
HOW (NOT) TO CUT YOUR CHEESE

Abstract. It is well known that a line can intersect at most 2n−1
unit squares of the n × n chessboard. Here we consider the 3-
dimensional version: how many unit cubes of the 3-dimensional
cube [0, n]3 can a hyperplane intersect?

1. Introduction.

Imagine that you have 1000 pieces of processed cheese of identical
size, each of the form of a perfect cube with edge length 1 cm and
wrapped up in very thin paper. Everything is packed neatly into a box
of edge length 10 cm.

Here comes a tomboy who is allowed to cut the box with a thin knife
and she wants to destroy as many pieces of cheese as possible. What
is the maximum number of pieces that she can destroy?

Let us restate the general problem in a mathematical way. Let n ≥ 2
be an integer and consider a cube of edge length n that is divided into
n3 unit cubes in the usual way. What is the maximum number m(n) of
unit cubes that can be cut by a single plane? For us a cut means that
the plane contains some interior points of the corresponding unit cube,
(i.e., not just parts of the wrapping paper of the processed cheese.)

Our main result is that m(n) is asymptotic to 9
4
n2.

Theorem 1. For every n we have m(n) ≤ 9
4
n2 +2n+1. Moreover, for

n large enough, m(n) ≥ 9
4
n2 +n−5 for even n and m(n) ≥ 9

4
n2 +n− 17

4
for odd n, and m(2) = 7, m(3) = 19, and m(4) = 35.

Thus the tomboy can destroy at least 230 and at most 246 pieces of
the processed cheese. This is about one fourth of them, which is quite
a lot. The exact number is unknown.

The proof of the upper bound is in Section 4 and of the lower one
in Section 5. A different approach is needed for n = 2, 3, 4 which is
explained in Section 6.

In higher dimensions the analogous question is to determine the max-
imal number of unit cubes in the [0, n]d cube that a hyperplane can
hit. In a companion paper [3] it is shown that this maximal number is
Vdn

d−1(1+o(1)), where Vd is a well-defined constant depending only on
d. This constant is related to a famous result of Ball [2] and has been
determined recently by Aliev [1]. As it turns out, there is a maximizer
hyperplane that is very close to the one with equation

∑n
1 xi = dn/2.
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2 HOW (NOT) TO CUT YOUR CHEESE

Here a maximizer hyperplane is a hyperplane that cuts the maximum
possible number of unit cubes in [0, n]d. It is called a maximizer plane,
or simply a maximizer when d = 3.

2. The planar case and some preliminaries.

To solve the analogous problem in two dimensions is much easier.
The solution is well known (and is probably folklore): a line can inter-
sect at most 2n−1 unit squares of the n×n chessboard, and this bound
is the best possible. Variants of this statement have become olympiad
problems in several countries. József Beck used a slightly stronger ver-
sion of this fact in a well-known and influential paper [4]. Our key idea
for proving Theorem 1 is to estimate m(n) via the intersection of the
maximizer plane P with certain planes. Before making this precise, let
us explore the case of two dimensions.

Let Bn be the n × n chessboard, naturally divided into n2 unit
squares. Thus Bn = [0, n]2. Let 0 < a < b < 1 be fixed and con-
sider the line L defined by ax + by = t. We are interested in the
number m(L) of unit squares in Bn that are cut by L.

Let Hi = {(x, i) : 0 ≤ x ≤ n}, i = 0, 1, . . . , n be the horizontal line
segments on the chessboard. Similarly, let Vj = {(j, y) : 0 ≤ y ≤ n},
j = 0, 1, . . . , n be the vertical segments. Note that H0, V0, Hn, Vn form
the perimeter of Bn. Suppose that we move on L starting from some
point (x, y) with x < 0 toward Bn; see Figure 1. We go across V0 or Hn

and then enter the first unit square. Moving along L we keep entering
new unit squares exactly when hitting a horizontal or vertical segment
Hi or Vj with 1 ≤ i, j ≤ n − 1. Eventually we hit either H0 or Vn

and then leave the chessboard. This argument shows that L cannot
cut more than 1 + 2(n − 1) = 2n − 1 unit squares. We will need the
following version of this statement.

Proposition 1. Let ` be the length of the intersection L∩Bn, and let
s(L) denote the number of unit squares cut by L. Then

s(L) ≤ 1 +
a+ b√
a2 + b2

`.

