
Reinforcement Recommendation with User
Multi-aspect Preference

Xu Chen
∗

Beijing Key Laboratory of Big Data Management and

Analysis Methods, Gaoling School of Artificial Intelligence,

Renmin University of China

Beijing, China

Yali Du

Department of Computer Science

University College London

London, UK

Long Xia

School of Information Technology

York University

Toronto, Canada

Jun Wang

Department of Computer Science

University College London

London, UK

ABSTRACT
Formulating recommender systemwith reinforcement learning (RL)

frameworks has attracted increasing attention from both academic

and industry communities. While many promising results have

been achieved, existing models mostly simulate the environment

reward with a unified value, which may hinder the understanding

of users’ complex preferences and limit the model performance.

In this paper, we consider how to model user multi-aspect pref-

erences in the context of RL-based recommender system. More

specifically, we base our model on the framework of determinis-

tic policy gradient (DPG), which is effective in dealing with large

action spaces. A major challenge for modeling user multi-aspect

preferences lies in the fact that they may contradict with each other.

To solve this problem, we introduce Pareto optimization into the

DPG framework.We assign each aspect with a tailored critic, and all

the critics share the same actor. The Pareto optimization is realized

by a gradient-based method, which can be easily integrated into the

actor and critic learning process. Based on the designed model, we

theoretically analyze its gradient bias in the optimization process,

and we design a weight-reuse mechanism to lower the upper bound

of this bias, which is shown to be effective for improving the model

performance. We conduct extensive experiments based on three

real-world datasets to demonstrate our model’s superiorities.

CCS CONCEPTS
• Information systems→ Personalization.

KEYWORDS
Recommender system, Reinforcement learning, Multi-objective op-

timization

∗ Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449846

ACM Reference Format:
Xu Chen

∗
, Yali Du, Long Xia, and Jun Wang. 2021. Reinforcement Recom-

mendation with User Multi-aspect Preference. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021 ,Ljubljana, Slovenia. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3442381.3449846

1 INTRODUCTION
Recommender system, as an effective remedy for information over-

loading, has been widely applied in a number of real-world appli-

cations, ranging from the e-commerce [15], social network [13]

to music radio [9] and health caring [16]. Traditional models usu-

ally solve the recommendation task within the supervised learning

frameworks, which fails to consider its basically interactive na-

ture and users’ long term engagement [2, 7, 20–22]. To alleviate

these problems, recent years have witnessed an emerging trend

of formulating the recommendation task as a reinforcement learn-

ing (RL) problem. Typically, the recommender system and user are

regarded as the agent and environment, respectively [20, 21]. In

each interaction step (see figure 1(a)), the system takes an action

(recommends an item), and the user responses the action with a

reward (e.g., rating and click). The final objective is to maximize

the total rewards in the whole interaction sequence.

In the research of RL-based recommender system, existing mod-

els mainly focus on how to develop effective agents or simulate ac-

curate environments to enhance the model performance. However,

little attention has been paid to designing rewards for reflecting the

users’ complex preferences in realities, which is crucial for aligning

the learned agent with the real user profiles. Previous methods usu-

ally approximate the reward by a single value, such as an integer

rating reflecting the user’s overall preference on the item, or a 0-1

value indicating whether the user has clicked/purchased the item.

We argue that such simple reward can be problematic from many

perspectives. To begin with, a unified value can be hard in distin-

guishing the user’s fine-grained preference. Users with different

preferences may give the same overall rating for the same item. For

example, in figure 1(b), user A and B both score item X with the full

ratings, but A is more interested in aspect d, while B likes more on

aspect a. Only based on the fact that both A and B like item X, we

cannot distinguish these users and accurately match them with the

candidate items Y and Z, which vary a lot on different aspects. And

then, an ideal agent should recommend items which can maximize

425

https://doi.org/10.1145/3442381.3449846
https://doi.org/10.1145/3442381.3449846

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xu Chen∗ , Yali Du, Long Xia, and Jun Wang

the users’ long-term engagement on all the aspects. However, the

unified reward cannot provide enough signals to optimize the agent

for some specific aspects. The high (or low) overall reward does not

necessarily mean the user like (or dislike) all the item aspects.

To alleviate the above problems, in this paper, we propose to

model user multi-aspect preference in the context of RL-based rec-

ommender system. The singleton reward in RL models is extended

to a reward vector with each dimension corresponding the user’s

preference on an item aspect. While modeling user multi-aspect

preference can more comprehensively understand the users, the

user personalities can be quite complex and diverse, and different

aspect preferences may not align (or even contradict) with each

other. For example, in the hotel recommendation scenario, a user

may enjoy the room size and environment, but these nice properties

make the room cost more, which may lower the user’s satisfaction

on the price. Different aspect rewards may bring the model to dif-

ferent optimal solutions, and it is hard to learn a unified agent

which can simultaneously maximize all the rewards. To reasonably

define and learn an optimal model in such a scenario, we introduce

Pareto optimization into the framework, where we aim to learn

an agent, such that no other agent can concurrently increase all

the aspect-level cumulated rewards. More specifically, we build

our model based on deterministic policy gradient (DPG). We as-

sign each item aspect with a tailored critic, and different critics

share the same actor. For better aligning the actor output with the

users’ real preference, we introduce a supervised regularizer into

the optimization process. For benefiting the model scalability, un-

like previous heuristic strategies [8, 14], the Pareto optimization is

integrated into our framework in a fully differentiable manner. We

demonstrate that the introduction of Pareto optimization may bias

the gradients, and we present the upper bound of the bias, which

is shown to be related with the training batch size. Based on this

theoretical result, a weight-reuse mechanism is further proposed

to correct the gradient bias, and its effectiveness is verified in the

experiments.

In a summary, in this paper, we propose to model the users’

potentially inconsistent multi-aspect preferences in the RL-based

recommender system. To achieve this goal, we extend traditional

DPGwithmulti-objective rewards based on Pareto optimization.We

theoretically analyze the upper bound of our model’s gradient bias,

and propose a weight-reuse method to correct this bias. Extensive

experiments are conducted based on three real-world datasets to

demonstrate our model’s superiorities.

2 BACKGROUND
For more clear and integral presentation, in this section, we briefly

introduce the necessary backgrounds of this work.

2.1 Recommendation as an RL Problem
RL-based recommender models hold the promise to optimize user

long-term utilities. In a typical RL formulation [7, 20], the action is

the recommended item, the state is represented by a user’s previ-

ously interacted products. The reward is the rating from the user

to the item. At each step t , the agent (recommender) takes an ac-

tion at based on the current state st , and the user (environment)

responses the action with a reward rt . The state is transformed into

Figure 1: (a) Recommendation as a reinforcement learning
problem. (b) A toy example for recommendation with user
aspect-level preferences. Both A and B like item X (i.e., scor-
ing it with 5 stars), but their specific preferences are quite
different. A is more interested in aspect d, but B casts more
attention on aspect a. Only based on the overall ratings, the
system cannot well match these users with the candidate
items (e.g., Y and Z), whose qualities varies much on differ-
ent aspects.

st+1 by incorporating at with st in a deterministic manner, that

is, st+1 = (st ,at). After many agent-environment interactions, we

get several trajectories (s1,a1, r1, ..., sT ,aT , rT)’s, and the goal is to

maximize the sum of the rewards in these sequences.

