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The limiting configuration of interfacial solitary waves between two homogeneous fluids8

consisting of a sharp 120◦ angle with an enclosed bubble of stagnant heavier fluid on top9

is investigated numerically. We use a boundary integral equation method to compute the10

almost limiting profiles which are nearly self-intersecting and thus extend the work of Pullin11

& Grimshaw (Phys. Fluids 31, 1988, 3550–3559) by obtaining the overhanging solutions for12

very small density ratios. To further study the local configuration of the limiting profile, we13

propose a reduced model that replaces the 120◦ angle with two straight solid walls intersecting14

at the bottom of the bubble. Using a series truncation method, a one-parameter family of15

solutions depending on the angle between the two solid walls (denoted by γ) is found. When16

γ = 2π/3, it is shown that the simplified model agrees well with the near-limiting wave17

profile if the density ratio is small, and thus provides a good local approximation to the18

assumed limiting configuration. Interesting solutions for other values of γ are also explored.19

1. Introduction20

It was conjectured by Stokes that for two-dimensional deep surface gravity waves, there21

exists a family of periodic travelling waves that terminates at an ‘extreme wave’ as it reaches22

the maximum amplitude. Such limiting configuration, termed the Stokes highest wave, can23

be characterised by a stagnation point at the crest and an enclosed angle of 120◦. The24

existence of the Stokes highest wave was extensively studied by a variety of authors from25

asymptotic and numerical perspectives (Havelock 1918; Yamada 1957a; Longuet-Higgins26

1973; Schwartz 1974; Vanden-Broeck & Schwartz 1979), and ultimately proved rigorously27

by Amick et al. (1982). It was also pointed out by Amick et al. (1982) that the Stokes28

conjecture holds regardless of wavelength and water depth, and in particular, in the limit29

of infinite wavelength, the extreme solitary wave on water of finite depth features the same30

limiting crest angle. Yamada (1957b) is the first known author to have solved for the31

limiting solitary wave numerically (see the book by Okamoto & Shōji (2001) for a detailed32

description of Yamada’s method). Lenau (1966) used a series truncation method to compute33

the same wave. Hunter & Vanden-Broeck (1983) improved Lenau’s results.34

For waves between two homogeneous fluids, the sharp crest of 120◦ cannot serve as35

the limiting configuration of the interface since it would result in an infinite velocity in36

the upper fluid (Meiron & Saffman 1983). Attempts to understand the limiting profile of37

interfacial periodic waves were made by Saffman & Yuen (1982), Meiron & Saffman (1983)38

and Turner & Vanden-Broeck (1986), who numerically discovered the overhanging structure39

(i.e. multivalued wave profiles). Meiron & Saffman (1983) further asserted that the related40
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Figure 1: A possible limiting configuration for overhanging interfacial solitary waves: a
sharp 120◦ angle with a closed fluid bubble on top of it.

limiting profile would become self-intersecting. Grimshaw & Pullin (1986) obtained the41

(almost) self-intersecting solutions when the upper fluid is of infinite depth. They conjectured42

that a possible extreme profile features a stagnant fluid bubble on top of a 120◦angle. Recently,43

Maklakov & Sharipov (2018) conducted a thorough numerical study on the almost limiting44

configuration between semi-infinite fluid layers. They obtained highly accurate solutions,45

providing reliable evidence for the extreme profile predicted by Grimshaw & Pullin (1986).46

Maklakov (2020) discussed the transition from interfacial waves to surface waves when47

the density ratio tends to zero. For interfacial solitary waves, Amick & Turner (1986)48

proved that a possible extreme configuration is an internal front developed from flattening49

and unlimited broadening of the solitary pulse as the wave speed approaches a limiting50

value. This theoretical result was verified later by several numerical computations (see,51

e.g., Funakoshi & Oikawa 1986; Turner & Vanden-Broeck 1988; Rusås & Grue 2002).52

However, Amick & Turner (1986) also showed that the interface could develop a vertical53

tangent indicating the existence of multi-valued solutions, thus provided another possibility.54

