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The key goal in optical network design is to introduce intelligence in the network and deliver capacity
when and where it is needed. It is critical to understand the dependencies between network topology
properties and the achievable network throughput. Real topology data of optical networks is scarce and
often large sets of synthetic graphs are used to evaluate their performance including proposed routing
algorithms. These synthetic graphs are typically generated via the Erdos-Renyi (ER) and Barabasi-Albert
(BA) models. Both models lead to distinct structural properties of the synthetic graphs, including the
degree and diameter distributions. In this paper, we show that these two commonly used approaches
are not adequate for the modelling of real optical networks. The structural properties of optical core net-
works are strongly influenced by the internodal distances. These, in turn, impact the signal-to-noise ratio,
which is distance-dependent. The analysis of optical network performance must, therefore, include spa-
tial awareness to better reflect the graph properties of optical core network topologies. In this work, a new
variant of the BA model, taking into account the inter-nodal signal-to-noise ratio, is proposed. It is shown
that this approach captures both the effects of graph structure and physical properties to generate better
networks than traditional methods. The proposed model is compared to spatially agnostic approaches,
in terms of the wavelength requirements and the total information throughput, and highlights how intel-
ligent choices can significantly increase network throughputs whilst saving fibre. © 2021 Optical Society of

America
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1. INTRODUCTION

Optical networks are high-capacity communication networks,
that make use of optical fibres to generate, transmit, process and
route information. These vary in distance- and time-scales, from
long-distance core networks to shorter distance metropolitan-
area and access networks. More recently, optical networks re-
search has entered the realm of data centre networking, connect-
ing multiple data centres as well as intra-data centre, connecting
10s-100s of thousands of servers.

Wavelength division multiplexed (WDM) networks use the
wavelength domain to increase transmission rates per fibre as
well as for routing, establishing high capacity connections, or
lightpaths, between nodes. Significant research efforts have fo-
cused on calculating the number of wavelengths required to
interconnect arbitrarily connected topologies [1–4]. These aimed
to solve combinatorial optimisation problems posed by wave-
length routing in arbitrarily connected graphs without taking

into account physical properties of the networks, such as ge-
ographical node locations and the physical distances between
them. As traffic demands increased, so did the channel rates and
number of wavelength channels per fibre, resulting in the non-
linear Kerr effect becoming a significant source of distortions,
limiting optical fibre transmission rates. This led to studies
aiming to understand and evaluate the optical fibre channel
capacity in point-to-point transmission [5]. Thus optimisation
of wavelength-routing for networks, in the nonlinear regime,
now required physical properties to be taken into account, and a
re-evaluation of which graph characteristics determine network
throughput for a nonlinear optical network.

In [6] the physical properties were included to maximise the
network throughput via optimal routing, however the study fo-
cused on one topology only. Similarly, most papers investigating
routing and resource allocation used specific (and a relatively
small number of) published ’real’ network topologies as bench-
marks for testing algorithms and performance metrics [7–14].

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of Optical Communications and Networking 2

These are not sufficient for the evaluation of routing algorithms
or network performance, as it is important to confirm that the
performance is due to an algorithmic improvement and not due
to some topological artefact.

The overarching goal in network design is, therefore, to un-
derstand which key network topology characteristics impact
the achievable network throughput. This requires the analysis
of sufficiently large sets of graphs to adequately capture graph
structures and physical properties. This paper focuses on the
different techniques to generate and analyse synthetic graphs,
termed generative graph models, with properties that reflect
optical network characteristics, including both graph structure
and physical properties.

Most previous work using generative models did not include
physical properties of optical networks; these are known as non-
geometric generative models [15–18]. Although [19] analysed
the maximum achievable nonlinear throughput for a range of
networks using their physical properties, the process of topology
generation followed that of non-geometric generative models,
not adequately reflecting spatial information.

Recently [20] included physical properties in the generation
of topologies using a genetic algorithm, to quantify maximum
achievable nonlinear throughput. With the main focus on the
comparison of heuristic versus ILP solutions for resource alloca-
tion, this work, however, did not include the necessary analysis
of the generated graph structures.

To include physical properties in the graph generation pro-
cess, there was a number of developments in geometric gener-
ative graph models. [21] modelled optical core networks via a
geometric generative graph model, which scales the probabili-
ties of edges via an exponential decay (known as the Waxman
model). However, as shown in Section 2E the exponential decay
of edge probabilities with distance is not representative of the
distance-dependent penalty observed in optical fibre networks.
Other geometric generative models, in turn, failed to model
well connected local hubs [22], typical of optical core networks
connecting major centres. In [23] graphs were generated using
a variety of geometric generative models, however examined
neither the structure of these graphs nor the physical properties
when investigating their performance.

In [24] a novel geometric generative model with properties
representative of optical core networks, was introduced, together
with a comparison with the traditional non-geometric generative
models, identifying the desirable physical network properties.

In this paper, we expand on this newly proposed model, by
comparing the graph structures it generates - via their degree, di-
ameter and spectral properties - to a set of 25 published example
core optical networks. Our generative model is found to reflect
structures of real optical core networks best and, therefore, is
more realistic than the other investigated models. Therefore,
this model can be used for creating large sets of unique graphs
for future optical network simulation studies. In this paper, it
is applied to study the impact of graph structural features and
physical properties on performance, characterised by the wave-
length requirements, as well as the total throughput of optical
networks.

The rest of the paper is organised as follows. Section 2 de-
scribes the different generative graph models used including
Erdoes-Renyi, Barabasi-Albert, Waxman and the newly pro-
posed signal-to-noise ratio aware Barabasi-Albert model. Section
3 defines the graph properties used to compare the generative
graph models; Section 4 presents the comparison of the graph
properties of all the considered generative and published op-

tical network topologies. In Section 5 the node positions of
the 30-node Continental United States (CONUS) network and
the ubiquitous National Science Foundation network (NSFNET)
topologies are selected as the basis for the graphs generated
by three of the generative models. A comparison of the gen-
erated topologies in terms of wavelength requirements and
maximum achievable network throughput is described. The
results allow the separation of the impact of graph structure
from physical properties and show that, at distances applica-
ble to core networks, physical properties dominate achievable
network throughput.

2. GRAPH MODELS

As mentioned in the introduction, neither geometric or non-
geometric generative graph models ideally capture the structure
of real optical core networks, and this section describes four of
the most common generative models to illustrate their shortcom-
ings in the context of optical networks, together with the newly
proposed model. This new model, which accurately describes
the physical channel, is designed to capture localised hub-like
connections and distance-dependent properties in optical net-
works.

