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Heterogeneous multiscale methods (HMM) capable of simulating asynchronously multiple scales concurrently are now tractable with
the advent of exascale supercomputers. However, naive implementations display a large number of redundancies and are very costly. The
macroscale model typically requires computations of a large number of very similar microscale simulations. In hierarchical methods, this
is barely an issue as phenomenological constitutive models are inexpensive. However, when microscale simulations require for example
high-dimensional molecular dynamics (MD) or finite element (FE) simulations, redundancy must be avoided. We propose a clustering
algorithm suited for HMM workflows which automatically sorts and eliminates redundant microscale simulations. The algorithm
features a combination of splines to render a low-dimension representation of the parameter configurations of microscale simulations
and a graph network representation based on their similarity. The algorithm enables the clustering of similar parameter configurations
into a single one in order to reduce to a minimum the number of microscale simulations required. We describe an implementation
of the algorithm in the context of an HMM application coupling FE and MD to predict the chemically-specific mechanical behaviour
of polymer-graphene nanocomposites. The algorithm furnishes a threefold reduction of the computational effort with limited loss of
accuracy.

1 Introduction

Computer simulations of any system, whether inspired by experimental physics or industrial applications,
that rely on a discretised description often present computational redundancies. Whether the system is
simulated by solving a finite set of ordinary differential equations (ODEs) or partial differential equations
(PDEs) it is frequently the case that computations may be performed which are very similar or even re-
dundant.
The simulation of a material system typically implies finding the dynamics of a bulk under certain ini-
tial and boundary conditions. In doing so, the local thermodynamic state of the material needs to be
fully determined, as well as their associated internal variables. Depending on the size of the system and
its level of discretisation, the number of spatial locations where the local thermodynamic state must be
computed will vary, often considerably. However, some spatial locations might be found concurrently in
an identical or at least similar local thermodynamic state. Some spatial locations may also be found in
a previously observed thermodynamic state. The state variables at given locations being similar, the full
local thermodynamic state must also be. Based on this observation, one can choose to avoid computing
the local thermodynamic state of all similar locations and only perform a few. The computational cost of
the ensemble of evaluations of the local thermodynamic state is not necessarily significant with respect to
the rest of the simulation. The cost is influenced by the complexity of the method chosen to express the
thermodynamic state. However, in some cases, it is definitely worth exploiting these redundancies.

Let us consider the case of continuum mechanics applied to a volume of material as an illustrative
example. The simulation of the mechanics of a solid requires one to solve the boundary value problem
(BVP) comprising the balance of linear momentum PDE, initial and boundary conditions, and a local
constitutive model. The constitutive model expresses the full local thermodynamic state of the material,
most often relating the stress to the strain tensor. The resolution of the constitutive model determines the
internal variable as a function of the state variable, which in turn enables one to solve the global BVP.
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The resolution of the constitutive model for two configurations with identical state variables values results
in identical internal variables. Now consider solving the BVP using the finite element (FE) method. The
kinematic variables are computed at every spatial location, more specifically the displacement at the nodes
of the mesh and the strain tensor at the quadrature points. The stress tensor can now also be evaluated at
the quadrature points. In a single-scale problem, the constitutive model is described by a low-dimension
set of equations whose only unknowns are the six independent components of the stress tensor. The limited
computational effort required to evaluate the stress tensor in a given location usually does not justify an
attempt to reduce the number of evaluations made.

In a multiscale problem, however, the computational effort to evaluate the stress is much more signifi-
cant [1]. In heterogeneous multiscale methods [2–4], also called semi-concurrent methods [5], the evaluation
of the stress tensor requires the simulation of a microscopic model constrained with the current thermo-
dynamic state of the material (e.g. the current strain tensor in reversible mechanics). The finite element
square (FE2) method [6, 7] or our computational workflow SCEMa [8], respectively rely on the FE or
molecular dynamics (MD) simulations to predict the stress tensor. The computational effort associated
with these microscopic FE or MD simulations is highly dependent on the amount of spatiotemporal detail
embedded, and can rapidly amount to a few core hours. Bearing in mind that stresses need to be eval-
uated at each quadrature point at each time step to solve our BVP, it is essential to reduce the number
of these evaluations. Otherwise, one’s computational budget would be wasted before having solved even
the slightest portion of the BVP. In this paper we will not focus on reducing details in the microscale
model using surrogate modelling, for example ML-based models [9–11] which would revert to constitutive
modelling. We will neither make use of model reduction methods such as coarse-graining [12, 13] for MD
or proper othogonal decomposition [14, 15] and proper generalised decomposition [16, 17] for FE. Now we
are particularly interested in techniques enabling the reduction of the number of evaluations of the macro-
scopic stresses. Reducing the dimensionality of the FE solution of our BVP is one way forward. Model
reduction methods mentioned above are entirely applicable, but are highly dependent on the constitutive
model used and therefore not compatible with replacing the constitutive model by a microscopic simulation.