Pullin & Grimshaw (1988) computed the interfacial solitary waves with an overhanging55

structure and suggested the existence of a self-intersecting profile. However, they could not56

obtain overhanging waves when the density ratio is smaller than 0.0256, which was explained57

by a rapid shrinking of the overhanging structure when the density ratio is small and is further58

decreased, and therefore more grid points are required to capture it.59

In the current paper, we consider interfacial solitary waves between two fluids of finite60

depths. A boundary integral equation method is used to calculate overhanging solutions and61

the results of Pullin & Grimshaw (1988) are extended to very small density ratios. Based on62

numerical results and local analysis, we suggest a possible limiting configuration featuring63

a 120◦ angle-bubble structure, akin to the periodic case (see figure 1). A reduced model,64

which replaces the curved angle with two straight rigid walls intersecting at the bottom of the65

fluid bubble, is proposed and numerically solved using a series truncation method. It turns66

out that the simplified model provides a good local approximation for the cases of a small67

density ratio when the upper layer is deep enough. The reduced model can also be applied to68

periodic interfacial waves due to its local nature.69

2. Mathematical formulation70

We consider a two-dimensional solitary wave travelling at speed c between two incompress-71

ible and inviscid fluids, bounded above and below by horizontal solid walls. We take a frame72

of reference moving with the wave. The x−axis is parallel to the rigid walls. The level y = 073

is chosen as the undisturbed level of the interface and gravity is assumed to act in the negative74

y−direction. We denote by hi and ρi (i = 1,2) the depth and density in each fluid layer, where75

subscripts 1 and 2 refer to fluid properties associated with the lower and upper fluid layers,76

respectively. Velocities are measured in units of c and lengths in units of h1. The motion77
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of each fluid is assumed to be irrotational, thus we introduce velocity potentials φ1 and φ2,78

which satisfy the Laplace equation in the corresponding fluid layers79

φi,xx + φi,yy = 0 , i = 1,2 . (2.1)80

At the interface, the kinematic and dynamic boundary conditions can be expressed as81

φi,y − φi,xηx = 0 , i = 1,2 , (2.2)82

83

R|∇φ2 |
2 − |∇φ1 |

2
+

2(R − 1)

F2
η = R − 1 , (2.3)84

where R = ρ2/ρ1 < 1 for a density-stable configuration, F = c/
√

gh1 is the Froude number,85

and g is the acceleration due to gravity. The boundary conditions at the solid walls read86

φ1,y = 0 , at y = −1 , (2.4)87

φ2,y = 0 , at y = h , (2.5)88

where h = h2/h1 stands for the dimensionless depth of the upper layer. To describe a solitary89

wave in the comoving frame we require η → 0 and φi,x → −1 as |x | → ∞ and, additionally,90

we confine our attention to symmetric waves with the crest at x = 0.91

3. Numerical results via a boundary integral method92

Following Sha & Vanden-Broeck (1993), we reformulate the problem by using the Cauchy93

integral formula94

ζ(z0) + 1 =
1

iπ

∮

C

ζ(z) + 1

z − z0
dz , (3.1)95

where z = x + iy is the complex coordinate, ζ = φx − iφy = u − iv is the complex velocity,96

and C stands for the boundary of the considered domain. We parameterise the interface by97

the arc length s ∈ (−∞,∞) and let s = 0 at x = 0. By applying the Cauchy integral formula98

to the lower and upper fluid layers respectively and taking the real parts, one obtains99

π[u1(σ) + 1]100

=

∫ ∞

0

[(u1(s) + 1)x ′(s) + v1(s)η
′(s)][2 + η(s) + η(σ)] − η′(s)[x(s) − x(σ)]

[x(s) − x(σ)]2 + [2 + η(s) + η(σ)]2
ds101

+

∫ ∞

0

[(u1(s) + 1)x ′(s) + v1(s)η
′(s)][2 + η(s) + η(σ)] − η′(s)[x(s) + x(σ)]

[x(s) + x(σ)]2 + [2 + η(s) + η(σ)]2
ds102

+

∫ ∞

0

[(u1(s) + 1)x ′(s) + v1(s)η
′(s)][η(s) − η(σ)] − η′(s)[x(s) − x(σ)]

[x(s) − x(σ)]2 + [η(s) − η(σ)]2
ds103

+

∫ ∞

0

[(u1(s) + 1)x ′(s) + v1(s)η
′(s)][η(s) − η(σ)] − η′(s)[x(s) + x(σ)]