Proof. There are four almost identical cases to consider. Namely, L
can enter Bn through V0 or Hn and leave through Vn or H0. We only do
the computation for the pair V0, H0; see Figure 1. The line enters Bn at
(0, v) and leaves at (u, 0). Then L hits bvc of the horizontal segments
Hi, 0 < i < n, and buc of the vertical segments Vj, 0 < j < n. Note

that ` =
√
u2 + v2. Thus

s(L) = 1 + buc+ bvc ≤ 1 + u+ v = 1 +
u+ v√
u2 + v2

`.
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Figure 1. Illustration for the proof of Proposition 1.

In view of the equation ax + by = t, we have u = t/a and v = t/b,
which implies that

u+ v√
u2 + v2

=
a+ b√
a2 + b2

.

�
Now we turn to the 3-dimensional case and prove a simple lower

bound on m(n). The better bound from Theorem 1 is given later, in
Section 5.

Lemma 1. If n ≥ 2 is even then m(n) ≥ 9n2−8
4

, and if n ≥ 1 is odd

then m(n) ≥ 9n2−5
4

.

Proof. Set n∗ = 3n/2 for even n and n∗ = (3n − 1)/2 for odd n.
Consider the plane P with equation x+ y + z = n∗ + δ for some small
δ > 0; for instance δ = .01 will do. The unit cube C(i, j, k) = {(x, y, z) :
i ≤ x ≤ i + 1, j ≤ y ≤ j + 1, k ≤ z ≤ k + 1} where i, j, k ∈ [0, n− 1]
are integers intersects P if and only if i+ j+k < n∗+ δ < i+ j+k+ 3,
which happens if and only if i+j+k equals n∗, n∗−1, or n∗−2 because
i, j, k are integers and δ > 0 is small.

When n is even, i+ j + k = n∗ has a solution in i if and only if j, k
are integers with 0 ≤ j, k ≤ n − 1 and n∗ − (n − 1) ≤ j + k ≤ n∗,
since for each such pair there is a unique integer i ∈ [0, n − 1] with

i+ j+k = n∗. The number of such pairs (j, k) is n2−
(

n/2+1
2

)
−
(

n/2
2

)
as

one can check easily. Identical counting shows that i+ j + k = n∗ − 1
and i+ j + k = n∗ − 2 have, respectively,

n2 −
(
n/2

2

)
−
(
n/2 + 1

2

)
and n2 −

(
n/2− 1

2

)
−
(
n/2 + 2

2

)
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integer solutions with 0 ≤ i, j, k ≤ n − 1. Summing these numbers
gives (9n2 − 8)/4. The calculations are analogous in the odd case. �

Assume now that P is a maximizer, i.e., a plane cutting the max-
imum possible number of unit cubes in Kn where Kn = [0, n]3. For
each of these unit cubes Ci fix an interior point Ri that is on P . By
the definition of interior point, there is a positive εi such that a sphere
of radius εi centered at Ri is contained entirely in Ci. Set ε = mini εi.
Translating P by a vector of length less than ε will always result in
another plane P ′ cutting each of the previous unit cubes Ci. Similarly,
tilting the plane so slightly that none of the Ri moves ε or more re-
sults in a plane P ′′ cutting the maximum number of unit cubes. This
establishes the following result.

Proposition 2. When proving Theorem 1 we may always assume that
the maximizer plane P is in general position, that is, (i) and (ii) hold:

(i) P does not pass through any vertex of any unit cube nor through
the center of Kn.

(ii) P is not parallel to any segment joining two vertices of two,
possibly distinct, unit cubes. �

The center of Kn is Q = (n/2, n/2, n/2). We draw a line through Q
perpendicular to P . Let R be the intersection of the line and P , and let

(a, b, c) be the vector
−→
QR. By turning Kn (and P ) around if necessary

we can assume that (a, b, c) is in the positive orthant, that is, a, b, c are
all positive. By symmetry, we can assume that 0 < a < b < c; note that
in view of Proposition 2 (ii), equality cannot occur. The equation of
the plane is ax+by+cz = d. Replacing (a, b, c, d) by (a/c, b/c, c/c, d/c)
we may assume that c = 1.

Proposition 3. For any maximizer plane P we have a+ b > 1.