A promising RL model for solving the recommendation task is

the deterministic policy gradient (DPG) [12]. It can well handle the

extremely large item sets by learning the actor within a contin-

uous action space [7, 16, 19, 21]. Basically, DPG is an actor-critic

framework. The critic is implemented based on a Deep Q-Network

Q(s,a |ϕ), which is learned by:

argmin

ϕ

N∑
i=1
(yi −Q(si ,ai |ϕ))

2, (1)

where yi = ri + γQ(si+1, µ(si+1)|ϕ ′) is the target value, µ(si+1) is
the actor model. {(si ,ai , ri , si+1)}

N
i=1 are the training samples. γ is

a discount factor used to balance the short- and long-term rewards.

The parameter ϕ ′ is updated from ϕ, but with a slower pace for

stabilized training. After optimizing the critic, the actor is learned

by maximizing the Q function, that is,

argmax

θ

N∑
i=1

Q(si , µ(si |θ)), (2)

In the whole training process, the critic and actor are alternatively

optimized until convergence.

2.2 Pareto Optimization
Pareto optimization stems from the economics, and has been re-

cently leveraged to solve multi-objective optimization problems

(MOOP) [8, 11] in the machine learning community. In MOOP, the

models are required to optimize a set of loss functions L(θ) =

426

Reinforcement Recommendation with User
Multi-aspect Preference WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

{L1(θ),L2(θ), ...,LM (θ)}. Usually, it is hard to find a unified pa-

rameter θ , which can simultaneously minimize all the Li ’s. In such

a scenario, Pareto optimization provides a reasonable method to

define the optimal solutions. To begin with, different parameters

are compared based on the following concept:

Definition 1. Pareto dominance. Suppose we have two param-

eters θA and θB , we say θA can dominant θB (denoted by θA ≻ θB),
if and only if Li (θA) ≤ Li (θB), ∀i ∈ {1, 2, ...M} and Li (θA) <
Li (θB), ∃i ∈ {1, 2, ...M}.

Intuitively, Pareto optimization aims to find a parameter θ∗,
such that no other parameters can concurrently decrease all the

loss functions. We call such parameter as Pareto efficient solution,

which is formally defined as:

Definition 2. Pareto efficiency. For a parameter θ∗, if there is

no other
ˆθ , such that

ˆθ ≻ θ∗, then we say θ∗ is a Pareto efficient

solution.

In this paper, we leverage Pareto optimization to extend DPG

for optimizing multiple inconsistent rewards, and further apply the

designed model to the task of recommender system.

3 PARETO DETERMINISTIC POLICY
GRADIENT

In this section, we first define the problem studied in this paper, and

then revise traditional DPG to make it compatible for multi-aspect

rewards based on Pareto optimization (we call our model as PDPG).

At last, we theoretically analyze the designed model by presenting

the upper bound of its gradient bias, and propose a weight-reuse

mechanism to lower this upper bound.

3.1 Problem Definition
Suppose we are given a user setU = {u1,u2, ...,u |U |} and an item

set I = {i1, i2, ..., i |I |}. The interactions between the users and

items are collected in the set ofO= {(u,i)|u has interacted with i,u ∈
U, i ∈ I}. For each element (u, i) ∈ O, the user can score on the

item from multiple aspects, for example, in the hotel recommen-

dation, a user can give ratings to a room on its environment, size,

price and etc. We define the rating set R as {rui |(u, i) ∈ O}, where
each rui = {rui,m }Mm=1 represents a user’s ratings on an item’s

different aspects, andM is the aspect number. Given {U,I,O,R},

our task is to build an RL-based recommender model, such that it

can maximize the users’ long-term engagement on all the aspects.

3.2 Multi-aspect Critic
Different from previous RL-based recommender models, where the

reward is unified in the optimization process, we have multiple

rewards, which can be inconsistent with each other due to the

users’ diverse preferences on different item aspects. To well handle

these rewards, we assign each aspect with a tailored critic.

Formally, suppose we haveM item aspects, then the critics are

defined as: {Q1(s,a |ϕ1),Q2(s,a |ϕ2), ...,QM (s,a |ϕM)}, and we opti-

mize them based on:

argmin

ϕm

N∑
i=1
(yi,m −Qm (si ,ai |ϕm))

2, m = 1, 2, ...M (3)

where yi,m = ri,m + γQm (si+1,ai+1 |ϕ ′m) is the target value for

the mth critic. ri = {ri,m }Mm=1 is reward vector with each ri,m
corresponding the user’s preference on themth aspect of item ai .

Remark. i) If we have some prior knowledge about the relation-

ship between different item aspects, the corresponding Qm ’s can

partially (or fully) share their parameters, which makes our critic

optimization similar to a multi-task learning problem [11]. ii) Re-

member that the Q values represent the user’s long-term engage-

ments on different aspects. Larger Q value means the user may

prefer more on the corresponding aspect. Thus, we can explain

the recommendation by highlighting the aspect (e.g., x) with the

largest Q value. A possible explanation template can be that “we

recommend this item to you because it can satisfy your long-term

engagement on aspect [x]”. Such explanation cares more on the

users’ long-term preference, which is different from previous short-

term recommendation explanations.

3.3 Pareto-efficient Actor
Asmentioned in section 2.1, the actor in DPG is learned by maximiz-

ing the Q function (i.e., equation (2)). However, in our framework,

there are multiple Qm ’s, and it is difficult to find a unified θ which

canmaximize all the Q functions. Straightforwardly, we can average

differentQm ’s with some predefinedweights, and use single-reward

models to learn the parameters. However, such method is limited

in two aspects: on one hand, different objectives may vary in scale

and importance. To find appropriate weights, one has to grid search

the value for each weight. ForM aspects with d search points, the

model have to be optimized for dM−1 times, which is quite time-

consuming and labor-intensive, especially when the aspect number

becomes larger. On the other hand, such method only guarantees

that the sum of the Q functions is maximized, but there is no mech-

anism to make sure that each Qm is continually increased in the

optimization process.

To alleviate these problems, we introduce Pareto optimization

into the actor learning process. More specifically, we still average

different Q functions, and the weights are assumed to be w =
{w1,w2, ...,wM }, which induces a loss function:

l(θ) = −
M∑

m=1
wm

N∑
i=1

Qm (si , µ(si |θ)) (4)

However, different from the previous methods, we dynamically

adjust the weights to guarantee that different Q functions can be

simultaneously increased, and finally achieve a Pareto efficient

solution.

