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In a recent milestone experiment, Google’s processor Sycamore heralded the era of “quantum
supremacy” by sampling from the output of (pseudo-)random circuits. We show that such random
circuits provide tailor-made building blocks for simulating quantum many-body systems on noisy
intermediate-scale quantum (NISQ) devices. Specifically, we propose an algorithm consisting of a
random circuit followed by a trotterized Hamiltonian time evolution to study hydrodynamics and to extract
transport coefficients in the linear response regime. We numerically demonstrate the algorithm by
simulating the buildup of spatiotemporal correlation functions in one- and two-dimensional quantum spin
systems, where we particularly scrutinize the inevitable impact of errors present in any realistic
implementation. Importantly, we find that the hydrodynamic scaling of the correlations is highly robust
with respect to the size of the Trotter step, which opens the door to reach nontrivial time scales with a small
number of gates. While errors within the random circuit are shown to be irrelevant, we furthermore unveil
that meaningful results can be obtained for noisy time evolutions with error rates achievable on near-term
hardware. Our work emphasizes the practical relevance of random circuits on NISQ devices beyond the

abstract sampling task.
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Introduction.—Studying the properties of quantum
many-body systems is tremendously challenging [1].
Notwithstanding significant progress thanks to the develop-
ment of sophisticated numerical methods [2-7] and
groundbreaking experiments with cold-atom or trapped-
ion platforms [8,9], simulations on universal quantum
computers promise to yield major advancements in a
multitude of research areas [10,11]. While a fault-tolerant
quantum computer is still far into the future, noisy
intermediate-scale quantum (NISQ) devices are available
and their current capabilities have been demonstrated for
various problems such as electronic structure calculations
[12,13], simulations of spectral functions [14,15], meas-
urement of entanglement [16,17], topological phase tran-
sitions [18], and out-of-equilibrium dynamics [19-22].

Recently, an important milestone toward so-called
“quantum supremacy” [23] has been achieved by using
Google’s NISQ device Sycamore [24]. In the experiment,
the Josephson junction—based quantum processor was used
to sample from the output distribution of (pseudo-)random
circuits involving up to 53 qubits, thereby going beyond the
capacities of modern supercomputers. As this sampling
task may appear rather abstract, it is crucial to identify a
wider range of relevant applications of near-term NISQ
devices that can be performed despite their imperfect
fidelities of one- and two-qubit gates and the lack of error
correction [25-28].
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Transport processes represent one of the most generic
nonequilibrium situations [29]. In the quantum realm, the
understanding of transport not only plays a key role to pave
the way for future technologies such as spintronics [30], but
is also intimately related to fundamental questions of
equilibration and thermalization in many-body systems
[31-33]. While quantum transport has been experimentally
studied in mesoscopic systems, solid-state quantum mag-
nets, and cold-atom settings (see, e.g., [34-38]), active
questions from the theory side include the quantitative
calculation of transport coefficients [29,39], as well as
explaining the emergence of conventional hydrodynamic
transport from the underlying unitary time evolution of
closed quantum systems [40].

In this Letter, we advocate near-term NISQ devices as
useful platforms for simulating hydrodynamics in quantum
many-body systems and, in particular, we show that
random circuits (as realized in [24]) form tailor-made
building blocks for this purpose. With generalizations
being possible [41] (see also Supplemental Material
[42]), we specifically propose an efficient scheme to
compute the infinite-temperature spatiotemporal correla-
tion function C, . (t) for one- and two-dimensional (1D,
2D) quantum spin systems,

Cr.o(t) = Tr[S5(1)S3]/2". (1)

© 2021 American Physical Society


https://orcid.org/0000-0003-2184-5275
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.230501&domain=pdf&date_stamp=2021-06-08
https://doi.org/10.1103/PhysRevLett.126.230501
https://doi.org/10.1103/PhysRevLett.126.230501
https://doi.org/10.1103/PhysRevLett.126.230501
https://doi.org/10.1103/PhysRevLett.126.230501