[x(s) + x(σ)]2 + [η(s) − η(σ)]2
ds , (3.2)104

105

π[u2(σ) + 1]106

=

∫ ∞

0

[(u2(s) + 1)x ′(s) + v2(s)η
′(s)][2h − η(s) − η(σ)] + η′(s)[x(s) − x(σ))]

[x(s) − x(σ)]2 + [2h − η(s) − η(σ)]2
ds107

+

∫ ∞

0

[(u2(s) + 1)x ′(s) + v2(s)η
′(s)][2h − η(s) − η(σ)] + η′(s)[x(s) + x(σ))]

[x(s) + x(σ)]2 + [2h − η(s) − η(σ)]2
ds108

−

∫ ∞

0

[(u2(s) + 1)x ′(s) + v2(s)η
′(s)][η(s) − η(σ)] − η′(s)[x(s) − x(σ)]

[x(s) − x(σ)]2 + [η(s) − η(σ)]2
ds109
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−

∫ ∞

0

[(u2(s) + 1)x ′(s) + v2(s)η
′(s)][η(s) − η(σ)] − η′(s)[x(s) + x(σ)]

[x(s) + x(σ)]2 + [η(s) − η(σ)]2
ds , (3.3)110

where the Schwarz reflection principle and the symmetry of the interface with respect to the111

y−axis are used. For the computations, equations (3.2) and (3.3) are calculated over a finite112

interval [0, L] with L large. Two sets of mesh grids113

si =
(i − 1)L

N − 1
, i = 1,2, . . . ,N ,

σi =
si + si+1

2
, i = 1,2, . . . ,N − 1 ,

(3.4)114

are introduced. Then 2N − 2 algebraic equations can be obtained via evaluating the integrals115

at σi by the trapezoid rule. The boundary conditions at the interface, (2.2) and (2.3), as well116

as the arc length equation117

x ′2(s) + η′2(s) = 1 , (3.5)118

are evaluated at si , resulting in 4N algebraic equations. Since there are 6N + 1 unknowns,119

namely x ′(si), η
′(si), u1(si), v1(si), u2(si), v2(si) and F (for a given wave height H), three120

additional equations are needed to close the system:121

u1(L) = −1 , η′(0) = 0 , and η(0) = H . (3.6)122

The unknowns at σi can be obtained by means of a four-point interpolation formula. For123

fixed values of R and h, we calculate solitary waves via Newton’s method with an initial124

guess being a small-amplitude Gaussian profile. The iteration process is repeated until the125

maximum residual error is less than 10−8. We slowly change the value of H (or F) and use the126

known solutions as the initial guess, thus solution branches can be systematically explored.127

Numerical results indicate that unlimited broadening of the central core of solitary128

waves that ultimately turn into conjugate flows is likely to occur for small h (see129

Turner & Vanden-Broeck 1988). In order to obtain overhanging solutions, we choose large130

values for h (h = 80 say) in the subsequent computations. Three speed-amplitude bifurcation131

curves are shown in Figure 2(a) for the density ratios R = 0.1, 0.2, 0.3. Accordingly,132

the numerical calculations are performed with L = 40, 50, 100 and N = 1200, 800,133

500. Some typical wave profiles are plotted in Figure 2(b,c,d). In general, it is found134

that along the bifurcation curve solitary waves gradually steepen, reach the maximum135

speed corresponding to the first turning point, and form a mushroom-shaped solitary pulse136

ultimately. It is observed that multiple turning points may exist on the same branch where137

the overhanging structure oscillates between closing and opening before it reaches the138

limiting configuration. The wave profile in the bottom figure of 2(c) is the closest to the139

proposed limiting configuration shown in Figure 1 among all the numerical solutions that140

we obtained. Our numerical results agree well with those found by Pullin & Grimshaw141