Proof. Decompose Kn into n2 vertical stacks of n unit cubes each,
where a vertical stack is just the set of unit squares C(i, j, k), k =
0, . . . , n−1. As m(n) > 2n2 for n > 2, P has to cut at least three cubes
from some stack. Consequently, there are integers 0 ≤ i, j, k, h < n
with k + 2 ≤ h such that P cuts both C(i, j, k) and C(i, j, h). Should
a+b ≤ 1 hold, we infer that, for every pair (x, y, z) ∈ P and (x′, y′, z′) ∈
P of interior points of the two cubes,

ax+ by+ z < a(i+ 1) + b(j + 1) + k+ 1 ≤ ai+ bj + h < ax′ + by′ + z′,

a contradiction. �

3. A formula relying on plane cuts.

Let us define n + 1 “floors” of the big cube Kn as Fi = {(x, y, i) :
0 ≤ x, y ≤ n}, i = 0, . . . , n. Each Fi can be considered as an n × n
chessboard. Let P be a maximizer plane and set Li = Fi ∩ P ; so Li is
either a line segment or is empty. Recall that we may assume Li is not
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a single point in view of Proposition 2 (i). Proposition 3 implies that
either L0 or Ln is nonempty. Indeed if both L0 = Ln = ∅, then the
point (n, n, 0) is below P , which implies that n < an+ bn < d because
a + b > 1; and the point (0, 0, n) is above P , yielding n > d which is
impossible. By symmetry we may assume that Ln 6= ∅.

Lemma 2. There is a maximizer plane P such that either L0 or L1 is
nonempty.

Proof. We are done if there is a maximizer cutting both Fn and F0.
Assume there is no such maximizer. Then every maximizer intersecting
Fn intersects Fn, Fn−1, . . . , Fk but is disjoint from Fk−1 for some k ≥ 1.
Now choose such a maximizer, say P , for which k is minimal. We claim
that k = 1. If not, then the translated plane P ′ = P − (0, 0, 1) is also
a maximizer because if P cuts the unit cube C ⊂ Kn, then P ′ cuts the
unit cube C − (0, 0, 1) ⊂ Kn. As P ′ does not intersect F0, it has to
intersect Fn. So the maximizer P ′ intersects Fn, . . . , Fk and also Fk−1,
contradicting the minimality of k. �

Set p = 0 if L0 is not empty and p = 1 otherwise. Then all seg-
ments Lp, Lp+1, . . . , Ln are nonempty. Consider the orthogonal pro-
jection (x, y, z) → (x, y, 0). It maps Li to the line segment L∗i ; we
denote their common length by `i. The points (x, y, z) ∈ Li satisfy
ax + by = d − i, so the points (x, y, 0) ∈ L∗i satisfy the same equation
(for all i = p, . . . , n). It is easy to check that the distance between L∗i
and L∗i+1 is h := (a2 + b2)−1/2.

Set W = P ∩ Kn and let W ∗ be the orthogonal projection of W
onto F0. Let r(W ) denote the number of unit squares in F0 that have
a common interior point with W ∗. Further write ri for the number of
unit squares in F0 cut by L∗i , i = p, . . . , n.

Lemma 3. The number m(P ) of unit cubes cut by P is

m(P ) = r(W ) +
n−1∑

i=p+1

ri.

Proof. By definition, r(W ) is the number of vertical stacks cut by
P . Whenever P cuts both C(i, j, k) and C(i, j, k+1), then P intersects
the top face of C(i, j, k), which is the bottom face C(i, j, k+1). This is
equivalent to L∗k intersecting the unit square {(x, y) : i ≤ x ≤ i+1, j ≤
y ≤ j + 1} on F0. All unit cubes in a stack cut by P are counted by
their bottom face this way in some rk (k = p + 1, . . . , n − 1) exactly
once, except the bottom-most ones. They are counted in r(W ). �

4. Proof of the upper bound in Theorem 1.

Let P be a maximizer plane with equation ax + by + z = d. The
conditions 0 < a < b < 1 and a + b > 1 imply that 1/

√
2 ≤ h =
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L∗
p

L∗
n

V0 Vn

H0

Hn

Figure 2. The lines L∗h and the two small triangles.

(a2 + b2)−1/2 ≤
√

2. The area of the trapezoid whose vertices are
the four endpoints of the segments L∗i+1 and L∗i is h(`i+1 + `i)/2 for
i = p, . . . , n− 1. The area A of W ∗ is the sum of these areas plus the
areas of the two small triangles, as shown in Figure 2. Write A0 for the
sum of the areas of these triangles. Thus

A = h

(
`p + `p+1

2
+ · · ·+ `n−1 + `n

2

)
+ A0(1)

= h

n∑
i=p

`i + A0 −
h

2
(`p + `n).