The multiscale simulation methods we refer to are effective because they permit replacement of consti-
tutive equations by fully detailed microscale simulations. When it comes to investigating the emergence of
the materials properties of nanomaterials, the capability of these multiscale methods to preserve chemical
specificity of the material is essential [18]. We have already applied the HMM to predict engineering prop-
erties of epoxy resins [8] and graphene-epoxy nanocomposites [19]. However, because the cost of such a
multiscale approach remains unreasonably high we have not made use of the most versatile but expensive
force fields (e.g. ReaxFF [20]) in order to capture complex mechanisms such as fracture.

We here propose to employ clustering techniques, such as those found in unsupervised learning ap-
proaches [21–23]. Unlike the aforementioned model reduction techniques, clustering does not require
extensive calibration and validation, in other words training. The aim is not to reduce the dimensionality
of the solution of our BVP but to directly identify redundant stress evaluations by clustering them and
associate each cluster with a single microscale simulation. In continuum mechanics, the themodynamic
state at a time t and therefore the stress σt depends on the atoms position at the previous time ut−1 and

the applied strain εt. As a result, σt can be written as a function of the atoms initial position u0 and the
strain trajectory {ε}t:

{
σt = f

(
ut−1, εt

)
ut−1 = h

(
ut−2, εt−2

) =⇒ σt = f̄(u0, ε0, ..., εt) = f̄(u0, {ε}t) = f̄({ε}t) (1)

In our multiscale simulation algorithm, SCEMa, the quadrature points in the macroscopic FE model
are each associated with an independent ensemble of replicas of the microscale molecular model (see figure
1). The simulations are facilitated by the deal.II Finite Element library [24] for the macroscale, and
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Figure 1: Workflow of a typical HMM application to simulate standard engineering test and predict materials properties of
graphene-epoxy nanocomposites. Each quadrature point q within the cells of the FE model (top left) queries an individual
ensemble of simulations of replicas of the molecular model (bottom left). Replicas of the molecular model evolve independently,
deforming differently according to the macroscopic strains or the microscale interatomic forces. However, some quadrature
points may end up in a similar thermodynamic state, hence querying twice the same MD simulations.

LAMMPS [25] for the microscale. A complete description of the equations solved at the two scales, for
both the continuum mechanics and the molecular dynamics problem, as well as a description of the scale
separation scheme, can be found in Vassaux et al. [8]. Each of these ensembles of replicas departs from the
same initial atomic configuration (i.e. position and velocities). Consequently, the thermodynamic state at
each quadrature point only differs by its applied strain trajectory (see equation 1). In turn, we propose
a clustering algorithm which focuses on gathering locations with identical strain trajectories. Building
on our proposed clustering algorithm described in the section 2, we demonstrate significant speed-up of
the multiscale simulation workflow with limited loss of accuracy with respect to global outputs at the
macroscopic level in section 3. We also discuss the algorithm itself, its applicability, our results in section
4, and we present our conclusions in section 5.

2 Algorithm

The clustering algorithm which determines essential microscale simulations comprises three main stages:

1. Dimensionality reduction of the strain trajectory of each spatial location (quadrature point) of the
macroscopic model.