A. Erdos Renyi (ER)
The oldest generative graph model is the ER model [25], a non-
geometric model, in which the graph is created from N nodes
with edges modelled as independent Bernoulli distributions,
given some probability p for each edge in the graph to either ex-
ist or not. The ER graphs can be characterised by G(N, p) where
the number of edges are approximated by E = (N

2 )p [25]. To en-
sure robust optical networks, nodes must be bi-connected; when
applying the ER model yields graphs with higher connectivity
than typical for optical transport network topologies.

B. Barabasi-Albert (BA)
The Barabasi-Albert (BA) preferential attachment model [26] was
developed to be more representative of different types of real
networks, from social to communication networks. The model
uses the ’rich gets richer’ principle for modelling the edges of
graphs, where nodes with higher degree (δ) are more likely to
attract more edges. The BA model is popular within the graph
modelling community due to resulting in degree distributions
that resemble many types of real graphs. The model starts with
two nodes connected by an edge, after which nodes are added
sequentially and a set number of m edges are connected to every
newly added node. The edges are chosen given probability
p(i, j) corresponding to Eq. (1), where i is the newly added
node and j is an existing node in the graph. The probability
p(i, j) is determined only by the sum of all the degrees in the
graph currently and the degree of the node j. This model creates
large connected hubs within the network, which generally are
the nodes added earlier on in the sequence of node additions.
This non-geometric model forms a good basis for modelling
communication networks, however lacks the necessary distance-
dependence properties, important in optical transport networks.

p(i, j) =
δj

∑
k∈N

δk
(1)

C. Waxman
The Waxman model [27] is a geometric generative model that
depends only on distances and does not take into account the
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degree of the nodes within the graph. Probabilities of edge
connections within these graphs are governed by Eq. (2). D(i, j)
represents the distance between the two nodes i and j. L is the
largest distance within the graph and the probabilities are scaled
by the constant θ, with an inverse relationship between θ and the
relative difference in probabilities between connections. In this
work, we altered the Waxman model to operate as a sequential
model, omitting the scaling parameter α due to its negligible
impact on edge probabilities in this case. This model takes into
account physical distances yet does not correctly describe the
distance dependence of optical fibre transmission.

PWAX(i, j) = exp
(
−

D(i, j)
θL

)
(2)

D. Gabriel Graphs (GG)
The Gabriel graph model [28] is a geometric generative model
that is deterministic, i.e. for a specific set of node coordinates it
produces a single unique graph. This lack of flexibility makes
them less suitable for large scale network investigation although
they have been shown to accurately model some aspects of
optical networks in, for example [22, 23]. If the distance between
nodes i and j is denoted by D(i, j), an edge (i, j) exists, if no
node lies within a radius rG =

D(i,j)
2 , drawn from the half way

point between the two nodes.

E. Proposed signal-to-noise ratio aware Barabasi-Albert
Graphs (SNR-BA)

Physical properties of the optical fibre and amplifiers used in
transmission, as well as link (edge) lengths, define the transmis-
sion performance of optical networks. Thus, certain edges may
be structurally beneficial, i.e. enabling more lightpaths to be
setup, however these may be heavily physically impaired. To
include the physical properties of links, and their effect on data
transmission and network throughput, requires the addition of
a metric which describes their impact within the network gen-
eration. The metric chosen in this work is the signal-to-noise
ratio (SNR) of a given transmission link (or edge) and it is in-
cluded within the probability function when choosing edges in
the graph generation process.

As described earlier, since geometric generative models can
capture the grid-like behaviour of real optical core networks, yet
fail at modelling local hubs, we propose to extend the probability
weights of the conventional BA model as defined in Eq. (1). This
is achieved by including the SNR between any two given nodes,
over a direct hypothetical link (single edge) between them, as
a second weight in the conventional BA model. The SNR term
attempts to make realistic link decisions via weighing shorter
links more heavily and the BA term attempts to replicate local
hubs in the network. A weighting parameter (θ) is used to
determine how heavily to weight the physical properties within
the graph generation. The probability weights of the SNR-BA
are then given by

PSNR-BA(i, j) =

 SNR(i, j)

∑
k∈N

SNR(i, k)


θ

·
δj

∑
k∈N

δk
, (3)

where SNR(i, j) is the SNR on the direct link between nodes i and
j. The SNR includes the effects of distortion arising from the opti-
cal Kerr effect. The latter can be approximated as noise, referred

to as nonlinear interference noise, and amplified spontaneous
emission noise from optical amplifiers. Numerous models of cal-
culating the SNR of an optical lightpath have been proposed in
the literature. Following one of the most widespread modelling
approaches, namely a first-order perturbative description of the
nonlinear interference noise, the SNR at optimum launch power
is given by [29].

SNR =
1

3
√

27
4 P2

ASEηn3
, (4)

where PASE is the injected amplified spontaneous emission noise
per amplifier, η is the nonlinear interference coefficient and n is
the number of fibre spans. Eq. (4) assumes an incoherent addi-
tion of nonlinear interference across multiple spans, a common
assumption in the physical layer modelling of optical networks
which imposes negligible inaccuracies for C-band transmission
and beyond, cf. (ε � 1) in [Fig. 10-11 29]. Recalling that the

number of spans is given by n =
⌊

D(i,j)
L

⌉
, where L is the span

length and bxe denotes rounding to the nearest integer, Eq. (4)
can be written as

SNR(i, j) = SNR1 ·
⌊

L
D(i, j)

⌉
, (5)

where SNR1 is the SNR after a single span. Inserting Eq. (5) in
Eq. (3) yields the proposed probability weights as

PSNR-BA(i, j) =


⌊

L
D(i,j)

⌉
∑

k∈N

⌊
L

D(i, k)

⌉


θ

·
δj

∑
k∈N

δk

≈ 1(
∑

k∈N

D(i, j)
D(i, k)

)θ
·

δj

∑
k∈N

δk
,

(6)

where the approximation is introduced by dropping the round-
ing operation. The derivation of Eq. (6), assumes that the ampli-
fied spans have identical lengths throughout the network. While
this is not always satisfied in practice, Eq. (6) still describes the
average SNR scaling with respect to distance.

The next step is to compare the generative models, including
the newly proposed SNR-BA model, with a set of real optical
core networks, described in the next section.

