cells sharing exactly the same character arrays. 547 

Indeed, the choice of the mutation rate and the diversity of mutations in the simulations has a 548 

strong effect on the accuracy of cell lineage reconstruction as low diversity of possible 549 

mutational outcomes generally gives poorer results. While too low mutation rates lead to more 550 

unedited and therefore non-informative targets, too high mutation rates lead to most targets being 551 

mutated during the early cell divisions, leaving few targets available for recording later events 552 

(Salvador-Martínez et al., 2019). Hence, we tuned our in silico mutation rates and array sizes in 553 

order to avoid cells having identical character arrays. As the performance of DCLEAR in the in 554 
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silico challenges was as good or even better than the results of the in vitro challenge (see Fig 2), 555 

the limits of its performance must derive from the tree size or topology. We conclude that tree 556 

topology was the most important parameter given that DCLEAR M. musculus lineage 557 

reconstruction was more accurate than for the ten times smaller C. elegans tree. Given these 558 

great performance, we also consider the in silico challenges a success despite not having as many 559 

submissions, as the diversity and performance of the approaches was impressive (see Fig 2 and 560 

Table S3).  561 

The implementation of several metrics to evaluate the participants was also an original 562 

feature of the challenge as in general, lineage trees are evaluated with a single metric and no 563 

comparison between metrics is systematically performed (Salvador-Martínez et al., 2019). This 564 

aspect was essential not only to thoroughly evaluate participants (Fig 2, S2 and S3) but also to 565 

better understand their solutions. One of the striking observations was the disconnection in all 566 

challenges of the performance as measured by the two metrics. Indeed, for the in vitro challenge 567 

AMberRland optimized post competition their algorithm for the triplet distance and had the 568 

overall best performance without compromising their RF performance (Fig 3A). Also, for larger 569 

trees, team AMbeRland* had overall a similar performance than Cassiopeia relative to the triplet 570 

distance (average triplets = 0.55) but scores better in the RF metric (RF = 0.57 and 0.65 571 

respectively, see Fig 2E). We see the opposite for team philrennert although now the difference 572 

for larger trees appears for the triplet distance (triplets = 0.57 and 0.72 respectively, see Fig 2E) 573 

as the RF distance is similar. Such dissociation between metrics was also observed for the 574 

majority-vote consensus solution which had the best score for RF but far from that for triplet 575 

distance (Fig 6B). The analysis of the overall agreement between individual solutions at different 576 

depths of the trees shows that indeed for earlier cell divisions agreement is low (Fig 6A). This 577 

observation provides a possible explanation for the divergence between triplet and RF distances, 578 

as in smaller trees such as the ones in the in vitro challenge, more triplets are prone to include 579 

early divisions with wrong clade relationships, bringing down the triplet performance. 580 

AMberRland was probably able to correct this by performing a grid search and changing the 581 

thresholds for hierarchical clustering at higher levels of the tree. As AMberRland was also the 582 

method that most consistently predicted smaller and larger trees (Fig 2D, S4 and S5), this also 583 
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explains why we observed that overall the triplet distance is higher than RF in larger trees as 584 

opposed to smaller trees (Fig 2F and S3C).  585 

For the much larger trees in the in silico challenges the interpretation of the metrics is 586 

different as the number of triplets included in the triplet distance grows cubically with the size of 587 

the tree, while the number of partitions considered by the RF distance grows linearly. Hence, for 588 

larger trees, the triplet distance will be dominated by the higher number of triplets close to the 589 

tree leaves as the RF distance will be mostly measuring major branching events in the early cell 590 

division stages. As DCLEAR was consistently better in both metrics, but scored less favorably in 591 

RF distance, compared to the triplet distance, this suggests that DCLEAR is precisely having 592 

trouble detecting those major branching events. Indeed, both WHD and KRD in DCLEAR 593 

methods rely on the rare mutations to estimate the cell distances. During early cell division 594 

stages, however, the rare mutations are significantly less likely to be present in the sequences and 595 

result in difficulties for separating early branching events. Modeling the dependence between 596 

multiple non-adjacent mutations in the sequences, on top of the neighboring k-mers, may be 597 

necessary to more accurately evaluate the early branching events. It is also striking to see how 598 

the maximum parsimony approach of Cassiopeia scored much better for the triplet distance for 599 

larger trees in all challenges. Finally, the machine learning approach derived from the one 600 

applied in the C. elegans challenge by AMberRland was able to perform acceptably in the RF 601 