Observe that r(W ) is at most the area ofW ∗ plus rp+rn; see Figure 2.
Using Lemma 3 and Proposition 1 we have

m(P ) = r(W ) +
n−1∑

i=p+1

ri ≤ A+ rp + rn +
n−1∑

i=p+1

ri

= A+
n∑

i=p

ri ≤ A+ (a+ b)h
n∑

i=p

`i + n− p+ 1.
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From equation (1) one can express h
∑n

i=p `i as A−A0 + h `p+`n

2
. Since

A0 ≥ 0 this gives

m(P ) ≤ A+ (a+ b)

[
A− A0 + h

`p + `n
2

]
+ n− p+ 1(2)

≤ (a+ b+ 1)A+ (a+ b)h
`p + `n

2
+ n− p+ 1.

This proves that m(P ) ≤ (a+ b+ 1)A+ 3n+ 1, because (a+ b)h ≤
√

2
and `p, `n ≤

√
2n. But our target is a stronger inequality.

We have to estimate A and `p + `n, which is a purely geometric
problem (actually two problems).

We begin with A, the area of W ∗, which is a subset of the square
F0 between two parallel lines, the ones containing L∗n and L∗p. Their
equations are ax+ by = d− n and ax+ by = d− p (recall that c = 1).
These two lines bound a strip S of width nh or (n− 1)h depending on
whether p equals 0 or 1. We can assume that the width is nh as this
may only increase the area of F0 ∩ S. The area of this intersection is
maximal when the strip is symmetric with respect to the center of F0.
This can be seen by translating the strip and checking how the area
changes.

Thus the strip is bounded by the lines with with equations ax+by =
(a + b− 1)n/2 and ax + by = (a + b + 1)n/2 as a simple computation
shows. The first line intersects H0 and V0 in points

(3)

(
a+ b− 1

2a
n, 0

)
and

(
0,
a+ b− 1

2b
n

)
,

and the second line intersects Hn and Vn in points(
a− b+ 1

2a
n, n

)
and

(
n,
−a+ b+ 1

2b
n

)
.

Now the area in question is n2, the area of F0, minus the area of two
congruent right triangles. Direct computation shows then that

A ≤ n2 −
(
a+ b− 1

2a
n

)(
a+ b− 1

2b
n

)
= n2

(
1− (a+ b− 1)2

4ab

)
.

So in order to bound (1 + a+ b)A we need the following lemma.

Lemma 4. Let 0 < a ≤ b ≤ 1. Then

(a+ b+ 1)

(
1− (a+ b− 1)2

4ab

)
≤ 9

4
.

Proof. The statement is equivalent to

(4) 4ab(a+ b) ≤ 5ab+ (a+ b+ 1)(a+ b− 1)2,



8 HOW (NOT) TO CUT YOUR CHEESE

which is clearly correct if 4(a+ b) ≤ 5. So assume 4(a+ b) > 5. Then
(4) holds if and only if

[4(a+ b)− 5] ab ≤ (a+ b+ 1)(a+ b− 1)2.

The square bracket on the left hand side is positive, so the last inequal-
ity holds if and only if it holds when replacing a and b by z = (a+b)/2.
In this case (4) becomes

8z3 ≤ 5z2 + (4z2 − 1)(2z − 1) = 8z3 + (z − 1)2,

which is always true. �

We consider next `p + `n. Let u and v be the endpoints of the
segment L∗p with the x-coordinate of v larger than that of u. If u ∈ V0

and v ∈ H0, then we replace L∗p by its reflection, L′p, with respect to
the center of F0. If u ∈ Hn and v ∈ H0, then replace L∗p by L′p, which
is its translate by the vector (n, 0)− v. The length of L′p is still `p, its
endpoints lie in Hn and Vn, it is still parallel to L∗n, and their distance
has not decreased. In the same way we can replace L∗n by a parallel
segment L′n of length `n whose endpoints lie in H0 and V0. Again, the
lines of L′p and L′n determine a strip, S ′ say. Observe now that the sum
of the lengths of L′p and L′n does not change if the strip is moved so
that it becomes symmetric with respect to the center of F0.