(1988) who conjectured that all solitary waves for small density ratios would develop an142

overhanging structure. Solitary waves with an overhanging structure can also be found for143

other values of R, and for instance, Figure 3 shows the numerical results obtained based144

on two sets of parameters: (R, L,N) = (0.01,8,2000) and (0.6,200,290). It is noted that145

solutions for R = 0.01 extend the result of Pullin & Grimshaw (1988) since they could not146

get overhanging profiles for R < 0.0256 due to numerical difficulties.147

Based on the aforementioned numerical evidence, it is reasonable to conjecture that the148

limiting configuration is a self-intersecting interface consisting of a sharp angle and a closed149

fluid bubble as shown in Figure 1. To verify this assertion, we plot the velocity magnitude150

distributions (i.e. u2
1,2
+ v

2
1,2

) at the interface in Figure 4(a) for R = 0.15 and h = 80. It is151

clear that there are two segments where velocities above or below the interface are almost152
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Figure 2: (a) Speed-amplitude bifurcation curves for h = 80 and R = 0.1 (blue), R = 0.2
(red), R = 0.3 (dark). (b-d) Typical overhanging profiles for R = 0.1, 0.2, 0.3 respectively.
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Figure 3: Overhanging waves for h = 80 and (a) R = 0.01, (b) R = 0.6.

zero. The common segment on which u2
1,2
+ v

2
1,2
< 0.005 is labeled by a thick black line153

in (a) and correspondingly highlighted on the wave profile in (b). Consequently, for the154

limiting configuration shown in Figure 1, if it exists, the fluid inside the bubble should be155

stationary since closed streamlines are not allowed for irrotational flows. Based on a similar156

argument of the Stokes highest wave, the sharp corner attached to the fluid bubble should157

be of an interior angle of 120◦ with the vertex being a stagnation point. On the other hand,158

Bernoulli’s equation at the stagnation point implies y0 = F2/2 for all density ratios, where y0159
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Figure 4: (a) Interfacial velocity magnitude of the upper fluid (red) and lower fluid (blue)

for R = 0.15 and h = 80. The segment on which u2
1,2
+ v

2
1,2
< 0.005 is labeled by the

black thick line. (b) Wave profile associated with (a), and the black part of the interface

corresponds to u2
1,2
+ v

2
1,2
< 0.005. (c) Numerical relations between yb and F for

R = 0.08 (blue), R = 0.1 (red), R = 0.15 (yellow), and R = 0.2 (purple), together with the

theoretical prediction y0 = F2/2 (dashed line). yb denotes the vertical coordinate of the
bubble bottom, and y0 is the theoretical vertical coordinate of the stagnation point.

is the vertical coordinate of the vertex. The theoretical prediction y0 = F2/2 is plotted as the160

dashed line in Figure 4(c). Typical numerical values for yb(F) are shown in the same figure as161

solid lines, where yb is the vertical coordinate of the flat bottom of the fluid bubble, namely162

the part labeled as black in Figure 4(b). The four curves correspond to R = 0.08,0.1,0.15,0.2.163

4. A simplified model164

Although the almost self-intersecting solutions can be obtained by the boundary integral165

equation method, the appearance of the singularity, i.e. the 120◦ angle, is a formidable166

difficulty to overcome. As one can see from Figures 2 and 3, the overhanging structure is167

fully localised and shrinks rapidly when the value of R is decreased and, furthermore, the168

local structure beneath the bubble looks very much like an obtuse angle between two straight169

lines if the density ratio is small, e.g. R = 0.01. Motivated by these observations, we attempt170

to propose a simplified model to describe the local structure of the limiting configuration for171

small density ratios.172

As shown in the simplified model of Figure 5, the end points A and C, which respectively173

represent upstream and downstream sides of a flow, are assumed to extend to infinity. The174

lines OA and OC are supposed to be solid walls where impermeability boundary conditions175

need to be satisfied. The angle γ is considered to be a parameter, and γ = 2π/3 is the relevant176

one to model interfacial waves. This is because the flow inside the angle µ approaches a177

stagnation flow as the point O is approached, where µ is the angle between the solid wall178

and the bubble bottom (see Figure 5). The flow of fluid 1 inside the angle γ near the point O179

reduces then to the local flow considered by Stokes to model surface waves. It then follows180

that γ = 2π/3. We note that the bottom part of the bubble near O is horizontal, so that181

µ = (π − γ)/2. This can be justified by a local analysis of the flow inside the angle µ, a flow182

bounded above by a free surface and below by a solid wall. It can be shown that the free183

surface has to be horizontal at O (the only other possibility is the value µ = 2π/3 which is184

not relevant here), and the interested reader is referred to the third chapter of Vanden-Broeck185

(2010) for details.186
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Figure 5: A simplified model: two straight solid walls intersect at the origin forming an
angle γ and a closed fluid bubble with flat bottom is on top of the angle.