metric with much larger trees (see Fig 2B), but although the threshold optimization worked for 602 

the training set of 100 cell trees (see Fig S9), it did not do well with the triplet distance of the C. 603 

elegans tree probably due to the need to include many more thresholds given its 10 times larger 604 

size. 605 

The final observation regarding the metrics discrepancy is related to the performances in 606 

the training and test sets of the C.elegans challenge, as all teams are similar regarding the RF 607 

distance but with the exception of DCLEAR and Cassiopeia, the triplets performance is worse for 608 

the test set than in the training set (see Box 1). Conversely, for the M.musculus challenge their 609 

performances in the leaderboard tree of ~6500 cells and the M.musculus tree of ~10,000 cells 610 

match for both metrics (Fig 6C). We conclude that when reconstructing a cell lineage tree, the 611 

results obtained with an algorithm for a training set of trees with a number of leaves an order of 612 
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magnitude smaller than the test set are comparable, although the triplet distance is more unstable 613 

than the RF distance.  614 

Regarding the generalization of the results obtained with the intMEMOIR technology 615 

which is difficult to compare at the molecular level to the sequence-based approaches for lineage 616 

reconstruction as it also shows differences such as the absence of accidental deletions or 617 

dropouts, we think that in conjunction with the results from the in silico approaches, the 618 

generalizable conclusions are the necessity of having well calibrated mutation rates to avoid too 619 

little mutations but also array degenerations, the utility of having a training set of smaller trees to 620 

optimize lineage reconstruction methods including distances and clustering, and allowing for a 621 

clear interpretation of the effect of the two different metrics with different tree sizes. 622 

Overall, we think that the decisions taken while producing the datasets for the in silico 623 

challenges were the correct ones. We were able to pose a problem that we think is close enough 624 

to a biological situation and difficult enough so that the lessons learned and solutions generated 625 

can be implemented in other contexts. Indeed, it has been estimated that under ideal conditions 626 

of optimized mutation rates, uniform cell divisions and fully sequenced targets, 30 targets should 627 

be sufficient to reach a high level of accuracy for the lineage reconstruction of a tree of about 628 

65,000 cells (Salvador-Martínez et al., 2019). In this situation 100 targets would theoretically 629 

yield almost perfect accuracy, far from the results obtained by the solutions submitted to both 630 

challenges. 631 

 Finally, as new DNA-editing-based molecular tools promise the reconstruction of single-632 

cell lineages from complex model organisms, including the human cell lineage, an important 633 

question is whether the access to smaller trees and the molecular data from their cell lineages 634 

could help find solutions to be implemented for larger trees of the same origin. The M. musculus 635 

lineage tree being the current experimental frontier for lineage reconstruction(Bowling et al., 636 

2020; Kalhor et al., 2018), our results show that indeed, in order to obtain an accurate full cell 637 

lineage for mouse or human, it could be possible to train algorithms on smaller trees obtained 638 

from organs (Bowling et al., 2020) or in vitro dividing cells and these can then be implemented 639 

for building algorithms that can then be applied to the reconstruction of much larger trees.  This 640 

DREAM challenge was a first attempt to rigorously examine the performance and robustness of 641 
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various algorithms under the same conditions. It took advantage of the unique opportunity to use 642 

unpublished datasets of molecular and simulated character arrays. We hope that showing that 643 

machine learning methods can indeed be successfully implemented will pave the way for other 644 

benchmarking efforts based on emerging technologies for monitoring cell lineages and the 645 

application of new algorithmic approaches, but also that the approaches described here will pave 646 