F. Real Optical Core Networks
A data set of 25 core optical network topologies from the surviv-
able network design library (SNDlib) [30] and CONUS topolo-
gies [31], are used in the comparison with the graphs generated
via the different modes in the sections A-D, and are summarised
in Table 2. The constraints on the choice of topologies for the set
was that no network graph could be cut in two by removal of a
single edge, to ensure resilience. Although most networks used
are legacy networks, designed in an era where optical networks
were opaque, the design goals within opaque and transparent
optical networks are very similar. Opaque networks aim at min-
imising edge lengths and the diameter of the network, where
transparent networks aim at minimising the path lengths within
the network to minimise physical layer impairments.

This dataset allowed for accurate distance modelling using
exact geographical node locations for each network. To model
distances in these graphs, their geographical coordinates were
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(a)

real
ER

(b)

real
BA

(c)

real
SNR-BA

Fig. 1. Comparison between the connections made for (a)
ER graph (b) BA graph (c) SNR-BA, on top of the adapated
CONUS topology [31].

used in conjunction with the Harvesine formula [32]. The Harve-
sine formula takes into account the curvature of the earth and
calculates distances over a sphere rather than a plain. We also
account for realistic fibre distances as shown in Eq. (7), where
Dhav represents the haversine distance. The fibre distances are
estimated according to the European Telecommunications Stan-
dards Institute (ETSI) guidelines [33].

The next section defines the metrics used for the analysis of
graph structure properties and the comparison of the generated
and real optical network topologies.

D f ibre =


1.5 · Dhav if Dhav < 1000 km
1500 km if 1000 km ≤ Dhav ≤ 1200 km
1.25 · Dhav if Dhav > 1200 km

(7)

3. GRAPH PROPERTIES

The generative graph models in Section 2 lead to different graph
structures. This can be seen in figure 1 which shows an example
North American topology (CONUS) [31] and one of the set
of 25 real optical core networks, described in Section F. The
published CONUS topology is plotted together with an instance
of a graph generated by ER, BA and SNR-BA, defined in Section
2, for the CONUS node locations. It can clearly be seen that the
SNR-BA model reflects the original structure of the graph better.
Quantitatively analysing and comparing the structures of these
different models is complex, so a set of comparison metrics is
needed and these are defined in this section.

A. Degree & Diameter Distributions
Graphs are defined by the distribution of the individual number
of connections of each node, known as the degree. It has been
shown in [25] and [26] that these generative models give very
distinct degree distributions.

The adjacency matrix defines the edge connections between
nodes, Eq. (8).

A(i, j) =

{
1 if node i is connected to node j
0 otherwise

(8)

Using the adjacency matrix A, the degree of each node i is
the summation of the connections to every other node j, defined
in Eq. (9).

δi = ∑
j∈N

A(i, j) (9)

The diameter of a graph is defined as the maximum eccen-
tricity within a graph, which is the set of shortest paths from a

node to any other in the graph. If the eccentricity of n is ε(n) ,
then the diameter of a graph can be defined as in Eq. (10).

d(G) = max
n∈N

(ε(n)) (10)

B. Spectral Properties
Degree and diameter are conventional metrics for assessing net-
works, however are not sufficient in describing the structural
properties. Spectral graph theory describes the structural proper-
ties of graphs related to the eigenvalues and eigenvectors of the
matrix representations of graphs. These matrices allow for the
modelling of graph structures in matrix form. The spectrum of a
graph is the distribution of eigenvalues of any of the adjacency,
Laplacian and normalised Laplacian matrices. Even though two
graphs that are co-spectral (share the same spectrum) are not
isomorphic, the graph spectrum has been shown to be a method
for measuring similarity between graph structures [34–36].

The Laplacian itself is simply a matrix representation of the
graph, like the adjacency matrix, where edges between nodes
are denoted by values of −1 and the degree of nodes is noted
in the diagonal of the matrix. This can be related back to the
adjacency matrix using Eq. (11) and Eq. (12).

Di,j
L =

{
δi if i = j
0 otherwise

(11)

L = DL − A (12)

Whilst the simple Laplacian and adjacency matrix mainly
describe the structures of regular graphs, the normalised form of
Laplacian, and its eigenvalues, allows to generalise the network
properties [36]. In this paper, we, therefore, use the normalised
Laplacian as defined in Eq. (13), where I is the identity matrix.

LD = D−
1
2

L LD−
1
2

L = I − D−
1
2

L AD−
1
2

L (13)

Eigenvalue distribution of the normalised Laplacian help
identify similarities and differences between graphs. However,
a weighted spectral distribution (WSD) [34] helps highlight
these differences by giving greater weights to the edges of the
spectrum whilst shrinking the centre. To calculate the WSD as
well, as a metric measuring the distance between two graphs
F(G1, G2, N), the following steps are taken.

LD is a real symmetric matrix with real eigenvalues λ(G) =
{λ0, λ1, ..., λN} and real eigenvectors v(G) = {v0, v1, ..., vN}.
Given the eigenvalues of LD one can construct the WSD by the
probability function Eq. (14).

WSD(G)→ {k ∈ K : (1− k)N f (λ = k)} (14)

Using the determined eigenvalues of LD one can construct its
distribution over K bins. The fraction of eigenvalues falling in
bin k is represented by f (λ = k) at each equally spaced bin
k ∈ K. A value of 40 bins was chosen, as it empirically showed
to give interpretable WSDs for graphs of all sizes.

Using Eq. (14) one can also define a metric to measure the ab-
solute distance between two separate graph spectra to quantify
structural similarity between graphs, as

F(G1, G2, N) = ∑
k∈K

(1− k)N( f1(λ = k)− f2(λ = k))2 (15)

From Eq. (13) the normalised Laplacian yields spectra clus-
tered around the eigenvalue this indicates duplicity in the net-
work structure [37] - that is, if eigenvalues of nodes i and j are
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close to one, then it is likely that they share some or all of their
neighbours. The WSD, however, suppresses this feature to am-
plify other structural properties that would have otherwise been
hidden.

The eigenvalues of the normalised Laplacian fall into the
range λ(G) ∈ [0, 2] to describe structural properties. The num-
ber of eigenvalues equal to zero indicates how many connected
components exist in the graph. For optical networks the graph
needs to be a single connected component and therefore consist
of a single connected component, reflected by a single eigenvalue
of value zero. The second smallest eigenvalue is characterised
as the algebraic connectivity [36] which indicates how well con-
nected the network is, where sparse networks have a smaller
value. This value relates to the conductance (Cheeger Constant)
of a graph, which describes how ’bottle-necked’ a graph is [36].