For the sake of convenience, the origin of the Cartesian coordinate system is set to coincide187

with the angle vertex O, with the y−axis pointing upward, and the summit of the bubble is188

label as B. Since the fluid inside the bubble is stationary, Bernoulli’s equation now reads189

ρ2

2

(

u2
2 + v

2
2

)

+ (ρ2 − ρ1)gη = 0 . (4.1)190

Our aim is to find the shape of the fluid bubble as well as the velocity potential φ2. This is a191

single layer problem since the fluid status beneath the interface is either known or irrelevant.192

To solve the problem, we introduce the complex velocity potential f = φ2 + iψ, with193

ψ being the stream function. The value of ψ at the interface and along the solid walls as194

well as φ2(B) are set to zero. It is noted the origin is actually the intersection of two walls,195

and hence we denote by O− and O+ the left- and right-hand limits when approaching O196

along the corresponding walls and let Φ = φ2(O+) = −φ2(O−) due to symmetry. We then197

non-dimensionalise the system by choosing
(

Φ
2/g

)1/3
and (Φg)1/3 as characteristic length198

and velocity scales, respectively. Following the work of Daboussy et al. (1998), we solve the199

problem by using the series truncation method. We introduce a transformation200

f = −
1 + t2

2t
, (4.2)201

which maps the upper half f−plane (i.e. the domain occupied by the lighter fluid) onto the202

upper half unit disk in the complex t−plane. The images of A, O−, B, O+, C labelled in203

Figure 5 are t = 0, 1, i, −1, 0. The complex velocity ζ = u2 − iv2 is analytic everywhere204

except at t = 0 and t = ±1, where the asymptotic behaviors are205

ζ ∼ t1−
γ

π , as t → 0 , (4.3)206
207

ζ ∼
(

1 − t2
)2−

2µ
π

, as t → ±1 , (4.4)208

with µ =
π−γ

2 . Therefore, the complex velocity ζ can be expressed as209

ζ = ei
γ−π

2 t1− γ

π

(

1 − t2
)2−

2µ
π

ξ , (4.5)210

where ξ is an unknown analytic function. We introduce two real functions τ and θ satisfying211
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ξ = eτ−iθ and expand τ − iθ as212

τ − iθ =

∞
∑

n=0

ant2n
=

∞
∑

n=0

an cos 2nσ − i

∞
∑

n=1

an sin 2nσ , (4.6)213

where the coefficients an are real. At the interface, t = eiσ and σ ∈ [0,π]. Upon noting the214

identity xφ + iyφ = 1/ζ , it is easy to verify that215

yφ = e−τ(2 sinσ)−2+
2µ
π sin

[

θ −
(

3 −
γ
π
−

2µ
π

)

(

σ − π
2

)

]

, (4.7)216

xφ = e−τ(2 sinσ)−2+
2µ
π cos

[

θ −
(

3 −
γ
π
−

2µ
π

)

(

σ − π
2

)

]

. (4.8)217

Thus Bernoulli’s equation becomes218

R

2
e2τ(2 sinσ)4−

4µ
π + (R − 1)

∫ σ

0
yφ sinαdα = 0 . (4.9)219

To solve equation (4.9), the infinite series in (4.6) are truncated at n = N−1 and N collocation220

points are uniformly distributed on the interval
[

0, π2
]

, namely221

σi =
π(i − 1)

2(N − 1)
, i = 1,2, · · · ,N . (4.10)222

Equation (4.9) is then satisfied at the mesh points σ2,σ3, · · · ,σN with an additional equation223

∫ π

2

0
xφ sinσ dσ = 0 , (4.11)224

which simply means the interface is closed. Finally, this system of N nonlinear equations225

with N unknowns (a0,a1, · · · ,aN−1) is solved via Newton’s method for a given value of226