PHYSICAL REVIEW LETTERS 126, 230501 (2021)

where Sf,( ) is a spin-1/2 operator at lattice site £ (£”),

y
S5(t) = ™S, e ™ is the time-evolved operator with
respect to some Hamiltonian H, and L denotes the number
of spins (qubits). The spatiotemporal correlations Cy . ()
are central objects for studying transport within linear
response theory [29], as well as thermalization and many-
body localization in quantum systems [43]. As a key
ingredient, our scheme exploits the concept of quantum
typicality [44—46], which asserts that ensemble averages
can be accurately approximated by an expectation value
with respect to a single pure state drawn at random from a
high-dimensional Hilbert space [47-49]. Remarkably, typi-
cality applies independent of concepts such as the eigen-
state thermalization hypothesis [31] and remains valid also
for integrable or many-body localized systems [50].

While random pure states have a long history for
efficient numerical simulations [50-59], we demonstrate
in this Letter that typicality can be used to recast the
correlation function Cy . (t) into a form that can be
readily evaluated on a quantum computer (see [42] for a
derivation),

Cro(t) = 5 (wre (DISilwr (1) + O2712), (2)

1
2
where |yr (1)) = e ygp), and |yres) =0), ®
R|0)®L~! results from the application of a (pseudo-)
random circuit R on all qubits of the system except for
the fixed reference site #’. Importantly, as indicated by the
second term on the right-hand side (rhs), the accuracy of
Eq. (2) improves exponentially with the size of the system
[58]. Complementary to well-known approaches to obtain
correlation functions such as Eq. (1) on a quantum
computer [60-62] (see also [63]), the scheme proposed
in this Letter operates without requiring an overhead of bath
or ancilla qubits for initial-state preparation and measure-
ment. Rather, it combines the random-circuit technology
already realized on NISQ devices [24] with “quantum
parallelism” [53,64], as the time evolution of a single
random state |y ») suffices to capture the full ensemble
average (1). Furthermore, we particularly scrutinize the
impact of Trotter and gate errors present in any realistic
implementation and discuss the possibility to extract trans-
port coefficients with error rates achievable on near-term
hardware.

Description of setup.—First, all qubits are initialized in
the |0) state. The algorithm then consists of a random circuit
R acting on L — 1 qubits followed by a time evolution U (1)
onall L sites [Fig. 1(a)]. R comprises individual cycles, each
composed of a layer of one-qubit gates and a layer of two-
qubit gates, with d denoting the total number of cycles
[Fig. 1(b)]. In each cycle, the one-qubit gates are randomly
chosen from the set {X'/2,Y'/2, T}, where X'/? (Y'/?)
are /2 rotations around the x axis (y axis) of the Bloch
sphere and T is the non-Clifford gate T = diag(1, ¢'*/*).
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FIG. 1. (a) A random circuit R acts on L — 1 qubits, followed
by a time evolution U(¢) on all L sites. (b),(c) R comprises d
cycles, each composed of layers of one- and two-qubit gates. We
consider a two-dimensional geometry and A — D are patterns of
two-qubit gates used in different cycles. (d),(e) For reference site
¢ =1, (yrpeo()|Solyre (1)) yields the correlation function
2C,(r). Data are shown for the spin-1/2 Heisenberg chain
with L = 25, where the one-dimensional system is realized as a
snakelike path through the lattice. Panel (e) shows acutat £ = 1.
Even for shallow R with d =20, results from |pp ) are
indistinguishable from a true Haar-random state. Dashed lines
indicate power-law scalings of the correlations; cf. Eq. (6).

We impose the constraint that the one-qubit gates on a given
site have to be different in two subsequent cycles. As a
two-qubit gate, we consider the controlled-Z (CZ) gate,
CZ = diag(1,1,1 —1). (See [42] for circuits with CNOT
gates.) In each cycle, the CZ gates are aligned in one of the
patterns A — D on a 2D geometry [Fig. 1(c)], where we
repeat the sequence ABCD... throughout R, similar to
Refs. [23,24]. After d cycles, the state |yr o) = > i cilk)
is a superposition of computational basis states. It
is the important realization that states generated from
(shallow) random circuits R can approximate the properties
of a Haar-random state [23,65,66]; i.e., the coefficients c¢;
are expected to closely follow a Gaussian distribution with
zero mean. (Note that the exact preparation of a Haar-
random state would be extremely inefficient in con-
trast [67].)