An eigenvalue of 2 indicates that the graph is bi-partite. Bi-
partite being the property of separating a graph into two sub-
graphs without connecting edges within those subgraphs. The
closer the maximum eigenvalue is to 2 the closer it is to being
bi-partite [37]. Generally, this feature is associated with sparsely
connected graphs.

To understand the significance of graph spectra for the real
topologies, these are plotted in figure 2 and 3 together with
3 regular 30-node topologies (5x6 grid, fully connected mesh
and star) to demonstrate the differences in structure are clearly
manifested in the spectrum/WSD. Figure 2 shows the empirical
cumulative distribution function (ECDF) for the eigenvalues
in the range [0, 2]. As can be seen, the fully connected mesh
(diameter of 1) has the highest number of eigenvalues equal
to one, clearly represented by the step-like nature of its ECDF.
This is due to the regular structure of the graph, with every
part of the network being identical. The star graph behaves
similarly, however this type of network is less connected, with a
diameter of two, however the structure of the graph is still highly
repetitive and well-connected, resulting in a large clustering of
eigenvalues around one.

The grid graph, however, has a spectrum that is spread more
evenly, resulting in a more linear ECDF. The diameter of the
grid graph is significantly larger (diameter of 9) than in the star
and fully-connected mesh, and the graph is less well connected.
These structural features push the second smallest and largest
eigenvalues further to the edges of the spectrum, with lower
algebraic connectivity and a more bi-partite graph structure.
One can see that the ECDF for the real topologies is closer to the
grid graph structure.

The real core topologies follow a grid structure more than
that of connected hubs of star topologies, and this is reflected in
the comparison of their WSDs which is shown in figure 3. It is
clear that the star and fully connected mesh graphs have a flat
WSD around zero, as their spectra are fully clustered around
eigenvalues of one (with diameters of 1 or 2). The grid graph
and real core topologies, due to their sparser connectivity and
longer diameters, have more peaks at the edges of their spec-
trum, highlighting lower algebraic connectivity and higher bi-
partite nature. In addition to the conventional graph metrics of
degree and diameter, the analysis of graph spectral properties is
an invaluable additional tool to understand differences in graph
structures.

The next step is to compare the graph metrics of the genera-
tive models of Section 2 with those of the real core topologies.
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Fig. 2. Emperical cumulative distribution function of eigen-
values from the normalised laplacian - evaluated for a fully
30-node connected mesh, a 30-node star, a 5x6 grid and real
optical core networks.
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Fig. 3. Weighted spectral distribution calculated for a 30-node
fully connected mesh, a 30-node star, a 5x6 grid and real opti-
cal core networks.

4. COMPARING GENERATIVE MODELS AND OPTICAL
CORE NETWORKS

A. Dataset Generation

A set of 200 graphs were created, for each of the 25 real op-
tical core networks, introduced in Section 2F, by taking the
node-coordinates of the real networks, and generating the set of
graphs following the rules of each of the generative models of
Section 2, except for the Gabriel graphs for which only a singular
graph was generated. To use this model in future simulation
studies, node locations can be generated by uniformly scattering
nodes on a grid of a given distance scale. To make sure the nodes
are scattered evenly one can define a radius of length r, which
ensures no two nodes are closer than this distance.

In total 5000 graphs were created per generative model. In



Research Article Journal of Optical Communications and Networking 6

the case of the ER graphs, the graphs were first created and then
the nodes assigned positions, as the node positions had no effect
on the creation of the graph. In addition, since the BA graphs did
not take into account distances, the coordinates did not matter,
however the order in which one added nodes to the graph did,
as nodes added early on in the sequence tend to act as highly
connected hubs. Since the node sequence affects the graph gen-
eration, the same method for selecting the sequence of nodes
for the sequential generative models (BA, Waxman, SNR-BA)
was followed. The initial node selected in the sequence was the
most central of all the nodes in the graph. This was determined
firstly by finding the centroid of the graph via Eq. (16), where x
and y refer to the latitude and longitude, respectively. We add
the node with the smallest euclidean distance to the centroid at
the beginning of the sequence. After this the next nodes were
chosen sequentially by comparing every other node’s average
distance to all other nodes already present in the node sequence;
each time adding the node with the smallest average distance to
all other nodes in the sequence.

Cx,y = (
x1 + x2 + ... + xn

n
,

y1 + y2 + ... + yn

n
) (16)

To select the θ parameter in Eq. (2) and Eq. (6) (the distance
weighting factor) a simple sweep of the parameters was carried
out to obtain values that performed well as a starting point, after
which a non-gradient based optimisation was applied using the
Nelson-Mead method [38]. The cost function used to evaluate
the parameters was the weighted spectral distance (F), as de-
fined in Eq. (15). It was found that the weighted spectral distance
between the real graphs and those generated by SNR-BA was
smallest when using θ ≈ 5. For Waxman graphs the smallest
weighted spectral distance occurred when using θ ≈ 8.5. These
values were used to generate the final set of graphs used for the
analysis in this paper.

For the ER graphs p was chosen by evaluating p = E/(N
2 ) . If

a graph was not bi-connected, then p was incremented by 0.01
and another graph generated. This is repeated until a feasible
graph is found; on average 16.7% of the graphs generated were
feasible graphs. For the BA model m was chosen to be b E

N c, after
which edges are added to nodes until the desired number of
edges is reached.

For each of these data sets , their degree, diameter, spectra and
WSDs were calculated as described in Section 3. These distribu-
tions were then tested against the distributions of real topologies
of Section 2F using the Kolmogorov-Smirnoff (KS) two sample
test. This yields two key metrics: an absolute distance, DKS, and
a probability, pKS. DKS gives the largest variation between any
two distributions. Smaller DKS values indicate a small variation
between the two distributions. The probability pKS indicates
whether the two distributions originate from the same popu-
lation, with values close to one showing this, and is formally
defined as the probability of a sample of size n having a DKS of
less or equal than the observed sample. One can evaluate pKS by
using the Kolmogorov cumulative distribution function defined
by

P(DKS ≤ Dobs) =

√
2π

Dobs

∞

∑
i=1

e−(2i−1)2π2/(8D2
obs)

where n denotes the number of samples [39]. The weighted
spectral distance, as defined in Eq. (15) indicates how different
the WSD of two distributions are, where smaller values show
greater similarity. The results of the KS two sample tests and the
weighted spectral distances are summarised in table 1.