We have to consider the cases p = 0 and p = 1 separately. When p =
0, the line containing L′n has equation ax + by = d′ with d′ ≤ a+b−1

2
n.

The endpoints of L′n are, similarly to (3), (d′

a
, 0) and (0, d′

b
). Since

0 < a, b < 1 and a+ b > 1, we have 0 < d′

a
, d′

b
≤ n

2
, and then the length

of L′n is at most n√
2
. The same applies to L′p = L′0 so `0 + `n ≤

√
2n,

and so in equation (2) we have

(a+ b)h
`0 + `n

2
+ n+ 1 ≤ 2n+ 1.

When p = 1 the distance between L′1 and L′n is at least (n−1)h. The
equation of the line containing L′n is ax+by = d′ with d′ ≤ a+b−1

2
n+1

2
. A

computation similar to the previous one gives that `1 +`n ≤
√

2(n+1),
which implies

(a+ b)h
`1 + `n

2
+ n ≤ 2n+ 1.

So in both cases we have indeed m(P ) ≤ 9
4
n2 + 2n+ 1. �

5. Improving the lower bound.

We give an informal description of the improvement. Consider the
plane P from Lemma 1; its equation is x + y + z = n∗ + δ, where
n∗ = 3n/2 for even n and (3n − 1)/2 for odd n. Write Z for the set
of points (i, j, k) with integer coordinates satisfying 0 ≤ i, j, k ≤ n− 1.
The number of unit cubes hit by P is the number of lattice points
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A

X
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Y

D

(0, 0, 0) (n, n, 0)

(n, n, n− 1)

(0, 0, n)

B

(n, n, n)

L+

L−

Figure 3. Projection in the plane Q.

(i, j, k) ∈ Z lying on three planes P0, P1, P2 with respective equations
x+ y+ z = n∗, x+ y+ z = n∗− 1, and x+ y+ z = n∗− 2, as explained
in the proof of Lemma 1.

Project the whole picture onto the plane Q determined by (0, 0, 0),
(1, 1, 0), and (0, 0, 1). These three planes project onto three lines
L0, L1, L2 in Q; see Figure 3. We consider the case when n is even
and larger than 2. We define four subsets of Z: A and C consist of
points (i, j, 0) with i + j = 3n/2 and i + j = 3n/2 − 2 respectively,
and B and D consist of points (i, j, n − 1) with i + j = n/2 + 1 and
i + j = n/2 − 1, respectively. Their projections onto the plane Q are
marked by A,B,C,D in Figure 3. It is clear that A,B ⊂ P0 and
C,D ⊂ P2.

We introduce two more sets X, Y ⊂ Z: X is the set of points (i, j, 0)
with i + j = 3n/2 + 1, and Y is the set of points (i, j, n − 1) with
i + j = n/2 − 2; their projections are marked with the same letters.
There is a unique plane P+ containing B and X, and another one, P−,
containing C and Y . Their projections are line segments on Q denoted
by L+ and L− in Figure 3. Let S be the set of points in Kn between
the planes P+ and P−. It is clear, for instance from Figure 3, that
every lattice point in Z ∩ (P0 ∪P1 ∪P2) lies in S. Moreover, the points
of X and Y also lie in S.

Proposition 4. If (i, j, k) ∈ S, then the point (i + 1, j + 1, k + 1) is
outside S, above the plane L+.

Proof. It suffices to check this for a single point in P−, say (n −
1, n/2 − 1, 0) ∈ C. Direct verification that can be carried out even in
Figure 3 shows that (n, n/2, 1) is above P+. �
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Let P ∗ be a plane, parallel and only slightly above P+. The proposi-
tion implies that the unit cube C(i, j, k) intersects P ∗ properly for every
(i, j, k) ∈ S ∩ Z. Thus P ∗ cuts all unit cubes that are cut by P plus
the unit cubes from X and Y . Since |X| = n/2− 2 and |Y | = n/2− 1,
P ∗ intersects 9n2/4 + n− 5 unit cubes.

The case of odd n is similar and is left to the reader. Together we
have established the following result.

Theorem 2. If n ≥ 4 is even then m(n) ≥ 9
4
n2 + n− 5, and if n ≥ 5

is odd, then m(n) ≥ 9
4
n2 + n− 17

4
. �

In a formal proof, the equation of P ∗ is x + y + n
n−1

z = n∗ + 1 + ε

with 0 < ε < 1
n+1

and the argument just amounts to checking that P ∗

hits C(i, j, k) for every (i, j, k) ∈ Z ∩S and for every (i, j, k) ∈ X ∪Y .