For the subsequent time evolution, we exemplarily
consider the 1D and 2D spin-1/2 Heisenberg model with
nearest-neighbor interactions (see [42] for results on
another model [68]), where we identify |0) = |1) and
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FIG. 2. Buildup of randomness of |yg ). (@) S, (lwr))
reaches the random-state value In(2¢7')—1+y with
Euler constant y =~ 0.577 already at moderate d [23].
(b) Sin(lwr.)) approaches the “Page value” In(2L/2) — 1 [71]
appropriate for a random state on L — 1 sites. The displayed L
values correspond to the 2D geometries 4 x 3, 4 x4, 5 x 4, and
5 x 5. Data are averaged over 100 realizations of R.
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S¢ = (87,5.5%), (3)

where the 1D model is realized as a path through the 2D
lattice [Fig. 1(e)]. Focusing (for now) on 1D, the time-
evolution operator U(t) = exp(—iHt) is Trotterized [69],

U(r) = (e—iHét)N ~ (e—iHeére—iHoét)N + O((Stz)’ (4)
where H, (H,) denotes the even (odd) bonds &, . of H,
and 6t =1t/N is a discrete time step. The mutually
commuting two-site terms exp(—ih, »5t) are then trans-
lated into elementary one- and two-qubit gates [11]. (We
here use a representation that requires three CNOT gates
[20,42,70].) Eventually, according to quantum typicality
and our construction (see [42]), a z-basis measurement of
the qubit at site £ after time ¢ then yields the correlation
function 2C, . (t) [Figs. 1(d) and I(e)]. In particular,
we show below that the correct extraction of Cy, . (1)
remains possible even in the presence of inevitable
Trotter and gate errors.

Buildup of randomness.—In Fig. 2(a), we study the
growth of S, (Jyr.#)) = = 32, piIn py with py = |ei,
which measures the spreading of |y ») within the com-
putational basis due to R. Moreover, the corresponding
entanglement of |y ») is analyzed in Fig. 2(b) by means
of the von Neumann entropy S\ (|yr.»)) = —Tr[pa Inp,],
with py = Trglyr»)(yr| being the reduced density
matrix for a half-system bipartition into regions A and
B. Importantly, we observe that both S, and S,y reach their
theoretically expected values for a random state [23,71]
already at moderate numbers of cycles d < 10, where the
required d appears to exhibit only a minor dependence on L
[23]. We thus expect that |wr ) mimics a true Haar-
random state even for shallow R and can be used within the
typicality approach to obtain C,,(t). Throughout this
Letter, we use a fixed value d = 20, which yields very
accurate results; see Fig. 1(e) and [42]. (Note that d = 20
has already been realized for 53 qubits [24].) Eventually,

—~ O, .
S '.'.';.v....T.:..-.“..“-._.i.:;.::_‘_f..'.T.:...’;.’:ff.’i.z:.:*.
. 5=4)3
10 time ¢ 20
FIG. 3. TImpact of the Trotter time step. (a) C; () for varying

values of 6t. (b),(c) Extracted power-law exponents a(r) and f(z).
The dashed lines indicate the KPZ scaling [29,76-81]. Data are
obtained for L = 25 and d = 20.

we stress that this accuracy is achieved even though our
design of R is not optimized [72,73]; i.e., no particular fine-
tuning of R appears to be necessary.

Dependence on Trotter time step.—Given the epony-
mous noise of NISQ devices, it is desirable to use as few
gates as possible, i.e., a large time step ot. However, for a
larger 6t, the systematic error of the Trotter decomposition
is in turn expected to increase [see rhs of Eq. (4)]. In
Fig. 3, we demonstrate that this expectation does not need
to hold in practice (see Refs. [74,75]), such that a favorable
trade-off between large 6¢ and acceptable Trotter error can
be achieved. Specifically, we find that the equal-site
correlation function C;(¢) in Fig. 3(a) remains almost
unchanged for varying &t between 6t = 0.1 and ot = 1.
Even though small deviations appear for larger 6t = 2, the
qualitative shape of C; ;(¢) remains similar also in this case.
For a more detailed analysis, we consider the emerging
hydrodynamic scaling of C, »(¢) caused by the conserva-
tion of magnetization, [H,> ,S7] =0. In particular,
Cy,(t) « t7* develops a power-law tail for times ¢ > 10
[Fig. 3(a)], while correlations C,(¢) build up throughout
the system [cf. Fig. 1(d)], i.e., *(¢) o ## with the spatial
variance