γ, and N ! 300 in all computations. This method of series truncation has been applied227

successfully to solve many free surface problems (see Vanden-Broeck (2010) for details and228

references).229

230

Case I. γ = 2π/3231

232

Numerical results for γ = 2π/3 (i.e. µ = π/6) are shown in Figure 6. A typical profile and233

corresponding streamlines are plotted in (a) for R = 0.1. From Bernoulli’s equation234

R(u2u2σ + v2v2σ) + (R − 1) sinσ
v2

u2
2
+ v2

2

= 0 , (4.12)235

which is derived from equation (4.1) by taking the derivative with respect to σ, one can236

eliminate R by introducing237

u′
2 =

3
√

R/(1 − R) u2 , v
′
2 =

3
√

R/(1 − R) v2 . (4.13)238

This fact immediately suggests that profiles for different values of R are geometrically similar,239

which is reasonable since no natural length scale appears in the reduced model. To verify240

this assertion, numerical solutions are plotted in Figure 6(b) where the profiles from large to241

small correspond to R = 0.9, 0.8, 0.6, 0.3, 0.1 respectively.242

Figure 7 shows comparisons between solutions of the simplified model and the almost243

self-intersecting solutions obtained from the boundary integral equation method. The black244

line represents the assumed 120◦ angle. To plot these solutions under the same scaling, we245

enlarge the profiles of the simplified model and then move the profiles vertically so that246
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Figure 6: (a) Numerical solution of the simplified model for γ = 2π/3 and µ = π/6 (solid
curve), together with streamlines (dashed curves). (b) Similarity solutions for R = 0.9,

0.8, 0.6, 0.3, 0.1 from large to small.
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Figure 7: Comparisons between the almost self-intersecting solutions (blue curves) and
profiles resulting from the simplified model (red curves). The black lines represent solid
walls intersecting at a 120◦ angle. (a) R = 0.01, (b) R = 0.05, (c) R = 0.1, (d) R = 0.2.

their top and bottom match the highest point and flat bottom of the bubble structure of the247

primitive problem. The density ratios from (a) to (d) are 0.01, 0.05, 0.1, 0.2 respectively. It is248

observed that for a small density ratio, the simplified model provides a good approximation249

to the almost self-intersecting solution of the primitive equations and further to the limiting250

configuration shown in Figure 1, if it exists.251

252

Case II. γ ! 2π/3253

254

It is natural to ask what happens to the reduced model when γ ! 2π
3 . In fact, numerical255

solutions can be found for arbitrary γ ∈ [0,π]. Four typical solutions with R = 0.1 are shown256

in Figure 8.257

Two limiting cases, γ = 0 and γ = π, merit special attention. As can be seen from Figure258

8, the profile becomes more and more circular as the value of γ is decreased. Therefore, one259

may expect a perfect circular interface to appear when γ = 0. In fact, it is not difficult to check260

that ζ = it
(

1 − t2
)

a0 is an explicit solution of equation (4.12), where a0 =
3
√

(1 − R)/4R.261
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Figure 8: Solutions of the simplified model for (a) γ = π
18 , (b) γ = π

3 , (c) γ = 13π
18 , (d)

γ = 17π
18 .
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Figure 9: (a) Numerical solution for γ = 0 and µ = π
2 (solid curve) and streamlines

(dashed curves). (b) Comparison between the numerical solution (solid curve) and
theoretical prediction (red circles).

One can then obtain the parametric form of the interface as262

x = −
1

4a0
sin 2σ, y = −

1

4a0
(cos 2σ − 1) , (4.14)263

which is a circle with radius 1
4a0

. The numerical solution for R = 0.1 is plotted in figure 9,264

where the profile and streamlines are displayed in (a) while the comparison with the exact265

solution is in (b). It thus demonstrates the validity of the numerical algorithm.266

For the case of γ = π, the bottom of the fluid bubble entirely attaches to the solid wall,267

therefore the interface should intersect the solid wall with a 120◦ angle and form a stagnation268

point according to the local analysis. A typical solution for R = 0.1 is shown in Figure 10 by269

setting µ = 2π
3 and dropping equation (4.11) since the profile is no longer closed at the origin.270