Model
WSD Degree Diameter Spectrum

F DKS pKS DKS pKS DKS pKS

BA 0.00045 0.190 0 0.468 0 0.0580 0.003

ER 0.00087 0.222 0 0.397 0 0.0541 0.008

SNR-
BA

0.00019 0.035 0.177 0.119 0.827 0.0120 0.997

Wax 0.00020 0.067 0 0.343 0.004 0.0352 0.194

GG 0.00067 0.141 0 0.252 0.327 0.0553 0.104

Table 1. Weighted spectral distances (F), Kolmogorov-Smirnov
two sample test statistic (DKS) and p-value (pKS), calculated
for the degree, diameter and spectra of the graphs generated
by ER, BA, Waxman, GG and SNR-BA models.

B. Degree Distributions

The results of the comparison of the degree distributions are
shown in figure 4. It can be seen that the BA graphs exhibit
power law behaviour until the end of the tail, where the distribu-
tion is skewed due to the larger proportion of smaller graphs in
the real optical core networks data set. The ER graphs yield de-
gree distributions closer to Poisson distributions. This is because
the ER graph generation aimed to create networks with the same
number of edges as the sparse real optical core networks, and the
resulting degree distribution has a sharper drop-off. Although
the ER degree distribution look similar to that of real optical core
networks, the beginning and end of the tail of the distribution
differ. Finally comparing the SNR-BA, Waxman and GG models,
it is clear these distributions fit more closely to the distributions
of the real optical core networks, although still creating graphs
with higher degrees than real optical core networks. The SNR-
BA graphs match the start and end of the tail better than those
of the Waxman/GG, and this is confirmed in table 1, where the
KS two sample test for the degree distributions of the SNR-BA
graphs produces the smallest absolute distance to the real op-
tical core networks and the largest likelihood pKS, indicating a
larger probability that the two distributions originate from the
same population than that of the other generative models. The
SNR-BA model, thus, appears to generate graphs with degree
properties closest to the real optical network topologies.

C. Diameter Distributions

The next step was to compare the diameter distributions, shown
in figure 5. The real optical core networks show longer diameters
with a large range of up to 16. The BA graphs can be seen to
have shorter diameters, peaking around a diameter of 4. This
is mainly because BA graphs create multiple highly connected
hubs that tend to make connections across the graph - regardless
of distance. ER graphs also have shorter diameters peaking
around a diameter of 5, however as the edges within ER graphs
are modelled as independent Bernoulli distributions, they do
not create highly connected hubs within the graph, resulting in
slightly longer diameters. In the Waxman graphs, it is easy to see
that when introducing distances into the probabilities of edge
creation, the diameters of the graphs start to increase. This is best
demonstrated by the SNR-BA/GG graphs that have very large
diameters, as they prefer shorter edge connections and, therefore,
create grid-structures with inherently longer diameters. Again
it is easy to see in the table 1 that the SNR-BA graphs have the
smallest DKS value, as well as the largest pKS for their diameters
compared to the real graphs.
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D. Spectral Distributions

To give greater insight into the structure of the generated graphs,
the spectra of the eigenvalues of the normalised Laplacian were
compared, following Section 3. Figure 3 is re-plotted in figure 6
by adding the WSDs for all the generative models. As discussed
previously, the key regions are the peaks around the smallest
and largest eigenvalues.

Examining the behaviour of the left most peaks, it can be
seen that the SNR-BA graphs best reflect the smaller algebraic
connectivity values of real network topologies, followed by the
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Fig. 6. Weighted spectral distribution using N = 4 for real
optical core networks and graphs obtained from all generative
graph models.

Waxman graphs. The BA and ER graphs tend to have the peaks
of their spectrum closer to the centre, showing (a) algebraic
connectivities are larger and (b) more of their eigenvalues are
clustered around the centre of the spectrum, around the value
of 1. On the right hand side, the BA graphs exhibit very simi-
lar bi-partite structure compared to SNR-BA graphs, shown by
the peaks at similar positions. It is the Waxman graphs which
appear to mimic the strong bi-partite nature of real optical core
networks the best, indicated by the overlapping peaks, followed
by the SNR-BA and then ER/GG graphs. However, the SNR-BA
graphs have the smallest weighted spectral distance (F), as well
as lowest DKS and largest pKS values of all generative models,
and are thus, the most similar in structure to the real optical
core networks. This comparison of the distributions of the gen-
erative models and the relative differences to the real optical
core networks, highlights the importance of incorporating dis-
tances when modelling optical core networks. The proposed
SNR-BA model combines the key structural features of optical
network topologies together with a description which reflects
their physical behaviour. This analysis can now be applied
to investigate the relationship between the network structure,
physical properties and performance, in terms of key optical
network performance metrics, namely wavelength requirements
and throughput. This is carried out in the next section using
two sample optical network topologies, CONUS and NSFNET,
focusing on the comparison to geometric (SNR-BA) and non-
geometric (ER, BA) graphs. CONUS was selected as a repre-
sentative north-American topology from the set of 25 networks
used and NSFNet has been widely used in literature as a sample
topology for a variety of studies [1, 20, 40]. Waxman and GG
graphs were excluded to reduce computational time, as SNR-BA
graphs were shown to give more structural similarities to real
optical core networks when including distances in the edge cre-
ation process. Furthermore, GG graphs are deterministic and
therefore cannot produce any statistically significant results in
this case study.
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Fig. 7. Process of graph generation and optical network perfor-
mance analysis.

5. NETWORK PERFORMANCE STUDY

The 30-node CONUS topology and the NSFNET [41] are shown
in figure 7 together with the simulation steps in the network
performance study. NSFNET was originally designed in the
1980s and focused on connecting supercomputer centres, not
major city sites, and may now be less applicable. However, it
has been widely used as a reference optical network, topology in
the literature, and we have included it for this reason. Starting
with the CONUS and NSFNET node positions, 200 graphs were
generated by ER, BA and SNR-BA, respectively, with a total 600
graphs per topology. The constraint imposed on the generated
topologies was that no graph could be cut in two by the removal
of a single edge (bi-connectivity). The dramatically different
network topologies, generated from the same set of networks
nodes by different generative models, was already illustated in
figure 1 but can now be analysed quantitatively. As the CONUS
topology is very sparse (connectivity, defined in [1] of 0.082), the
ER and BA graphs struggled to satisfy the resilience constraint,
creating graphs with 25% and 19% more edges than the original
network. The graphs based on the NSFNET node locations have
exactly 21 edges, like the original NSFNET.