2. Comparison of strain trajectories (all vs all).

3. Construction and coarse-graining of the resulting similarity graph.

The strain trajectory of any given point in the material consists of the six (unique) components of the
strain tensor at that point (εxx, εyy, εzz, εxy, εxz, εyz), for each of the N time steps the model has evolved
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through. The final (N th) entry is the deformation at the current step, for which the stress response is yet
to be calculated (through execution of microscale simulations). This results in a 6N dimensional strain
trajectory vector, where N is the number of simulated macroscale timesteps. Even for short-duration
simulations, inputs to the clustering algorithm rapidly become high-dimensional. A simple means of re-
ducing trajectory vectors to a fixed and manageable length comes through the fitting of 6 splines, one for
each component, along which Scp control points are placed evenly spaced in time. This results in strain
trajectory vectors of fixed dimension 6Scp for any given step. Such a reduced trajectory vector is calculated
for every relevant location in the material – in the present case of our macroscopic model’s FE mesh, this
is at each quadrature point.

As performed in hierarchical clustering analysis, evaluation of the similarity of strain trajectories requires
an all-vs-all pairwise comparison of each reduced trajectory vector ε̃ and a similarity metric. In this work,
we use a simple L2-norm as the measure of similarity. The similarity sA,B between the strain trajectories
of quadrature points A and B (respectively ε̃A and ε̃B) is computed as follows:

1

sA,B

∝
Scp∑
n=1

6∑
i=1

√
(ε̃A,n,i − ε̃B,n,i)

2 (2)

Result: list of similar trajectories to each quadrature point’s strain trajectory
for i in range(0, num ranks) do

target rank ← this rank + i ; // with ring periodic conditions

sender rank ← this rank − i ; // with ring periodic conditions

if target rank != this rank then
send all trajectories stored on this rank to target rank;
receive list of trajectories sent to this rank by sender rank;
for each received trajectory A and each local trajectory B do

calculate distance sA,B between A and B;
if sA,B < α then

add A to the list of similar trajectories to B;
end

end

else if target rank == this rank then
/* no send/receive instructions */

for each local trajectory A and each local trajectory B do
calculate distance sA,B between A and B;
if sA,B < α then

add A to the list of similar trajectories to B;
end

end

end

end
Algorithm 1: Description of the distributed algorithm computing the L2-norm distance between pairs of splines (asso-
ciated with the strain trajectories of quadrature points).

Due to the distributed memory parallelism of the macroscopic model, different strain trajectory vectors
may be held on each of the P (MPI) ranks. As the goal of this work is to reduce the computational cost of
the overall multiscale simulation, an efficient strategy for inter-rank communication must be chosen that
minimises bottlenecks (see algorithm 1). We adopt a ring-like communication pattern in which any given
rank, p, sends its trajectories to rank p + i while receiving trajectories from rank p − i, repeated for all
i = 0..P −1 and with periodic conditions on the rank number. Ranks compare incoming trajectory vectors
with their own, storing the result locally if the similarity is within a certain (user-defined) threshold value
α. At i = 0 the rank compares its own trajectories with one another, without the need for communication.
Once complete, each rank holds a record of all trajectories that are sufficiently similar (i.e. within the
similarity threshold α) to each trajectory stored on that rank.
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Figure 2: Schematic illustration of the clustering algorithm which decomposes the graph of similar trajectories into the
smallest number of clusters of similar nodes.

This information can then be aggregated on a single rank and used to construct a graph in which each
node represents a quadrature point of the macroscale mesh, and each edge links similar nodes. Similarity
in this context means that quadrature points may be considered equivalent for the purposes of the current
simulation step, and therefore that they may share the result of the same ensemble of microscale simulations
rather than requiring a separate ensemble each. The goal is, therefore, to decompose this graph into the
smallest possible number of clusters of similar nodes. This will result in the lowest number of distinct
microscale simulation ensembles needing to be run for the step in question. While each pair of nodes
sharing an edge is considered similar, nodes with more than two degrees of separation are not. The
strategy we employ is to recursively choose the node with the highest degree (the highest number of
edges), cluster it with all nodes in its direct entourage (its similar trajectories), and remove that cluster
of nodes from the graph (see figure 2). The process is repeated until all nodes have been assigned to a
cluster. Some resulting clusters may contain only a single node.

One ensemble of microscale simulations will be executed for each such cluster, and the resulting stress
value used for every quadrature point whose corresponding trajectory node lies within that cluster. In
practice, strain trajectories of points in the material that have diverged do not later converge, leading to
a tree-like structure over time. Indeed, material regions that were previously regarded as similar begin
branching off as their local strains begin to follow different paths. When this occurs, the atomistic state
of the MD simulations (the microscale simulations of this work) must be duplicated and used as the
starting structure for simulations in the new branch. This is important for conserving the non-linear,
history-dependent effects of materials that have been strained beyond the elastic region.