the way for the solution of the mouse and human cell lineages. 647 

 648 

649 
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Figure Legends 764 

 765 

Box 1 Training set 766 
One of the main goals of this challenge was to provide participants with a training set composed 767 
of several trees, their cell’s character arrays and the gold standard tree solution. This allowed 768 
participants to train or optimize their methods.  769 
A. In the in vitro experiments to obtain mouse stem cell lineages, mutations were induced for the 770 
first 36 hrs of growth (approximately 3 cell divisions) and cells were then allowed to grow with 771 
no further changes in the recording arrays for an additional 24 hrs. For all these cells the final 772 
values (unmodified encoded as 1, inverted encoded as 2 or deleted encoded as 0) of the 10 773 
character arrays were obtained by smFISH, while cell divisions were tracked by video-774 
microscopy (see Table S1). Two partitions were created from the original unpublished dataset 775 
containing 106 lineages, which represent sufficient experimental data to extract a training set: the 776 
training partition composed of 76 trees was provided for the teams along with the corresponding 777 
ground truth lineages, for the test partition composed of 30 trees only the cells character arrays 778 
were provided without ground truth. The partitions were defined to have similar tree size 779 
distribution, given that the lineages were composed of a different number of cells depending on 780 
the cell division and survival rates, shown in middle histogram panel. Also, a similar median RF 781 
score distribution between the two data sets when using a maximum-likelihood method described 782 
in Chow et at was used as partition criteria, see bottom panel. B. For the in silico challenges, both 783 
character arrays for the training and test sets were simulated in a similar way. The type of Cas9-784 
induced mutations consisted of 32 characters ‘A’ to ‘Z' and ‘a’ to ‘e’ and character deletion ‘-‘. 785 
The characters represent DNA targets for Cas9 but no specific relationship with actual DNA 786 
sequences was established. The starting character was ‘0’ and the probability of mutating to one 787 
of the 30 characters or of being deleted (insertions were not considered) followed in alphabetical 788 
order the Gamma probability distribution used to sample the mutations, shown in blue, and in red 789 
a fit on the histogram of the actual results. Mutations are irreversible, once a target is mutated, it 790 
can no longer change, either to revert to the unmutated state or to transit to a new state. C. Inter-791 
target deletions were simulated for both in silico challenges where C. elegans arrays were 792 
composed of one hundred characters and M. musculus of one thousand characters. When a Cas9-793 
induced mutation occurs, the double strand of DNA is broken, which is eventually repaired by 794 
the cell. However, in cases where 2 or more relatively close double strands break before the cell 795 
repair machinery can act, the DNA between these breaks can be lost this is known as an "inter-796 
target deletion". We implemented these so that when two mutations occur in close targets (less 797 
than 20 targets apart in the recording array) within a short interval of time during a given cell 798 
division, all the targets between them are removed. In these simulations, 5-10% of targets are 799 
missing due to inter-target deletions. D. Acquisition dropout distributions were implemented 800 
only for the M. musculus challenge. In order to capture the variability of the signal quality in 801 
both the individual samples and the different sites we modeled the ‘sequencing dropout’ of single 802 
cell samples by assigning distinct coverage factors for each sample and for each locus. The 803 
density of cell coverage factors P = (pi: i = 1 to M) is the probability of obtaining a signal in each 804 
sample or and the density of site coverage factors Q = (qj: j = 1 to N) as the probability of 805 
obtaining a signal in each locus. The probability of obtaining a signal in sample i and locus j thus 806 
equals pi.qj.r. Those are multiplied to get the individual coverage factor of a specific site in a 807 
specific cell, finally deriving the acquisition dropout status as a factor of a global coverage 808 
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parameter r. E. We provided 100 training cell lineage trees of 100 cells for C. elegans and of 809 
~1000 cells for M. musculus. As the C. elegans tree has been experimentally solved, its topology 810 
was used to generate the training set. The M. musculus tree being completely synthetically 811 
generated, the training set was obtained by simply running shorter simulations to obtain ~1000 812 
cells trees instead of the ~10,000 cells tree for the test set. F. Top. We extracted the C. elegans 813 
training set from its tree topology by cutting and pasting subsets of tree branches. We followed 814 
the indicated schematic of cutting and pruning 100 times subsets of the whole tree. Note only 815 
one prune and regraft event is shown in red in the diagram. From the obtained topology, the 816 
mutation arrays were generated from the Gamma distribution and then 100 cells were sampled. 817 
This process was repeated 100 times to obtain a full training set. Bottom The boxplots show the 818 
performance of each submitted method for inferring the lineage trees from 100 training lineages 819 
used in the C. elegans in vitro challenge. The similarity between the inferred trees and the 820 
ground truth trees was measured by Robinson-Foulds distance left and Triplet distance right. Red 821 
stars indicate the score for the C. elegans 1000 cell tree. The values for the M. musculus training 822 
set, were not established due to excessive computational time required.  823 
  824 
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 825 