The performance metrics used to investigate the impact of
structural and physical distance properties are (i) the lowest
number of wavelengths needed to route all-to-all demands (de-
noted as the lower limit λLL) [42] and (ii) the maximum network

throughput given zero blocking and uniform traffic. To calcu-
late wavelength requirements (λLL) and throughput exactly, an
integer linear program (ILP) was used, given 312 available wave-
lengths within a network, assuming a fully populated C-band
(1530-70 nm) and 16 GBd Nyquist spaced channels (channel
spacing of 0.128nm). This ILP computed λLL for all 1200 of the
ER, BA and SNR-BA graphs. The aim is to compare these with
the λLL value, calculated for the CONUS and NSFNET actual
topologies (together with the exact link distances). The maxi-
mum throughput (T) for the generated graphs was calculated via
another ILP formulation [40] and a closed form Gaussian noise
(GN) physical layer impairments (PLI) model [43], explained in
Section 5B, to estimate the SNR of the different lightpaths, to
compare real and generated networks. Between any node pair,
only paths that are the same length (in terms of hops) as the
shortest path were allowed to be used.

A. Wavelength Requirements
To calculate the λLL value of the graphs, an ILP based on [42] was
used. For a network, a set K of k-shortest paths was found using
Yen’s algorithm [44], which iteratively finds alternate routes
between source and destination nodes of varying lengths. The
value of k was set to 100, although in most cases a significantly
smaller number was achieved and used; the resultant paths were
filtered so that only paths of the same lengths (number of hops)
as the shortest path were used. A set of Z node pairs (equipped
with a set of maximum W wavelengths) needs to be connected
via a routing and wavelength assignment (RWA) via a set of K
paths. The decision variable δw,k,z - with w ∈ W, k ∈ K, z ∈ Z
- is able to fully define the RWA of a network following the
definition in Eq. (17).

δw,k,z =


1 if (k, w) are the RWA assignment

for node pair z
0 otherwise

(17)

To define whether a wavelength is needed for routing within
the network, the variable uw is defined as in Eq. (18).

uw =


1 if wavelength w is used in any

assignment in δw,k,z

0 otherwise
(18)

Constraining uw ≥ δw,k,z ∀w ∈W ∀k ∈ K ∀z ∈ Z.
Using uw, an objective function is defined to minimise the

sum of uw over all w ∈W, as defined in Eq. (19).

λLL = min
(

∑
w∈W

uw

)
(19)

The ILP solution set needs to be constrained, so as to only
give solutions that are feasible for optical networking. Firstly,
by only assigning a single path and wavelength per node pair
z ∈ Z as defined in Eq. (20).

∑
w∈W

∑
k∈K

δw,k,z = 1 ∀z ∈ Z (20)

Secondly, no two node-pair path assignments can share a
wavelength on any given edge j. Therefore, the variable I(j ∈ k)
is defined to be 1 when edge j is in path k and 0 otherwise. Using
this the wavelength uniqueness can be constrained as in Eq. (21).

∑
z∈Z

∑
k∈K

δw,k,z I(j ∈ k) ≤ 1 ∀j ∈ E ∀w ∈W (21)
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wavelength requirements for the graphs generated by ER, BA
and SNR-BA models.

The ILP yielded the minimum wavelength requirements, that
is the minimum number of wavelengths needed to route the
N(N − 1)/2 demands between all node pairs, for the CONUS
network as 122, for the NSFNET this number is 13, same as
determined in [1]. These are shown in the box-plots of figure
8, together with the values for the ER, BA and SNR-BA graphs.
The box-plot shows the distribution of the data together with the
median, interquartile range and the minimum and maximum
values.

Figure 8 shows that the CONUS-based ER and BA graphs
have 52% and 51% lower wavelength requirements than the
SNR-BA graphs. Similarly, NSFNET-based ER and BA graphs
have 31% and 23% lower wavelength requirements, than the
SNR-BA graphs. The ER and BA graphs appear to have a struc-
tural advantage, in terms of wavelength requirements, over the
SNR-BA graphs, because of their smaller diameters and edge
connections spanning larger parts of the graph.

Wavelength requirements used to be a key performance met-
ric in networks, due to wavelengths being a scarce resource.
From this point of view one can see that, in general, the ER and
BA graphs for both the CONUS and NSFNET node locations per-
form well, whereas the SNR-BA graphs have larger wavelength
requirements. The CONUS topology, published more recently
and now considered more representative of real networks [31],
has a wavelength requirement that agrees more with that of the
SNR-BA graphs. NSFNET which has lower wavelength require-
ments, in agreement with graphs generated with ER graphs,

is now considered to be less applicable. Indeed, wavelength
requirements, are generally only explained by the structural part
of the network, neglecting the physical properties in the network.
The overarching goal of network design is to maximise through-
put for the entire network, which requires physical transmission
impairments to be taken into account.

B. Maximum Achievable Throughput
To calculate the throughput of optical networks, fibre linear and
nonlinear transmission impairments need to be taken into ac-
count. Unlike the SNR derived in Section 2E, here we do not
use optimal launch powers, but apply a uniform launch power
of 0dBm (see for example [43]) for all wavelength channels. To
calculate the SNR a closed form GN model was used [43], where
the SNR of a lightpath i is given by Eq. (22) . Here Pi is the
launch power, ηn is the nonlinear coefficient that can be calcu-
lated following equation 5 in [43] and PASE is the power of the
amplified spontaneous emission.

SNRi ≈
Pi

PASE + ηnP3
i

(22)

For this set of simulations, all links were assumed to be mul-
tiples of 80km standard single mode fibre spans with β = 0.2 dB

km ,
D = 18 ps

mm·km and γ = 1.2 1
W·km . In between spans, erbium-

doped fibre amplifiers, each with a noise figure of 4dB was
used (as in [19]), although any practical value larger than the
fundamental limit of 3dB can be used for this analysis. As be-
fore, Nyquist-spaced wavelength division multiplexed (WDM)
channels of 16 GBd were used. They were interfaced with colour-
less, directionless and contentionless, reconfigurable optical add-
drop multiplexers (CDC-ROADM) over a constrained C-band
(1530-1570nm) optical bandwidth. The losses, filtering effects
and amplification needs of the ROADMs were not considered
in this work. This is a limitation of the physical model of the
network and will be investigated in future work to give a more
accurate representation of signal degradation.