Formally, the weights are determined by solving the following

quadratic programming (QP) problem:

min

w
| |

M∑
m=1

wm∇θ

N∑
i=1

Qm (si , µ(si |θ))| |
2

2

s .t . eTkw ≥ bk , ∀ k ∈ [1,K]

1Tw = 1, wm ≥ 0, ∀m ∈ [1,M]

(5)

where 1 is an all-one vector. {e1,e2, ...,eK } and {b1,b2, ...,bK } are
predefined preference vectors and values.ek = {ek,1, ek,2, ..., ek,M },∑M
m=1 ek,m = 1, and ek,m ≥ 0,bk ≥ 0,∀m ∈ [1,M], k ∈ [1,K].

427

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xu Chen∗ , Yali Du, Long Xia, and Jun Wang

Remark. i) With the preference vectors and values, we actually in-

corporate the prior knowledge on different aspects into the training

process implicitly. For example, if ek is a one-hot vector, then the

constraint in equation (5) aims to set an importance-level for the cor-

responding Q function by bk . More general constraints can also be

added according to the specific applications. ii)w can be computed

as long as we know ∇θ
∑N
i=1Qm (si , µ(si |θ)). Careful readers may

find that ∇θ
∑N
i=1Qm (si , µ(si |θ)) is just the gradient of θ originally

needed for optimizing the actor. This means that the gradient infor-

mation is reusable, and our adopted Pareto optimization method

can be smoothly infused into the DPG framework.

To see why the weights derived from equation (5) can lead to a

Pareto-efficient solution, we have the following theory:

Theorem 1. Ifw is determined by solving the quadratic program-
ming (QP) problem of (5), then either one of the following holds:
i) The solution to the optimization problem is 0, then the local Pareto
efficient solution is achieved.
ii) d =

∑M
m=1wm∇θ

∑N
i=1Qm (si , µ(si |θ)) is a gradient direction

which does not decrease any Q function.

Proof. For i), if | |
∑M
m=1wm∇θ

∑N
i=1Qm (si , µ(si |θ))]| |2

2
= 0, then∑M

m=1wm∇θ
∑N
i=1Qm (si , µ(si |θ)) = 0. θ cannot be improved to

increase all Q functions, thus the local Pareto efficient solution

achieves [6, 11].

For ii), we write the Lagrangian of problem (5) as:

| |

M∑
m=1

wm∇θ

N∑
i=1

Qm (si , µ(si |θ))| |
2

2

+

K∑
k=1

λk (bk −
M∑

m=1
ek,mwm) + β(1 −

M∑
m=1

wm)

(6)

with λk ≥ 0, β ≥ 0,∀k ∈ [1,K]. The KKT condition for this La-

grangian yields:

(

M∑
m=1

wm∇θ

N∑
i=1

Qm (si , µ(si |θ)))
T ∇θ

N∑
i=1

Qm (si , µ(si |θ))

=

K∑
k=1

λkek,m + β ≥ 0,∀m ∈ [1,M]
(7)

Recall that d =
∑M
m=1wm∇θ

∑N
i=1Qm (si , µ(si |θ)), thus, for allm,

we have dT ∇θ
∑N
i=1Qm (si , µ(si |θ)) ≥ 0, which means d is a direc-

tion which does not decrease any Q function. □

Once we have determinedw , the actor parameter can be updated

by θ ← θ + αθd , where αθ is the learning rate.

Supervised regularization. Above, the policy µ(·) is learned
only based on the Q-values. For further constraining the optimal

actions in a reasonable and safe space [16], we align the output of

µ(·) with the user’s real preference on different items. In specific,

we regularize µ(·) in a supervised manner. The predicted action is

forced to be closer to the items with positive feedback, and simul-

taneously stay away from the negative ones. The objective to be

maximized is:

L(θ) =
N∑
i=1

yi logσ (q
T
o µ(si |θ)) + (1 − yi) log(1 − σ (q

T
o µ(si |θ)))

(8)

where qo is the embedding of item o, yi = 1 if o is exactly the user’s
purchased item ai , and 0 for the negatively sampled items. In this

objective, the knowledge learned from the supervision signal is

expected to influence the RL model, such that the predicted action

is not far from the users’ real preference.

When optimizing L(θ), we can straightforwardly merge l(θ) (i.e.,
equation 4) and L(θ) by a hyper-parameter (e.g., β) or learn them

alternatively. However, both of these methods are suboptimal. For

the former method, even if we determinew by solving problem (5),

the gradient direction ∇θ (l(θ)+ βL(θ)) does not necessarily satisfy

equation (7), which is crucial for achieving the Pareto efficient

solution. For the latter strategy, after optimizing l(θ), the parameter

θ will be further changed by L(θ), which cannot guarantee the

increasing of all the Q-values.

To overcome these drawbacks, one may find that the objective (8)

can be rewritten as L(θ) = Q̃((o,yi), µ(si |θ)), which is similar to a Q

function if we regard (o,yi) as a pseudo-state. Thus we take L(θ) as
a special Q function, and incorporate it into equation (4) and (5) to

learn the Pareto efficient solution jointly, where we assign Q̃ with

an additional Pareto weight w̃ . With this method, all the Q functions

and L(θ) can be simultaneously optimized along a non-decreasing

direction.

Learning algorithm.We present the whole training procedure

of our framework in Algorithm 1. To begin with, many transactions

are generated according to the current policy, and we push them

into the “replay buffer” B (line 5-11). Then the critic is optimized

based on the multi-aspect ratings (line 12-19). In the next, we derive

the gradients ofQm (or Q̃) w.r.t. θ , which will be used for computing

w and the actor learning (line 21-23). The weightw is computed by

solving problem (5) (line 24). And based on the learnedw , the actor

is optimized by stochastic gradient ascent (line 25-27). At last, the
target parameters are updated in a soft manner (line 28-29).

3.4 Implementation of the Critic and Actor
Before describing the architectures of the critic and actor, we firstly

introduce how to derive the environment state s . In an RL-based

recommender system, the state concludes the user’s current status.

In our model, it is computed from the embeddings of a user and her

previously interacted items. For a user u, suppose her interacted
items are {i1, i2, ...ilu }, then the state s is computed as:

s = pu +
lu∑

m=1
qim (9)

where pu and qim are the user and item embeddings
1
, respectively.

In our critic, the state-action pair is transformed into a Q-value

based on a two-layer neural network, that is,

Q(s,a) =W2ReLU(W1ReLU(W
Q [s;a]) + b1) + b2, (10)

where {W2,W1,b1,b2,W
Q
s ,W

Q
a } are weighting parameters to be

learned, ReLU is the activation function. [·; ·] is the concatenate

1
Here, we use different embedding metrics for the critic and the actor

428

Reinforcement Recommendation with User
Multi-aspect Preference WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 1: Pareto Deterministic Policy Gradient

1 Initialize Actor parameter θ and Target Actor parameter

θ ′ ← θ .
2 Initialize Critic parameter ϕm and Target Critic parameter

ϕ ′m ← ϕm ,∀m ∈ [1, M].
3 Initialize Pareto weightsw = { 1

M+1 ,
1

M+1 , ...,
1

M+1 } and

replay buffer B.
4 for episode number in [1, K] do
5 i) Trajectory Generation
6 Get start state s1
7 for step t in [1, T] do
8 Select an action according to at = µ (st |θ) + Nt , Nt

is an exploration noise.