This type of solution, which describes a still water bubble lying on the flat bottom, exists for271

all R ∈ (0,1) due to the geometrical similarity (4.13). Unlike those shown in Figure 6 that272

represent the limiting solutions for R ) 1, the profile shown in Figure 10 corresponds to273
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Figure 10: Numerical solution for γ = π and µ = 2π
3 (solid curve), together with

streamlines (dashed curves).

another possible limiting configuration of interfacial solitary waves, which appears under the274

Boussinesq limit, i.e. R → 1. Such solutions were found by Pullin & Grimshaw (1988) when275

the upper fluid is infinitely deep. They proposed that in such a scenario solitary waves are276

unbounded and calculated the limiting configuration by fixing the wave height and gradually277

decreasing the lower layer thickness to zero. In particular, they concluded that the limiting278

interface features a half-lens shape with an approximate aspect ratio (i.e. the ratio of width279

to height) of 4.36, which perfectly agrees with 4.353 resulting from our simplified model.280

5. Concluding Remarks281

In conclusion, we have found numerical evidence for a possible limiting configuration of282

interfacial solitary waves. Overhanging solutions which become almost self-intersecting283

have been calculated via a boundary integral equation method for various density ratios,284

strongly suggesting a limiting configuration characterised by a stagnation point at a 120◦285

angle and a closed fluid bubble on top of the angle (see Figure 1). A simplified model based286

on these numerical results has been proposed to study the local structure of these singular287

solutions. Using a series truncation method, we have found exotic solutions depending288

on the value of γ, i.e. the angle formed by two intersecting walls. When γ = 2π/3, the289

simplified model provides a good approximation to those almost self-intersecting solutions290

for small density ratios. Solutions for other values of γ have also been computed. In particular,291

we have found an explicit solution featuring a circular profile for γ = 0, and a solution292

corresponding to another limiting configuration of interfacial solitary waves for γ = π.293

Furthermore, it is important to mention that the reduced model can also be applied to periodic294

interfacial waves due to its local nature. Finally, considering the crest instability of the Stokes295

highest waves (see detailed numerical investigations by Longuet-Higgins & Tanaka 1997),296

the Kelvin-Helmholtz instability of interfacial gravity waves (Benjamin & Bridges 1997),297

and the Rayleigh-Taylor instability due to the mushroom structure, it is very likely that the298

almost limiting configurations of progressive interfacial waves are unstable. Therefore, the299

competition mechanism among different instabilities and the time-evolution of the instability300

are of particular interest which merit further thorough studies. The only paper we know that301

provides stability results for interfacial solitary waves is the paper of Kataoka (2006). For302

small amplitude solitary waves, linear stability analyses based on the Korteweg-de Vries303

(KdV) equation and its modified version (mKdV equation) show that these waves are stable.304

Using an asymptotic analysis, Kataoka (2006) constructed a general criterion for the stability305

of interfacial solitary waves with respect to disturbances that are stationary relative to the306

basic wave. Interesting results were obtained for small density ratios. In particular, Table 1 of307

Kataoka (2006) provides critical wave amplitudes H at which an exchange of stability first308
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occurs for air–water solitary waves (R = 0.0013) with various depth ratios h. According to309

this table, all the waves considered in the present paper are unstable. However, the mechanism310

of the instability is of great interest, since it is related to the theory of wave breaking. As said311

above, it was suggested that the instability of solitary waves is caused by the crest instability.312

Assuming that the local crest instability is also the correct mechanism of interfacial solitary313

wave instability, there is still one important question. Kataoka (2006) found that the exchange314

of stability occurs at the extremum in the total wave energy. What is the physical connection315

between the crest instability, which is a local phenomenon, and the extremum in the total316

wave energy, which is a global quantity? On an apparently completely different problem317

related to super free fall, Villermaux & Pomeau (2010) commented on the formation of318

a concentrated ‘nipple’ on top of an essentially flat base solution and wondered about the319

relevance with wave breaking. They noted that wave breaking does occur with standing320

waves (Taylor 1953) and in nature. The formation of ‘nipples’ can easily be observed on321

wave crests. These nipples then bend and splash on the sea surface, forming foam and spume.322

Is the present study definitely irrelevant to that common but yet unexplained phenomenon?323

We believe that some interesting dynamics due to the instability of interfacial solitary waves324

at small density ratios is likely to occur.325
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