To maximise the nonlinear throughput, an ILP based on [40]
was used. This maximises the throughput given a uniform band-
width across all node-pairs. To solve the ILP, the k-shortest paths
were calculated between all node-pairs, after which the SNR for
these paths was calculated assuming the worst case SNR: that
of a centre channel in a fully loaded link, with 0 dBm launch
power per channel, following Eq. (22). Using this SNR, their
achievable capacity is calculated via Shannon’s theorem [45].
Although the Shannon capacity is the upper bound and there
are many forward error correction (FEC) codes that represent
what is achievable, it is used here to illustrate the difference
in achievable throughputs between networks [46, 47]. This set
of capacities is referred to as Cz,k, where z ∈ Z is a node pair
(i, j) and k ∈ K is a path. Tz is the normalised traffic matrix,
in our case simply kept at uniform across the node pairs and
c is a continuous integer variable over which one tries to find
an RWA using δz,k,w such that every node-pair is able to route
proportionally the same amount of bandwidth determined by
Tz. Eq. (23) ensures that every node pair routes at least the prod-
uct of the traffic matrix and the throughput multiplier c and
Eq. (24) describes the objective of maximising c. All the previous
constraints need to be followed, to ensure a feasible RWA set.
Using this ILP the RWA throughput can be maximised given
zero-blocking and uniform bandwidth demand.

∑
w

∑
k

δz,k,wCz,k − cTz ≥ 0 ∀ z ∈ Z (23)
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cmax = max(c) (24)

To calculate the resultant throughput for the RWA, we cal-
culate the accumulated SNR for each lightpath assignment. A
lightpath i = {pi, λi} ∈ R has a path pi and a wavelength λi as-
sociated with it and is part of the set of lightpaths for a routing R.
To calculate the capacity for this lightpath, one first needs to take
into account the edges along which the lightpath travels and
their respective SNR values. Using Eq. (22) and the state of the
network i.e. the knowledge of which wavelengths are present
on which links, one can calculate the SNR(i,e) value on each of
the links e ∈ pi. The total SNR of that path is then calculated by
taking the inverse sum of the NSR (inverse of SNR) values of
each link traversed by the path pi, shown in Eq. (25)

SNRi =

(
∑

e∈pi

1
SNR(i,e)

)−1

(25)

This SNR is then used to calculate the maximum achievable
data rate over this lightpath using Eq. (26) [45]. It can be seen
that the capacity of a lightpath mainly depends on the SNR of
that path, which, in turn, depends on the length and congestion
along the path. BCH represents the channel bandwidth used,
which is kept constant at 16 GHz for all channels.

Ci = 2BCH log2(1 + SNRi) (26)

C = ∑
i∈R

Ci (27)

The throughputs for all the lightpaths, allocated to satisfy the
demand, were calculated and summed, as in Eq. (27) to give the
total achievable throughput of the RWA for a particular network.

The maximum uniform throughput (T) of the ER, BA and
SNR-BA graphs based on the CONUS and NSFNET topologies
was calculated and is shown in figure 9. It can be seen that it is
now the SNR-BA graphs that, on average, perform 48% better
than the ER graphs and 43% better than the BA graphs based on
the CONUS topology, despite the greater number of edges in the
ER and BA graphs. For the NSFNET-based graphs, the SNR-BA
graphs, on average, outperformed the BA and ER graphs by 46%
and 27%, respectively. Therefore, it is clear that the ER and BA
graphs, on average, perform worse than the SNR-BA graphs for
both example networks.

This drop in performance between the ER and BA graphs
compared to the SNR-BA graphs is the result of longer path
lengths in the former. Figure 10a shows the distribution of
average path lengths for all the generative models based on the
CONUS network and 10b for the NSFNET graphs. The paths
in the CONUS-based ER and BA graphs are on average 215%
and 187%, respectively, longer than those taken over the SNR-
BA graphs. For the NSFNET-based graphs, although shorter,
the signals travel 95% and 98% further over the ER and BA
graphs compared to the SNR-BA graphs. This difference in
distances, and the associated transmission penalties, dominate
the achievable throughput, and at these distances the structural
advantages of the ER and BA graphs do not translate into larger
throughputs.

It should be noted that this difference in edge lengths between
the SNR-BA graphs and the ER/BA graphs, results in the dif-
ference in the total deployed fibre lengths. The NSFNET-based
SNR-BA graphs use 53% and 47% less in total fibre compared
to their ER and BA counterparts, respectively. For the CONUS-
based SNR-BA graphs, this difference is even larger, saving 72%
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Fig. 9. Maximum uniform throughput (T) of NSFNET and
CONUS based topologies for the graphs generated by ER, BA
and SNR-BA generative graph models.

and 68% of total fibre compared to the ER and BA graphs re-
spectively. The SNR-BA graphs are on average able to achieve
higher throughput, which directly translates into lower blocking
probability, whilst deploying less fibre.

In calculating throughput, uniform bandwidth demand was
assumed, while a uniform set of connections is assumed when
calculating the wavelength requirements. This difference is sig-
nificant as longer lightpaths with lower SNR values, will inher-
ently need to route more connections to satisfy a given band-
width demand. This difference in the number of connections
required to satisfy a given bandwidth demand is driven by the
physical properties of the network. This is one of the factors
that reduces the structural advantage of the ER and BA graphs,
observed when evaluating wavelength requirements.

Due to this, the number of lightpaths established in the RWAs
(λ) is not significantly different between the SNR-BA graphs and
those of ER and BA. Namely, for the NSFNET based graphs, the
SNR-BA graphs established on average only 8% fewer lightpaths
compared to the ER graphs and 7% more lightpaths compared
to the BA graphs. For the CONUS based graphs, the SNR-BA
graphs established only 11% and 10% fewer lightpaths, on av-
erage, than the ER and BA graphs. This is significant, when
looking at figure 11, where the distributions of throughput per
lightpath ( T

λ ) is shown for each generative model. Here the same
trend as before can be seen, where for the CONUS based graphs,
the SNR-BA graphs achieve 66% and 59% greater throughput
per lightpath than the ER and BA graphs respectively. This is a
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significant difference, solely down to the physical properties of
the network.