9 Execute at to obtain the new state st+1 and the

reward vector rt = {rt,1, rt,2, ..., rt,M }.
10 Push {st ,at ,rt , st+1} into the replay buffer B

11 end
12 ii) Update Critic
13 Sample Z instances {si ,ai ,ri , si+1} from B

14 for criticm in [1, M] do
15 for i in [1, Z] do
16 Compute yi = ri,m + γQm (si+1, µ (si+1 |θ ′)|ϕ ′m).

17 end
18 ϕm ← ϕm − αϕ∇ϕm {

1

Z
∑Z
i=1(yi −Qm (si ,ai |ϕm))2}.

19 end
20 iii) Update Pareto Weight
21 for i in [1, Z] do
22 form in [1, M] do
23 pi,m = ∇aQm (s,a)|s=si ,a=µθ (si)∇θ µ(s |θ)|s=si .

24 end
25 p̃i = ∇aQ̃(s,a))|s=(o,yi),a=µθ (si)∇θ µ(s |θ)|s=si .

26 end
27 Updatew = {w1,w2, ...,wM , w̃} by Solving (5).

28 iv) Update Actor
29 d = 1

Z
∑Z
i=1

∑M
m=1wmpi,m + w̃p̃i .

30 θ ← θ + αθd .

31 θ ′ ← τθ + (1 − τ)θ ′.

32 ϕ ′m ← τϕm + (1 − τ)ϕ ′m ∀m ∈ [1,M].
33 end

operation. a is the output from the actor (when updating the actor

and computing the target Q) or the real item embedding (when

updating the critic). In the actor, we project a state into an action

in a deterministic manner, that is,

µ(s) =W4ReLU(W3ReLU(W
As) + b3) + b4, (11)

where {W4,W3,b4,b3,W A
s } are model parameters. Once our model

is learned, the final recommendations are generated by selecting

the items whose embeddings are closer to the output of µ(s) [19].

3.5 Analysis of the Gradient Bias
In the above sections, we have described the implementation of

our framework. Here, we provide some theoretical insights on

the designed model. In the field of neural network optimization,

gradient-based methods are very common and effective. In this

section, we are interested in whether or not the gradients used in

our model is biased from the true gradients, and if yes, how large

is this bias.

Suppose we have many training batches {B1,B2, ...}, and each

Bi is composed of Z samples. For the ith training step,w is derived

based on Bi via problem (5). We re-denotew byw(Bi) to highlight

the relation betweenw and Bi , and the loss2 for each training batch

Bi is:

ˆl(θ) = −
M+1∑
m=1

wm (Bi)
©« 1Z

∑
sb ∈Bi

Qm (sb , µ(sb |θ))
ª®¬ (12)

For easy derivation, we denote∇θQm (s, µ(s |θ)) by fm (s ;θ) ∈ Rd ,
where θ is assumed to be a d-dimensional vector. Let the true and

mini-batch stochastic gradients be ∇θ l(θ) and ∇θ ˆl(θ), respectively.
Then their discrepancy is represented as:

G =
��EBi [M+1∑

m=1
wm (Bi)(

1

Z

∑
sb ∈Bi

fm (sb ;θ) − Es [fm (s;θ)])
] ��

(13)

For G, we have the following theory:

Theorem 2. Suppose i) ∇aQm (s,a) and ∇θ µ(s |θ) are bounded by
Xm and Y , that is, | |∇aQm (s,a)| |2 ≤ Xm and | |∇θ µ(s |θ)| |2 ≤ Y . ii)
The batched gradient of the action-value function for each objective
is unbiased, that is: EBi [

1

Z
∑
sb ∈Bi fm (sb ;θ)] = Es [fm (s;θ)]. iii)

fm (sb ;θ) follows a normal distribution N (Es [fm (s;θ)], σ 2I), where
I ∈ Rd×d is an identity matrix and σ is a scalar. Then we have:

G ≤
M+1∑
m=1
EBi

[
wm (Bi)(|

1

Z

∑
sb ∈Bi

fm (sb ;θ) − Es [fm (s;θ)]|)
]

(14)

≤
Xm∗Y

√
d

√
Z

(15)

wherem∗ = argmaxm |
1

Z
∑
sb ∈Bi fm (sb ;θ) − Es [fm (s;θ)]|.

Here, we present a scratch of the proof, and the complete version

can be seen in the Appendix.

Proof. Since wm (Bi) ≥ 0 and

∑M+1
m=1 wm (Bi) = 1, by Jensen’s

inequality, we can derive

G ≤ EBi
[
∥
1

Z

∑
sb ∈Bi

fm∗ (sb ;θ) − Es [fm∗ (s;θ)]∥
]
. (16)

We denote д̂ = 1

Z
∑
sb ∈Bi fm∗ (sb ;θ) and д = Es [fm (s;θ)], then

д̂ and д are d-dimensional random variables, where the ith dimen-

sions are defined as д̂i and дi , respectively. According to assump-

tions iii), we have дi = E[д̂i] and σ 2

д = V[д̂i] ≤
X 2

m∗Y
2

Z Since we

assume д̂i follows a normal distribution, thenvi =
д̂i−дi
σд ∼ N(0, 1),

2
As mentioned above, L(θ) can be seen as a special Q function, and we absorb it into

the sum operation by allocating an additional Pareto weight.

429

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xu Chen∗ , Yali Du, Long Xia, and Jun Wang

and

∑d
i=1v

2

i follows Chi-square distribution χ̃2d . Thus we have:

EBi
[
∥
1

Z

∑
sb ∈Bi

fm∗ (sb ;θ) − Es [fm∗ (s;θ)]∥
]

(17)

≤

(
E[

d∑
i=1
(д̂i − дi)

2]

) 1

2

=
√
dσд ≤

Xm∗Y
√
d

√
Z

(18)

□

From this theory, we can see, the gradients used in our model is

biased, and the bias’s upper bound is in inverse proportion to the

batch size. This suggests that if we use a larger batch size, the upper

bound ofG can be lowered, and wemay potentially learn more accu-

rate parameters. However, larger batch size means more cost on the

computational resources (e.g., GPU memory). If one looks deeper

into this theory, she may find that Ifwm is not related with Bi , then
wm (Bi) can be removed out of the expectation in equation (14).

At this moment, G becomes 0, given that
1

Z
∑
sb ∈Bi fm (sb ;θ) is an

unbiased estimator of Es [fm (s;θ)]. Inspired by this phenomenon,

we design the following “weight-reuse” mechanism.

Weight-reusemechanism. In this method, we introduce a con-

tainerW ∈ RL×(M+1) for storing previously derived Pareto weights.