3 Results

We now want to verify the implementation of the algorithm described in the previous section and to demon-
strate its efficiency in reducing the number of microscale (expensive, and in our case, MD) simulations.
The verification and demonstration are performed simultaneously by simulating two complementary test
setups. The two setups consist of standard engineering tests: a pure tension test and a compact-tension
test. Both generate a different type of mechanical state within the tested sample, namely on one side
uniaxial (1D) tension, and on the other side multiaxial (3D) fully anisotropic and heterogeneous loading.
The uniaxial setup is simulated with a coarse mesh involving only a couple of hundred quadrature points
in the macroscale model in order to limit computational cost. The compact-tension setup is simulated
with a more refined mesh involving tens of thousand quadrature points. The meshes and the boundary
conditions applied in each setup are shown in figure 3.

The clustering algorithm features one main parameter, the so-called similarity threshold. It controls the
trade-off between accuracy and computational reduction. For each setup, we perform a sensitivity analysis
of the similarity threshold, demonstrating in the meantime how to choose an appropriate value. Accuracy
is evaluated by computing the error on the output quantity of interest (that is the resulting force on the
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Figure 3: Visualisation of the two test setups simulation meshes as well as a schematic of the imposed displacement at the
boundary: (a) uniaxial tension and (b) compact-tension. Boundary conditions are drawn schematically in blue, a displacement
u and a velocity v are prescribed respectively for the uniaxial and the compact-tension setups. The colour legend correspond
to the dominant component of the strain tensor within the system, namely the axial strain (ZZ) for the uniaxial tension setup
and the shear strain (XZ) for the compact-tension setup.
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Table 1: Clustering algorithm parameters

Parameter α Scp ta

Value 10−14 through 10+1 10 5

Role similarity threshold
number of spline
support points

number of steps
before clustering activation

boundary induced by imposed displacements) of the simulation with respect to a reference simulation for
which the clustering algorithm is not applied. The computational reduction is defined as the number of
MD simulations avoided by the use of the algorithm. In more detail, a simulation without clustering is
run first to obtain the baseline reference results for comparison. Then, the parametric analysis of the
clustering algorithm is performed by sweeping the similarity threshold parameter, α across multiple orders
of magnitude from 10−14 through 10+1.

Furthermore: (i) constitutive relationships are only queried when the magnitude of the strain at a given
quadrature point exceeds 10−10, otherwise no MD simulation is requested; (ii) splines fitting the strain
trajectory of quadrature points comprise a constant number of support points (Scp = 10), independently of
the length of the trajectory; (iii) for sufficient precision of the strain trajectory comparison, the clustering
algorithm is activated only after 5 timesteps have passed (vertical dashed line, see figures 4.a,b,c and
5.a,b,c). Table 1 summarises the complete set of model parameters and simulation conditions.

Each multiscale simulation is performed using the FE method with linear Lagrangian elements (Q1).
In turn, each FE cell features 8 quadrature points. In the absence of clustering, this implies that 8 MD
simulations are required at each time-step for each cell to replace the constitutive relationship. In the
following, we will consider that a MD simulation consists in evolving the dynamics of a single replica of
the system. However, it is well known that ensembles of replicas are rather needed for accurate predictions
(and often may contain tens to hundreds of replicas) [26]. When large ensembles are required, the benefits
of the clustering algorithm are even more significant.

We will now work our way up in terms of increasing complexity and analyse successively the results of
the simulations of the uniaxial and the compact-tension setups with and without the clustering algorithm.

3.1 Uniaxial tension setup

The setup consists of a 3x3x12cm3 elastic cuboid (see figure 3.a) with properties equivalent to that of
an graphene-epoxy nanocomposite. In this most simple case, the computational domain was constructed
by meshing the cuboid into a 3x3x8 cartesian grid, that is a resolution of 0.01cm along each coordinate
direction in three-dimensional space. A fixed time-stepping scheme is used to evolve the system’s dynamics
during 50 steps of 0.5µs each, that is 25µs in total. With this very coarse mesh, and assuming only 3 replicas
simulated per quadrature point, the maximum number of MD simulations at each timestep is 1728. Vertical
displacement is imposed on the upper surface at a constant strain rate of 2.10−3 s−1, while the lower surface
is fixed (see figure 3.a). In turn, the force resulting from the displacement is chosen as the quantity of
interest.