In summary, the structural advantage of smaller wavelength
requirements seen in ER and BA graphs, does not equate to
higher throughputs due to the increased path lengths, and asso-
ciated transmission penalties. SNR-BA graphs, however, choose
shorter edges and minimise the path lengths and, therefore, help
maximise throughput when the distance dominates the achiev-
able throughput in the network. This is summarised in figure 12,
where the average values of the edge distances, total deployed
fibre length, number of edges, lightpath lengths, throughput per
lightpath and total throughput are plotted for each of the gen-
erative models and the corresponding network they are based
on. For distance and edge values, the scales are reversed so that
points on the peripheral are better (shorter/smaller), whereas
for throughput values the points on the peripheral are larger.
It is clear that the SNR-BA graphs achieve similar edge num-
bers, total deployed fibre, edge lengths compared to the original
networks, yet lower average lightpath lengths which achieve
higher total throughput and throughput per lightpath, than the
original and ER/BA networks.
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Fig. 11. Throughput (T) per lightpath established (λ) in RWA
of NSFNET and CONUS based topologies for the graphs gen-
erated by ER, BA and SNR-BA generative graph models.

C. Scaling distance & throughput

By looking at different distance scales of the generated graphs,
one can analyse at which point the structural advantages of the
ER and BA graphs are beneficial to the total achievable through-
put of a network. To do this the distances of all edges were
scaled by some factor x ∈ [0.01, 1], after which the throughput
was recalculated. For each value of x another 200 values of
throughput was calculated per generative model. These were
then averaged and plotted in figure 13, along with the through-
put scaling results of the original CONUS and NSFNET graphs,
to understand at which point structural properties benefit total
achievable throughput in optical networks.

In figure 13a one can see that the BA and ER graphs outper-
form the SNR-BA and original CONUS graph when looking
at distance scales where x < 0.1. This is reasonable since BA
and ER graphs are, on average, able to establish more lightpaths
than the SNR-BA and CONUS graphs, however the achievable
throughput of these lightpaths suffers due to long edge dis-
tances. Once these distances become too small to effectively
diminish the throughput of these lightpaths, the ER/BA start
outperforming the SNR-BA and CONUS network. This is down
to the structure of the ER/BA graphs as they have more and
better connected edges than the SNR-BA graphs and original
CONUS network.

Graphs generated for NSFNET node locations were able to
achieve the same number of edges due to higher connectivity of
the original network. Figure 13b shows the average throughput
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Fig. 12. Radar plots showing (clockwise) throughput (T),
throughput per lightpath (T/λ), average lightpath length (P̄),
number of edges (|E|), total fibre deployed (L f ), the averages
of the edge length (Le).

scaling of the networks generated for the various generative
models and for the original NSFNET. Here the BA graphs are
the worst performing graphs, only outperforming the original
NSFNET at smaller distance scales. The ER graphs however
outperform the SNR-BA graphs again at scales of x < 0.1. This
is due to the ER graphs being more uniformly connected across
the graphs, leading to lower wavelength requirements and the
ability to establish more lightpaths due to structural advantages.
This comes at the cost of large link and path lengths. However,
at smaller scales the distance penalties have a significantly lower
or no impact on throughput. As the edges are scaled, the path
lengths grow quicker for the ER and BA graphs due to larger
edge lengths. This in turn reduces their average performance
when looking at the original distance scales - causing SNR-BA
graphs to on average out perform them in the end.

Therefore, when looking at optical core network distance
scales, the SNR-BA graphs that use edge probabilities derived
from the SNR between nodes, create topologies that perform
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Fig. 13. Average throughput (T̄) calculated for the distance
scale x of the graphs generated by the ER, BA and SNR-BA
generative graph models based on node-positions taken from
(a) 30-node CONUS network and (b) NSFNET network.

better, on average, than the ER and BA graphs, due to their
shorter path lengths that are more resistant to scaling of distances
and nonlinearities. However, BA and ER graphs tend to create
graphs with lower wavelength requirements, which create better
performing networks for smaller distance scales. This may not
be applicable to core optical networks but may be valuable when
designing data centre or access networks.

6. CONCLUSIONS

This paper investigated the application of generative graph mod-
els for the analysis of structural and physical properties of optical
networks. The paper compared the conventional Erdos-Renyi,
Barabasi-Albert and Waxman models and a newly proposed
model, SNR-BA using 5000 graphs for each model. The SNR-
BA is designed to take into account the physical properties of
real networks, and the associated linear and nonlinear optical
fibre distortions, by incorporating the signal-to-noise ratio term
in graph generation. It was found that the SNR-BA model re-
sulted in graphs which were structurally most similar to the real
optical core networks for every metric. This is significant as it
highlighted the importance of including physical properties in
graph generation for optical core network simulation studies.

A study of two sample core topologies, CONUS and NSFNET,
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was carried out to compare their performance with that of the
generative models. Graphs were generated based on these net-
works following the ER, BA and SNR-BA models. The metrics
of wavelength requirements and network throughput were used
to assess the performance. The results showed that on aver-
age the ER and BA models tended to have lower wavelength
requirements, as they were graphs with shorter diameters and
higher algebraic connectivities, whereas the SNR-BA graphs had
higher mean wavelength requirements. The maximum achiev-
able throughput was evaluated for all of the graphs, which
showed that the SNR-BA graphs tended to outperform the ER
and BA graphs. Overall, the proposed SNR-BA model was
shown to be most accurate in reflecting core optical network
structures, and offered throughput increases of 29% and 26%,
against the original CONUS and NSFNET topologies. Through-
put increases of 48% and 27% were observed compared to the
ER graphs, and 43% and 46% compared to the BA graphs. These
increases are explained by the edges and path lengths of ER and
BA graphs which are, on average, more than a factor of two
longer than that of the SNR-BA graphs. The SNR-BA graphs,
thus, could lead to significant savings in total installed fibre for
core networks. Using different distance scales, it was shown that
for smaller networks, the structural advantage of the ER and BA
graphs led to them outperforming the SNR-BA graphs. As the
distances grew, however, the SNR-BA graphs tend to perform
better due to their shorter edge distances.

In summary, the structural advantage of lower minimum
wavelength requirements in ER and BA graphs, does not trans-
late to higher throughput due to the increased path lengths,
and associated transmission penalties. The proposed model
of SNR-BA, however, chooses shorter edges, minimising path
lengths throughout the graph, helping to maximise through-
put when the distance dominates the achievable throughput in
the network. This research provides insight into edge choices
and their effect on final achievable throughput which could be
harnessed for future intelligent optical network design. Fur-
ther investigation of the relationship between structure, physical
properties and non-uniform traffic distributions and their effect
on performance is vital to the design of optimal optical network
topologies.
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