For each training batch Bi ,w ∈ RM+1 is not always computed by

solving problem (5). We firstly check the weights in the container:

(1) If there is a candidatew∗ ∈W , such that its corresponding

d∗ =
∑M+1
m=1 w

∗
m∇θ

(
1

Z
∑
sb ∈Bi Qm (sb , µ(sb |θ))

)
can increase all

the Q functions, that is, (d∗)T ∇θ

(
1

Z
∑
sb ∈Bi Qm (sb , µ(sb |θ))

)
>

0,∀m ∈ [1,M + 1], then we setw = w∗3. Since the weights inW is

not derived from Bi , the bias G becomes 0 at this moment.

(2) If there is no such weight inW , we solve problem (5) to derive

w , which is then pushed into the container for future “reuse”. In

this scenario, G is not 0, which is bounded by equation (15).

From the above analysis, we can see, under the weight-reuse

mechanism, the bias G has some chances to become 0, thus the

overall upper bound is lowered. In practice, the container size is

fixed as L, and the earliest weights will be moved out when the

container is full. The instances for deriving the weights inW are

temporally frozen to avoid of being sampled into Bi , and causing

dependency
4
.

4 RELATEDWORK
4.1 RL-based Recommender Models
Users’ long-term engagement in a recommender system has re-

cently attracted increasing attention [23–25]. To capturing such

information, reinforcement learning, as a powerful tool for bal-

ancing short- and long-term rewards, has became an interesting

framework for building recommender models. Previously, many

models focus on designing effective agents to generate accurate

recommendations. For example, [20] proposes a GRU based model

to capture user historical behaviors, which is then incorporated

into the DQN framework. [22] also bases itself on DQN, but further

involves more contextual features and continuous time informa-

tion. [7, 19, 21] build their model based on DPG. Since the item

3
If there are multiplew ∗’s, we sample one from them.

4
Here, we assume that different samples are independent

set (action space) can be very large in real-world recommender

systems, these models can be more efficient when learning the

agent. Meanwhile, many models are proposed to build better user

environments for providing more reliable rewards. For example, [2]

explicitly builds a model to simulate user decision process, and

the user model and recommender agent are jointly learned. [1]

leverages model-based RL to formulate the recommendation task,

where the user environment is explicitly learned to accommodate

the recommender agent. Existing models mainly focus on how to

design effective agents or environments, while little effort has been

devoted to studying the rewards, which is important for under-

standing the users and learning more accurate recommendation

policies. In our work, we take a step towards more comprehensive

user reward shaping, where we explicitly model the users’ diverse

preferences on different item aspects.

4.2 Pareto Optimization
In many real-world problems, the machine learning models usually

need to simultaneously optimize multiply objectives. Different ob-

jectives may not always consistent with each other, and the optimal

parameter for one objective may not perform well on the other

ones. In such a scenario, Pareto optimization provides a reason-

able method to trade-off different objectives. In specific, under the

supervised learning framework, [11] leverages multi-objective op-

timization technique to solve the multi-task learning problem. [6]

extends [11] by adding preference vectors for generating more

evenly distributed Pareto frontier. Many efforts have also been de-

voted to applying Pareto optimization to enhance the reinforcement

learning framework. Typically, many models [8, 14] study how to

design multi-objective DQNs based on heuristic Pareto optimiza-

tion strategies. These methods have achieved promising results for

the problems with small and discrete action sets. However, little

attention has been paid to the extremely large or continuous action

spaces, which is yet important for real-world applications. In this

paper, we fill in this gap by extending DPG with multi-objective

rewards, and more importantly, we theoretically analyze the de-

signed model by presenting and lowering the upper bound of the

gradient bias.

5 EXPERIMENTS
In this section, we conduct extensive experiments to demonstrate

the effectiveness of our model, where we focus on the following

research questions:

RQ1: Whether our model can outperform the state-of-the-art meth-

ods?

RQ2: How does different components in our model contribute the

final results?

RQ3: How different hyper-parameters influence our model’s per-

formance?

We begin with the experiment setup, and then present and ana-

lyze the results to answer the above questions.

5.0.1 Experiment Setup. Datasets. We base our experiments on

three real-world datasets including RateBeer, BeerAdvocate
5
and

TripAdvisor
6
. RateBeer and BeerAdvocate contain user ratings on

5
RateBeer and BeerAdvocate are from https://cseweb.ucsd.edu/jmcauley/datasets.html

6
http://www.cs.virginia.edu/ hw5x/dataset.html

430

Reinforcement Recommendation with User
Multi-aspect Preference WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Statistics of the datasets. #Asp indicates the number
of aspects.

Dataset #User #Item #Asp #Interaction Density

RateBeer 6717 20453 5 2345477 1.70%

BeerAdvocate 10701 14228 5 1386424 0.91%

TripAdvisor 1657 5206 7 28578 0.33%

different beers, while TripAdvisor is a travel dataset including the

hotel ratings from the customers. In all these datasets, in addition

to an overall rating, we also have users’ ratings on different item-

aspects. For each beer in RateBeer and BeerAdvocate, people are

allowed to make ratings on its appearance, aroma, palate, and taste.
For the hotels in TripAdvisor, we have user ratings on the service,
cleanliness, value, sleep quality, rooms, and location. The ratings of
these datasets are scaled into the range of [1, 10]. The statistics of

these datasets are summarized in Table 1. We can see these datasets

cover different characters, e.g., TripAdvisor is small and sparse,

while RateBeer is much larger and denser. Based on these diverse

datasets, our model can be evaluated under different settings in a

comprehensive manner.

Baselines. We select the following representative methods as

our baselines:

• BPR [10]: This is a well-known recommender method for

modeling user implicit feedback. We use matrix factorization as its

predictive function in the experiments.

• NCF [3]: This is a state-of-the-art deep recommender model,

where the user and item representations are fed into multiple non-

linear layers to predict the final results.

• EFM [17]: This is a well known explainable recommender

model, where the user preference on different item aspects is incor-

porated into the matrix factorization method.

•MATF [5]:This is amulti-aspect recommendationmodel based

on tensor factorization, where we optimize it based on the pair-wise

BPR loss for fair comparison.

•GRU4Rec [4]: This is a sequential recommendermodel, where

the interacted items are modeled by a recurrent neural network.

• DRR [7]: This is a recently proposed RL-based recommender

model, where the overall rating of each user-item pair is regarded

as the reward.

Environment simulation. Ideally, a model should be trained

and evaluated in an on-line recommender systems to get real user

rewards. However, unlike classical RL problems (e.g., playing Atari

Games), where we can interact with the environment and obtain the

reward with little effort, it is costly and not safe to directly deploy

an immature RL model onto real-world systems [2, 7]. Thus, we

follow previous works [2, 7, 21] to build simulators for approximat-

ing the user reward generation process. In general, the simulator

should well balance the trade-off between the simplicity (efficiency)

and performance (effectiveness), such that our RL model can be

trained with acceptable speed and accuracy. Our simulator is de-

signed as a two-layer fully connected neural network with ReLu

as the activation function. The input is a state-action pair, and the

outputs are the estimated ratings for different item aspects. The

user simulator is learned based on the training and validation sets,

and the average rating prediction performance is satisfied in terms

of RMSE, which is about 0.96 for RateBeer and BeerAdvocate, and

0.91 for TripAdvisor, respectively.