 826 

Box 2 Scoring approach 827 
We applied two widely used metrics for tree comparison: the Robinson-Foulds distance and the 828 
triplets distance. While both metrics are applied to assess tree similarities there is no clear 829 
agreement as to which one is more relevant for lineage trees. We decided to use both metrics as a 830 
way of evaluating their correlation and the insight they provide about the lineage relationships. 831 
The Robinson-Foulds distance is commonly defined as the number of partitions shared by a pair 832 
of trees across all possible partitions. A partition refers to any cut in the internal branches of a 833 
tree that would generate two sub-trees containing complementary leaves. Since the ground-truth 834 
and the inferred lineage contain in total the same set of leaves, we can define a shared partition if 835 
there is a way to cut both the inferred and ground-truth trees such that the resulting sub-trees 836 
share the same sets of leaves. We obtain the RF distance by normalizing to the maximum 837 
possible distance of 1, when there are no shared partitions by the trees (Robinson and Foulds, 838 
1981). On the other hand, the triplet distance enumerates all possible combinations of three 839 
leaves and their corresponding lineage relationship in both the ground truth and the inferred 840 
trees. One then counts the number of shared triplets and normalizes by the total possible number 841 
of triplets to obtain the triplet distance. For both metrics, a distance value of 0 means that the 842 
ground truth and inference trees are identical under the specific criteria while a distance value of 843 
1 means that the inference is comparable to a random guess on the tree structure. Overall, the 844 
Robinson-Foulds metric detects main branching events, while the triplet metric is a better 845 
measure of local branching events.  846 
We here present an illustrative example with left the ground truth and right the predicted tree. In 847 
this case, the tree has three possible partitions top right and ten possible triplets bottom left. Since 848 
1 out of three partitions was incorrect the RF distance is 1/3 or 0.66. Similarly, 4 out of 10 849 
triplets were incorrect for a triplet distance of 4/10 or 0.4. Higher distance implies more 850 
differences between the ground truth and the inference and therefore a lower score. As observed 851 
in the results of this challenge, the relationship between the two metrics will depend on the tree 852 
topology but also on the tree size. Indeed the number of triplets will size as the cube of the 853 
number of nodes, while the RF partitions will scale linearly with the number of nodes. 854 
 855 
 856 