The material is loaded dynamically, hence the oscillating nature of the resulting force (see figure 4.a).
All simulations up to a similarity threshold value of 10−2 match perfectly the reference simulation (brown
curve). This observation is confirmed by the computation of the evolution of the absolute error (force
difference) for each simulation featuring the clustering algorithm and the reference simulation (see figure
4.b). The cumulative error (sum of the error at each timestep, see figure 4.d) remains below 1MN for
simulations with a similarity threshold below 10−2 which, as we have seen, is equivalent to no discernible
divergence of the global force evolution from the reference simulation.
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Figure 4: Influence of the similarity threshold of the clustering algorithm on the global accuracy and the computational cost
of the simulation of the uniaxial tension test: evolution of (a) the resulting global force on the top surface of the system, (b)
the error in the applied global force on the top surface with respect to the reference simulation (no clustering), (c) the number
of MD simulations at each timestep; cumulative (d) error in the applied global force on the top surface; and (e) number
of MD simulations throughout the complete simulations. In (a,b,c) the vertical dashed line indicates when the clustering
algorithm starts to be applied, leading to the sudden drop in the number of MD queries.
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The number of MD simulations at each timestep (see figure 4.c) increases steadily initially as the me-
chanical wave propagates through the material. Quadrature point strain becomes non-null, which causes
the constitutive relationship to be probed (when the strain magnitude exceeds 10−10). The clustering
algorithm is activated from timestep 6 (vertical dashed line, see figure 4.a,b,c), beyond which the count
of MD simulations decreases abruptly for all similarity thresholds. Finally, the quadrature point strain
trajectories start to diverge at a rate depending on the similarity threshold (see supplementary figure 1).
The more tolerant (the higher threshold values), the slower the trajectories diverge and, the more the
number of MD simulations increases. For low tolerance similarity thresholds, all quadrature point strain
trajectories diverge before the end of the simulation, reaching a plateau at a count of 1728.

With such a benchmark, we are able to choose the right similarity threshold an optimal speed-up to
accuracy compromise. The cumulative error only seems to increase significantly above a similarity threshold
of 10−3. Assuming that we wish the cumulative error not to exceed 0.1MN, the clustering algorithm would
generate a speed-up of 2.2 with respect to the reference simulation (38, 000 against 82, 000 MD simulation
queries). With a slightly increased tolerance, using a similarity threshold of 10−2, the clustering algorithm
would generate a speed-up of 2.9.

3.2 Compact-tension setup

The compact-tension test consists of the setup prescribed in ASTM Standards [27] (ASTM/E1820) to
assess fracture toughness. Making use of the symmetries, only a quarter (top, front part) of the structure
shown in figure 3.b is simulated. The sample is heterogeneously meshed using GMSH [28] rendering 1318
tetrahedral cells, that is 10544 quadrature points. A fixed time-stepping scheme is used to evolve the
macroscale model dynamics during 50 steps of 0.1µs each, that is 5µs in total. The holes in the structure
are pulled apart at a speed of 0.1 mm.s−1 (see figure 3.b).

The evolution of the resulting force on the inner part of the hole is non-steady (see figure 5.a). The force
on the inner part of the hole is applied at a constant speed. The resulting force on the inner part of the
hole increases non-linearly, reaching progressively 0.5MN in the reference simulation. Simulations featuring
the clustering algorithm follow similar trends for threshold values up to 0.1. However, the reference trend
is not followed as precisely as for the uniaxial test 3.1. Cumulative errors are systematically at least one
order of magnitude higher (see figure 5.d). In order to limit the cumulative error to 0.1 MN, and replicate
exactly force evolution trends from the reference simulations, similarity thresholds down to 10−14 must be
chosen. At such threshold values, the computational gain is limited (see figure 5.e). However, if a reduced
accuracy up to 1% can be tolerated, similarity threshold values up to 10−3 can be used as with the uniaxial
test case. Once again, 3-fold computational speedups are attained.