Implementation details. Following the common practice [18],

we chronologically organized each user’s interacted items as a se-

quence in the beginning. And then, we split the sequence when

the time interval between successive interactions is larger than

some threshold, which results in many shorter but more coherent

sessions. We leverage each user’s last 30% sessions as the testing set,

while the others are left for training. The commonly used metrics

including F1@5, NDCG@5 and Cumulated Reward (Cum-Reward)

are adopted to evaluate our models. Among these metrics, F1 aims

to measure the overlap between the recommended items and the

ground truth. NDCG is a ranking-basedmetric, and a hit with higher

ranked prediction contributes more to the final results. Cumulated

reward is utilized to evaluate the users’ long-term satisfaction, and

we report the sum of the rewards for each aspect in the testing

episodes. In our model, we leverage stochastic gradient decent

(SGD) to optimize the parameters, and the learning rates for the ac-

tor and critic are determined in [0.0001, 0.001, 0.01, 0.1]. The batch

size and discount factor γ are tuned in [32, 64, 128, 256, 512, 1024]

and [0.1, 0.3, 0.5, 0.7, 0.9], respectively. The container size of the

weight-reuse mechanism is selected in the range of [1, 2, 3, 4, 5].

5.0.2 Overall Comparison (RQ1). The overall comparison between

our model and the baselines are presented in Table 2, from which

we can see:

•On different datasets, NCF, EFM andMATF perform better than

BPR in most cases, which agrees with the previous work [3, 17].

The reasons can be that NCF can leverage neural networks to model

non-linear user-item relationships, and EFM and MATF are able

to incorporate user multi-aspect preference into their modeling

process. As a result, they both exhibit better performance than BPR.

• It is interesting to see that the sequential model GRU4Rec did

not achieve superior performance than the non-sequential ones.

We speculate that the sequential characters of our datasets are not

significant, the users may comment on the beers or hotels in a quite

random manner. Leveraging recurrent architectures, such as GRU,

to model our data may impose too strong assumptions, which may

lead to unsatisfied performance.

• DRR can usually obtain larger cumulated rewards than the

other baselines, which verifies the capability of RL for modeling

users’ long-term engagement on the recommendation task. For the

other cases, DRR does not perform very well, which may imply

that maximizing the expected Q values do not always align with

the accuracy-based metrics, such as F1 and NDCG.

• Encouragingly, by incorporating multi-objective rewards into

the DPG framework, ourmodel can achieve the best performance on

all themetrics across all the datasets. This observation demonstrates

the effectiveness of our model, which positively answers the first

research question. Comparing with DRR, the modeling of multi-

aspect preference enables us to more comprehensively profile the

users, and incorporated supervised regularizer compensates the Q-

function optimization by constraining the generated actions into a

safe space. Both of these designs help to better understand the users

and improve the final recommendation performance. Comparing

with the other baselines, which only optimize the users’ immediate

preference, our model can appropriately trade off the short- and

431

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xu Chen∗ , Yali Du, Long Xia, and Jun Wang

Table 2: Performance comparison between the baselines and our model. For each metric on different datasets, we use bold
fonts and ∗ to label the best performance and the best baseline performance, respectively. Impr. is short for improvement, and
the last column shows the relative improvement of our results against the best baseline. BeerAd and TripAd are short for the
datasets of BeerAdvocate and TripAdvisor. The aspects are abbreviated as the capitalization of their first two letters,e.g., AP is
short for appearance.

Dataset BPR NCF EFM MATF GRU4Rec DRR PDPG Impr.

RateBeer

F1@5 0.221 0.246
∗

0.241 0.235 0.234 0.221 0.258 4.94%

NDCG@5 0.502 0.547
∗

0.532 0.521 0.519 0.517 0.586 7.07%

Cum-Reward

AP 392.15 384.41 387.93 391.43 395.12 412.22
∗ 434.99 5.52%

AR 379.47 367.21 378.36 382.12 398.18 405.13
∗ 415.42 2.54%

PA 379.01 369.64 377.11 381.91 389.36 401.22
∗ 422.20 5.23%

TA 383.97 377.43 385.60 390.01 394.05 404.36
∗ 421.49 4.23%

OV 388.46 377.24 387.12 391.78 399.17 412.77
∗ 428.25 3.75%

BeerAd

F1@5 0.223 0.261 0.269
∗

0.258 0.251 0.254 0.281 4.42%

NDCG@5 0.552 0.603
∗

0.595 0.582 0.574 0.572 0.651 7.99%

Cum-Reward

AP 371.51 382.61 396.52 391.32 399.61 401.14
∗ 420.81 4.90%

AR 359.81 388.16 386.41 384.51 387.99 396.46
∗ 419.57 5.83%

PA 361.72 382.91 382.12 380.22 397.44 400.13
∗ 420.93 5.20%

TA 369.81 384.41 392.71 391.40 396.78 401.29
∗ 430.72 7.33%

OV 366.69 372.42 381.41 379.33 385.31 389.72
∗ 424.55 8.93%

TripAd

F1@5 0.193 0.219 0.259
∗

0.244 0.217 0.226 0.283 9.49%

NDCG@5 0.519 0.523 0.578
∗

0.561 0.533 0.551 0.619 7.13%

Cum-Reward

SE 401.15 409.33 402.25 401.12 412.13 431.12
∗ 458.80 6.42%

CL 413.69 421.21 409.14 407.35 411.55 446.66
∗ 472.64 5.81%

VA 401.14 411.34 404.77 402.39 415.14 421.22
∗ 447.89 6.33%

SL 402.56 439.20
∗

391.35 389.49 401.34 432.90 464.41 5.74%

LO 398.09 407.44 402.42 400.11 414.17 429.31
∗ 448.27 4.41%

RO 403.53 409.23 406.41 403.54 431.19 467.21
∗ 489.47 7.43%

OV 401.76 412.01 405.92 402.37 407.93 439.31
∗ 473.69 7.82%

long-term user engagements, which leads to superior results on

different metrics.

5.0.3 Ablation Study (RQ2). In the above section, we have eval-

uated our model as a whole. In order to verify whether different

model components are useful for the final result, we conduct ab-

lation studies in this section. In the experiments, the model pa-

rameters are fixed as the optimal values, and the performance is

evaluated based on F1@5 and NDCG@5, respectively. We are inter-

ested in the following questions: (1) Whether Pareto optimization

is necessary? (2) Whether the weight-reuse mechanism is benefit

for the performance? (3) Whether the supervised regularizer can

improve the evaluation results? (4) Whether the Q-function can

lead to better actor optimization?