The lower bound on m(n) can be further improved by 2 (again for
large enough n). To see this, note that the planes P+ and P− separate
the lattice points in S from the lattice points in Kn\S. One can slightly
tilt these two planes (while keeping them parallel) so that a new lattice
point from Kn \ S appears on both of them. We invite the reader to
check that this works. Note that the projection of these new planes
onto Q is no longer a line.

6. A different approach.

Here we show that m(2) = 7, m(3) = 19, and m(4) = 35. Lemma 1
implies that m(2) ≥ 7 and m(3) ≥ 19, while m(4) ≥ 35 follows from
the improved lower bound in Section 5. So we only need to prove the
upper bounds.

We assume again that the equation of P is ax + by + cz = d and
0 < a, b, c (we do not use a < b < c = 1 here). For the upper bound
we need the following.

Lemma 5. If i < i′, j < j′, k < k′, then P may cut at most one of
the cubes C(i, j, k) and C(i′, j′, k′).

Proof. Recall that if (x, y, z) ∈ C(i, j, k) and (x′, y′, z′) ∈ C(i′, j′, k′),
then x < x′, y < y′, z < z′. Thus ax+by+cz < ax′+by′+cz′, showing
that both points could not simultaneously lie in P . �

Next partition the n3 unit cubes in Kn into groups. If 0 ≤ i, j, k < n
and ijk = 0, then we form the group starting with C(i, j, k). Set
t = min{n − 1 − i, n − 1 − j, n − 1 − k} and define the corresponding
group

G(i, j, k) = {C(i, j, k), C(i+ 1, j + 1, k + 1), . . . , C(i+ t, j + t, k + t}.
Note that |G(i, j, k)| = 1 if and only if i, j, or k is equal to n−1. It is

also clear that the number of groups is n3 − (n− 1)3. For an arbitrary
(i, j, k) with 0 ≤ i, j, k < n, we have C(i, j, k) ∈ G(i−s, j−s, k−s) for
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s = min{i, j, k}. Consequently these groups cover (actually partition)
all n3 small cubes. Lemma 5 shows that P cuts at most one small cube
from each group, so we have the following upper bound.

Lemma 6. The plane cuts at most 3n2 − 3n + 1 small cubes in Kn.
Thus m(n) ≤ 3n2 − 3n+ 1. �

Note that this follows from Lemma 3 as well: r(W ) ≤ n2 and each
ri ≤ 2n− 1, so m(n) ≤ n2 + (n− 1)(2n− 1) = 3n2− 3n+ 1. For n = 2
and 3 this bound gives m(2) ≤ 7 and m(3) ≤ 19. In the case n = 4,
3n2 − 3n + 1 = 37. We show next that 35 = 37− 2 is the tight upper
bound.

Lemma 7. We have m(4) ≤ 35.

Proof. We consider the following six groups, each consisting of a
single small cube:

G(3, 3, 0), G(3, 0, 3), G(0, 3, 3), G(3, 0, 0), G(0, 3, 0), G(0, 0, 3).

Should P cut 36 or more small cubes, it must cut at least five small
cubes in the six groups above. By symmetry we can assume that it
cuts the first five of them. Then

d > 3a+3b, d > 3a+3c, d > 3b+3c and d < 4a+b+c, d < a+4b+c.

Adding the last two inequalities gives

(5) 2d < 5a+ 5b+ 2c.

The sum of the first three inequalities is 3d > 6a + 6b + 6c; adding to
this one the first multiplied by 3 gives that 6d > 15a+ 15b+ 6c which
contradicts (5). �

We part with the reader by offering a new question. How many lines
are needed in order to cut all unit squares of the n×n chessboard? The
example of n suitably chosen horizontal lines show that n lines suffice.
As no line can cut more than 2n − 1 squares, n/2 cannot suffice. We
can show a little more, namely, that one needs at least 23

45
n lines. The

truth is probably n.
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Dirac, Motzkin and Erdős in combinatorial geometry. Combinatorica. 3(3-4):
281–297.

Imre Bárány
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13-15 Reáltanoda Street, Budapest, 1053 Hungary
peter.frankl@gmail.com