Note that, between threshold values ranging from 10−3 to 10−10, the accuracy of the simulations re-
mains almost identical, however it is assessed (evolution trends or cumulative error), but half of the MD
simulation cost can be saved. For that level of accuracy, the benefits of the clustering are most obvious.
For a threshold value of 10−1 the cumulative error appears to decrease, but this is more fortuitous than a
systematic improvement. The force evolution diverges from the evolution of the reference simulation and
follows a different trend, but fortunately remains closer than force evolution at lower threshold values.

Unlike the uniaxial tension test, the compact tension test generates highly spatially heterogeneous
strain in the material sample. In turn, strain trajectories differ substantially from one quadrature point
to another. The compact tension test certainly constitutes an extreme scenario in which to apply our
clustering algorithm. Indeed, similar speed-ups of 3 are attained but cumulative errors are approximately
one magnitude higher in the compact tension scenario. As might be expected, the algorithm proves to be
somewhat less efficient for heterogeneous strain profiles.
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Figure 5: Influence of the similarity threshold of the clustering algorithm on the global accuracy and the computational cost
of the simulation of the compact-tension test: evolution of (a) the resulting global force on the top surface, (b) the error in
the applied global force on the top surface with respect to the reference simulation (no clustering), (c) the number of MD
simulations at each timestep; cumulative (d) error in the applied global force on the top surface; and (e) number of MD
simulations throughout the complete simulations. In (a,b,c) the vertical dashed line indicates when the clustering algorithm
starts to be applied (identically to figure 4).
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4 Discussions

The clustering algorithm introduced here has the capability to keep track of quadrature points of a FE
mesh following similar evolutions of their mechanical state defined by their strain trajectories. It can be
seen as a non-local (in space and time) coarsening of the mesh. This clustering algorithm is a typical
example of unsupervised learning in the sense that it does not require any training data. It relies only on
the current mechanical state of the quadrature points to achieve model reduction. Our approach makes
use of the theory behind material deformation and exploits symmetries in the models to avoid running
very similar (almost duplicate) simulations. As such it differs from traditional surrogate models, because
it does not predict what the future stress response will be based on previous results. No arbitrary choice
of training data has to be made, nor is there any need to ensure that the trained model generalises beyond
this training dataset. Our approach is intended for simulations of materials for which a trivial algebraic
description of the constitutive model is not easily available, for example, because constructing/training
one would require too much data (and therefore be prohibitively expensive to acquire in the first place).
However, by allowing the model to explore its (very high dimensional) phase space in the cheapest way
possible, it could potentially also be used to aid in training of machine-learning based constitutive models.

The only preparatory work that is required to make use of our clustering algorithm is the selection of
its two parameters: the number of control points Scp of the fitted splines and the similarity threshold α.
Strain trajectories being relatively smooth, we have set Scp to 10 and left this parameter fixed during the
entire study within this paper. In other words, in practice the clustering algorithm we propose here de-
pends only on a single parameter: the similarity threshold α. From the two setups simulated in the results
section, we have observed that the value of 10−3 for the similarity threshold offering a good compromise of
computations reduction and accuracy. In turn, 10−3 is recommended as a default value, hence automating
the model reduction enabled by the clustering algorithm.

Up to three-fold speedups were attained in exchange for what we considered a reasonable loss of accuracy
during the simulation of the two tested setups (see section 3. During those simulations, each request for an
evaluation of a quadrature point stress by the macroscopic model led to the MD simulation of an ensemble
of replicas of the microscale model. Three replicas per ensemble were considered. Looking for accurate and
reproducible results from MD simulations, ensembles generally contain a much larger number of replicas
[29]. Because the microscale simulations do not depend on each other, the overall computational cost of
the multiscale simulation grows linearly with the number of stress queries. In turn, since the speedup does
not vary with the number of quadrature points or the number of replicas in an ensemble, no increase in
the speedup is to be expected when simulating larger meshes or more realistic ensemble sizes. However,
considering a fixed setup geometry, increasing the number of quadrature points in the mesh increases the
likelihood of quadrature points experiencing a similar thermodynamic state. As a result, the expected
speedup induced by the clustering algorithm increases. Furthermore, the absolute computational savings
will increase linearly with these features of the simulation, so the speedup is expected to be maintained
as the multiscale simulation grows. Furthermore, the present algorithm is a simple clustering method,
but we expect speedups to increase making use of more refined unsupervised learning algorithms [30]. In
particular, replacing spline-based dimension-reduction with more robust methods derived from principal
component [31] analysis will enable more accurate comparison of the strain trajectories.