For answering these questions, we compare our model with its

five variants, that is, (i) PDPG (random pooling): in this method,

different Q-functions are merged by a set of random weights. (ii)

PDPG (average pooling): in this method, we directly average dif-

ferent Q-functions. In both PDPG (random pooling) and PDPG

(average pooling), the weights for different Q functions are fixed

in the optimization process. (iii) PDPG (−reuse): in this method,

we drop the weight-reuse mechanism. (iv) PDPG (−super): in this

method, we do not use the supervised regularizer (i.e., equation (8)),

and the actor is solely optimized based on the Q-functions. (v)

PDPG (−Q): in this method, we drop the Q-functions, and only use

equation (8) to learn the actor in a supervised manner. We present

the comparison results in Table 3.

•We can see, the winner and performance gap between PDPG

(random pooling) and PDPG (average pooling) varies across dif-

ferent datasets, e.g., on RateBeer, PDPG (random pooling) shows

slightly inferior performance than PDPG (average pooling), while

on TripAdvisor, PDPG (random pooling) outperforms PDPG (aver-

age pooling) by a considerable margin. This result manifests that the

weights for merging different Q functions can be data dependent,

and we may need to search a large space to determine their optimal

values. An encouraging observation is that our final model can

consistently achieve better performance than both of these variants.

This observation verifies the effectiveness of introducing Pareto

optimization to coordinate different learning objectives. Based on

the weights derived from problem (5), all the targets are continually

optimized along a non-decreasing direction, which is shown to be

effective in promoting the final recommendation performance.

• Comparing with the final model, if we drop the weight-reuse

mechanism, the performance is lowered on all the datasets. This

result is as expected, and positively answers question (2). An inter-

esting observation is that, in some cases (e.g., on RateBeer), despite

leveraging Pareto optimization, PDPG (−reuse) performs worse

than the fixed weight models, which manifests that the simple

Pareto optimization method may not necessarily bring improved

performances. As mentioned in theory 2, the parameter gradients

432

Reinforcement Recommendation with User
Multi-aspect Preference WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Comparison between ourmodel and its variants.We
use bold fonts to label the best performance. PDPG (ran) and
PDPG (ave) are short for PDPG (random pooling) and PDPG
(average pooling), respectively. For saving the space, we omit
the recommendation number “@5”.

Models

RateBeer BeerAd TripAd

F1 NDCG F1 NDCG F1 NDCG

PDPG (ran) 0.252 0.551 0.269 0.604 0.205 0.456

PDPG (ave) 0.253 0.574 0.266 0.572 0.164 0.294

PDPG (−reuse) 0.238 0.468 0.270 0.558 0.281 0.607

PDPG (−super) 0.216 0.491 0.268 0.575 0.158 0.280

PDPG (−Q) 0.243 0.559 0.266 0.598 0.251 0.567

PDPG 0.258 0.586 0.281 0.651 0.283 0.619

Figure 2: Importance of the supervised regularizer.

Figure 3: Influence of the batch size on the model perfor-
mance.

are biased after introducing the Pareto optimization, which may

negatively impact the actor learning process. As a remedy, we de-

sign the weight-reuse mechanism to lower the upper bound of the

bias, such that the actor optimization can be more aligned with

the true gradients, which is shown effective by the superior perfor-

mance of the final model.

• For questions (3) and (4), we can see neither PDPG (−super)
nor PDPG (−Q) can outperform the complete model, and the results

are consistent across all the datasets. These observations imply that

both the Q function and supervised regularizer are necessary for

the final better performance, which verifies our claims in previous

sections. The balance between these components are also studied

by tunning the hyper-parameters in the following experiments.

5.0.4 Parameter Analysis (RQ3). Different hyper-parameters may

influence the model performance with various sensibilities. In this

Figure 4: Influence of gamma on the model performance.

section, we firstly study the importance of the supervised regular-

izer, and then we investigate the influences of the batch size and

discount factor for the final results, respectively. When studying

one parameter, we fixed the other ones as their optimal values.

Study on the importance of the supervised regularizer. By
the supervised objective (8), we aim to regularize the action into a

safe space, which is not far from the users’ real preference. In this

section, we study the importance of this supervised regularizer for

the final performance. More specifically, we constrain the weight

of the regularizer w̃ by imposing different preference vectors and

values. For example, if we want set the importance level as 0.1,

then the preference vector and value is set as [0, 0, 0, 0, 0, 1] and

0.1
7
, respectively. We tune the importance level in the range of

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and the results are presented

in Figure 2. We can see, the optimal importance level is small for

the datasets of RateBeer and BeerAdvocate, while larger for Tri-

pAdvisor. Considering that TripAdvisor is a much sparser dataset,

the optimization of the Q functions can be highly insufficient. In

such a scenario, we speculate that the supervision signals can be

more needed for compensating the Q function learning, and thus

lead to better performance when the importance level is higher.

Study on the batch size. Batch size is an important hyper-

parameter for training the neural models. In this section, we tune

the batch size in the range of [32, 64, 128, 256, 512, 1024], and the

performance is evaluated based on F1@5 and NDCG@5, respec-

tively. From the results shown in Figure 3, we can see: the best

results are usually achieved when the batch size is relatively large.

This observation agrees with theory 2, that is, larger batch size can

lower the upper bound of the gradient bias, which may potentially

correct the gradient error, and improve the model performance.

Study on the discount factor. In the context of RL-based rec-

ommender system, γ is used to balance the short- and long-term

rewards. Smaller γ pays more attention to the users’ immediate

preference, while larger γ puts more focus on the future engage-

ment. In this experiment, we study the influence of γ by tunning it

in the range of [0.1, 0.3, 0.5, 0.7, 0.9]. The results are presented in

Figure 4. We find that the optimal γ for different datasets varies. For

example, on TripAdvisor and RateBeer, smaller γ can lead to better

results, while on BeerAdvocate, a moderateγ is more preferred. This

observation suggests that γ is sensitive to the dataset, and should

be well tunned in practice for achieving the best performance.

7
Here, we suppose there are five aspects.

433

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xu Chen∗ , Yali Du, Long Xia, and Jun Wang

6 CONCLUSION
In this paper, we propose to capture user multi-aspect preferences

in the context of RL-based recommender system. To this end, we ex-

tend traditional deterministic policy gradient with multi-objective

rewards, and seamlessly infuse Pareto optimization into the mod-

eling process. We provide a theoretical analysis on the designed

framework, and also propose a mechanism to correct the gradient

bias. To demonstrate our model’s effectiveness, extensive experi-

ments are conducted based on the real-world datasets.

Different from previous RL-based recommender models, which

mostly focus on the design of the agent or environment, this paper

opens the door for modeling complex or even conflict user rewards.

We believe there is still much room for improving this work. To

begin with, we can make a more thorough study on the preference

vectors and values, based on which we plan to propose the concept

of “aspect-level” fairness, that is, we should try to equally optimize

different aspects in the training process. In addition, we may also

design more advanced weight-reuse mechanisms, such that we can

find the optimal Pareto weights more efficiently.

ACKNOWLEDGMENTS
This work is supported in part by Beijing Outstanding Young Scien-

tist Program NO. BJJWZYJH012019100020098 and National Natural

Science Foundation of China (No. 61832017).