  857 



 32 

Figure 1. Three challenges for lineage reconstruction from experimental and in silico 858 
generated character arrays.   A. Challenge consisting of reconstructing in vitro growing cell 859 
lineages. The lineage tracing intMEMOIR system consists of a character array of editable DNA 860 
elements –or barcodes- and the integrase enzyme Bxb1. A mouse stem cell line was engineered 861 
with both components. A recording event happens when the integrase stochastically edits one of 862 
the 10 elements in the array, resulting in two possible outcomes, deletion and inversion (blue and 863 
red squares). As cells divide, each individual daughter cell acquires unique edit patterns (right 864 
panel). Finally, in situ readouts by smFISH enables the extraction of recorded data for individual 865 
cells. Since the whole experiment is done under a microscope, a ground truth lineage tree is also 866 
generated which we use as our ground truth. B. Diagram showing the simulations performed to 867 
generate the character arrays for the two in silico datasets, an initial cell with N multiple targets 868 
(200 or 1000 for the C. elegans or M. musculus challenge respectively) accumulates one of the 869 
30 independent mutations with a given probability, which are inherited in subsequent cell 870 
divisions. The pattern of mutations accumulated in each cell is used to infer the lineage tree. C. 871 
In silico challenge consisting of reconstructing the ~1000 cells C. elegans cell lineage from the 872 
simulated cell character arrays. For visualization purposes the ground truth cell lineage shows 873 
only the first 9 cell divisions. D. Challenge consisting of reconstructing ~10,000 cells from a 874 
simulated M. musculus cell lineage developmental tree generated using Stochastic Tree Grammar 875 
(STG). The tree simulation describes the early stages of mouse development up to the three germ 876 
layers (Mesoderm, Ectoderm and Endoderm are highlighted with colors in the equations and 877 
resulting tree), those in turn continue to differentiate to the final populations of about 1012 cells 878 
and 11 cell types simulated in the challenge. E. Displayed is a simulation example of the ground 879 
truth tree for a subset of cells from the Mesoderm and Ectoderm, highlighted with the respective 880 
colors, throughout 1 year of development. The edges width and color reflect the hypergeometric 881 
score of its descending leaves. 882 
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Figure 2.  Analysis of challenge results.  A. Average performance across 30 lineages of all 883 
teams by both triplets and RF metrics for the in vitro challenge. B. Average bootstrapped 884 
performance of all teams by both triplets and RF metrics for the C. elegans in silico challenge. C. 885 
Average bootstrapped performance of all teams by both triplets and RF metrics for the in silico 886 
M. musculus challenge D. Number of perfectly reconstructed lineages for each team in the in 887 
vitro challenge. E. We partitioned the in vitro challenge test data into large (more than 8 cells) 888 
and small (less or equal to 8 cells) trees, to assess performance by tree size. F. The scores for the 889 
two metrics of all 30 trees for all 9 teams for the in vitro challenge are plotted against each other 890 
and color coded depending on the size of the tree. Deep blue dots, small trees #cells<10, gray 891 
blue dots, trees with 10<cells<20, light blue dots, trees with #cells>20. Scores show a general 892 
correlation r=0.77 between the two metrics, but also significant dispersion especially for larger 893 
trees.   894 
  895 
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Figure 3.  Different approaches for solving lineage trees and using the training data. 896 
A. In the in vitro challenge, the transition rates from the unedited state (1) to either of the two 897 
edited states (0, 2) can be learned directly from the training data, the probabilities for all possible 898 
transitions at each of the ten array positions are shown as extracted from the training set. B. The 899 
schematic shows that when computing the sequence distances, instead of assigning equal weight 900 
to different character replacement as in Hamming distance, the weighted Hamming distance 901 
assigns different weights to different character replacements. C. Description of Liu lab’s method 902 
in all 3 challenges. First, for the in vitro challenge, the transition probability is calculated by 903 
counting the frequency of every state transition from parent node to child node. For the in silico 904 
challenges the transition probability for all character arrays is extracted. Next, the pairwise cell 905 
distance is defined as the likelihood of two cells’ states arising from two independent events. 906 
Finally, the cell lineage is reconstructed from the distance matrix using the UPGMA method. D. 907 
This schematic shows the Guan Lab’s method used to reconstruct the C. elegans tree.  First, all 908 
gap mutations are remarked based on mutation types at both ends, since gaps, even at the same 909 
sites, could be the results of different mutation incidents from simultaneous mutations at both 910 
ends. Then the mutation weights are generated for each mutation state at each of the 200 sites in 911 
the array and are given by 1-log10(p), where p is the observed probability of the mutation on that 912 
site. The weights define how important characters should be considered when comparing the 913 
mutation states between cells. Then bifurcate clustering of nearest cells was carried out based on 914 
matrix calibration. In the training set, the characters of all cells at all sites will be presented as n 915 
200 by 100 matrices, where n=30 is the number of array characters (0, A, B, ... ). The inner 916 
product of the matrices, which is n 100 by 100 matrices, reveals the relationship between the 100 917 
cells in each tree of the training set themselves according to the 200 states, and the sum of n 918 
product matrices gives the overall pairwise similarity relationship of the 100 cells, where we can 919 
extract the most similar cell pair by the maximum value in that matrix (denoted as dark red, and 920 
the indices of the cells are denoted as i and j). Then a parent cell, generated based on the shared 921 
mutations of the two cells, replaces the two cells and is sent back to next iterations of bifurcate 922 
clustering, until only one pair of cells is left and their parent cell will become the tree root. E. 923 
Top. For the in vitro challenge Cassiopeia-ILP (Yosef Lab) takes as input a “character matrix,” 924 
summarizing the mutations seen at heritable target sites across cells and infers a Steiner Tree, 925 
finding the tree of minimum weight connecting all observed cell states across all possible 926 
evolutionary histories using integer linear programming (ILP). Importantly, the edges connecting 927 
cell states can be weighted by the number of mutations along that edge or the log-likelihood of 928 
these mutations.  Bottom. For both in silico challenges Cassiopeia-Greedy infers a phylogeny 929 
from the observed character-states across all cells, which can be summarized in a cell’s x cut-site 930 
"character-matrix". To do so, the algorithm recursively applies a heuristic to split cells into two 931 
groups based on the frequency of a given state at a character, n(i, s), and the likelihood of that 932 
state arising, p(s). This procedure is applied until a full phylogeny is resolved. F. Using the 76 933 
trees in the training set of the in vitro challenge to compare the relationships between cells that 934 
share a particular state, Liu lab quantified how rarer states are more predictive of the true 935 