$2() = Y128, (1) - [Zf@mr, (5)
4 £

where Cf,l (f) = Cf,l (t)/Zf’l:l Cf,l (f) with pr Cf,l (t) =1.
In Figs. 3(b) and 3(c), the impact of the Trotter step 6 on the
instantaneous power-law exponents () and f3(7) is studied
for times 10 <t < 20,

_ dlIn Cl.l (t)
dint

_ dInX?(1)

plt) =—-—=. (6

alt) = dint

We find that a() exhibits damped oscillations (presumably
caused by the integrability of H [76]) around the mean value
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a =~ 2/3, which signals superdiffusion and is consistent with
a description of spin transport in terms of the Kardar-Parisi-
Zhang (KPZ) universality class for the integrable and
isotropic Heisenberg chain [29,76-81]. Remarkably, a()
is essentially independent of 6¢ and a ~ 2/3 can be readily
extracted even for the largest 61 = 2. Likewise, #(t) is found
to remain stable up to ot < 1, albeit visible deviations now
appear for 51 = 2, which is explainable by the fact that 3(¢)
depends on the accuracy of the Trotter decomposition on the
full system while a(¢) is a local probe. Overall, the robust-
ness of C, () with respect to &t is an important result and
opens the door to reach nontrivial timescales with a
manageable number of gates. For instance, fixing 6t = 1,
an evolution of L = 25 qubits up to ¢t = 20 requires 2400
one-qubit and 1440 two-qubit gates in our case [42].

Impact of noise.—To model the impact of erroneous
gates, we consider a depolarization model with quantum
channels &£, (€, ) being applied after each one-qubit (two-
qubit) gate [26],

Ep) =(1-p)p+2 3D oo, (7)

M#O

Ero(p) = (1=pa)p +_5 Z 040,,p0s0,  (8)
10)#(0,0)

where p is the system’s density matrix; % with y = 1, 2, 3
are Pauli matrices; af} = T; and p; (p,) are the one-qubit
(two-qubit) error rates. We evaluate Egs. (7) and (8)
by averaging over quantum trajectories [26,82],
p(t) = (1/Ny) >y lwh (1)) (W »(2)], where each trajec-
tory |y% (1)) corresponds to a particular history of one-
and two-qubit Pauli errors. In Fig. 4, we analyze the
dynamics of C, »(¢) obtained for a fixed time step 6t = 1
and varying error rates p = p, = 10p,. First, we consider
errors only within R and find that they have no effect on the

‘ (aj "Errors in R

e O( t4/3

0o time ¢ 30

FIG. 4. Impact of errors on (a),(b) Cy(¢) and (c) 2(¢). In
(a) errors are present only within R. Data are obtained for L = 20
and d = 20, averaged over N, = 4500 trajectories for a fixed
design of R [42].

equal-site correlator Cy(¢) [Fig. 4(a)]. This exemplifies
that typicality can also hold for states |y ~) with non-
Gaussian distributions of the coefficients c; in the computa-
tional basis [58]. Specifically, the distribution of p; = |c;|?
drifts from exponential to uniform for large error rates
[23,42]. While this has been problematic for the sampling
task in [24], it is irrelevant for our approach.