7 APPENDIX
7.1 Complete Proof of Theorem 2

Proof. According to the Jensen’s inequality, we have |E[X]| ≤

E[|X |]. We also knowwm (Bi) ≥ 0 and

∑M+1
m=1 wm (Bi) = 1, thus:

G =
EBi [M+1∑

m=1
wm (Bi)(

1

Z

∑
sb ∈Bi

fm (sb ;θ) − Es [fm (s;θ)])
]

(19)

≤

M+1∑
m=1
EBi

[
wm (Bi)(∥

1

Z

∑
sb ∈Bi

fm (sb ;θ) − Es [fm (s;θ)]∥)
]
(20)

≤

M+1∑
m=1
EBi

[
wm (Bi)(∥

1

Z

∑
sb ∈Bi

fm∗ (sb ;θ) − Es [fm∗ (s;θ)]∥)
]
(21)

=EBi
[
∥
1

Z

∑
sb ∈Bi

fm∗ (sb ;θ) − Es [fm∗ (s;θ)]∥
]

(22)

(20) holds because of the Jensen’s inequality. (21) holds because of

the definition thatm∗ = argmaxm |
1

Z
∑
sb ∈Bi fm (sb ;θ)−Es [fm (s ;θ)]|,

and (22) holds since

∑
m wm (Bi) = 1.

We denote д̂ = 1

Z
∑
sb ∈Bi fm∗ (sb ;θ) and д = Es [fm (s;θ)], then

д̂ and д are d-dimensional random variables, where the ith dimen-

sions are defined as д̂i and дi , respectively.

According to assumptions iii) in Theorem 2, we have

дi = E[д̂i] (23)

σ 2

д = V[д̂i] ≤ E[д̂
2

i] (24)

≤ E[| |
1

Z

∑
sb ∈Bi

∇aQm∗ (sb ,a)∇θ µ(sb |θ)| |
2

2
]] (25)

≤
X 2

m∗Y
2

Z
. (26)

Since we assume д̂i follows a normal distribution in Theorem 2, we

have:

vi =
д̂i − дi
σд

∼ N(0, 1). (27)

Thus

∑d
i=1v

2

i follows Chi-square distribution χ̃2d , and we have

E[
∑d
i=1v

2

i] = d , then:

EBi
[
∥
1

Z

∑
sb ∈Bi

fm∗ (sb ;θ) − Es [fm∗ (s;θ)]∥
]

(28)

=E
[
∥д̂ − д∥

]
= E

[
(

d∑
i=1
| |д̂i − дi | |

2

2
)
1

2

]
(29)

≤

(
E[

d∑
i=1
(д̂i − дi)

2]

) 1

2

=
√
dσд ≤

Xm∗Y
√
d

√
Z

(30)

□

REFERENCES
[1] Xueying Bai, Jian Guan, and Hongning Wang. 2019. A Model-Based Reinforce-

ment Learning with Adversarial Training for Online Recommendation. In Ad-
vances in Neural Information Processing Systems. 10735–10746.

[2] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2018. Gen-

erative adversarial user model for reinforcement learning based recommendation

system. arXiv preprint arXiv:1812.10613 (2018).
[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[4] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with

top-k gains for session-based recommendations. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 843–852.

[5] Nurkhairizan Khairudin, Nurfadhlina Mohd Sharef, Norwati Mustapha, and

Shahrul Azman Mohd Noah. 2018. Enhancing Multi-Aspect Collaborative Filter-

ing for Personalized Recommendation. In 2018 Fourth International Conference
on Information Retrieval and Knowledge Management (CAMP). IEEE, 1–6.

[6] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. 2019. Pareto

Multi-Task Learning. InAdvances in Neural Information Processing Systems. 12037–
12047.

[7] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen,

Huifeng Guo, and Yuzhou Zhang. 2018. Deep reinforcement learning based

recommendation with explicit user-item interactions modeling. arXiv preprint
arXiv:1810.12027 (2018).

[8] Thanh Thi Nguyen. 2018. A multi-objective deep reinforcement learning frame-

work. arXiv preprint arXiv:1803.02965 (2018).
[9] Marcus O’Dair and Andrew Fry. 2020. Beyond the black box in music streaming:

the impact of recommendation systems upon artists. Popular Communication 18,

1 (2020), 65–77.

[10] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[11] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective

optimization. In Advances in Neural Information Processing Systems. 527–538.
[12] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. 2014. Deterministic policy gradient algorithms.

[13] Peijie Sun, LeWu, andMengWang. 2018. Attentive recurrent social recommenda-

tion. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. 185–194.

434

Reinforcement Recommendation with User
Multi-aspect Preference WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[14] Tomasz Tajmajer. 2018. Modular multi-objective deep reinforcement learning

with decision values. In 2018 Federated conference on computer science and infor-
mation systems (FedCSIS). IEEE, 85–93.

[15] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun

Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation

in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839–848.

[16] Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. 2018. Supervised rein-

forcement learning with recurrent neural network for dynamic treatment recom-

mendation. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2447–2456.

[17] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping

Ma. 2014. Explicit factor models for explainable recommendation based on

phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. 83–92.

[18] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo

Chen, Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, et al. 2020. RecBole:

Towards a Unified, Comprehensive and Efficient Framework for Recommendation

Algorithms. arXiv preprint arXiv:2011.01731 (2020).
[19] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang

Tang. 2018. Deep reinforcement learning for page-wise recommendations. In

Proceedings of the 12th ACM Conference on Recommender Systems. 95–103.

[20] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.

2018. Recommendations with negative feedback via pairwise deep reinforcement

learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1040–1048.

[21] Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, and Jiliang

Tang. 2017. Deep reinforcement learning for list-wise recommendations. arXiv
preprint arXiv:1801.00209 (2017).

[22] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,

Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework

for news recommendation. In Proceedings of the 2018 World Wide Web Conference.
167–176.

[23] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.

2019. Reinforcement learning to optimize long-term user engagement in recom-

mender systems. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2810–2818.

[24] Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie,

and Dawei Yin. 2020. Pseudo Dyna-Q: A reinforcement learning framework for

interactive recommendation. In Proceedings of the 13th International Conference
on Web Search and Data Mining. 816–824.

[25] Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji

Huang, and Dawei Yin. 2020. Neural Interactive Collaborative Filtering. In

Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 749–758.

435

	Abstract
	1 Introduction
	2 Background
	2.1 Recommendation as an RL Problem
	2.2 Pareto Optimization

	3 Pareto Deterministic Policy Gradient
	3.1 Problem Definition
	3.2 Multi-aspect Critic
	3.3 Pareto-efficient Actor
	3.4 Implementation of the Critic and Actor
	3.5 Analysis of the Gradient Bias

	4 Related Work
	4.1 RL-based Recommender Models
	4.2 Pareto Optimization

	5 Experiments
	6 Conclusion
	Acknowledgments
	7 appendix
	7.1 Complete Proof of Theorem 2

	References