 35 

relationship between pairs of cells. As observed in the plot, these relative rates can vary by both 936 
identity and for each of the ten positions in the target array. G. Cassiopeia-ILP (Yosef Lab) is 937 
able to incorporate learned state priors by weighting evolutionary transitions by their log-938 
likelihoods and find a Weighted Parsimony solution. Performance on the training data can 939 
inform whether Weighted or Unweighted Parsimony is better suited.940 
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Figure 4. DCLEAR Learning k-mer replacement distances by simulation.   A. The input 941 
sequences were first used to estimate the summary statistics such as mutation rate (μ), outcome 942 
probability of each character, number of targets and number of tips.  These estimated parameters, 943 
combined with the pre-defined parameters such as cell divisions, were used to simulate multiple 944 
lineage trees from the root node.  The k-mer nodal distances were estimated from these simulated 945 
lineage trees and then used to compute the distances between input sequences. B. The schematic 946 
shows a simulated lineage tree with one root, two internal nodes and three tips.  The nodal 947 
distance is defined as the distance between any two nodes on the lineage tree.  The expected 948 
nodal distance can be estimated from the replacement of individual characters (e.g. between A 949 
and C), the replacement of k-mers (e.g. between 0A and 0C), or sequences (e.g. between A000A 950 
and E00C). C. The heatmap shows the expected nodal distance of the replacement of the most 951 
frequent individual characters.  D. The heatmap shows the probability of replacement of the most 952 
frequent individual characters at a nodal distance of 15.  E. The histogram shows the posterior 953 
distribution of nodal distance of two sequences when having the same characters A or C at any 954 
specific position.  F-G. The histograms show the observed distribution (red bars) and estimated 955 
posterior distribution of nodal distance of two sequences F with the replacement of C- by CC, or 956 
G with BBBB at the same position.  The posterior distributions were estimated by using an 957 
independent model (blue bars) and a conditional model (green bars).  In both cases, the posterior 958 
distribution estimated by the conditional model is more consistent with the observed distribution.  959 
H. The simulated trees were used to compare the performance of lineage reconstruction by using 960 
Hamming distance and k-mer replacement distances with different k’s.  We simulated 1,000 961 
lineage trees with cell division of 16, mutation probability of 0.1, 200 targets and 200 tips.  The 962 
outcome probability was sampled from a Gamma distribution with shape of 0.1 and rate of 2.  963 
For both k-mer replacement distances and Hamming distance, we used a balanced minimum 964 
evolution (ME) algorithm with tree rearrangement (nearest neighbor interchange, subtree 965 
pruning and regrafting, and tree bisection and reconnection) to infer the tree topology.  The 966 
similarity between the inferred tree and the simulated tree was measured by the Robinson-Foulds 967 
(RF) distance.   968 
 969 
  970 
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Figure 5. AMbeRland A decision tree based approach for reconstruct cell lineages 971 
A. After selecting manually different model features for left the in vitro challenge (F1 to F4) and 972 
right the C. elegans challenge, AMbeRland learns the features importance represented by 973 
histograms of the weights, for predicting phylogenetic relationships directly from the training 974 
data using a Gradient Boosting Machine (GBM) middle. These learned weights are then used to 975 
predict the probability of sister-cell relationships on the hold out test data creating a probability 976 
matrix used for hierarchical reconstruction bottom. B. Left Trees are reconstructed from 977 
probability matrices by performing a grid search to obtain the clustering thresholds at each tree 978 
level while maximizing the RF and triplets metrics. Right Example of differences when 979 
establishing thresholds for Tree 29, the largest correctly reconstructed tree in the in vitro 980 
challenge. See also detailed examples in Fig S7 & S8. 981 
 982 

 983 

  984 
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Figure 6. Consensus methods and agreement in tree reconstruction. A. Depth-dependent 985 
agreement between reconstructed trees calculated by Felsenstein Bootstrap Proportion and 986 
Transfer Bootstrap Expectation. Both metrics assess the degree of agreement that different trees 987 
have on specific splits (or cell divisions). High agreement indicates that most teams resolved 988 
splits correctly at that depth. The distribution is computed across all 30 trees in the in vitro test 989 
sets. B. We computed the consensus trees by majority rule using the consensus function from the 990 
R package ape v5.3. The consensus performance in the in vitro challenge is higher than any 991 
individual team by RF distance but not by triplets (red dotted line indicates the best performed by 992 
each metric).  C. Scores summarizing all participating methods for the in silico challenges, 993 
including the PHYLIP consensus and for reference FastTree2. D. Annotated subtree of C. 994 
elegans challenge, edges are marked with tables listing the agreement of each of the 5 individual 995 
submissions and the consensus in Transfer Bootstrap Distance where 1 is high agreement. Colors 996 
refer to the table in C. 997 
 998 

  999 
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Supplementary figures and tables 1000 