The relation between threshold values and speedup is not straightforward. Identical threshold values
neither enable identical speedups nor accuracy reduction when comparing the results of the uniaxial and
the compact tension case. At a given threshold value one cannot expect the same MD simulations to be
spared independently of the test setup. Indeed, the similarity of the strain trajectories is assessed in terms
of absolute amplitude values, and is therefore dependent on the materials properties and the test setup.
To that extent, the clustering algorithm requires additional work to be calibrated and to find an optimum
of accuracy and speedup, as is done in section 3. Then, it makes even more sense to use such an algorithm
in the context of performing uncertainty quantification [32, 33], whereby the materials properties and the
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test case parameters change by only limited amounts.

There is a non-negligible computational and storage cost associated with keeping track of strain tra-
jectories, performing spline-fitting, measuring the distance between 6-dimensional splines, and finding the
graph-informed optimal clustering of quadrature points. In classical single-scale applications of the FE
method, the local computations associated with cells or quadrature points are small and of the same order
of magnitude as the costs associated with the clustering algorithm. The cost of the clustering algorithm
will certainly balance out the gain associated with reducing the number of these local computations. How-
ever, in multiscale use cases, where these local computations are expensive MD simulations, the gain is
obvious. The cost of each individual MD simulation is of the order of 0.1 core hours, while the cost of the
clustering algorithm at a given timestep of the compact-tension setup simulation is about 1 core hour. We
have seen in the results section that we can spare up to two-thirds of the constitutive relationship queries
per timestep while maintaining accuracy. The computational reduction is then clear and substantial.

In this work, we have chosen to quantify ‘similarity’ between two strain trajectories simply as the Eu-
clidean distance (L2 norm), although this may not necessarily be the best choice in all contexts. Other
measures of similarity are indeed possible, such as the L1 norm, and may assign importance to different
characteristics (for example, by penalising momentary deviations more harshly). As the goal of the present
work is to reduce overall simulation time in a heterogeneous multiscale model, the chosen similarity metric
should be of low computational cost.

This work may also benefit in future from the use of more sophisticated graph clustering algorithms. The
present use of thresholding implicitly assumes that all trajectories falling within the threshold similarity
are equally similar. In contrast, a more precise selection of clusters may be possible by considering the
individual values of similarity between each pair of nodes (and eschewing thresholding altogether). The
graph reduction stage is currently serial (although very rapid in comparison to the other stages), more
sophisticated clustering approaches would ideally permit some level of parallelism.

5 Conclusion

Concurrent multiscale simulations of physical processes are now becoming tractable with the advent of
exascale computing [1], yet they remain expensive. We have proposed a novel algorithm which can be
defined as a non-local model reduction technique that enables one to reduce the number of lower scale
expensive simulations. We have implemented the algorithm in SCEMa, a FE-MD coupling library. The
algorithm is based on a clustering technique to detect redundant stress queries, based on the similarity of
the strain trajectories associated with the FE quadrature points. We have provided an in-depth description
of the algorithm featuring spline-based dimension-reduction of the strain trajectories and the graph-based
selection of essential MD simulations. We have also demonstrated the efficiency of the algorithm in speeding
up around three-fold the simulations of a uniaxial tension test and a complex compact tension test, with
limited loss of accuracy compared to a non-reduced simulation. For such expensive multiscale workflows the
algorithm has the potential to save many millions of core hours. Finally we point out that the algorithm
is of course not limited to multiscale workflows relying on the finite element method: it can be easily
transposed to any type of asynchronous multiscale workflow.
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Multiscale simulations methods have the potential to predict the properties of novel complex materials. Properties could be
predicted from the chemical structure and used by engineers from the aeronautical or automotive industry. Hence avoiding
expensive and extensive certification. However, multiscale simulations remain nowadays untractable, even for the largest
supercomputers. Our novel reduction algorithm detects redundancies within multiscale simulations and enables substantial
acceleration.
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