In contrast, if errors are present in both R and U(r)
[Fig. 4(b)], the decay of C; () depends on p. While a
power-law tail C;(7) « ™ with @ =2/3 can still be
extracted for p <2 x 1073 (roughly one order of magni-
tude smaller than currently achievable [24]), the depolari-
zation errors cause Cy () to decay exponentially for
larger p [26]. Compared to the local probe C; (), the
spatial variance X?(¢) appears to be less sensitive to noise
[see Fig. 4(c)] and exhibits a power-law growth even for
p = 1072, The robustness of X?(¢) might be explained by
the fact that |y ~) is random and structureless at short
times except for sites close to #’. Thus, errors away from ¢’
do not drastically alter the spreading of C, . (¢) and the
growth of X2(¢). This is another result of this Letter. Given
the robustness of X?(¢) [and C, »(t)] against Trotter and
gate errors as well as the gradual improvement of tech-
nology, we expect near-term NISQ devices to provide a
useful platform to extract transport coefficients, such as
diffusion constants, of many-body quantum systems. In this
context, the signal-to-noise ratio of the data in actual
experiments can be systematically improved by increasing
the number of repetitions [24,26,42].

Dynamics of 2D systems.—QOur approach is neither
restricted to the dynamics of 1D systems nor to the
choice of ¢/ = 1. In Fig. 5(a), we repeat our analysis
of the ot dependence for a 2D Heisenberg model with
L =L, x Ly =25 and choose the reference site #/ = L/2
as the central site of the lattice. Analogous to the 1D case,
we find that C; /, ; /> () is remarkably robust with respect to
8t, with a stable hydrodynamic tail Cy 5 7 /»(f) o« t~!, which
signals the onset of conventional diffusion in 2D consistent
with the transition from integrability to nonintegrability of
‘H from 1D to 2D [29]. Finally, let us consider the state
lyx) =] =) 1@ 1) ® | =)®4/2, ie., a nonrandom

I
15
b

/2,1/2(t)

o 2Cy,

o

time ¢

FIG. 5. Dynamics in 2D. (a) Cy 5, >(t) for varying &¢. Dashed
line indicates diffusive decay o 7~'. Inset shows C, /(1) at
t = 1.5. (b) The nonrandom state |y (7)) (see text for details)
yields dynamics incompatible with diffusion.
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product state in which spins at £ # ¢’ point in the x
direction, preparable by applying Hadamard gates on
all but the central site. At t=0, this state yields
(wx|Solwx) = 0.5671)2, ie., the same as |yg ). The
dynamics for ¢ > 0 [Fig. 5(b)], however, clearly differs
from Cp)5;/»(t) and is incompatible with a power-law
decay. Thus, the randomness of |y ) is crucial to extract
the correct hydrodynamic scaling. This is another important
result.

Conclusion.—We have shown that NISQ devices provide
useful platforms to simulate hydrodynamics of quantum
many-body systems. Relying on random-circuit technology
and “quantum parallelism,” we specifically presented an
efficient scheme to obtain spatiotemporal correlation func-
tions without the need of bath or ancilla qubits. As the
intrinsic accuracy of Eq. (2) improves exponentially with
the number of qubits, we expect it to be scalable to larger
systems. Especially for quantum many-body dynamics in
2D, which is known to be notoriously challenging for
numerical methods, simulations on NISQ devices might
help to answer open questions such as the existence of
many-body localization.

Recently, ergodic and nonergodic behaviors have been
shown in dual-unitary circuits [83-85]. In a related work
[85], Claeys and Lamacraft also consider spatiotemporal
correlations such as C, »(¢). While Ref. [85] explores their
dynamics for different classes of dual-unitary circuits, our
work studies C, »(t) for explicit spin systems and, more-
over, highlights the usefulness of random circuits for the
preparation of suitable initial states. The role of typicality in
dual-unitary circuits is a question for future work.

A natural extension would be to consider thermal
expectation values (¢); = Tr[se™"]/Tr[e] at inverse
temperature 3, which by virtue of typicality can be written
as (*) = (wpl* lwp)/(wplwy) with |pg) = ePM2|r) [86],
where |r) is a random state. While |y) is straightforward to
compute on a classical machine, a scheme to implement the
unnatural nonunitary evolution on a quantum computer has
been recently proposed [87]. Thus, random circuits might
also provide a means to prepare thermal states on NISQ
devices, complementary to other approaches for this task
[87-90].

We sincerely thank F. Barratt, J. Dborin, H. De Raedt,
A.G. Green, F. Jin, and R. Steinigeweg for helpful
discussions and comments. This work was funded by
the European Research Council (ERC) wunder the
European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 853368).
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