 1001 

Figure S1. Mus musculus in silico challenge A. Simulation of the Mouse lineage, “token” cells 1002 

whose lineage are stochastically chosen to be followed as the lineage tree is formed, are shown 1003 

in blue, in white are represented cells whose lineage is not followed. At the end of the simulation 1004 

for the mouse lineage information for about 10,000 blue cells is stored, but it is estimated that the 1005 

size of the tree is about 1012 or a trillion cells. B. Visualization of the 10,000 cell Mouse tree with 1006 

11 types of cells encoded by different colors. 1007 

 1008 

Figure S2. In vitro challenge rankings for all teams according to multiple metrics.   1009 

 The ranks for each team were evaluated by calculating the ranksum values (left boxplots) for the 1010 

Robison-Foulds (middle boxplots) and the triplet metric (right boxplots) sampled 1000 times 1011 

with replacement from the scores for the 30 individual trees. The 9 teams were ordered by 1012 

average ranksum and the Bayes Factor (BF) was calculated, yellow boxes show teams that are 1013 

considered to be tied as they have a 1/3<BF<3 and a BF>3 against all the other teams in grey. 1014 

Implementation of a third metric calculating quartets could not differentiate the top 3 teams: 1015 

Yosef Lab (Cassiopeia) 0.4200, Guan Lab  0.4232, Jasper06  0.4243. 1016 

 1017 

Figure S3. In vitro challenge results with Robinson-Foulds and triplets metrics.   1018 

The participant teams’distribution of scores across 30 reconstructed lineage trees is shown for A. 1019 

triplets metric B. Robinson-Foulds metric C. Histogram showing the difference between the 1020 

Robinson-Foulds and triplets metrics for all 30 trees across all teams. Median of zero indicates 1021 

that overall the metrics agree but dispersion suggests a small bias for higher distance values in 1022 

triplets. D. The histogram of scores of all 30 trees for all 9 teams are for left Robinson-Foulds 1023 

and right triplets metrics, color coded depending on the percentage of unique barcode arrays in 1024 

the tree. Deep blue dots trees with 25-50% unique arrays, gray blue dots trees with 50-75% 1025 

unique arrays, light blue dots, trees with 75-100% unique arrays. E. Comparison of team 1026 

performance depending on whether cells with degenerate barcodes are merged (gold boxes) or 1027 

not (blue boxes). Left Boxplots represent the triplet distances, Right RF distances, of trees where 1028 

for both predictions and ground truth, cells with the same barcodes were merged into a single 1029 
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leaf. The procedure followed for each tree a 100x bootstrap choosing each time a different cell 1030 

with the same barcode as distances were recalculated for each fold. 1031 

 1032 

Figure S4. In vitro challenge list of trees that were reconstructed perfectly by at least one 1033 

team. Ground truth lineages are shown along with the array state for each cell. 1034 

 1035 

Figure S5. In vitro challenge largest trees with high reconstruction scores.  1036 

Two examples of large trees with 29 and 23 cells respectively and their RF and Triplets distance. 1037 

These large but accurate trees were reconstructed by A) AMberLand and B) Yosef Lab 1038 

(Cassiopeia).   1039 

 1040 

Figure S6. Guan Lab approach for in vitro challenge A. Probability of mutations for the array 1041 

sites and their corresponding weights for the Hamming distance. When calculating the weights 1042 
for the Hamming distance, the mutation direction preference is set as reciprocal of the mutation 1043 
frequency so that the rarer the mutation type, the more weight it is given to the distance 1044 
between cells. B. A rule-based Hierarchical clustering approach was used to generate the trees. 1045 
The cells character arrays final states were transformed by weights according to the observed 1046 
probability of mutations, and the transformed states were used to calculate the distance 1047 
between cells. The hierarchical clustering was done using a rule-based method to reconstruct 1048 
parent cells, based on the fact that the editions from initial states (1) to edited states (0 and 2) 1049 
are irreversible. C. Comparison of different clustering methods for the distance matrices 1050 
including Rule-based hierarchical clustering, UPGMA and Neighbor Joining. The performance is 1051 
shown for both triplets and RF distances. The Distribution across the 30 lineages in the test set 1052 
and the average of the two tree measurements is shown by the violin plots. The rule-based 1053 
hierarchical clustering method and UPGMA have similar performance on reconstructing cell 1054 
lineage trees.  1055 

 1056 

Figure S7. Representation of the decision tree and weights obtained by Amberland using 1057 

GBM for the training set in the in vitro challenge. For each decision tree leaf are indicated: on 1058 

top the feature’s weight, the number of cells n and the percentage of the training set cells they 1059 

represent, and in bold is the criteria of the feature used for selecting the next leaf i.e number of 1060 

times the feature is present when comparing the 2 cells character arrays. Features in this case are: 1061 
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F1-both not mutated, F2-both same mutation F3-one mutation F4-different mutations. This 1062 

figure was made using the R package “rattle”. 1063 

 1064 

Figure S8. Reconstructing trees by clustering probability matrices as implemented by 1065 

AMbeRland for the training set of the in vitro challenge. Seventy six trees of different number 1066 

of cells were used to optimize the tree reconstruction thresholds from the probability matrix of 1067 

cells being sisters obtained from training a GBM algorithm A. Performance of the algorithm for 1068 

four sets of thresholds: set_A=(0,0,0,0,0) results in mean RF=0.512 and triplets=0.389; 1069 

set_B=(0.5,0,0,0,0) results in mean RF=0.519 and triplets=0.380; set_C=(0.8,0.4,0.2,0.1,0.05) 1070 

results in mean RF=0.512 and triplets=0.433; and set_D=(0.3,0.1,0.05,0.01,0.005) results in 1071 

mean RF=0.502 and triplets=0.375. The numbers shown in the scatter plots represent the tree ID 1072 

and the color represents the number of cells in the tree. Threshold set_D was used to reconstruct 1073 

the test dataset for submission. B. A perfectly reconstructed tree with 3 thresholds (tree ID 70 1074 

from the training set, RF=0 and triplets=0) has 7 pairs joined into clusters at level 1, 4 pairs 1075 

joined at level 2 and 2 pairs joined at level 3. C. Probability matrices for tree 70 are plotted for 1076 

each level. From here it can be seen that cells 7 and 8 have the highest probability so they are 1077 

first joined into cluster C1, the next pair with highest probability comprises cells 12 and 13 1078 

which joined into cluster C2 and so on. Once all pairs are defined, the algorithm moves to Level 1079 

2, where clusters C2 and C3 have the highest pairwise probability (cells on these two clusters can 1080 

be seen on top right corner of level 1 probability matrix) so they are joined into a new cluster C1. 1081 

The algorithm proceeds until all cells are joined into a single lineage. 1082 

 1083 

Figure S9. Clustering of cells into trees performed by AMbeRland for the training set in the 1084 

C. elegans in silico challenge. One hundred trees of a hundred cells each were used to optimize 1085 

the tree reconstruction thresholds from the probability matrix of cells being sisters obtained from 1086 

training a GBM algorithm A. Comparing performance of the algorithm for two sets of 1087 

thresholds: set_A={0} gives mean  RF distance=0.78 and triplets=0.59; set_B=(0.07, 0.04, 0.01, 1088 

0.05, 0, 0, 0,0) gives  mean  RF distance=0.71 and triplets=0.49.  Threshold set_B was used to 1089 

reconstruct the test sample. B. Ground truth and reconstructed tree for training sample 100, with 1090 

RF distance = 0.48 and triplets=0.44. C. Probability matrices for training sample 100 are plotted 1091 
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for each level. Clusters identified letters C. by Four clusters for level 7 (C1-C4) are indicated on 1092 

the reconstructed tree in B. 1093 

 1094 

Figure S10. Agreement distribution across all reconstructed trees at different normalized 1095 

tree depths for the in vitro challenge. A depth of 0 represents the root of the tree whereas a 1096 

depth of 1 corresponds to the leaves and therefore the depth of cell divisions within the lineage 1097 

fall between [0,1]. Top For a given ground truth lineage, The Felsenstein Bootstrap Support is 1098 

calculated across all reconstructed trees submitted by the teams corresponding to that lineage. 1099 

We obtain a distribution by computing the FBS score for all 30 ground truth lineages. Bottom 1100 

The Transfer Bootstrap Expectation is calculated in an analogous way. 1101 

  1102 

Table S1.  Training and test datasets for the in vitro challenge. 1103 

 1104 

Table S2. Comparing machine learning approaches for reconstruction of the in vitro cell lineage 1105 

trees. 1106 

  1107 

Table S3. Comparing machine learning approaches for reconstruction of the in silico large cell 1108 

lineage trees (for comparison all methods were implemented in a two Intel(R) Xeon(R) CPUs @ 1109 

2.20GHz). 1110 

 1111 

 1112 
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